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Lecture Plan

• An introduction to adjoint error correction for integral outputs

• Linear adjoint error correction

• Nonlinear adjoint error correction

• Simple example

• Applications:

• Work with A.K. Alekseev, Department of Aerodynamics and Heat Transfer,

RSC, ENERGIA, Korolev, Moscow Region 141070, Russian Federation.

– A posteriori pointwise error estimation for Compressible fluid flows

using adjoint parameters and Lagrange remainder Aleksey Alekseev and

I M. Navon, International Journal for Numerical Methods in Fluids, 47,

No. 1, 45-74 (2005)

– Adjoint Correction and Bounding of Error Using Lagrange Form of

Truncation Term. Aleksey K Alekseev and I.M. Navon, Computers &

Mathematics with Applications, 50, 1311-1332 (2005)
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• On a-posteriori pointwise error estimation using adjoint
temperature and Lagrange remainder. Aleksey Alekseev and I
M. Navon Computer Methods in Applied Mechanics and
Engineering, 194/18-20, 2211-2228 (2005)

• A-Posteriori Error Estimation by Postprocessor Independent of
Flowfield Calculation Method. Aleksey K Alekseev and I.M.
Navon, Accepted for publication in Computers & Mathematics
with Applications (2005)
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• Work with
C.C. Pain (Director), M.D. Piggott, G.C. Norman, F. Fang,
D. P .Marshall, A.J. H. Goddard, Philip Power, Applied

Modelling and Computational Group, Department of Earth
Science and Engineering, Imperial College, London, UK.

– Adjoint or goal-based error norms for adaptive mesh ocean
modelling. P.W. Power and I.M. Navon To appear in Ocean
Modelling.
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– Adjoint a-posteriori measures for anisotropic mesh
optimization. P.W. Power, C.C. Pain, M.D. Piggott, F.
Fang, G.J. Gorman, A.P. Umpelby, A.J.H. Goddard and
I.M. Navon Accepted for publication in Computers &
Mathematics with Applications (2005)

– Ph.D. Thesis of: Philip William Power, BSc, ARCS:
ERROR MEASURES FOR FINITE ELEMENT OCEAN
MODELLING (2005).

• Efficient model reduction using POD- KL and combined with
goal oriented (dual- weighted residual) methods.

• Future work and Conclusions
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Introduction

Motivation

Aerodynamics

• Interest in integral outputs- also referred to as output functionals arises in

many applications in CFD.

• Infrared signature of tanks or aircrafts (volume integrals).

• Lift and drag in aerodynamics (surface integrals).

The goal-oriented methods are concerned with analysis of error in these

functionals and with a particular method that greatly reduces the error in

many cases doubling order of accuracy for the functional compared to relative

underlying flow solution.
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This is very different from other approaches that focus on

• maximum

• root mean square

• measures of error in the entire flow field

Grid refinement for computed lift or drag (serving as chosen output
functionals) related to wake behind a wing is related to local
refinement near leading and trailing edge where small errors have
large impact on the lift or drag.
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Adjoint error correction and a-posteriori error

analysis

A priori error estimates are typically representing error bound, error < c hp,

where h is grid spacing, c and p are positive constants independent of h. p

measures how rapidly error reduces as we refine discretization mesh.

On structured grids error is proportional to truncation error.

c depends on other factor such as

• geometry of computational domain

• boundary conditions

Very difficult to evaluate c.
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A-posteriori error analysis

error < e(uh)

We wish to have a guaranteed error bound, where e(uh) is a computable

function of numerical solution uh.

This provides us with knowledge that true value of integral output is within

certain limits (bounds).

Such bounds have to be tight i.e,

1 6 e(uh)

error
6 10

However nonlinearities stand in the way and usually a-posteriori error bounds

are asymptotic,

error < e(uh),∀h < h0.
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Problem: value of h0 is not known.

Distinction between guaranteed and asymptotic bounds since with asymptotic

bound- we must exercise judgment about mesh resolution to find out if bound

is valid.

With guaranteed bound we can start with coarse mesh and refine which

numerical solution satisfies pre-set tolerance.

Error bounds based on adjoint solution require similar effort to adjoint error

correction.

Knowing estimate of this error can be used to correct leading order terms in

error i.e, obtain a solution with higher order of accuracy.
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Use of adjoints for error analysis of output

(goal) functionals: Algebraic framework

Consider gT u (scalar product)

u-solution of system of linear equations,

Au = f.

Dual (adjoint) treatment consists in evaluating vT f where v is solution of

adjoint (dual) equations,

AT v = g.

The two calculations are equivalent due to the following identity,

vT (Au) = (AT v)
T
u,

from which we derive,

vT f = gT u.

I.M.Navon CSCAMM, College Park, Nov 16, 2005. Slide 11



'

&

$

%

To obtain linear output functional from solution of linear system of equations

• One can either solve primal system of equations

• Solve adjoint (dual system of equations)

For differential equations the vector product corresponds to integral inner

product and AT corresponds to adjoint differential operator.

