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The estimation of functional uncertainty using polynomial chaos
and adjoint equations
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SUMMARY

The combined use of nonintrusive polynomial chaos (PC) and adjoint equations (yielding the gradient)
is addressed aimed at the estimation of uncertainty of a valuable functional subject to large errors in the
input data. Random variables providing maximum impact on the result (leading values) may be found
using the gradient information that allows reduction of the problem dimension. The gradient may be
also used for the calculation of PC coefficients, thus enabling further acceleration of the computations.
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1. INTRODUCTION

The estimation of uncertainty of a valuable functional using adjoint equations is considered in
several papers, see, for example [1, 2]. The corresponding computational burden does not depend
on the number of parameters containing the error, thus providing high computational efficiency.
However, formally this approach can be applied only for small errors. The Monte–Carlo method is
commonly used for large errors and nonlinear equations, however it requires high computational
resources.

The polynomial chaos (PC) expansion [3–25] is often used as an alternative option allowing
taking into account the nonlinear effects of large errors. It implies the development of new codes
(intrusive approach) or estimation of coefficients from a set of calculations (nonintrusive approach).
A number of useful reviews of PC as well as generalized PC(gPC) have been published recently,
such as Najm [16], Augustin et al. [17], Marzouk and Najm [15] and Xiu [25] to mention but a few.

Intrusive methods are more flexible and, in general, more precise [4, 9, 12–18]. However, the
intrusive approach implies the development of new spectral codes that require significant efforts.

Nonintrusive methods of different nature [6–8, 10, 19, 20] are based on running the existing
codes that significantly reduce the computational load and provide an opportunity to use the existing
well-tested methods.

The general difficulty for all PC-based methods is the ‘curse of dimensionality’. The number of
coefficients rapidly increases when the dimension of problem (number of parameters containing
random error) and the order of polynomials increase. Significant progress is achieved in reducing the
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random space dimension using truncation of Karhunen–Loeve expansion [15, 22, 23]. This approach
implies the availability of accurately evaluated covariance matrix, an approach we intend to test in
the forthcoming research efforts. Herein, we consider the simpler case of a noncorrelated error.

Significant amount of practical tasks may be specified by certain valuable functionals (maximum
temperature, heat flux, drag force, etc.). This functional depends on boundary, initial conditions,
coefficients and other problem parameters (input data, see for example [26]) which contain errors
and engender the functional uncertainty that is of current interest.

This paper is addressing the issue of estimation of valuable functional uncertainty using a
combination of PC and adjoint equations that should partially mitigate the limitations of both the
approaches. At the first stage the variables, providing major input in the error of functional, are
determined using the gradient obtained via the adjoint equations [11]. This allows us to reduce
the dimension of random variables space. In the second stage, the coefficients of expansion over
Hermite polynomials are determined using a least-squares nonintrusive variant of PC [6]. The
gradient may be also used at this stage to reduce calculations according to [10]. In the final stage,
the moments and probability density function are obtained using both the PC expansion (for ‘large’
errors) and the adjoint-based gradient (for ‘small’ errors).

The results of numerical tests are presented for both the linear and nonlinear thermal conduction
equations and include moments and the probability density functions.

2. THE ESTIMATION OF UNCERTAINTY OF FUNCTIONAL

Let us consider the estimation of the uncertainty of a functional ε as a function of the input data
fi error. Input data parameters, containing errors, are expressed as fi =〈 fi 〉+�i�i , where �i are
the normally distributed random variables with unit variance, �i is the standard deviation of fi .
The number of random variables is denoted here as the problem dimension N .

The linear estimate of the valuable functional ε uncertainty may be presented as �ε=∑N
i=1∇iε�i�i [1, 2], where the gradient ∇iε is determined using an adjoint problem. This approach

directly provides an estimation of the variance. The probability density function may be estimated
using the gradient as the meta-model and the Monte–Carlo (MC) method. We use this approach
in the numerical tests and denote it as the adjoint Monte–Carlo (AMC).

Nm random values �i , which satisfy the condition |∇iε�i |>�∗ (where �∗ is a certain critical
magnitude of the error, there is no summation over repeating indexes), are considered as the leading
variables (‘large’ errors providing the main input to the total error of the functional).

