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A new Petrov–Galerkin approach for dealing with sharp or abrupt field changes in discon-
tinuous Galerkin (DG) reduced order modelling (ROM) is outlined in this paper. This
method presents a natural and easy way to introduce a diffusion term into ROM without
tuning/optimising and provides appropriate modelling and stablisation for the numerical
solution of high order nonlinear PDEs. The approach is based on the use of the cosine rule
between the advection direction in Cartesian space–time and the direction of the gradient
of the solution. The stabilization of the proper orthogonal decomposition (POD) model
using the new Petrov–Galerkin approach is demonstrated in 1D and 2D advection and
1D shock wave cases. Error estimation is carried out for evaluating the accuracy of the
Petrov–Galerkin POD model. Numerical results show the new nonlinear Petrov–Galerkin
method is a promising approach for stablisation of reduced order modelling.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Reduced order model (ROM) technology is a rapidly growing discipline, with significant potential advantages in: interac-
tive use, emergency response, ensemble calculations and data assimilation [1–4]. ROM is expected to play a major role in
facilitating real-time turn-around with computational results and data assimilation. Most model reduction methods can
be viewed as approximation methods by projection (for comprehensive description see [5,6]). Most of those methods
(e.g., balanced truncation) are designed for stable, linear and moderate-order systems (state orders are less than 104) [7],
so are not practical for many fluids systems although they can provide accurate low-order representations of state-space sys-
tems. Among existing approaches, the proper orthogonal decomposition (POD) method provides an efficient means of deriv-
ing the reduced basis for nonlinear partial differential equations (PDEs). Using the POD technique, it is possible to extract a
set of modes characteristic of the database which constitutes the optimal basis for the energetic description of the flow. A
Galerkin projection of the original equations onto a finite number of POD bases yields a set of ordinary differential equations
in time. However, due to the energetic optimality of the POD bases, only few modes are sufficient to give a good represen-
tation of the kinetic energy of the flow. The leading POD modes are not able to dissipate enough energy since the main
amount of viscous dissipation takes place in the small eddies (unresolved modes) [9]. Galerkin POD methods may thus suffer
from a lack of numerical stability especially for high order nonlinear PDEs. There are various ways to recover the effect of the
truncated bases (usually the small scales, i.e. unresolved modes) and improve the numerical stability by:
. All rights reserved.
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1. incorporating gradients as well as function values in the definition of POD [10,11];
2. adding calibrated/diffusion terms (e.g. eddy-viscosities, subgrid-scale model, streamline diffusion) into the POD reduced

order equations [12,13];
3. the approach of Noack et al. [14], that uses a finite-time thermodynamics formalism;
4. residual based stablisation approach [9] where the unsolved terms are represented by a number of residual modes which

are calculated by the residuals of ROMs.

For efficient calculation of nonlinear terms, the discrete empirical interpolation method (DEIM) [15] provides a dimension
reduction of the nonlinear term by replacing the non-linear terms with a coefficient-function approximation consisting of a
linear combination of pre-computed basis functions and parameter-dependent coefficients.

However the main drawback of the above stabilization methods is that there are always some parameters to tune/opti-
mise for a best match the full solution. More recently, the Petrov–Galerkin method has been introduced to POD and applied
to the 1D non-linear static problem and ODE [16]. This method presents a natural and easy way to introduce a diffusion term
into ROM without tuning/optimising and provides appropriate modelling and stabilizations for the numerical solution of
high order nonlinear PDEs.

In this paper, a new Petrov–Galerkin POD method is presented for non-linearity discontinuous Galerkin modelling in or-
der to control numerical oscillations. The approach is based on the use of the cosine rule between the advection direction in
Cartesian space–time and the direction of the gradient of the solution.

The remainder of this paper is organised as follows. Section 2 provides the derivation of the new Petrov–Galerkin ap-
proach for one scalar time dependent transport equation. This is then followed by the extension to coupled time dependent
equations and an example is provided by two-time level discrete equations in Section 3. Section 4 addresses the issue of how
stable reduced order modelling is performing using the new Petrov–Galerkin approach. In Section 5, a Bassi Rebay represen-
tation of discontinuous Galerkin methods for the diffusion term is described. The method is applied to 1D and 2D advection
and shock cases in Section 6 followed by discussion of the numerical results. Finally, conclusions are drawn in Section 7.

2. Scalar equation

2.1. Non-linear Petrov–Galerkin scalar equation

The one scalar time dependent transport equation assumes the form:
Please
tinuou
axt � rxtw ¼ s; ð1Þ
where w represents field states (e.g. temperature, pollutants); s is the source term; axt ¼ ðat aÞT and a ¼ ðax ay azÞT (here, the
velocity vector); at ; ax; ay; az are the coefficients of the time and space derivatives along the x, y, z direction respectively. For
simplicity, this Eq. (1) in 1D with time dependence becomes:
at
@w
@t
þ ax

@w
@x
¼ s: ð2Þ
Using the cosine rule between the two vectors axt and rxtw:
cosðhaÞ ¼
axt � rxtw
jaxtj jrxtwj

; ð3Þ
where ha is the angle between the two vectors axt andrxtw. The projection of axt ontorxtw can be written: a�xt ¼ jaxt jnacosðhaÞ
(here na ¼ rxtw

jrxtwj). Taking into account (3), it is then written:
a�xt ¼
ðaxt � rxtwÞrxtw

krxtwk2
2

; ð4Þ
where k � k represents the L2 norm of a vector-valued function. Thus
a�xt � rxtw ¼ axt � rxtw: ð5Þ
Using the Petrov–Galerkin approach, a modified form of the differential Eq. (2) can be written:
ð1�rxt � a�xtp
�
xtÞðaxt � rxtw� sÞ ¼ 0; ð6Þ
where the scalar p�xt is a function of a�xt and the size and shape of the elements see Eqs. (9), (13) and (14) below. Multiplying
Eq. (6) by a space–time basis function Nxt i at node i and integrating it by parts over a single element VE with boundary CE

(here discontinuous Galerkin (DG) methods are employed), the discrete form of the scalar equation is written:
Z
VE