The adjoint identity above also includes certain boundary integral terms.
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When output is required for a single f or g there is no advantage in using the

adjoint approach.

The same computational cost is required for either primal or dual.

When value of the output is wanted for a single g but for different vectors f -

the direct approach requires solution of the primal equations for each value of f.

While the dual approach only requires one adjoint calculation followed by an

inexpensive vector product

vT f

for each f.
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The Adjoint approach in numerical analysis

and engineering design

• This result can be used in two different contexts :

• Design optimization (see Anthony Jameson 1995, Alexandrov et al. , 1997)

• Anderson and Venkatakrishnan :Aerodynamic Design Optimization 1999.

• Error analysis

The design optimization provided ”industrial”pay-off.

Error analysis is less appreciated but is attracting now many researchers.
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Consider system with U vector flow-variables at discrete set of points with

coordinates, X, solution of system of nonlinear equations

N(X,U),

arising from either Euler or Navier-Stokes equations plus boundary conditions.

Via grid generation process- grid coordinates depend on α representing one or

more geometric design variables. For one design variable α we linearize about

flow solution for baseline geometry to get

Au = f,

where u is the sensitivity of flow field to changes in α,

u =
∂U

∂α
,

A =
∂N

∂U
,

f = −∂N

∂X

∂X

∂α
.

I.M.Navon CSCAMM, College Park, Nov 16, 2005. Slide 15



'

&

$

%

Target of design optimization is minimizing some objective function

J(U,X)

(For example discrete approximation to drag)

Linearizing objective function yields

∂J

∂α
= gT u +

∂J

∂X

∂X

∂α

gT =
∂J

∂U

In adjoint method, the sensitivity of objective function to changes in α is

obtained from

∂J

∂α
= vT f +

∂J

∂X

∂X

∂α
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with v satisfying adjoint equations.

AT v = g

If there are several design variables, each has different f but same g so

calculation via adjoint approach is much cheaper, requiring solution of only one

adjoint set of equations.
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Error analysis

Let us consider again evaluating gT u with u being solution of system of linear

equations.

Au = f

The corresponding dual(adjoint) is to evaluate vT f where v is solution of the

adjoint equations:

AT v = g
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If we have approximate solutions ũ, ṽ to each of these equations we obtain

gT u = gT ũ + gT (u− ũ) (1)

= gT ũ + vT A (u− ũ)

= gT ũ + vT A (u− ũ) + (v − ṽ) A (u− ũ)

= gT ũ︸︷︷︸
I

+ vT (A ũ − f)︸ ︷︷ ︸
II

+ (v − ṽ) A (u− ũ)︸ ︷︷ ︸
III

(I) is the value of functional using approximate solution ũ

(II) is computable since it involves known approximate solutions ũ and ṽ

Third term is not computable if exact solutions u and v are not known.

If ũ and ṽ are close approximations to u and v then third term is very small.
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Sum of first two terms is good approximation to true value of gT u.-a much

better approximation than gT ũ

The second term is referred to as the adjoint error correction term. Aũ = f is

residual error in solving the system Aũ = f .

The approximate adjoint solution ṽ provides weighting for residual error,

providing for effect of residual error on output functional of interest.

This inner product of a residual error and an adjoint weighting is of interest.
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To evaluate nonlinear function J(U). U satisfying solution of nonlinear

equations.

N(U) = 0

Given an approximate solution Ũ we define as solution error

u = Ũ−U

Let us linearize both nonlinear equations and functional

N(Ũ) = N(U + u) ≈ ∂N

∂U
u

J(Ũ) = J(U + u) ≈ J(U)
∂J

∂U
u
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We can write these as

Au = f,

A =
∂N

∂U
, f = N(Ũ),

J(U) ≈ J(Ũ) − gT u,

where

gT =
∂T

∂U
.
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Let v be defined as satisfying adjoint equation AT v = g

we obtain

J(Ũ) = J(Ũ)− vT f = J(Ũ)− ṽT N(Ũ)

The quantity J(Ũ)− ṽT N(Ũ) provides a more accurate estimate for J(U)

then J(Ũ) alone.

Adjoint error correction term = product of an approximate adjoint solution

and the residual error from the nonlinear equations.
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History of use of adjoints for error analysis

1967- Aubin and Nitsche who used adjoint to derive a priori optimal order

proofs of L2 convergence of finite element methods for elliptic pdes.

1978 - Babuska and Rheinboldt developed ’a posteriori’ error analysis applied

to Poisson and Cauchy Riemann equations.

1984 Babuska and Miller focused attention on integral functional outputs.

1987 Barrett and Elliott analyze problem in convection diffusion for non-self

adjoint problems making a vital connection to CFD problems.
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Late 1990- explosion in research in ’a-posteriori’ adjoint error correction (see

Suli, Johnson, Ranacher and Becker to cite but a few) used finite element

method a posteriori error bounds to derive good grid adaption indicators.

Giles and Piece. Extended adjoint correction ideas to finite volume methods

and the the superconvergence concept that is natural for finite element

methods.

