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We calibrate the local volatility surface for European options across all strikes and maturities of
the same underlying. There is no interpolation or extrapolation of either the option prices or the
volatility surface. We do not make any assumption regarding the shape of the volatility surface except
to assume that it is smooth. Due to the smoothness assumption, we apply a second-order Tikhonov
regularization. We choose the Tikhonov regularization parameter as one of the singular values of the
Jacobian matrix of the Dupire model. Finally we perform extensive numerical tests to assess and
verify the aforementioned techniques for both volatility models with known analytical solutions of
European option prices and real market option data.

Keywords: Local volatility surface; Second-order Tikhonov regularization; SVD; Large scale non-
linear inverse problem

JEL Classification: C61, C

1. Introduction

Local volatility model is an extension of the Black–Scholes
constant volatility model (Black and Scholes 1973) aimed at
explaining the volatility smiles observed in the market. It as-
sumes the volatility term is a deterministic function of both
stock price and time. Dupire in his seminal work (Dupire 1994)
established that the local volatility function can be uniquely
derived from European option prices given the existence of
European options with all strikes and maturities. However,
in the market, there is only a limited number of available
European options with discrete strikes and maturities. Up to
date, there have been quite a number of studies addressing
the reconstruction of local volatility function from a limited
number of options available in the market.

Lagnado and Osher (1997) first solved the calibration prob-
lem in a PDE framework without assuming any shape of the
local volatility function, i.e. a non-parametric approach. They
used the first order derivatives of the volatility surface to
regularize the inverse problem. Most subsequent research

∗Corresponding author. Email: inavon@fsu.edu
This article was originally published with errors. This version has been
corrected. Please see Erratum (http://dx.doi.org/10.1080/14697688.
2013.844894).

followed the same regularization approach such as Bouchouev
and Isakov (Bouchouev and Isakov (1997, 1999)), Bodurtha,
Jr. and Jermakyan (1999), Jiang and Tao (2001), Jiang et al.
(2003), Crepey (2003), Egger and Engl (2005), Hein (2005),
Achdou and Pironneau (2005) and Turinici (2009). However,
the recovered volatility surface is usually very rough and it is
hard to discern any patterns. Coleman et al. (1999), Achdou
and Pironneau (2005) and Turinici (2009) solved the calibra-
tion problem using a parametric approach : the volatilities at
several specially chosen points on the volatility surface are
computed first, and then the volatility surface is constructed
from those points using either linear interpolation or cubic
splines. By parameterizing the volatility surface this approach
reduces the dimension of the calibration problem. It works well
when the chosen points can represent well the key regions of
true volatility surface. However, it runs the danger of allowing
too few degrees of freedom to explain the data. The recovered
volatility surface is still either too rough (for the linear inter-
polation case) or subject to extreme values(for the cubic spline
case) especially for the market data.

In this paper, we still use a non-parametric approach for
the calibration of the local volatility surface with the only
assumption that a smooth volatility surface is more preferable
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2 I. M. Navon et al.

than a non-smooth volatility surface. This assumption is in-
spired by the ‘Occam’s razor’, a principle from the fourteenth
century philosopher William of Ockham, who argued that sim-
pler explanations should be preferred to more complicated
explanations. We seek a solution of smaller size in addition
to the purpose of matching the market data. The same idea
was introduced for solving non-linear inverse problems by
Constable et al. (1987). We hope that by imposing the smooth-
ness assumption, a simpler solution can be obtained from which
some patterns maybe detectable. The smoothness preference
assumption has already been adopted in the approach in
Coleman et al. (1999), Achdou and Pironneau (2005) and
Turinici (2009) when cubic splines are used to connect the
volatility surface. Another reason for the smoothness assump-
tion is due to the fact that this calibration problem is an
underdetermined problem. A second-order regularization,
which follows from the smoothness assumptions, adds more
constraints to the problem than a first-order regularization.
Note we are not trying to obtain a volatility surface as smooth
as possible either.