Nxt irdV �
Z

CE

Nxt iðnxt � axtÞ�ðw� wbcÞdCþ
Z

VE

ðrxtNxt iÞ � a�xtp
�
xtrdV �

Z
CE

Nxt inxt � a�xtp
�
xtrdC ¼ 0 ð7Þ
cite this article in press as: F. Fang et al., Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discon-
s finite element methods, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.10.011
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with a finite element expansion w ¼
PN

j¼1Nxt jwj and r ¼ axt � rxtw� s and nxt is the normal to the element in space–time and
ðnxt � axtÞ� ¼ minf0;nxt � axtg enables the incoming boundary information to be defined. Applying a zero boundary condition
for the residual r ¼ 0 on CE, results in:
Please
tinuou
Z
VE

Nxt irdV �
Z

CE

ðnxt � axtÞ�Nxtiðw� wbcÞdCþ
Z

VE

ðrxtNxt iÞ � a�xtp
�
xtrdV ¼ 0: ð8Þ
Using the finite element space–time Jacobian matrix Jxt , the scalar p�xt in (6) can be calculated as [20]:
p�xt ¼
1
4
ðkJ�1

xt a�xtk2Þ
�1
: ð9Þ
The finite element space–time Jacobian matrix for 3D time dependent problems is:
Jxt ¼

@t
@t0

@x
@t0

@y
@t0

@z
@t0

@t
@x0

@x
@x0

@y
@x0

@z
@x0

@t
@y0

@x
@y0

@y
@y0

@z
@y0

@t
@z0

@x
@z0

@y
@z0

@z
@z0

0
BBBBB@

1
CCCCCA; ð10Þ
where the variables with 0 are the local variables. For uniform space–time resolution with a time step size of Dt and an ele-
ment size of Dx (in the x-direction), Dy (in the y-direction), Dz (in the z-direction), then:
Jxt ¼

1
2 Dt 0 0 0

0 1
2 Dx 0 0

0 0 1
2 Dy 0

0 0 0 1
2 Dz

0
BBB@

1
CCCA: ð11Þ
The value of p�xt can be adjusted to ensure that the resulting value of p�xt is not so large that there is more transport backwards
than forwards in the resulting discrete system of equations using:
p�xt ¼ min
1
�
;
1
4
ðkJ�1

xt a�xtk2Þ
�1

� �
: ð12Þ
in which � > 0 and � is a tolerance used to avoid a ‘‘division by zero’’ error, here � ¼ 1� 10�10. Due to increasing number of
nodes, associated with DG, similar to the quadratic FE, continuous Petrov–Galerkin formulations use a factor of 1

2 instead of 1
4

in Eq. (12). The value of 1
4 eliminates the downwind coupling (in 1-D) for pure advection at the inflow node of an element.

This correctly centres the equation residual at the centre of mass of the basis function, for continuous finite element repre-
sentations. In the present work, where discontinuous finite elements are used to formulate the space–time discretisation, the
centre of mass of the basis function is centred at a distance of Dx

4 from the upwind boundary of the element. In the traditional
Petrov Galerkin method a�xt ¼ axt in the above and pxt ¼ 1

4 ðjAxt � rxtNxtijÞ�1 replaces p�xt .
An approximate expression to p�xt is obtained from the Riemann finite element method (for details, see [19]):
p�xt ¼
1
4
ðja�xt � rxtNxt ijÞ�1

: ð13Þ
This will pick up the shape function which is aligned with the direction of a�xt at least for elements with equal sized edges.
Alternatively one can produce an p�xt that is independent of i with:
p�xt ¼ mink
1
4
ðja�xt � rxtNxtkjÞ�1

� �
: ð14Þ
Note that this expression uses the length scale of the element in the direction of a�xt .
In the above we can work with the stabilization in the diffusion form with:
Z

VE

Nxt irdV �
Z

CE

Nxt iðnxt � axtÞ�ðw� wbcÞdCþ
Z

VE

ðrxtNxt iÞTmrxtwdV ¼ 0; ð15Þ
where wbc represents the value of w at the boundary, and the scalar diffusion coefficient assumes the form:
m ¼ ðaxt � rxtwÞp�xtr

krxtwk2 : ð16Þ
The diffusion coefficient m can be modified to ensure positive diffusion with:
m ¼ maxf0; ðaxt � rxtwÞp�xtrg
krxtwk2 ; ð17Þ
cite this article in press as: F. Fang et al., Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discon-
s finite element methods, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.10.011
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or working only with the residual by replacing axt � rxtw with the residual r which results in:
Please
tinuou
m ¼ rp�xtr

krxtwk2 : ð18Þ
The diffusion coefficient m is always non-negative because p�xt is non-negative. Eq. (18) for the diffusivity can be derived by
re-defining a�xt in (4) to be:
a�xt ¼
rrxtw

krxtwk2 : ð19Þ
Note that then a�xt � rxtw ¼ rrxtw

krxtwk2 � rxtw ¼ r.

2.2. Simplified scalar equations

Using the two level time-stepping h-method the residual is:
r ¼ at
wnþ1 � wn

Dt
þ a � rwnþh � snþh; ð20Þ
where h ¼ 0:5; wnþh ¼ hwnþ1 þ ð1� hÞwn (h 2 ½0;1�) and
rxtw ¼
wnþ1 � wn

Dt
; ðrwnþhÞT

 !T

; ð21Þ
which enables the formalism of space–time discretisation to be applied, for example:
a�xt ¼ ða�t ; a�TÞT ¼ ðaxt � rxtwÞrxtw

krxtwk2
2

; ð22Þ
and
p�xt ¼ min
1
�
;
1
4
ðkJ�1a�k2Þ

�1
� �

; ð23Þ
in which J is the block part of the matrix Jxt that is associated with Cartesian space. The stabilized discrete equations in the
diffusion form can be expressed in Cartesian space:
Z

VE

NirdV �
Z

CE

Niðn � aÞ�ðwnþh � wnþh
bc ÞdCþ

Z
VE

ðrNiÞTmrwnþ1dV ¼ 0; ð24Þ
or in a form where we apply integration by parts of the transport terms once:
Z
VE