Venditti and Darmofal (2000, 2001) used an algebraic version of the adjoint

error correction and used it to derive grid mesh refinement adaptation criteria.
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Brief outline of adjoint error correction

Let u be solution of a linear differential equation

Lu = f

on a domain Ω subject to homogeneous b.c’s for which problem is well posed

when

f ∈ L2(Ω)

i.e f is a square integrable function. The adjoint differential operator L∗ and

associated homogeneous b.c. are defined by the identity

(v,Lu) = (L∗v,u)

that holds for all u and v satisfying the boundary conditions.

The ( , ) stands for integral inner product over domain Ω

(v,Lu) =

∫

Ω

vT LudV
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u and v may be vector functions.

Definition of L∗ is obtained via integration by parts starting from (v,Lu) until

all derivatives act on v rather than on u.

The adjoint b.c’s come from requiring that boundary terms arising from

integration by parts be zero.

Consider value of functional

J = (g,u), g ∈ L2(Ω)

A dual formulation is to evaluate functional

J = (v, f)

where v satisfies the adjoint equation

L∗v = g

subject to homogeneous adjoint b.c.’s. We have

(v, f) = (v,Lu) = (L∗v,u) = (g,u)
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Let uh and vh be numerical approximations to u and v respectively and satisfy

the homogeneous boundary conditions.

Subscript h denotes that approximate solutions are obtained from numerical

computation with a grid whose average spacing is h.

We assume uh and vh sufficiently smooth so that

Luh, L∗vh

lie in L2(Ω)

Luh − f ,

and

L∗vh − h

are residual errors whose magnitude measures extent to which uh and vh are

not the true solutions.

I.M.Navon CSCAMM, College Park, Nov 16, 2005. Slide 28



'

&

$

%

We get

(g, u) = (g, uh)− (L∗vh, uh − u) + (L∗vh − g, uh − u) (2)

= (g, uh)− (vh, L(uh − u)) + (L∗(vh − v), uh − u)

= (g, uh)︸ ︷︷ ︸
I

− (vh, Luh − f)︸ ︷︷ ︸
II

+(vh − v, L(uh − u))

(I)- value of functional obtained using approximate solution uh

(II)- inner product of residual error L uh − f and approximate adjoint solution

vh.

The adjoint solution provides weighting of local residual error to overall error in

computed functional.

• Evaluating and subtracting this adjoint error allows obtaining a more

accurate value of functional.
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If

Luh = L(uh − u) ∼ uh − u,

then remaining error has a bound proportional to product ‖uh − u‖ ‖vh − v‖
(by using L2- norm), so that corrected functional value is superconvergent.

If

uh − u ∼ O(hp), vh − v ∼ O(hp),

Then the error in the functional is O(h2p).
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Simple example

1-D Poisson equation.

d2u

dx2
= f, x ∈ [0, 1]

subject to homogeneous boundary conditions u(0) = u(1) = 0.

The dual is the Poisson equation,

d2v

dx2
= g,

with the same homogeneous boundary conditions.

Adjoint identity verified (u and v equal to 0 at each end).

∫ 1

0

v
d2u

dx2
dx = −

∫ 1

0

dv

dx

du

dx
dx =

∫ 1

0

d2v

dx2
u dx

Poisson equation is numerically approximated on uniform grid, mesh size h
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with 2-nd order finite difference (approximation) discretization,

h−2 δ2
xuj =

ui+1 − 2ui + ui+1

h2
= f(uj).

Approximate solution uh(x) is defined by cubic spline interpolation through

model values xf .

The adjoint solution vh is obtained exactly in the same manner.

Numerical results plotted for case,

f(x) = x3 (1− x)3, g = sin (π x),

Fig. 1 shows residual error, L uh − f for h = 1/32 as well as the 3 Gaussian

quadrature points on each subinterval that are useful in numerical integration

of inner product (vh, L uh − f), since uh is a cubic spline, fh =
d2uh
dx2 is

continuous piecewise linear.

The dominant term of approximation error is quadratic on each subinterval.

Adjoint solution vh illustrates that residual error in center of domain

contributes the most to overall error in functional.

Fig. 3 is log- log plot of 3 quantities vs number of mesh- cells:
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1. Error in base value of functional (g, uh).

2. Remaining error after subtracting adjoint correction term, (vh, Luh − f).

3. The a-posteriori error bound,

‖L−1‖‖Luh − f‖‖L∗vh − g‖.

The superimposed lines have slopes of −2 and −4 confirming that base solution

is O(h2) accurate while error in the corrected functional as well as error bound

are both 4-th order.

For a 16 cell grid we note that the error in adjoint corrected value of functional

is over 200 times smaller ( (1/h2) ) than the uncorrected error.
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Nonlinear adjoint error correction

We need to address issues in linearizing nonlinear functionals and operators.

If u is a scalar variable and f(u) is a nonlinear scalar functional using Taylor

series,

f(u2) = f(u1) + f ′(u1)(u2 − u1) + O((u2 − u1)2).