There have been some theoretical studies about the stabil-
ity, uniqueness and convergence of the calibration problem
such as Bouchouev and Isakov (1997, 1999), Navon (1998),
Jiang and Tao (2001), Crepey (2003), Egger and Engl (2005)
and Hein (2005). However, according to the authors’ knowl-
edge, there is no conclusive answer as yet. We will not address
these issues in this paper. We will also ignore the shortcom-
ings of the local volatility model in describing the dynamics
of the volatility surface. Assuming the local volatility model
is perfect, we demonstrate the robustness of our calibration
approach by extensive numerical tests with both theoretical
local volatility models with known analytical solutions for
European option prices and the real market option prices. The
novelty of the present paper consists in the use of second-order
Tikhonov regularization and the way we choose the Tikhonov
regularization parameter. (See also Cordier et al. (2010) and
Alekseev and Navon (2001)).

This paper is organized in the following manner. Section
1 consists of the introduction. In section 2, the mathematical
formulation of the calibration problem is set up and complex
issues related to the inverse problem are addressed. In section
3, we address the issue of using automatic differentiation tools
to derive the adjoint code required to compute the gradient
of the cost function with respect to the volatility surface. In
section 4, by analysing how ill-posedness occurs for linear
inverse problems, we propose a method to select the Tikhonov
regularization parameter. In section 5, numerical results are
presented and discussed. Finally, the paper concludes with a
summary and conclusions section.

2. Description of the calibration problem

For consistency, the local volatility model is defined as in
Lagnado and Osher (1997). The local volatility model assumes
that the price s of an underlying follows a general diffusion
process:

ds

s
= (r − q)dt + σ(s, t)dWt (1)

where r is the risk-free continuously compounded interest rate;
q is the continuous dividend yield of the asset; Wt is a stan-
dard Brownian motion process, and the local volatility σ is a
deterministic function that may depend on both the asset price
s and the time t. r and q are assumed to be constant in this
paper. Let V (s0, 0, K , T, σ ) denote the theoretical price of an
European option with strike K and maturity T at reference time
0 for an asset with spot price s0 following the process in (1).
Let T1, . . . , TN be the set of maturities of the European options
available in the market for the asset. For each maturity Ti , the
strikes available range from Ki1, . . ., Ki Mi .

The calibration of the local volatility surface to the mar-
ket is to find a local volatility surface σ(s, t) such that the
theoretical option price computed using this volatility surface
comprises between the corresponding bid and ask prices for
any option(Ki j , Ti ), i.e.

V b
i j ≤ V (s0, 0, Ki j , Tj , σ ) ≤ V a

i j

for i = 1, . . . , N and j = 1, . . . , Mi . V a
i j and V b

i j denote the
bid and ask prices respectively for an option with maturity Ti

and strike Ki j at the time t = 0.
This problem is usually solved by solving the following

optimization problem:

min
0<σ≤1

G(σ ) =
N∑

i=1

Mi∑
j=1

[(V (s0, 0, Ki j , Ti , σ ) − V i j )wi j ]2

(2)
where V i j = (V b

i j + V a
i j )/2 is the mean of the bid and ask

prices. wi j is a scaling factor to reflect the relative importance
of different options. This scaling factor could play an impor-
tant role in the calibration problem especially when option
prices contain ‘noises’ since a small amount of relative noises
from deep-in-the-money option prices could easily mask the
‘signals’ implied by out-of-money option prices. One way of
choosing the above weights is based on the liquidity argument.
The weights are computed as inversely proportional to the
square of the bid-ask spreads to give more weights to the
liquid options. Cont and Tankov (2004) suggested computing
the weights as the inverse of square of the Black-Scholes vegas
evaluated at the implied volatilities of the market option prices.
They showed that it is approximately equivalent to minimizing
the differences of the Black–Scholes implied volatilities be-
tween the market prices and the model computed prices. The
weighting scheme is derived as an efficient way of generating
approximation errors proportional to the bid-and-ask spreads
and it also works for the case when the bid-and-ask spreads are
not available. In this paper, we set wi j to be one for all cases
except for one case where we deliberately add enough artifi-
cial noises to show the significance of the weighting scheme,
when the weighting scheme in Cont and Tankov (2004) is used.
The reason we set wi j = 1 is that either we know the prices
are true prices or wi j = 1 was used in other papers for the
same market data used in the present paper. We retain the same
weighting scheme in order to be able to compare our result
with the previous studies.