Niðatð
wnþ1 � wn

Dt
Þ � snþhÞdV �

Z
VE

r � ðNiaÞwnþhdV þ
Z

CE

Niðn � aÞ�ðwnþh
bc ÞdC

þ
Z

CE

Niðn � aÞþwnþhdCþ
Z

VE

ðrNiÞTmrwnþ1dV ¼ 0: ð25Þ
3. Coupled equations

3.1. Non-linear Petrov–Galerkin coupled equations

The Petrov–Galerkin method discussed above is further applied to the time dependent coupled transport equations:
Axt � rxtW ¼ s; ð26Þ
where for 1D Axt ¼ ðAt AxÞT and in 3D Axt ¼ ðAt Ax Ay AzÞT in which the matrices At ;Ax , Ay and Az contain the coefficients of
the derivatives of scalars with respect to time t, coordinates x; y and z respectively. In 1D Eq. (26) becomes:
At
@W
@t
þ Ax

@W
@x
¼ s: ð27Þ
For coupled equations the projection of Axt onto rxtW can be written:
A�xt ¼ VðAxt � rxtWÞVðkrxtWk2
2Þ
�1rxtW: ð28Þ
Thus
A�xt � rxtW ¼ Axt � rxtW; ð29Þ
cite this article in press as: F. Fang et al., Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discon-
s finite element methods, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.10.011
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or
Please
tinuou
VðAxt � rxtWÞVðkrxtWk2
2Þ
�1rxtW

� �
� rxtW ¼ Axt � rxtW; ð30Þ
where VðgÞ is a diagonal matrix in which VðgÞll ¼ gl and the vector krxtWk2
2 is such that the lth entry is

krxtWk2
2l ¼ ðrxtWlÞ � ðrxtWlÞ. Since the matrix A�xt has a block diagonal structure the transport Eqs. (26) are a set ofM inde-

pendent scalar equations in which the lth scalar equation is expressed as:
a�t l
@Wl

@t
þ a�xl

@Wl

@x
þ a�yl

@Wl

@y
þ a�zl

@Wl

@z
¼ sl; ð31Þ
and a�t l ¼ A�tll, a�xl ¼ A�xll, a�yl ¼ A�yll, a�zl ¼ A�zll. Since the equations have been uncoupled then the scalar equation methods
described in the previous section can now be applied. This is effectively done below.

The Petrov–Galerkin modified form of the differential equation is:
ðI� ðrxt � A�xtÞ
T P�xtÞðAxt � rxtW� sÞ ¼ 0; ð32Þ
where I is theM�M identity matrix. Testing Eq. (32) with a diagonal matrix of space–time basis function Nxti (this has the
basis function Nxt i along its main diagonal), integrating over a single element VE and applying integration by parts results
in:
 Z

VE

NxtirdV �
Z

CE

Nxtiðnxt � AxtÞ�ðW�WbcÞdCþ
Z

VE

ððrxtNxtiÞ � A�xtÞ
T P�xtrdV þ

Z
CE

Nxtinxt � A�xtP
�
xtrdC ¼ 0; ð33Þ
with a finite element expansion W ¼
PN

j¼1NxtjWj (where Wj is the order M vector of unknowns at node j) and
r ¼ Axt � rxtW� s.

Using the eigen-decomposition nxt � Axt ¼ LxtKxtRxt then ðnxt � AxtÞ� ¼ LxtK
�
xtRxt with K�xt kk ¼ minf0;Kxt kkg, where Kxt is the

diagonal matrix whose diagonal elements are the corresponding eigenvalues, and
AxtRxt ¼ LxtKxt; AT
xtLxt ¼ RxtKxt ; ð34Þ
where the matrices Lxt and Rxt , whose columns are the normalised singular vectors, satisfy LT
xtLxt ¼ I and RT

xtRxt ¼ I. This eigen
decomposition enables the boundary condition to be applied to incoming information only. We apply a zero boundary con-
dition for the residual r ¼ 0 which results in:
Z

VE

NxtirdV �
Z

CE

Nxtiðnxt � AxtÞ�ðW�WbcÞdCþ
Z

VE

ððrxtNxtiÞ � A�xtÞ
T P�xtrdV ¼ 0: ð35Þ
P�xt is a function of A�xt and the size and shape of the elements, for example:
P�xt ¼
1
4
ðjA�xt � rxtNxtijÞ�1

; ð36Þ
or using the space–time Jacobian matrix Jxt:
P�xt ¼
1
4
ðkJ�1

xt A�xtk2Þ
�1
; ð37Þ
where A�xt ¼ ðA
�T
t ;A

�T
x ;A

�T
y ;A

�T

z Þ
T . Since the matrices A�t ;A

�
x;A

�
y;A

�
z are diagonal the matrix P�xt is also diagonal. In the traditional

Petrov Galerkin method A�xt ¼ Axt in the above and Pxt replaces P�xt . In a similar way to the scalar equation, the value of P�xt can
be adjusted to ensure that the resulting value of P�xt is not so large that there is more transport backwards than forwards in
the resulting discrete system of equations by:
P�xt ¼ min E�1;
1
4
ðkJ�1

xt A�xtk2Þ
�1

� �
; ð38Þ
where the diagonal entries of the matrix E are positive and E contains small positive numbers (tolerances) used to avoid a
‘‘division by zero or near zero’’ error, e.g. 1� 10�10.