We can also obtain exact expression without remainder by

∂

∂θ
f(u1 + θ(u2 − u1)) = f ′(u1 + θ(u2 − u1))(u2 − u1),

Integrate it from θ = 0 to θ = 1,

f(u2)− f(u1) = f
′
(u1, u2)(u2 − u1),

where f
′
(u1, u2) =

∫ 1

0
f ′(u1 + θ(u2 − u1))dθ.

If u and f are vectors we need to define a Jacobian matrix,

Au = [
∂f

∂u
]u,

Subscript u denotes that value of Jacobian matrix A depends on value of u

around which f(u) is linearized.

I.M.Navon CSCAMM, College Park, Nov 16, 2005. Slide 34



'

&

$

%

We obtain
∂

∂θ
f(u1 + θ(u2 − u1)) = Au1+θ(u2−u1).

Integrating over θ yields,

f(u2)− f(u1) = A(u2,u1)(u2 − u1),

where

A(u1,u2) =

∫ 1

0

[
∂f

∂u
]u1=θ(u2−u1)dθ.
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Next consider a nonlinear operator N(u).

The linearized operator L u is called a Fréchet derivative and is formally

defined as,

Lu ũ = limε→0
N(u + εũ)−N(u)

ε
,

Subscript u denotes fact that linear operator matrix depends on value of u

around which N(u) is linearized.

If N(u) is nonlinear advection diffusion 1-D,

N(u) =
∂

∂x
(
1

2
u2)− ν

∂2u

∂x2

then

Lu ũ =
∂

∂x
(uũ)− ν

∂2ũ

∂x2
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In a final step one starts from

∂

∂θ
N(u1 + θ(u2 − u1)) = Lu1+θ(u2−u1)(u2 − u1)

Integrate over θ and obtain

N(u2)−N(u1) = Lu1,u2 (u2 − u1)

Lu1,u2 =

∫ 1

0

Lu1+θ(u2−u1)dθ

Lu1,u2 is average value of the linear operator Lu over ”path” from u1 to u2.
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Grid-Adaptation based on a-posteriori error

estimates

Provides for robust refinement criteria in practice.

1st. Approach

Consider dominant correction term in product

(vh, N(uh))

expressed as sum of contribution from each cell in the domain,

(vh, N(uh)) = Σα(vh, N(uh))α.

First strategy is to subdivide all cells for which

(vh, N(uh))α > εtol.

Purpose of adjoint correction in this application is questionable.
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2 Estimated remaining error term

After making adjoint error correction the remaining error term can be

expressed as

(v − vh, N(uh)).

However analytic adjoint solution v is not known.

An option is to attempt to estimate it and adapt those cells in which

(v − vh, N(uh))α > εtol

How to estimate v ?

1. Becker and Ranacher (2001) use quadratic reconstruction to estimate v,

having used a piecewise linear f.e.m. for rh.
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If one uses Galerkin f.e.m., due to orthogonality (v− vh, N(uh)) has some value

for any vh in appropriate finite element space.

Consider a different vh, interpolant of v, so v − vh is interpolation error- which

may be estimated using computed adjoint section.

• Venditti and Darmofal (2001) consider dominant part of remaining error

(Rh, u− uh)

with Rh ≡ L∗uh
vh − g(uh) is the residual error is satisfying adjoint p.d.e.

They decide to adapt (i.e., subdivide) any cell in which

|(v − vh), N(uh)|α + |(Rh, u− uh)|α > εthreshold.
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The analytic solution u and v are again approximated by a high- order

reconstruction.

Option 3: Coarse grid error estimates using residual error from both the

original and adjoint (method) problem express dominant error as

|L∗uh
Rh, N(uh)| ≈ (Rh, L−1

uh
N(uh))

Using this in adaptive approach has a problem since L−1
uh

is a global operator.

Solution: Use coarse mesh to approximately evaluate L−1
uh

N(uh) and

L∗−1
uh

N(uh)Rh and then adapt in any cell α for which

|L∗−1
uh

Rh, N(uh))|α + |(Rh, L−1
uh

N(uh))
α
| > εtol.

A choice is made between improved accuracy or a tight bound.
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A-posteriori pointwise error estimation using

adjoint temperature and Lagrange remainder

• Use local truncation error estimated from Taylor series with remainder in

Lagrange form.

• The adjoint equations are in a continuous form.

We consider temperature error at a verification point for a finite-difference

discretization of time dependent 1-D heat equation.

cρ
∂T̃

∂t
− ∂

∂x
(λ

∂T̃

∂x
) = 0

in Ω× (0, tf ), where Ω ∈ <1.

with initial conditions,

T̃ (0, x) = T0(x),

where T0(x) ∈ L2(Γi),

b.c’ s
∂T̃

∂x
|x=0 = 0,
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and

∂T̃

∂x
|x=χ = 0,

where c is thermal capacity,

λ is thermal conductivity,

ρ is density,

T̃ is exact, nonperturbed temperature,

χ is thickness,

t is time,

tf is final time (duration of process),

ρ, c are constants.