When there is more than one maturity, the theoretical option
price V can be efficiently computed by solving the Dupire
equation (3). The Dupire equation establishes the option prices
as a function of strike K and maturity T for a fixed asset price
s0 at reference time t = 0. By solving the following Dupire
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Calibration of the local volatility surface for European options 3

equation (3) just once, we can obtain the theoretical prices for
all the European options of the same underlying at s0.

∂V

∂T
− 1

2
K 2σ 2(K , T )

∂2V

∂2 K
+ (r − q)K

∂V

∂K
+ qV = 0 (3)

Notice in (3), σ is a function of K and T instead of s and t. We
just point out that the function form of σ is not changed, and
that the K, T, s, or t are all just dummy variables, details of
which are in Dupire (1994).

Before attempting to solve the optimization problem in (2),
we want to point out some aspects of the problem that make
it complicated. The optimization problem in (2) is a large-
scale non-linear underdetermined inverse problem. (a) The
number of parameters to estimate is very large. To estimate
the volatility surface, we want to find the volatility at each
grid point. While similar to other archival material as well as
our research found, only the section of volatility surface near
the money can be estimated from market prices, the number
of parameters to estimate is still quite large. (b) The Dupire
or Black–Scholes equation is a non-linear operator in σ or
σ 2. (c) The total number of options available is usually much
less than the number of parameters to be estimated. Thus, it
is also an under-determined problem. (d) As for most inverse
problems, it is ill-posed in the sense that small changes in the
option prices may lead to big changes in the volatility surface.
When noises are included in option prices, which is usually the
case in reality, the reconstructed volatility surface tends to be
unstable. To resolve the issues of (c) and (d), we propose use of
a second-order Tikhonov regularization, details of which will
be introduced in later sections.

To deal with the issues of (a) and (b), a gradient-based
optimization routine is usually used. Most papers Bouchouev
and Isakov (1997, 1999), Jiang and Tao (2001), Jiang et al.
(2003), Crepey (2003), Egger and Engl (2005), Hein (2005),
Achdou and Pironneau (2005) and Turinici (2009) derived the
gradient of cost function G in (2) with respect to σ by solving
the adjoint model of the Dupire model. By using an adjoint
approach, the gradient can be computed by solving the adjoint
model just once. In all of these papers, the adjoint model of the
Dupire model was derived first and then solved numerically.
This way of using the adjoint belongs to the differentiate-then-
discretize approach, i.e. one differentiates the partial differ-
ential equations (along with initial and boundary conditions),
takes the adjoint of the results and then discretizes the contin-
uous system of adjoint equations.

There is an alternative way of deriving the adjoint, namely
the discretize-then-differentiate approach, see for example
Giering (2000), in which one first discretizes the original model
and then obtains a system of adjoint equations of the discretized
model. Both approaches yield a set of discrete equations for
the adjoint variables. But, the discretization and differentiation
steps do not commute. Gunzburger (2000) found that the gradi-
ent derived using the differentiate-then-discretize approach can
be inconsistent with the true gradient. The inconsistency can
result in a serious difficulty for minimizing the cost function.
In this paper, we will adopt the discretize-then-differentiate
approach: we first discretize the Dupire model using a finite
difference method and then differentiate the discrete version of

Dupire model to obtain its adjoint model. In the step of differen-
tiation of the discrete Dupire model, automatic differentiation
in reverse mode can be utilized to generate the discrete adjoint
model. In the following section, we set up the derivation of
the gradient in a general framework so that the same technique
can be used for calibration of other models or with respect to
exotic options.

3. Gradient of the cost function

Algorithmic differentiation has already been utilized in the
quantitative finance field. For example, Giles and Glasserman
(2005) and Capriotti and Giles (2010) used it to speed up the
calculation of Greeks. It has long been established in other
studies such as computational fluid dynamics that the gradient
of a cost function in the form of (2) can also be computed by
using automatic differentiation, such as Giering and Kaminski
(1998). We will just list some results for the completeness of
this paper. For a more general formulation, see Castaings et al.
(2007) and Navon (1998).