In the above we can work with the stabilization in the diffusion form with:
Z
VE

NxtirdV �
Z

CE

Nxtiðnxt � AxtÞ�ðW�WbcÞdCþ
Z

VE

ðrxtNxtiÞT KrxtWdV ¼ 0; ð39Þ
or in a form where we apply integration by parts of the transport terms once:
Z
VE

Nxtið�sÞdV �
Z

VE

ðrxt � ðNxtiAxtÞÞWdV þ
Z

CE

Nxtiðnxt � AxtÞ�WbcdCþ
Z

CE

Nxtiðnxt � AxtÞþWdC

þ
Z

VE

ðrxtNxtiÞT KrxtWdV ¼ 0; ð40Þ
cite this article in press as: F. Fang et al., Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discon-
s finite element methods, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.10.011
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in which the M�M diagonal matrix containing the diffusion coefficients is:
Please
tinuou
K ¼ VðAxt � rxtWÞP�xtVðkrxtWk2
2Þ
�1VðrÞ: ð41Þ
The resulting diagonal matrix K can be modified to ensure non-negative diffusion by setting any of its negative entries to
zero or taking their absolute values. Alternatively one can work with the residual only, by replacing Axt � rxtW with the resid-
ual r, which results in:
K ¼ VðrÞT P�xtVðkrxtWk2
2Þ
�1VðrÞ; ð42Þ
which is always positive because P�xt is positive semi-definite (as well as diagonal) and in which VðrÞ is the diagonal matrix
containing the residual of the governing equations on its diagonal. Eq. (42) for the diffusivity can be derived by re-defining
A�xt in Eq. (28) to:
A�xt ¼ VðrÞVðkrxtWk2
2Þ
�1rxtW: ð43Þ
3.2. Simplified coupled equations

Assuming time is discretised using the two level h-method:
r ¼ At
Wnþ1 �Wn

Dt
þ A � rWnþh � snþh; ð44Þ
with A ¼ ðAx Ay AzÞT and Wnþh ¼ HWnþ1 þ ðI�HÞWn in which H is a diagonal matrix containing the time stepping parame-
ters and also defining
rxtW ¼
Wnþ1 �Wn

Dt
; ðrWnþhÞT

 !T

: ð45Þ
Using this definition Eq. (45) enables the application of the formalism of space–time discretisation, developed here, for
example:
A�xt ¼ ðA
�
t

T
;A�TÞT ¼ VðAxt � rxtWÞVðkrxtWk2

2Þ
�1rxtW; ð46Þ
and
P�xt ¼ min E�1;
1
4
ðkJ�1A�k2Þ

� ��1
( )

: ð47Þ
By applying diffusion only in Cartesian space the stabilized discrete equations in diffusion form can be written:
Z
VE

NirdV �
Z

CE

Niðn � AÞ�ðWnþh �Wnþh
bc ÞdCþ

Z
VE

ðrNiÞT KrWnþ1dV ¼ 0; ð48Þ
or in a form where we apply integration by parts once to the transport terms:
Z
VE

Ni At
Wnþ1 �Wn

Dt
� snþh

 !
dV �

Z
VE

r � ðNiAÞWnþhdV þ
Z

CE

Niðn � AÞ�Wnþh
bc þ

Z
CE

Niðn � AÞþWnþhdC

þ
Z

VE

ðrNiÞT KrWnþ1dV

¼ 0: ð49Þ
4. Stable reduced order modelling using diffusion from Petrov–Galerkin methods

In this section, the Petrov–Galerkin method discussed above is applied to form conservative stablisation methods for
ROM’s which for non-linear problems have a tendency to diverge due to inadequate sub-grid-scale modelling (if Galerkin
methods are applied e.g. the POD method).

4.1. Derivation of Petrov–Galerkin POD models

If the original discrete system at a given time level is
AW ¼ b; ð50Þ
cite this article in press as: F. Fang et al., Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discon-
s finite element methods, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.10.011
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its modified discrete system is then written:
Please
tinuou
CT W�1AW ¼ CT W�1b; ð51Þ
in which for least squares, C ¼ A. Note that the solution of this Eq. (51) is the same as the original system (50) however
critically, it is not so when the reduced order modelling is applied. The weighting matrix W can be chosen such as to render
the system of equations dimensionally consistent (and thus may contain characteristic dimensions such as the time step
size Dt and a length scale) and also contain the mass matrix of the system. Least squares (LS) methods [17] have dissipative
properties, unlike Galerkin methods, but are not generally conservative for coupled systems of equations. However LS
methods may be applied at each equation level to make them conservative, in which case C may contain just parts of
the matrix A.

Using POD methods any variable w can be approximately expressed as an expansion of the first few POD basis functions
f/1; . . . ;/Mg:
wðx; tÞ ¼ �wðxÞ þ
XM

m¼1

amðtÞ/mðxÞ; ð52Þ
where �w is the mean of the variables w over the time, am ð1 6 m 6 MÞ are the time-dependent coefficients to be determined.
In FE method, the variable w can be expressed as:
wm ¼
XN
j¼1

Nxt jWmj; ð53Þ
and the POD basis functions:
/m ¼
XN
j¼1

Nxt jUmj: ð54Þ
Thus, taking into account (52), the variables W ¼ ðW1; . . . ;WN Þ can be written:
W ¼ WþMPODWPOD; ð55Þ
where WPOD ¼ ða1; . . . ;aMÞT , and the matrix MPOD which consists of the POD basis functions, i.e. MPOD ¼ ½U1; . . . ;UM� 2 RN�M , in
which Um ¼ ðUm 1; . . . ;UmN ÞT ð1 6 m 6 MÞ.

The reduced order model can be obtained by projecting the original models onto the reduced space, i.e. in a method anal-
ogous to the Galerkin method, taking the POD basis function as the test function, then integrating it over the computational
domain X. By multiplying (50) by the matrix MPODT

and taking into account (55), the POD discrete model of (50) is obtained:
MPODT

AMPODWPOD ¼MPODT

ðb� AWÞ: ð56Þ
For the LS method (see (51)), Eq. (56) is:
MPODT

CT W�1AMPODWPOD ¼MPODT

CT W�1ðb� AWÞ: ð57Þ
Using the non-linear Petrov–Galerkin mechanics discussed in Section 3, the POD reduced order model can thus be written:
MPODT

ðIþ CT W�1ÞAMPODWPOD ¼MPODT

ðIþ CT W�1Þðb� AWÞ; ð58Þ
or in diffusion form (analogous to (39)–(41)):
ðMPODT

AMPOD þ KÞWPOD ¼MPODT

ðb� AWÞ; ð59Þ
where the calculation of the diffusion matrix K will be discussed below in Sections 4.2 and 5. As we know, a common solu-
tion to the divergence of ROM solutions (56) is to add diffusion terms into the equations and tune these diffusion terms to a
best match the full model solution. The nonlinear Petrov–Galerkin POD method (59) presents a natural and easy way to
introduce a diffusion term into ROM without tuning/optimising and provides appropriate modelling and stabilisations for
the numerical solution of high order nonlinear PDEs.