For the nonlinear estimation of ‘large’ errors’ impact, the function of random variables (func-
tional) is expanded over Hermite polynomials as ε=∑M

i=0 bi Hi (�). The Hermite polynomials
are linked with the normal distribution �(�)= (2�)−N/2e1/2�

∗�,�∗�/2= (�21+·· ·+�2N )/2, (�∈ RN ).
They constitute an orthogonal basis in the Gauss measure �(d�)=�(�)d�. Multidimensional
Hermite polynomials of the order p may be expressed as

H p

i1,. . .,in
(�1,. . .,�n)=e�

∗�/2(−1)p
�p

(��1)i1 . . . (��n)in
e−�∗�/2. (1)

In this paper, we use polynomials of the third and fourth orders having the following expressions:

H0 = 1,

H1(�i ) = H1
i (�)=�i ,

H2(�i1,�i2 ) = H2
i1i2 (�)=�i1�i2 −�i1i2,

H3(�i1,�i2,�i3 ) = H3
i1i2i3

(�)=�i1�i2�i3 −�i1�i2i3 −�i2�i1i3 −�i3�i1i2 .

(2)
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H4
i1i2i3i4 (�)= �i4 (�i1�i2�i3 −�i1�i2i3 −�i2�i1i3 −�i3�i1i2 )−�i1i4�i2�i3 −�i2i4�i1�i3

−�i1�i2�i3i4 +�i1i4�i2i3 +�i2i4�i1i3 +�i3,i4�i1i2 .

Fourth-order polynomials were used only for code checking. All the results and expressions
used below are presented using only third-order polynomials.

The expansion of the valuable functional is presented in a convenient form in accordance with
[10, 12].

ε=b0+
N∑

i1=1
bi1H

1
i1 (�i1 )+

N∑
i1=1

i1∑
i2=1

bi1i2H
2
i1 i2

(�i1,�i2 )+
N∑

i1=1

i1∑
i2=1

i2∑
i3=1

bi1i2i3H
3
i1i2i3

(�i1,�i2,�i3 ). (3)

The Cameron–Martin theorem [5] provides for the calculation of the mean value and the variance
by the following expressions:

E[ε(�)]=b0, �2ε =
M∑
i=1

b2i . (4)

In this paper, the random variable space is divided into two subspaces: �i ∈ RNm (‘large’ errors)
and �i ∈ RN−Nm (‘small’ errors). Correspondingly, the expansion (3) is truncated and assumes the
following form:

ε = b0+
Nm∑
i1=1

bi1H
1
i1 (�i1 )+

Nm∑
i1=1

i1∑
i2=1

bi1i2H
2
i1i2 (�i1,�i2 )

+
Nm∑
i1=1

i1∑
i2=1

i2∑
i3=1

bi1i2i3H
3
i1i2i3

(�i1,�i2,�i3 )+
N∑

i1=Nm

bi1H
1
i1 (�i1 ). (5)

The first three terms account for the ‘large’ errors, whereas the last term
∑N

i1=Nm
bi1H

1
i1
(�i1 )=∑N

i1=Nm
bi1�i1 presents the ‘small’ errors and may be stated as

∑N
i=Nm

∇iε�i�i , that, if necessary,
provides the fast calculations using the adjoint-based gradient.

Thus, we determine the most significant part of the error, i.e. the estimate of its nonlinear part
using PC, whereas the remaining part of the error is being estimated using a linear approximation
by the gradient. In this approach we neglect some part of the series (3) of order greater unit, which
accounts for a nonlinear input of ‘small’ errors, and terms, responsible for the interaction between
the ‘small’ and ‘large’ errors. This assumption is valid away from the vicinity of singular points
(extrema, saddles). We may verify the validity of the leading error selection by carrying out a
comparison of the valuable functional ε( j )=ε(�( j )i ) calculated for total random space �( j )i ∈ RN

and for reduced space ε̃( j )=ε(�̃
( j )
i ), �̃

( j )
i ∈ RN , where �̃

( j )
i =�( j )i for i =1,Nm , and �̃

( j )
i =0 for

i =Nm +1,N .

3. NONINTRUSIVE POLYNOMIAL CHAOS

In general, the calculation of the Hermite expansion entails the development of new codes for
spectral mode resolution that requires a very laborious task. In this connection, different variants
of the nonintrusive PC [6, 7, 10, 19, 21] are of high current interest. Nonintrusive PC implies the
estimation of coefficients using a set of calculations conducted by the standard methods (finite-
differences or finite elements) using the existing deterministic codes. We use the stochastic response
surface approach [6] in this paper and denote it as PC. We utilize the information on several sets of
random vectors �i, j =�( j )i =�( j )(xi ), where i denotes the number of the vector component (1−N ),
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j is the number of random vectors in the ensemble (1−M). The functional ε( j ) is calculated by a
run of the main code (heat transfer in this paper).