2 cases considered

1. λ = constant, T̃ (t, x) ∈ C∞(Q),

2. λ ∈ L2(Ω), T̃ (t, x) ∈ H1(Q).
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Consider a finite difference approximation (first order in time, second order in

space),

cρ
T n

k − T n−1
k

∆t
− λ

T n
k+1 − 2T n

k + T n
k−1

h2
k

= 0 (3)

If we expand mesh-function T n
k in a Taylor series and substitute to Eq. (3),

then we obtain the following differential approximation,

cρ
∂T

∂t
− λ

∂2T

∂x2
+ δT = 0, (4)

δTt = − cρ

2
τ

∂2T (tn − αn
k τ, xk)

∂t2
, (5)

δTx = − λ

24
h2

k(
∂4T (tn, xk + βn

k h)

∂x4
+

∂4T (tn, xk − γn
k h)

∂x4
)
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We use here δT = δTt + δTx and the Lagrange form of the remainder with

unknown parameters αn
k , βn

k , γn
k ∈ (0, 1).

By introducing solution error ∆T (T = T̃ + ∆T ).

We reformulate Eq.(4) as

cρ
∂(T̃ + ∆T )

∂t
− λ

∂2(T̃ + ∆T )

∂x2
+ δT = 0. (6)

We address impact of distributing source terms on temperature at a checkpoint.

Error of temperature calculation at checkpoint T (test, xest) determined by sum

of contributions of LTE with weights depending on transfer of disturbances.

Denote Test by J and express it as a functional,

J =

∫ ∫

Ω

T (x, t)δ(t− test)δ(x− xest)dt dx, (7)

where δ is the Dirac delta function.

We introduce a Lagrangian comprised of estimated value and weak statement
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of Eq. (7),

L =

∫ ∫

Ω

T (x, t)δ(t− test)δ(x− xest)dt dx (8)

+

∫ ∫

Ω

cρ
∂T

∂t
Ψ(x, t)dt dx

−
∫ ∫

Ω

∂

∂x
(λ

∂T

∂x
)Ψ(x, t)dt dx +

∫ ∫

Ω

δTΨdt dx.

Here Ψ is adjoint temperature.
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Calculating variation of Lagrangian and use of integration by parts, we can

express variation of Lagrangian via disturbing term δT as,

∆L =

∫ ∫

Ω

δTΨ(x, t)dt dx (9)

We end up looking for solution of the following adjoint (dual) problem,

cρ
∂Ψ

∂t
+

∂

∂x
(λ

∂Ψ

∂x
)− δ(t− test)δ(x− xest) = 0, (x, t) ∈ Ω, (10)

with boundary conditions,

∂Ψ

∂x
|x=χ = 0,

∂Ψ

∂x
|x=0 = 0, (11)

and initial condition,

Ψ(x, tf ) = 0. (12)

Analytic solution of the adjoint temperature equation, (10), corresponds to a

Green’ s function of the heat transfer equation,

Ψ(x, t) =
Q

2

√
πλ
Cρ

(test − t)

exp (
−(x− xest)

2

4λ/(Cρ)(test − t)
) (13)
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It is known that

∆J (δT ) = ∆L(δT, Ψ),

for the solution of direct and adjoint problems.

Thus we determine variation of T (xest, test) as,

∆Test = Test − Texact =

∫ ∫

Ω

δTΨexact(x, t)dt dx (14)

Adjoint temperature allows us to calculate variation of estimated parameter as

a function of the truncation error.
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The error of temperature for verification point is divided into 2 parts,

∆Test =

∫ ∫

Ω

δTΨexact(x, t)dt dx +

∫ ∫

Ω

δT∆Ψ(x, t)dt dx (15)

Estimation of error due to time approximation,

Cρ

2

Nx Nt∑
k=1, n=2

αn
k τ3 ∂3T (tn, xk)

∂t3
Ψn

khk ≤

Cρ

2

Nx Nt∑
k=1, n=2

|hkτ3 ∂3T (tn, xk)

∂t3
Ψn

k | = ∆T sup
t,l

.

If we a sufficient number of smooth derivatives (m = 3) we have,

δT = −Cρ

2

Nx Nt∑
k=1, n=2

(τ
∂2T (tn, xk)

∂t2
− ταn

k

∂3T (tn − ηn
k αn

k τ, xk)

∂t3
Ψn

khkτ, (16)
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∆T sup
t,l

=
Cρ

2

Nx Nt∑
k=1, n=2

|τ2
∂3T (tn − ηn

k αn
k τ, xk)

∂t3
Ψn

k |hkτ. (17)

Estimation of error due to space discretization,

δTx = − λ

12

Nx Nt∑
k=1, n=2

h3
k

∂4T (tn, xk)

∂x4
Ψn

k τ − (18)

λ

24

Nx Nt∑
k=1, n=2

h3
k(

∂5T (tn, xk)

∂x5
βn

k −
∂5T (tn, xk)

∂x5
γn

k )Ψn
khkτ,
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∆T corr
x = − λ

12

Nx Nt∑
k=1, n=2

h3
k

∂4T (tn, xk)