4.2. Calculation of the diffusion coefficient

Reminding that the construction of the POD model is similar to that of the Galerkin FE model, the diffusion coefficient in K
can thus be calculated (analogous to (17)):
mPOD ¼ rPODp�
POD

xt rPOD

krxtw
PODk2

2

; ð60Þ
cite this article in press as: F. Fang et al., Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discon-
s finite element methods, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.10.011
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where
Please
tinuou
p�
POD

xt ¼ bmink
1
4

a�xt � rxtN
POD
xtk

maxxfjNPOD
xtk
ðxÞjg

�����
�����

 !�1
8<
:

9=
;; ð61Þ
in which we have assumed that the length scale associated with the POD method is the gradient of the normalised POD basis
function in the direction a�xt , and b is a scalar. Theoretically, b can vary between 0 and 1. When b ¼ 1, the Petrov–Galerkin
approach is fully applied to the POD model, while the Galerkin POD is used when b ¼ 0. Thus, any value b 2 ½0;1� is a rea-
sonable choice with less dissipation introduced for smaller values of beta. We choose a large value of b when the POD numer-
ical simulation becomes unstable which usually happens when a small number of POD bases are used (e.g. results shown in
Fig. 5, where only 10 POD bases are chosen).

The residual vector can be determined from:
rPOD ¼ EPOD�1ððMPODT

AMPODÞWPOD �MPODT

ðb� AWÞÞ; ð62Þ
where EPOD
i j ¼

R
V WPOD

i WPOD
j dV , taking into account the ROM basis functions are orthonormal, so EPOD ¼ I. Since the absolute

value of the residual may not matter:
rPOD ¼ EPOD�1
MPODT

jAMPODWPOD � ðb� AWÞj; ð63Þ
To avoid the integration over the domain, there is another approach to calculate the coefficient of the diffusion term. Since
the POD matrices may be relatively small one can manipulate their eigen structure in order to construct stabilization meth-
ods. Assuming mPOD is represented using a POD expansion (mPOD ¼

PM
k¼1NPOD

k mPOD
k ), the vector mPOD ¼ ðmPOD

1 ; . . . ; mPOD
M Þ is thus

written (see details in Appendix A):
mPOD ¼ jOPOD�1

UPOD�1
qj; ð64Þ
where
UPOD
mk ¼

Z
V

NPOD
xtm

@w
@t

� �2

þ @w
@x

� �2

þ @w
@y

� �2

þ @w
@z

� �2

þ �
 !

NPOD
xtk

dV ; ð65Þ
in which the small scalar � ensures that U is non-singular. The residual term q ¼ rPODrPOD cab be expressed as the expansion of
POD basis functions:
q ¼ rPODrPOD ¼
XM

k¼1

NPOD
xtk

qk; ð66Þ
with q ¼ ðq1 q2 . . . qNPOD Þ
T . Multiplying (66) by NPOD

xtm
and integrating it over the domain, yields
Z

V
NPOD

xtm
qdV ¼

Z
V

NPOD
xtm

rPODrPODdV ¼
Z

V
NPOD

xtm

XM

k¼1

NPOD
xtk

qk: ð67Þ
Taking into account the orthonormal property of POD the mth equation of Eq. (67) becomes:
qm ¼
Z

V
NPOD

xtm rPODrPODdV : ð68Þ
For calculation of OPOD�1
in (64), we define a matrix B:
ðBWÞi ¼
X

VE

Z
VE

NxtiA
�
xt � rxtWdV �

Z
CE

Nxtiðnxt � AxtÞ�ðW�WbcÞdC
� �

: ð69Þ
The matrix BPOD is then written:
BPOD ¼MPODT
BMPOD: ð70Þ
Using the eigen-decomposition BPOD ¼ LPOD
B KPOD

B RPOD
B the matrix OPOD�1

in (64) can be thus written:
OPOD�1 ¼ b
1
4

RBPOD jKBPOD j�1LBPOD : ð71Þ
An alternative definition to OPOD�1

defined by Eq. (71) is:
OPOD�1 ¼ b
1
4
jBPODT

BPODj�
1
2 ¼ b

1
4

L
BPODT

BPOD jKBPODT
BPOD j�

1
2R

BPODT
BPOD : ð72Þ
Thus jK
BPODT

BPOD j�
1
2 should have similar values to p�xt calculated from Eq. (61). A good choice suggested by the non-linear Pet-

rov–Galerkin approach for C in Eq. (58) is C ¼ B which is very similar to the diffusion based method.
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5. Bassi Rebay representation of DG diffusion

One of the key ingredients of DG methods is the formulation of interface (numerical) fluxes, which provide a weak cou-
pling between the unknowns in neighbouring elements. The classic approach introduced by Bassi and Rebay in 1997 [8] is
here used for the representation of the DG diffusion term. The diffusion term is written:
Fig. 1.
used to

Please
tinuou
X
ele

Z
VE

Ni
@

@x
m
@w
@x

dVE ¼ �
X
ele

Z
VE

m
@Ni

@x
@w
@x

dVE þ
X
ele

Z
CE

mNi nx �
@w
@x

dCE: ð73Þ
Defining
wx ¼
@w
@x

; ð74Þ
the diffusion term (73) can be rewritten:
X
ele

Z
VE

@

@x
mNi

@w
@x

dVE ¼ �
X
ele

Z
VE

m
@Ni

@x
wxdVE þ

X
ele

Z
CE

mNi nx � wxdCE

¼ �
X
ele

Z
VE

m
@Ni

@x
wxdVE þ

X
ele

Z
CE

mNi nx �
1
2
ðwxcur þ wxneiÞdCE ¼ CT

wx; ð75Þ
where wxcur and wxnei represent wx at the current and neighbouring elements, respectively, and wx is zero on the boundary, i.e.
zero through the surface integral. Multiplying (74) by Ni and integrating it over the domain V, obtains
Case 1 (the Sod shock tube problem): comparison of the results obtained from the POD and full model at time level t ¼ 0:2 s (where 15 POD bases are
represent 95% of the original energy).
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Please
tinuou
X
ele