We may present the ensemble of calculations as

ε(0) = b0+
N∑

i1=1
bi1H

1(�(1)i1
)+

N∑
i1=1

i1∑
i2=1

bi1i2H
2(�(1)i1

,�(1)i2
)

+
N∑

i1=1

i1∑
i2=1

i2∑
i3=1

bi1i2i3H
3(�(1)i1

,�(1)i2
,�(1)i3

),

ε(1) = b0+
N∑

i1=1
bi1H

1(�(2)i1
)+

N∑
i1=1

i1∑
i2=1

bi1i2H
2(�(2)i1

,�(2)i2
)

+
N∑

i1=1

i1∑
i2=1

i2∑
i3=1

bi1i2i3H
3(�(2)i1

,�(2)i2
,�(2)i3

)

...

ε(M) = b0+
N∑

i1=1
bi1H

1(�(M)
i1

)+
N∑

i1=1

i1∑
i2=1

bi1i2H
2(�(M)

i1
,�(M)

i2
)

+
N∑

i1=1

i1∑
i2=1

i2∑
i3=1

bi1i2i3H
3(�(M)

i1
,�(M)

i2
,�(M)

i3
).

(6)

Or (by reordering b j ), as

Ai j b j =ε(i), i =1, . . .M+1, j=0, . . . ,M. (7)

The system of equations may be stated in an expanded form as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 H1(�(1)1 ) . . . H1(�(1)N ) H2
1 (�

(1)) . . . H2
K2
(�(1)) H3

1 (�
(1)) . . . H3

K3
(�(1))

1 H1(�(2)1 ) . . . H1(�(2)N ) H2
1 (�

(2)) . . . H2
K2
(�(1)) H3

1 (�
(2)) . . . H3

K3
(�(2))

1
...

...
...

...
...

...
...

...
...

1 H1(�(M)
1 ) . . . H1(�(M)

N ) H2
1 (�

(M)) . . . H2
K2
(�(M)) H3

1 (�
(M)) . . . H3

K3
(�(M))

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

b0

b1

...

bM

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

ε0

ε1

...

εM

⎞
⎟⎟⎟⎟⎟⎠

.

Herein, K2= (N2+N )/2, K3= (N3+3N2+2N )/6, �(i) is the random vector and �(i)j denotes
random vector components.

Using M= (N+ p)!/N !p! runs of the main code with the corresponding number of different
random vectors being added to the input data, we may determine the coefficients of system (7),
solve it and find bi (bi1i2i3 ). The condition number of the Ai j matrix may be controlled by the

selection of sample points �(1)j .
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4. NONINTRUSIVE POLYNOMIAL CHAOS OPTION TAKING INTO ACCOUNT
THE GRADIENT

The adjoint equations enable us to calculate the gradient (N variables) of the functional by running
a code whose computational cost is similar to that of the forward code. This can accelerate the
computation of the PC coefficients for large N . We denote this algorithm as APC. The differentiation
of ε over random variables results in the expression

�ε
���

=
N∑

i1=1
bi1

�H1(�i1 )

���
+

N∑
i1=1

i1∑
i2=1

bi1i2
�H2(�i1,�i2 )

���

+
N∑

i1=1

i1∑
i2=1

i2∑
i3=1

bi1i2i3
�H3(�i1,�i2,�i3 )

���
, �=1 . . .N. (8)

Here, the left part is obtained from the adjoint problem solving, while the right part is formed
by the differentiation of the PC expansion. A single run of the forward and adjoint problems yields
(1+N ) relations for first data set �(1), given below as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 H1(�(1)
1 ) . . . H1(�(1)

N ) H2
1 (�

(1)
) . . . H2

K2
(�(1)

) H3
1 (�

(1)
) . . . H3

K3
(�1

)

0 �H1(�(1)
1 )/��1 . . . �H1(�(1)

N )/��1 �H2
1 (�

(1)
)/��1 . . . �H2

K2
(�(1)

)/��1 �H3
1 (�

(1)
)/��1 . . . �H3

K3
(�1

)/��1

0
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 �H1(�(1)
1 )/��N . . . �H1(�N,1 )/��N �H2

1 (�
(1)

)/��N . . . �H2
K2

(�(1)
)/��N �H3

1 (�
(1)

)/��N . . . �H3
K3

(�1
)/��N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0

b1

.