Let M be a general model such that

∂ X
∂t

= M(X,α) (4)

where X ∈ Rm is a vector containing the state variables of the
model α ∈ Rn denotes the model parameters. A typical cost
function in parameter calibration assumes the form

J (X,α) = 1

2

∫ tτ

t0
〈W(X − Xobs), W(X − Xobs)〉 dt (5)

where [t0, tτ ] is the observation window and W is a weighting
factor to reflect the relative importance of each observation.
Xobs is the observation vector. It can be shown (Lions 1968)
that the gradient is given by

∇α J =
∫ tτ

t0

(
−
[
∂M

∂α

]T

P

)
dt (6)

where P ∈ Rm is adjoint variable of the state variables and is
governed by the following system:⎧⎨

⎩
∂ P
∂t

+
[
∂M

∂ X

]T

P = W(X − Xobs)

P(tτ ) = 0
(7)

where
[

∂M
∂ X

]T
and

[
∂M
∂α

]T
represent the transpose of the Jaco-

bian matrix of the model with respect to state variables and
model parameters respectively in the discrete case. When P is
known by integrating backward in time the system described
by (7), all the components of the gradient J with respect to α

can be computed using equation (6).
Equations (6) and (7) show that we can compute the gradient

of cost function J (α) by running the adjoint model only once.
Griewank (1989) shows that the required numerical operations
will require only 2–5 times the computation required for the
forward cost function.

In this paper,

[
∂M

∂ X

]T

and

[
∂M

∂α

]T

are obtained using auto-

matic differentiation tools. A complete detailed discussion of
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4 I. M. Navon et al.

the rationale of automatic differentiation is beyond the scope
of this paper. See Griewank and Walther (2008) for details.†

4. Tikhonov regularization

4.1. Second-order Tikhonov regularization

To deal with the ill-posedness of the calibration problem, regu-
larization is usually required. Tikhonov regularization is one of
the most popular regularization methods for ill-posed inverse
problems. In addition to minimizing the cost function, it seeks
to minimize some measure of the solution, for example, the size
of the solution or the norm of the first and second derivative
of the solution. It usually assumes the following form.

J (σ ) = G(σ ) + λ ‖Lσ‖2
2 (8)

where G(σ ) is as defined in (2) and λ is the regularization
parameter. L is an operator on σ . When L is the identity matrix,
it is called the zeroth-order Tikhonov regularization. When L
is an operator approximating the first or second derivative of
σ with respect to s and t , it is called the first- or second-order
Tikhonov regularization respectively. As mentioned in the in-
troduction, most papers on the calibration of local volatility
surfaces used the following first order Tikhonov regulariza-
tion, see Lagnado and Osher (1997), Bouchouev and Isakov
(1997, 1999), Bodurtha,Jr. and Jermakyan (1999), Jiang and
Tao (2001), Jiang et al. (2003), Crepey (2003), Egger and Engl
(2005), Hein (2005), Achdou and Pironneau (2005) and
Turinici (2009).

J (σ ) = G(σ ) + λ

(∥∥∥∥∂σ

∂s

∥∥∥∥
2

2
+
∥∥∥∥∂σ

∂t

∥∥∥∥
2

2

)
(9)

However, the volatility surface generated by the first-order
Tikhonov regularization is usually rough.Assuming the volatil-
ity surface is smooth, we propose to use a second-order
Tikhonov regularization: the regularization term ‖Lσ‖2

2 would
be a measure of the norm of the second derivatives of σ with
respect to s and t . Since the calibration problem is underdeter-
mined, a second-order Tikhonov regularization also imposes
more constraints on the calibration problem than the first-order
Tikhonov regularization. Our regularization term ‖Lσ‖2

2 is an
approximation of the following:

∥∥∥∥∂2σ

∂s2

∥∥∥∥
2

2
+
∥∥∥∥∂2σ

∂t2

∥∥∥∥
2

2
+
∥∥∥∥ ∂2σ

∂t∂s

∥∥∥∥
2

2
(10)

If σ were just a one-dimensional vector of size n, the exact
form of L could be written as follows:

†There are several free automatic differentiation tools available,
whose details are to be found on the website www.autodif.org.
Automatic differentiation can help speed up the process of developing
the numerical code of an adjoint model especially for complicated
models. However, some debugging and verification is usually
necessary for checking the validity of the code generated by the free
automatic differentiation tools. For a method to verity the correctness
of the adjoint code, please see the gradient test in Navon et al. (1992).