Z
VE

NiwxdVE ¼
X
ele

Z
VE

Ni
@w
@x

dVE ¼ �
X
ele

Z
VE

@Ni

@x
wdVE þ

X
ele

Z
CE

Ni nx � wdCE

¼ �
X
ele

Z
VE

@Ni

@x
wdVE þ

X
ele

Z
CE

Ni nx �
1
2
ðwcur þ wneiÞdCE

¼
X
ele

Z
VE

Ni
@w
@x

dVE �
X
ele

Z
CE

Ni nx � wcurdCE þ
X
ele

Z
CE

Ni nx �
1
2
ðwcur þ wneiÞdCE

¼
X
ele

Z
VE

Ni
@w
@x

dVE �
X
ele

Z
CE

Ni nx �
1
2
ðwcur � wneiÞdCE ¼ FW; ð76Þ
where wcur and wnei represent w at the current and neighbouring elements respectively. Eq. (76) can be rewritten:
Mwx ¼ FW; ð77Þ
where M is the mass matrix in FE, and wx ¼ @w
@x can be calculated:
wx ¼M�1FW: ð78Þ
The diffusion term (75) can be-rewritten:
X
ele

Z
VE

Ni
@

@x
m
@w
@x

dVE ¼ CT M�1FW: ð79Þ
The approach discussed above is easily extended to 2D and 3D cases.
Case 1 (the Sod shock tube problem): Comparison of the results obtained from the POD and full model at time level t ¼ 0:2 s (where 25 POD bases are
represent 99:4% of the original energy).
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6. Example cases: advection and shock waves

Shock waves are characterised by an abrupt, discontinuous change in the characteristics of the medium. The shock waves
are described by the nonlinear hyperbolic Euler equations in a non-conservation form:
Fig. 3.
represe

Please
tinuou
@w
@t
þ ax

@w
@x
¼ 0: ð80Þ
In this work, the Petrov–Galerkin POD method discussed above is applied to (80). A diffusional DG is used to control numer-
ical oscillations. The root mean square error (RMSE), relative error (RE) and correlation coefficient of results between the POD
and full models at the time level n is used to estimate the error of the POD/ROM projection results:
Case 1 (the Sod shock tube problem): RMSE of results between the POD model and the full model (left panel: 15 POD bases which are used to
nt 95% of the original energy; right panel: 25 POD bases which are used represent 99:4% of the original energy).
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Please
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RMSEn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðw

n
i � wn

o;iÞ
2

N

s
; ð81Þ
where wn
i and wn

o;i are the vectors containing the POD and full model results at the node i respectively, and relative error is
calculated:
REn ¼
PN

i¼1ðw
n
i � wn

o;iÞ
2PN

i¼1w
n
i

: ð82Þ
The correlation coefficient of results between the POD and full models at the time level n with expected values lwn and lwn
o

and standard deviations rwn and rwn
o

is defined as:
corrðwn;wn
oÞ

n ¼ covðwn;wn
oÞ

rwnrwn
o

¼
E½ðwn � rwn Þðwn

o � rwn
o
Þ�

rwnrwn
o

: ð83Þ
6.1. Test case 1: the Sod shock tube problem

The Petrov–Galerkin POD model is validated in the classic Sod shock tube problem [21]. The POD model results are com-
pared with the analytical solution [21] and those from the full model. The problem solved here has a unit 1D domain and
open boundary conditions at both ends and space and time steps of Dt ¼ 0:001; Dx ¼ 0:0238. The simulation period is
½0;0:2�. The Euler Eq. (80) can be re-written for an ideal gas [22,18]:
Case 2 (1D advection): Comparison of the results between the full and POD models. Top panel: 10 POD bases which represent 88% of the original
bottom panel: 20 POD bases which represent 99% of the original energy. The first approach (60) is used (b ¼ 1:0) and the mesh size: Dx ¼ 0:01 m.
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q
qu

e

0
B@

1
CA

t

þ
qu

qu2 þ p

uðeþ pÞ

0
B@

1
CA

x

¼
0
0
0

0
B@

1
CA; ð84Þ
or in a matrix form, AxtW ¼ 0, where
At ¼ I; ð85Þ

Ax ¼
0 1 0

c�3
2 u2 ð3� cÞu c� 1

cueþ ðc� 1Þu3 ce� 2
3 ðc� 1Þu2 cu

0
B@

1
CA; ð86Þ
Case 2 (1D advection): RMSE and correlation coefficient of results between the POD and full models (left: 10 POD bases are used to represent 88% of
inal energy; right: 20 POD bases are used to represent 99% of the original energy; where b is the scalar in (60)).

cite this article in press as: F. Fang et al., Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discon-
s finite element methods, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.10.011

http://dx.doi.org/10.1016/j.jcp.2012.10.011


Fig. 6. Case 2 (1D advection): comparison of results obtained from the Petrov–Galerkin POD model using: the first approach (60) (b ¼ 1:0); and the second
approach (64) (b ¼ 0:01) used with (72). The mesh size: Dx ¼ 0:01 m.
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where q is the density of the fluid, u is the fluid velocity, e is the energy per unit volume (length), and p is the pressure. The
equation of state is
Please
tinuou
p ¼ ðc� 1Þ e� 1
2
qu2

� �
; ð87Þ
where c is the adiabatic gas index. For an ideal gas c ¼ 1:4. The test consists of a 1D Riemann problem with the following
parameters, for left and right states of an ideal gas:
qL

pL

uL

0
B@

1
CA ¼

1:0
1:0
0:0

0
B@

1
CA;

qR

pR

uR

0
B@

1
CA ¼

0:125
0:1
0:0

0
B@

1
CA: ð88Þ
Linear elements are used in space and time. The value of Axt in the boundary element integral is calculated by the Roe aver-
age approach (see Eq. (48)) [27].