.

.

bM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε0

�ε/�1

.

.

.

�ε/�N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

We need ∼M/N cycles of calculations to obtain the closed system

Ai j b j = fi , i =1, . . . ,M+1, j =0, . . . ,M. (10)

(In real applications, we usually obtain an overdetermined system.)
This approach provides approximately an N -fold reduction of the computation time when

compared with the PC.
The coefficients b j readily provide us with ε̄ and � using Equation (4). The probability density

function P(ε) is also easily obtained by generating � and calculating ε using the polynomial
presentation (5) as a meta-model. This approach is illustrated below for the linear and nonlinear
heat transfer equations.

5. TEST PROBLEMS

Let us consider the thermal conduction model

C
�T
�t

− �
�x

(
	
�T
�x

)
= 0,

T (0, t) = Tw, T (X, t)=TR,

Tt=0 = T0(x),

(11)

where T (t, x) is the temperature, C is the volume heat, 	 is the thermal conductivity, and X is the
specimen thickness.
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The estimated functional

ε=
∫ T

0
T�(x−xest)�(t− test)dx dt . (12)

Herein, xest, test determine the coordinate for pointwise temperature estimation (in applications,
it may be the temperature at an important moment in a sensitive place (payload, etc.)). The choice
of functional is task dependent, here we use the simplest one without the loss of generality.

We search for moments and probability density function of the functional caused by a normally
distributed error in the thermal conductivity or the initial state.

For gradient calculation we employ the function �(t, x), obtained via solution of the following
adjoint problem

C
��

�t
+	

�2�
�x2

−�(t− test)�(x−xest)=0, (13)

Boundary conditions:
��
�x

∣∣∣∣ x=X =0,
��

�x

∣∣∣∣ x=0=0, (14)

Final condition: �(t f , x)=0. (15)

The gradient of the functional related to an initial temperature is ∇ε=�(0, x) and regarding the
conductivity coefficient is

∫
�(�2T /�x2)dt dx . This gradient is connected with derivatives of the

functional over random variables in T0:

�ε(�(m))

��i
= �ε

�T0,i

�T0
��i

=�(0, xi )�i , (16)

and in 	:

�ε

��i
= �ε

�	

�	
��i

=
∫

�
�2T
�x2

�idx dt . (17)

In the first test problem we consider four random variables in the thermal conductivity 	=
	̄+�i�i . Here, �i are the random variables with the normal distribution of unit variance. The
variation of functional is presented as

�ε=ε−〈ε〉=
∫ T

0

∫
�

∑
i

�
�2T
�x2

�i�idx dt . (18)

In a second test problem the initial data contain the normally distributed error: T0(xi )+�T0(xi )=
T0(xi )+�i�i . In this test (in linear case when 	(T )=	1=Const), ∇ε=�(0, x) does not depend
on T0. So, the gradient information cannot be used in (10) and APC cannot be applied.

In a third test problem the thermal conductivity is a nonlinear function assuming the following
form 	(T )=	0+	1(T/Ts )3, (for T<0,	(T )=	0). The initial data contain the normally distributed
error: T0(xi )+�T0(xi )=T0(xi )+�i�i .

6. NUMERICAL RESULTS

The heat transfer equation and adjoint equation of tests were solved by conservative finite difference
scheme of the second order over the space and time [27].

In numerical tests we used MC, Monte–Carlo using gradient (AMC), nonintrusive polynomial
chaos (PC) and polynomial chaos methods using adjoint equations (APC).

Systems (7) and (10) were solved using a singular value decomposition (SVD) [28]. So, the
approach considered herein may be classified as belonging to linear regression (stochastic response
surface) methods [19]. SVD may be considered as a variant of least-squares problem solvers,
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and it may be used for overdetermined system of equations. The time consumed by SVD was
negligible when compared with the time required for solving direct (11) or adjoint (13) problems.
Oversampling is known [21] to improve the quality of solution for stochastic response surface
methods, so it may be used in this approach in a natural way.

Moments and the probability density function were calculated using from 10 000 to 600 000
samples.