∂x4
Ψn

k τ, (19)

λ

24

Nx Nt∑
k=1, n=2

h3
k(

∂5T (tn, xk)

∂x5
βn

k −
∂5T (tn, xk)

∂x5
γn

k )Ψn
khkτ < ∆T sup

x,1 =

Nx Nt∑
k=1, n=2

h4
k|

∂5T (tn, xk)

∂x5
Ψn

k |τ.
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Using analytical solution of temperature equation,

Tan(x, t) =
Q

2

√
πλ
Cρ

(t− t0)

exp (
−(x− ξ)2

4λ/(Cρ)(t− t0)
). (20)

Figs 4- 6 illustrate the comparison between

• analytic

• finite difference

• corrected finite-difference solution

and error bounds for h = 10−4m, ∆t = 1.0 seconds in different zones.
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Figure Captions 

Fig. 1. Initial and final temperature distribution. 1 - Initial temperature, 2- Final temperature.  

Fig. 2. Temperature isolines 

Fig. 3. Adjoint temperature isolines 

Fig. 4. The comparison of numerical and analytical solutions in zone A (Fig. 1). 1- analytical, 2-

numerical, 3-refined solution, 4- upper bound, 5- lower bound 

Fig. 5. The comparison of numerical and analytical solutions in zone B. 1- analytical, 2-

numerical, 3- refined solution, 4- upper bound, 5 lower bound 

Fig. 6 The comparison of numerical and analytical solutions in zone C. 1- analytical, 2-

numerical, 3- refined solution, upper bound, 5- lower bound 

Fig. 7. Initial and final temperature distribution. 1- Initial temperature, 2- Final temperature  

Fig. 8. The refined solution and error bounds in comparison with finite-difference and analytical 

solution. Zone А (Fig. 7). 1- analytical, 2-numerical 3- refined solution, 4- lower bound, 5 upper 

bound 

Fig. 9. The refined solution and error bounds in comparison with finite-difference and analytical 

solution. Zone B (Fig. 7). 1- analytical, 2-numerical, 3- refined solution, 4-lower bound, 5- upper 

bound 

Fig. 10. Initial and final temperature distribution. 1- Initial temperature, 2- Final temperature, А- 

zone of estimation 
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Conclusions for this Section

Numerical tests demonstrate that pointwise error of f.d. solution of heat

conduction equation may be reduced using differential approximation of

finite-difference scheme in conjunction with the adjoint equations.

• This approach may be used for other output temperature functionals with

preset levels of accuracy,

• CPU time required for refined and for the error bound calculation is equal

to CPU time required for temperature calculation on a mesh of same

resolution and same size.
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Use of Adjoint correction for adaptive mesh

refinement in 3-D time dependent models

Examples will be presented related to dynamically adaptive meshes for

Imperial College Ocean Model.

• Use of sensitivity functional taken with respect to solution variables, used

as basis from which error measures are derived.

• Error measures act to predict those areas of model domain where solution

should be changed- and involve solution of both forward and adjoint

problems.

• Mesh quality is assessed with respect to a Riemann metric tensor

embodying the error measure.

• The result is a mesh in which each finite element node has approximately(

subject to boundary conforming constraints) equal error contribution to

the output functional.
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• Aim: to exploit use of unstructured dynamically adapting meshes in both

horizontal and vertical directions.

• Use geometrical flexibility of f.e.m. mesh to conform well to both

topography and ocean coast lines.

• Use various ’a-posteriori error-measures in which same set of equations are

solved for the errors with sources provided by residuals of the governing

equations.

• Aim of goal based error measure is to construct ( and design error

measure) of a quantity deemed important in the problem- and to design

the error measure to optimize accuracy of the particular functional output.

The resulting constructed mesh is to achieve this level of accuracy with

minimal computational resources.

I.M.Navon CSCAMM, College Park, Nov 16, 2005. Slide 55



'

&

$

%

• In oceanographic sense the goal functional can be either an observation

from a buoy , some measure of the dynamics of the system i.e. some

integral of vorticity or strength of the thermohaline circulation, etc.

• Since adjoint solution is typically calculated for data assimilation purposes

- this approach provides an additional use for the adjoint model

information, i.e. to adapt f.e.m. mesh and provide indicators of the

accuracy of output functional or goal.

• These methods provide also framework for optimizing accuracy of inverse

problem.

• One can use readily accessible (in simulation codes)discretized equations

• use of metric tensor obtained vis sensitivity analysis to adapt 3-D meshes

of unstructured tetrahedral elements.
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• Once an appropriate output functional-representative of significant

dynamics of the flow was found -the method removes the need to allocate

varying priorities on resolving various fields(velocity,pressure and

density)at various locations and times.

• Advantages include

• Superconvergence of goal with mesh adaptivity

• Ability to assign bounds on accuracy of the goal

• Possibility of improving accuracy of the goal
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�!��	 � ��� (6.2)

Where
	 �  � � 	 � ' � represents the 3D velocity and

�
is the perturbation pressure. Here

� , 	 and ' are the velocity components in the � -, � - and � -directions respectively. The

rotation vector is
�

and takes the form
� � � ��� ��� � � � ) , where � is the Coriolis parameter.