The results from the POD and full models are provided in Figs. 1, and 2. It is shown that the Petrov–Galerkin POD model
does well in capturing and resolving discontinuities of shock waves. The results reproduce the correct density and velocity
profiles of the rarefaction wave. When 15 POD bases are used (where 95% of the original energy is captured), the RMSE of
results between the Petrov–Galerkin POD and full models is less than 0.0075 (while less than 0.035 for the relative error) and
is further reduced to 0.001 (0.0045 for the relative error) with 25 POD bases (where 99.4% of the original energy is repre-
sented) (see Fig. 3). The correlation coefficient of results achieves a value of 99.99%.
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Fig. 7. Case 2 (1D advection): RMSE and correlation coefficient of results between the full and Petrov–Galerkin POD models using: the first approach (60)
(b ¼ 1:0); and the second approach (64) (b ¼ 0:01) used with (72). The mesh size: Dx ¼ 0:01 m.
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6.2. Test case 2: 1D advection

The problem solved here has a unit 1D domain and open boundary conditions at both ends and space and time steps of
Dt ¼ 0:001; Dx ¼ 0:005 respectively. The simulation period is ½0;0:2�. Linear elements are used in space and time. The initial
condition is
Please
tinuou
wt¼0 ¼
1:0 0:2 < x < 0:4;

0:0 x 6 0:2; x P 0:4:

�

Fig. 4 shows the comparison of the results between the full and POD models. It is observed that the instability in the POD
results is reduced by using the Petrov–Galerkin POD methods (Fig. 4). The RMSE, relative error and correlation coefficient
of results between the POD and full models during the simulation period are provided in Fig. 5. It can be seen that by using
the Petrov–Galerkin POD model, the RMSE of results between the POD and full models is reduced up to 20% of that of the
Galerkin POD modelling at the end of the simulation period. The correlation coefficient of results exceeds 98% when the Pet-
rov–Galerkin method is used. With an increase in the number of POD bases (where 99% of the original energy can be cap-
tured with 20 POD bases while 88% of the original energy with 10 POD bases), the RMSE of POD results using the Petrov–
Galerkin method is further reduced and attains a small value (less than 0:02) while the correlation coefficient achieves
99:9%. By choosing a suitable scalar b for the calculation of the diffusion coefficient, the RMSE of POD results can be also
decreased. The relative error of results between the full and POD models can be decreased by half of that of the Galerkin
POD modelling (see Fig. 5(c)) with 10 POD bases and less than 0:05 when 20 POD bases are used. The scalar diffusion coef-
ficient used in the Petrov–Galerkin POD model can be calculated by either (60) or (64) and the corresponding results are
shown in Figs. 6 and 7. The Petrov–Galerkin POD results using Eq. (64) are much smoother than those with the use of (60).
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Fig. 8. Case 2 (1D advection): comparison of results obtained from the Petrov–Galerkin POD model based on different mesh resolution (using the second
approach (64) (b ¼ 0:01) used with (72).
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A mesh refinement study has been carried out in this test case. The POD model is obtained on different resolution meshes,
here, three mesh sizes are chosen (Dx ¼ 0:01;0:02 and 0:0286 m). Effect of mesh resolution on POD solutions is shown in
Fig. 8. It can be seen that the POD model based on a higher resolution mesh provides more accurate results.

The Petrov–Galerkin POD model is also applied to Eq. (80) with the initial condition:
Please
tinuou
wt¼0 ¼ e�
ðx�0:3Þ2

0:12 : ð89Þ
The results from the POD model exhibit an overall good agreement with those obtained with the full model (Fig. 9) with 5
POD bases.

6.3. Test case 3: 2D advection

The Petrov–Galerkin POD model in conjunction with the Bassi–Rebay approach is further applied to a 2D advection case.
The problem solved here has a unit square domain with open boundary conditions and space and time steps of
Dt ¼ 0:001; Dx ¼ Dy ¼ 0:01. The simulation period is ½0;0:2�. Linear elements are used in space and time. The initial condi-
tion is
wt¼0 ¼ 1:0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 0:5Þ2

q
6 0:05;

wt¼0 ¼ 0:0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 0:5Þ2 þ ðy� 0:5Þ2

q
> 0:05: ð90Þ
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Fig. 9. Case 2 (1D Gaussian wave): comparison of results between the full and POD models (where the first approach (60); and the second approach (64)
used with (72), 5 POD bases represent 98:4% of the original energy while 2 POD bases represent 80% of the original energy).

Fig. 10. Case 3 (2D 45� advection): comparison of the results obtained from the POD models and full model, where 15 POD bases are used, which represent
95% of the original energy.
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A comparison between the POD and full model results is displayed in Figs. 10 and 11. It can be seen that the POD reduced
order results using the Galerkin approach become oscillatory and unstable and the RMSE of results increases as the simula-
tion time increases. By using the Petrov–Galerkin POD approach, the RMSE and relative error of results are reduced by a fac-
tor of 2 during the integration period ½0:05 s;0:2 s� while the correlation coefficient increases from 99:8% to 99:95%.
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Fig. 11. Case 3 (2D 45� advection): RMSE and correlation coefficient of tracer results between the POD and the full models.
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7. Conclusions

A new Petrov–Galerkin method for stablisation of high order nonlinearity in reduced order modelling is developed. The
POD discontinuous Galerkin (DG) reduced order model is applied to 1D and 2D advection, and 1D shock wave cases. A com-
parison of the results between the POD models using the Petrov–Galerkin and traditional Galerkin approaches is carried out.
It is observed that the instability in the POD results is reduced by using the Petrov–Galerkin POD methods which naturally
introduces a diffusion term into ROM. The RMSE of results between the POD and full models is decreased by 15%–60% while
the correlation coefficient is mostly larger than 98%–99.5% when the Petrov–Galerkin approach is used in conjunction with
ROM. The Petrov–Galerkin POD model does well in capturing and resolving discontinuities of shock waves. The results ob-
tained reproduce the correct density and velocity profiles of the rarefaction wave.