6.1. Error in thermal conductivity

Figure 1 presents probability density functions P(T ) of the functional obtained using MC, AMC
and PC. The thermal conductivity contained four normally distributed random variables with the
standard deviation equal to 0.1 · 	̄. PC method was implemented using a third-order polynomial.
All tests used 100 000 samples.

The comparison of mean values ε̄ and standard deviations � is presented in Table I. This
table also contains the computation cost (consumed time normalized by the time of single
problem run).

The nonintrusive PC exhibits a relatively smaller accuracy when compared with MC and AMC
methods and a much smaller computational efficiency when compared with AMC. The moments
calculated from PC coefficients by the Cameron–Martin theorem (Table I, A) and theMC simulation
using PC as a meta-model (Table I, B) are similar.

6.2. Initial temperature error. Linear case

Let us consider the influence of an initial temperature error on the final temperature at a reference
point. The final temperature distribution is presented in Figure 2. The reference point is number
k=54, the error being added to all points of the initial temperature distribution (N =100).

Figure 3 presents the PC results in comparison with MC for an input data error with a standard
deviation that equals 10. PC3-PC11 denotes the PC and the number of accounted variables.

0.0E+00

2.0E-03

4.0E-03

6.0E-03

8.0E-03

1.0E-02

1.2E-02

50

T

P
(T
)

1
2
3

55 60 65 70 75

Figure 1. Probability density. 1-MC, 2-AMC, and 3-PC.

Table I. Comparison of mean values, standard deviation and the computational cost for
MC, AMC and PC methods, respectively.

PC

MC AMC A B

ε̄ 62.285 61.776 61.247 61.269
Standard deviation � 4.971 4.783 4.174 4.168
Computation cost 100000 2 35
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Figure 2. Distribution of temperature over space at the initial time (1) and final
time (2) for error-free data.
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PC9 PC5
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Figure 3. Probability density at reference point (100 000 trials)

Increasing the number of accounted nodes improves the quality of the result. A good agreement
between MC and PC is observed when the number of nodes (containing error) is nine or higher.

A good agreement between PC with MC and AMC may be achieved using only three leading
vectors if the linear terms (obtained using adjoint problem) are accounted for; see Figure 4 which
confirms an equivalence of PC and AMC in the linear case. Herein, PC3+ denotes PC taking into
account 3 nodes and adjoint derived linear terms over the remaining ones. For those nodes, where
PC coefficients were calculated, a good coincidence of first-order PC coefficients and gradient-
based data bi ≈∇iε�i is observed. Table II presents the mean values and standard deviations for
the above mentioned tests.

In general, for the linear case, AMC is significantly superior to other methods in as far as the
computation time for similar accuracy requirement is concerned.

6.3. Impact of initial temperature error. Nonlinear case

The above tests demonstrated the validity of considered methods for linear case; however, the
potential benefits of PC in the comparison with another approaches may also be detected in the
nonlinear case. The test problem considered below is characterized by the cubic dependence of
the thermal conductivity coefficient on the temperature; (see Figure 5). This provides a significant
nonlinear effect for heat localization (Figure 6) (Ts =25).

Figure 6 presents the temperature distribution at the final moment. A comparison with Figure 2
clearly demonstrates the influence of nonlinearity.
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Figure 4. Probability density at reference point (100 000 trials) with account of linear (gradient) terms.

Table II. Comparison of mean values, standard deviations and computational costs of PC, AMC and
PC3-PC11 (number of accounted for nodes) methods, respectively.

MC AMC PC3+ PC3 PC5 PC9 PC11

Mean 63.881 63.906 63.888 63.889 63.883 63.887 63.888
Standard deviation 2.491 2.507 2.512 1.517 1.742 2.279 2.382
Computation cost 100000 2 22 20 56 220 364
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Figure 5. Thermal conductivity as a function of temperature.

Figure 7 presents the gradient of the functional for the nonlinear case providing an opportunity
to select leading vectors (in the linear tests the adjoint-based gradient was found to be more
reliable).