⎡
⎢⎢⎢⎢⎢⎣

1 −2 1 0
1 −2 1

· · ·
1 −2 1

0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎦

(n−2)×n

(11)

At each grid point, the second derivative of σ is approximated
by a second-order accurate finite difference scheme up to a
constant. Due to the fact that σ is a two-dimensional surface
rather than a vector, the explicit matrix form of operator L could
not be easily written down since we have to approximate three-
second derivatives at each grid point. For our computation,
we actually do not need the explicit form of L, since we just
need the term ‖ Lσ ‖2

2 . The following simple algorithm
(1) describes the computation of ‖ Lσ ‖2

2 and the update of
gradient of J with respect to σ when the regularization part is
added. In the algorithm (1), ∂2σ/∂s2, ∂2σ/∂t2, ∂2σ/∂t∂s are
all approximated by a second-order accurate finite difference
scheme up to a constant.

Algorithm 1 Compute λ

(∥∥∥ ∂2σ

∂s2

∥∥∥2

2
+
∥∥∥ ∂2σ

∂t2

∥∥∥2

2
+
∥∥∥ ∂2σ

∂t∂s

∥∥∥2

2

)
and

update gradient

// Compute
∥∥∥ ∂2σ

∂s2

∥∥∥2

norm1 = 0.0
for i = 1 to nt do

for j = a + 1 to b − 1 do
temp = σ j+1,i + σ j−1,i − 2σ j,i

norm1 = norm1 + temp ∗ temp
g( j + 1, i) = g( j + 1, i) + temp ∗ λ

g( j − 1, i) = g( j − 1, i) + temp ∗ λ

g( j, i) = g( j, i) − 2 ∗ temp ∗ λ
end for

end for

// Compute
∥∥∥ ∂2σ

∂t2

∥∥∥2

norm2 = 0.0
for i = a to b do

for j = 2 to nt − 1 do
temp = σi, j+1 − 2σi, j + σi, j−1
norm2 = norm2 + temp ∗ temp
g(i, j + 1) = g(i, j + 1) + temp ∗ λ

g(i, j) = g(i, j) − 2.0 ∗ temp ∗ λ

g(i, j − 1) = g(i, j − 1) + temp ∗ λ
end for

end for

// Compute
∥∥∥ ∂2σ

∂t∂s

∥∥∥2

2
norm3 = 0.0
for i = a to b do

for j = 2 to nt − 1 do
temp = σi+1, j+1 + σi−1, j−1 − σi+1, j−1 − σi−1, j+1
norm3 = norm3 + temp ∗ temp
g(i + 1, j + 1) = g(i + 1, j + 1) + temp ∗ λ

g(i − 1, j + 1) = g(i − 1, j + 1) − temp ∗ λ

g(i + 1, j − 1) = g(i + 1, j − 1) − temp ∗ λ

g(i − 1, j − 1) = g(i − 1, j − 1) + temp ∗ λ
end for

end for
Lsigma = norm1 + norm2 + norm3
f = f+ λ ∗ Lsigma
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Calibration of the local volatility surface for European options 5

Since only the section of the volatility surface that is near
the money is sensitive to option prices and can be recovered,
the regularization is just applied to the part of volatility surface
σ(s, t) for which the ratio between s and spot s0 lies within the
interval [0.8, 1.2].

For the regions of the volatility surface outside the interval
defined above, no regularization is performed. Since the com-
ponents of the gradient vector corresponding to volatilities at
these regions are zero, the volatilities at these regions cannot
be updated by a gradient based optimization routine and are
thus kept constant throughout the optimization. The constant
is the initial guess of the local volatility surface.

In the algorithm (1), σ(nx , nt ) is a two-dimensional matrix
representing σ(s, t) where nx , nt are the number of intervals
along the s and t direction, respectively. a and b are the indices
that correspond to 0.8s0 and 1.2s0 along the s direction, respec-
tively. f and G are inputted respectively as the cost function
and gradient before any regularization, and then returned as the
regularized cost function and the gradient of the regularized
cost function with respect to σ , respectively.