The viscous terms are represented by the stress tensor
"

. More details of the numerical

basis of the model can be found in [4].

6.2.2 Choice of functional

A functional can be defined in terms of the vorticity, as the problem is 2D only one

component of the vorticity,
� �

� �
	�
�
�
�
��
� � � (6.3)

is non-zero. The rationale for basing functionals around vorticity stems from both the

physics but also the ability to represent the vorticity numerically. Thus an appropriate

functional can be defined as,
�  � � 	 � �

�

� � � (6.4)

To initialize the adjoint problem (see section 6.1) the source terms � �

� � must be calculated.

When time stepping is used the functional from as defined in chapter 4 can be defined as

total enstrophy at time level �  � ,


 � �
 8 � � � � ��� 	 � � < � � �

 8 * � �
	�
� � � � ��� 	 � � �

��
� � � � ��� 	 + � < � � (6.5)

in which � is the number of time steps used to form the error measure. The aim of using

the functional defined by equation 6.5 is to optimize the accuracy of the functional at the

end of time step
����

(time interval between two consecutive mesh adaptations), or taking
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Figure 6.16: Mesh adapted to optimize ac-
curacy of functional 
 at day � � ��� .  � ���
nodes.

Figure 6.17: Mesh adapted to optimize ac-
curacy of functional 
 at day � � � ��� .  � ���
nodes.

Figure 6.18: Mesh adapted to optimize ac-
curacy of functional 
 at day � �  ��� . � � � �
nodes,  ��� � � elements. ��� ��� ����� .

Figure 6.19: Mesh adapted to optimize ac-
curacy of functional 
 at day � � � ��� . � ��� �
nodes,  � � � � elements. ��� ��� ����� .
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7.1.1 Functional representation of flow dynamics

A functional can be defined in terms of the relative vorticity,

� �

����
�
� �
� >
� @
� ���

 � � � 	 � � � '�

�
�
�
	� � �
� '�
�
�
�
�� � �

�
	�
�
�
�
��
� � ) � (7.5)

and potential vorticity,
� ��� � as well as gradients of density

� � and tracer concentration� �
. The rationale for basing functionals around vorticity and gradients of key quantities

stems from their ability to represent the vorticity and gradients numerically. Thus an

appropriate functional can be defined as,

�  � � 	 �(' �(��� � � �
�
 �  � � � � )���� �   � )���� �

� � � �  
� � � )�� � � �  

� � � )�� � � � �
� �
 �  � � � (7.6)

in which �  � � acknowledges the time dependence of the problem and hence the functional.

For example, to maximise the accuracy of 
 at a particular time level �  ���� then one

could choose �  � � � �
� �  ���� � � � � (7.7)

or to maximise the accuracy of the functional 
 over a particular time interval 	 � � �
� � � then

one could choose �  � � � � 
� ! �
�
� � � �� � � �
�

(7.8)

with
� 
� ! �
�
� � � � equal to unity when

� � 	 � � �
� � � and zero otherwise.

In equation 7.6 ��� , ��� � , � � , and � � are positive semi-definite weighting matrices.

These matrices or tensors may be used to place emphasis on resolving vertical or hori-

zontal structure for example, and are closely analogous to diffusion tensors. However, in
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Figure 7.1: Initial mesh for heated cylinder problem.

The functional applied is that defined in equation 7.6, where the required parameters are

set as,
' � ���
� ' � � � ��� ' � � ���

The forward metric tensor (equation 4.40) is used in this simulation. The large forward

and adjoint time steps for constructing the � � � � adaptation of the mesh are considered; at

the point of wishing to adapt the mesh a large time step (
�� � � ����� ) forward is taken,

starting from the current velocity and temperature solutions, shown by figures 7.2 and

7.3. The results at the end of the large time step are shown in figures 7.4 to 7.8. The

advancement of the solution forward in time through the large time step can be observed

in the figures.

The adjoint problem is initialized from the solution to the forward problem by calculating

sources which are the differentials of the functional 
 with respect to the solution param-

eters. These are detailed for the functional employed in section 7.1.2. As ' � � � and
' � � � � in this case, then the differential of the functional is zero. Thus when the adjoint
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Figure 7.12: Blowup around cylinder of adjoint solution vectors after adjoint timestep
relating to � � � � adaptation of mesh.
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Figure 7.15: Vector representation of adjoint residuals relating to � � and 	 � for ��� � � adap-
tation of mesh.
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Figure 7.18: Vertical component of vorticity field and ��� � � adapted mesh.
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Figure 7.23: � velocity at � ��� � � adapt.

Figure 7.24: Temperature
�

at � ��� � � adapt.
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Figure 7.30: Velocity vectors and temperature iso-surface, day � .
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Figure 7.31: Velocity vectors on top surface, day � .