If only a single point contains the error, the nonlinearity significantly distorts the probability
distribution as compared with the Gaussian. Figure 8 presents the probability distribution for the
temperature, measured at point k=54 when a normally distributed error is applied at k=48. The
results are obtained by MC, AMC and PC for a standard deviation 50.0 (�/Ts =2). The distribution

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
DOI: 10.1002/fld



A. K. ALEKSEEV, I. M. NAVON AND M. E. ZELENTSOV

10

20

30

40

50

60

70

40

k

T

42 44 46 48 50 52 54 56 58 60

Figure 6. Final temperature distribution for nonlinear problem.
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Figure 7. 1—Gradient obtained by direct numerical differentiation, and 2—gradient
obtained using adjoint equations.
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Figure 8. Probability density of functional for single point containing the error. 1-MC, 2,3-PC with
different sets of sample points, 4-AMC.

calculated by AMC qualitatively deviates from MC. PC provides a much more acceptable result.
Unfortunately, the result significantly varies depending on the selection of interpolation points �(i).
Figure 8 provides the results for two different sets of �(i).

If all points of the initial distribution contain the error, the qualitative picture changes significantly
and the influence of nonlinearity is smeared. Figures 9–12 present results for the test where every
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Figure 9. Calculations for initial temperature with the standard deviation 0.1.
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Figure 10. Probability density for initial temperature with a standard deviation 10.0 (9 nodes).

point of the initial temperature contains an error with the same variance. Figure 9 presents results
by MC and AMC for an initial temperature error with a standard deviation of 0.1. PC yields good
results, while the APC results are slightly worse.

Figure 10 presents calculations by MC, AMC, PC and APC (50 000 trials) for an initial temper-
ature error with a standard deviation of 10.0 (�/Ts =0.4).

Figure 11 presents calculations by MC, AMC, PC and APC (50 000 trials) for an initial temper-
ature error with the standard deviation 50.0 (�/Ts =2). PC and APC provide a slightly more
accurate result when compared with AMC; however, there is no total coincidence with MC.

Unfortunately, the choice of an ‘unlucky’ matrix of observations may cause PC to provide much
less accurate results, a comparison for five different sets �(1)j is provided in Figure 12. All matrices
were well conditioned, so the source of deviations is the unknown shape of ε(�).

Oversampling [21] was used to cure the influence of selection of sample points; Figure 13
demonstrates the stability of results with a twofold oversampling, and nevertheless, the computa-
tional cost significantly grows, a fact that reduces the advantage of PC.
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Figure 11. Probability density for the initial temperature with a standard deviation 50.0 (9 nodes).
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Figure 12. Probability density for five different sets of sample points �(1)j without oversampling.

7. DISCUSSION

The number of coefficients of polynomials M= (N+ p)!/N !p! increases rapidly when the polyno-
mial order p and the number of random variables N increases. For example, 15 random variables
and a third order of polynomial require 816 coefficients, so the computational burden approaches
the one required by the MC method. Some additional means, considered in this paper, may be
used for improving the PC performance. The use of leading variables provides the possibility
for a rapid decrease of N . The gradient (obtained via adjoint equations) enables to reduce the
computational cost order by an order of magnitude (in this paper from cubic to quadratic depen-
dence on N ). Unfortunately, a reliable identification of small error subspace in the global sense
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Figure 13. 1, 2, 3—Probability density for different sets of sample points �(1)j with
two-fold oversampling, 4—Monte–Carlo.

for genuine nonlinear problem is close to impossible. Some additional trials may be used to check
the correctness of the determination of small error subspace in the domain of interest.

The considered variant of nonintrusive PC is based on the interpolation of the set of solutions
ε( j ) in multidimensional space of �( j )i via the estimation of polynomial coefficients. The quality of
this interpolation depends on the condition number of the matrix A(i, j ) (which is verified by the
singular values obtained in solving the system of equations by SVD) and on the properties of ε(�i )
that are unknown in the general case. Nodes (sampling points) �( j )i may be occasionally allocated in
a region, which purely reflects the geometry of ε(�i ) that may cause a large interpolation error. The
oversampling reduces the influence of the selection of sampling points at the cost of an increase
in the number of ε( j ) calculations.

8. CONCLUSION

The estimation of variables providing the main input to the total error of the functional using
adjoint equations provides an opportunity for obtaining a rapid reduction of the dimension of
the random space and, respectively, the number of polynomial coefficients used in the Hermite
series. This enables a reduction in the computational burden for nonintrusive Polynomial Chaos
applications.

Using gradient information for the estimation of polynomial coefficients (APC) also provides a
significant reduction of the computation time.

The adjoint Monte–Carlo is highly efficient from a computational viewpoint and accurate for
moderate amplitude of errors. For a large number of random variables, the accuracy of AMC is
close (or even superior) to PC results even under large errors.
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