Future work will investigate impact of DEIM methodology on additional economy in CPU time (due to nonlinear effects)
and apply this new Petrov–Galerkin POD approach to more complex fluid flow models and optimal control of shock waves
for the Sod problem [18]. We envisage to compare in future research work the new approach with the calibration method,
e:g: Noack’s method [23–25] (which matches the cascade of energy in the reduced order model with that of the high fidelity
model) and the method proposed by Wang et al. [26].
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Appendix A. Derivation of POD DG diffusion coefficient

The Petrov–Galerkin modified form of the differential Eq. (32) is re-written here:
Please
tinuou
ðI � ðrxt � A�xtÞ
T P�xtÞðAxt � rxtW� sÞ ¼ 0: ðA:1Þ
Multiplying (A.1) by a space–time basis function Nxt i and integrating by parts over a single element VE (here DG methods are
employed), a general form of the Petrov–Galerkin operator for finite element methods is:
Z

VE

N xt iðI � ðrxt � A�xtÞ
T P�xtÞr dV : ðA:2Þ
The finite element Riemann method is defined with [28]
P�xt ¼
h
2
jnxA�x þ nyA�y þ nzA�z j

�1; ðA:3Þ
where h is the length size of the element. This is the approach used with Riemann solvers that are implemented with a con-
trol volume discretisation in which case ðnx;ny; nzÞ is the direction normal to a control volume. For finite elements
nx ¼ Nix=n;ny ¼ Niy=n and nz ¼ Niz=n where n� is the normalisation factor. It should be noted that the transport term pre-
multiplied by I when integrated by parts is conservative and has much in common with control volume methods. Using
the basis functions to define the length scale h

2 associated with the basis functions one can eliminate out the normalisation
factor to obtain:
P�xt ¼ jN xtix A�x þ N xtiy A�y þ N iz A�z j
�1 ¼ jA�xt � rxtN xtij�1

: ðA:4Þ
This is important as applying this method to reduced order basis functions there is no well defined length scale except
through this gradient of the basis functions.

Since the POD matrices may be relatively small one can manipulate their eigen structure in order to construct stabiliza-
tion methods. For example, for calculation of the matrix B (defined in Eq. (69)), we have
Z

VE

N POD
xti ððrxt � A�xtÞ

T P�xtÞr dV � ðBPODT

OPOD�1

lPODÞi; ðA:5Þ
with
lPOD
i ¼

Z
VE

N POD
xti rdV ; ðA:6Þ

OPOD�1
¼ b

1
4
jBPODj�1 ¼ b

1
4

RBPOD jKBPOD j�1LBPOD : ðA:7Þ
RBPOD ; LBPOD are matrices of right and left eigen-vectors of BPOD and KBPOD is the matrix of eigen-values of BPOD. A possible alter-
native to OPOD�1

which would ensure positive diffusion is:
OPOD�1 ¼ b
1
4
ðBPODT

BPODÞ�
1
2: ðA:8Þ
Now since ðBPODÞi is analogous to N POD
xti � rxtA

�
xt of (A.5), ðlPODÞi is analogous to r of (A.5), and OPOD�1

is analogous to P�xt they
replace them in the definition of the diffusion coefficient in Eq. (42) which then results in Eq. (64).

References

[1] F. Fang, C.C. Pain, I.M. Navon, M.D. Piggott, G.J. Gorman, P. Allison, A.J.H. Goddard, Reduced order modelling of an adaptive mesh ocean model, Int. J.
Numer. Methods Fluids 59 (8) (2009) 827–851.

[2] I. Hoteit, A. Kohl, Efficiency of reduced-order, time-dependent adjoint data assimilation approaches, J. Oceanogr. 62 (4) (2006) 539–550.
[3] P.T.M. Vermeulen, A.W. Heemink, Model-reduced variational data assimilation, Mon. Wea. Rev. 134 (2006) 2888–2899.
[4] C. Robert, E. Blayo, J. Verron, J. Blum, F.X. Le Dimet, Reduced-order 4d-var: a preconditioner for the incremental 4d-var data assimilation method,

Geophys. Res. Lett. 33 (2006). pp. L18609-1–4.
[5] A.C. Antoulas, Approximation of Large-scale Dynamical Systems, Book Series: Advances in Design and Control, DC 06, SIAM, Philadelphia, 2005.
[6] M. Rewienski, J. White, A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined

devices, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22 (2) (2003) 155–170.
[7] K. Willcox, J. Peraire, Balanced model reduction via the proper orthogonal decomposition, AIAA J. 40 (11) (2002) 2323–2330.
[8] F. Bassi, S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations,

J. Comput. Phys. 131 (1997) 267–279.
[9] M. Bergmann, C.H. Bruneau, A. Iollo, Enablers for robust POD models, J. Comput. Phys. 228 (2) (2009) 516–538.

[10] F. Fang, C.C. Pain, I.M. Navon, M.D. Piggott, G.J. Gorman, P. Allison, A.J.H. Goddard, A POD reduced order unstructured mesh ocean modelling method for
moderate Reynolds number flows, Ocean Model. 28 (1–3) (2009) 127–136.
cite this article in press as: F. Fang et al., Non-linear Petrov–Galerkin methods for reduced order hyperbolic equations and discon-
s finite element methods, J. Comput. Phys. (2012), http://dx.doi.org/10.1016/j.jcp.2012.10.011

http://dx.doi.org/10.1016/j.jcp.2012.10.011


20 F. Fang et al. / Journal of Computational Physics xxx (2012) xxx–xxx
[11] A. Iollo, S. Lanteri, J.A. Desideri, Stability properties of POD-Galerkin approximations for the compressible Navier–Stokes equations, Theor. Comput.
Fluid Dyn. 13 (2000) 377–396.

[12] B. Galletti, C.H. Bruneau, L. Zannetti, A. Iollo, Low-order modelling of laminar flow regimes past a confined square cylinder, J. Fluid Mech. 503 (2004)
161–170.

[13] B. Kragel, Streamline Diffusion POD Models in Optimization, Dissertation, Fachbereich IV Universit ät Trier, 2005.
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