Figure 7.32: Adjoint solution � � , day � . Figure 7.33: Adjoint solution 	 � , day � .
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The metric tensor in form of a positive definite matrix defines anisotropically

the desired mesh edge lengths at each node.

The desired edge length, hi, in the direction of the ith eigenvector, i.e, of the

symmetric metric tensor M is defined as,

hi =
1√
Λi

where Λi is the eigenvalue associated with ei.

During mesh optimization the metric tensor is used to calculate distances via,

‖v‖ = vT Mvv,

where Mv is the average metric tensor along vector v.
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To define mesh optimization an element functional is defined in terms of the

metric tensor and of properties a “good” mesh should exhibit for modeling.

Trials are therefore performed on local mesh connectivity and node position- in

the case of a minimization problem defined- the aim being to find a local

configuration that reduces functional value.

Defining the mesh functional as,

F = ‖F‖∞,

where F is vector of element functionals for whole mesh and process terminates

when F falls below some tolerance. There are many choices for the definition of

the local functional F (see Venditti and Darmofal 2000, Kanupp, 2000).
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Here we use geometrically based

Fe =
1

2

∑
l∈Le

(rl − 1)2 + µ(
α

ρe
− 1)

2
.

where rl is length w.r.t. edge centered metric tensor Me of edge, Le is set of

edges of element e.

ρe is the radius of with respect to element centered, Me of inscribed sphere of

element e.

α is the radius of inscribed sphere of ideal equilateral element.

µ- controls trade off between size and shape.
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Use of goal- oriented methods for efficient

model reduction

Model reduction is powerful tool allowing systematic generation of cost-efficient

representations of large-scale systems.

The problem of determining a reduced- model can best in a model- constrained

optimization context (Willcox et al. 2005, Meyer and Matthias 2003).

In the goal- oriented formulation the reduced- model is chosen to optimally

represent a particular output functional.

POD (proper orthogonal decomposition): brief description

POD is applied efficiently to reduce large- scale systems using the method of

snapshots (Sirovich 1987).

The collection of snapshots

uk(tj), j = 1, · · · , T, k = 1, · · · , s, uk(tj) ∈ Rn,

is a solution of governing equations at time tj for parameter instance k. T time

instants are considered yielding a total of ST snapshots.

I.M.Navon CSCAMM, College Park, Nov 16, 2005. Slide 61



'

&

$

%

A snapshots matrix U ∈ Rv×ST is

U = [u1(t1), · · · , u4(tT ), u2(tI), · · · , uJ (tT )]

we refer to the i− th column of U as the i−th snapshot Ui . POD basis vectors

are chosen to be orthonormal set that maximizes the following cost,( Berkooz

et al (1993)),

Ψ = arg maxφ
< |u, φ|2 >

(φ, φ)
(∗)

where (u, φ) is scalar product of basis vector with field u(t) evaluated over the

domain and < > represents time- averaging operation.

(∗) is maximized when the n basis vectors are chosen to be the first n left

singular vectors of U.

For fixed basis size the POD basis minimizes error between original snapshots

and their representation in the reduced space defined by,

F =

s∑
k=1

T∑
t=1

[uk(tj)− ũk(tj)]
T

[uk(tj)− ũk(tj)],

where ũk(tj) = φφT uk(tj).

The error is equal to sum of singular values corresponding to the singular
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vectors excluded from the basis,

E =

ST∑
i=n+1

σi.

The goal- oriented methods focus on reduction of the error for a particular

output functional- rather than for the general state vector.

Also error minimized by optimization approach will be connected to the

reduced order model- whereas POD is based purely on the set of snapshots

data.

Such an approach was presented for a general linear time- invariant (LTI)

dynamical system (Willcox et al. 2005),

Mu̇ + Ku = f,

g = Cu,

with u(0) = u0, with u̇(t) is derivative of u(t) w.r.t. time.

Vector f(t) ∈ Rn defines input to system and matrix C defines q outputs of

interest contained in output vector g(t).

Meyer and Matthies (2003) have used POD (K-L) basis for nonlinear random

fatigue evaluation of a wind turbine.
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Using POD with goal oriented methods (Dual- Weighted Residual) an

a-posteriori error estimate was obtained for a particular target functional of the

solution.

This estimate was used for adaptively resizing number of basis vectors of POD

to satisfy given error tolerance.

Also it was used to form very efficient low- dimensional basis specifically

tailored for target functional of interest.

The basis yielded a significantly better approximation of the functional than

the usual POD basis.
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Summary and future work

• Future work on application of goal- based error measures for adaptive

refinement.

• Introduce second order error information obtained from either second order

adjoint model or leading Hessian singular vectors in energy norm to reflect

integral outputs for dynamics or domain areas of interest.

• Use mesh adaptivity in data assimilation, i.e, construct approximate

adjoint models and increase ability to adapt mesh to optimize accuracy of

inverse problem.

• Provide improved targeted adaptive observations to optimize forecast

accuracy (using SVD or adjoint sensitivity analysis).

• Develop ability to recognize suitable functionals reflecting dynamics of

ocean flow for use in goal oriented adjoint correction methods
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