The calibration problem now assumes the form of a con-
strained minimization problem:

min
0<σ(s, t)≤1

J (σ ) = G(σ ) + λ ‖ Lσ ‖2
2 (12)

4.2. Strategy for selecting the Tikhonov regularization
parameter λ

A Tikhonov regularization solution of an inverse problem de-
pends critically on a suitable selection of the regularization
parameter λ. How to suitably choose a regularization param-
eter is still at the stage of active research. For linear inverse
problems, λ is usually selected by either the L-curve method
or by generalized cross validation theory, see Hansen (1998),
Alekseev and Navon (2001), Aster et al. (2005) and Cordier
et al. (2010). For non-linear inverse problems, the L-curve
method is still applicable to select the optimal λ. The L-curve
method plots the cost function G(σ ) with respect to ‖ Lσ ‖2

2.
This plot usually assumes an Lshape. The corner of the L-curve
is considered the best compromise point between the size of
the solution and the magnitude of the cost function. The λ at
the corner of L-curve is considered the optimal regularization
parameter λ. However, we found from our numerical tests
that we cannot generate an L-shaped curve for this non-linear
inverse problem since λ chosen close to any sort-of L-corner
generates a volatility surface far away from the true volatility
surface.

As many non-linear problems are solved iteratively by solv-
ing a linear problem at each iteration, we will adopt an iterative
regularization strategy to solve the non-linear inverse problem,
in which a suitable regularization parameter λ is selected at
each iteration. By linearizing the problem at each iteration,
some of the analysis for linear inverse problems can be applied.

To determine how to select a suitable regularization param-
eter at each iteration, we carry out the following analysis to see
how ill-posedness occurs.

We are actually solving for a vector X from

FX = Ỹ (13)

where F is a non-linear model; X is the input of model F; and
Ỹ consists of observation data.

This problem cannot be solved directly due to its non-linearity.
Instead, it is solved by minimizing a cost function of the form
(5). Usually, a gradient-based optimization scheme is used to
minimize the cost function in (5) iteratively. At each iteration,
it attempts to find a better estimate Xk+1 from the current
estimate Xk using the gradient information of the cost function
at Xk . This process is in fact equivalent to solving the following
linearized problem:

FXk+1 = FXk + A(δX) + o(δX) = Ỹ (14)

where A is the Jacobian matrix of non-linear operator F at Xk

and δX represents the changes from Xk to Xk+1. Xk+1 is then
updated by Xk+1 = Xk+δX . If equation (14) is not well posed,
then the optimization routine is much likely to find an unstable
solution. If equation (14) is well posed, the optimization routine
has a better chance to find stable solutions.

Equation (14) can be reformulated as:

A(δX) = Ỹ − FXk (15)

Considering Xk+1 =Xk + δX , (15) is equivalent to:

AXk+1 = Ỹ − FXk + AXk (16)

Let B = Ỹ − FXk + AXk , then

AXk+1 = B (17)

Let matrix A be an m by n matrix. In our case, n is the number
of parameters to estimate, and m is the number of options.
A can be reduced to the following form using Singular Value
Decomposition(SVD).

Amn = UmmSmnVT
nn

= [Up, U0]
[

Sp 0
0 0

]
[Vp, V0]T

= UpSpVT
p

where p is the number of non-zero singular values si of matrix
A. Since m is less than n in our problem, p ≤ m. Umm and Vnn

are orthogonal matrices. Smn is a diagonal matrix. Up and Vp

are the first p columns of matrices U and V respectively. Sp is
a diagonal matrix containing all the non-zero singular eigen-
values si . The singular values si are all positive and gradually
decrease to zero.

The solution to (17) then can be written as in Aster et al.
(2005):

Xk+1 = X† + X̃ = VpS−1
p UT

p B + X̃ = p
�

i=1

(U., i )
T B

si
V., i

+
n∑

i=p+1

αi V.,i (18)

where V.,i is the i th column of matrix V.
From (18), we can see that the solution Xk+1 is composed of

two parts: X† and X̃ . X† is the solution obtained from solving
UpSpVT

p X = B while X̃ = ∑n
i=p+1 αi V.,i is a vector that

lies in the null space of matrix A. The existence of X̃ shows
the underdetermined nature of this inverse problem.

For the solution X† = �
p
i=1 (U., i )

T B/si V., i , if (U., i )
T B

does not decay as fast as si , Xk+1 will become unstable as si
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6 I. M. Navon et al.

tends to zero, since a small amount of noise from B will be
amplified by the small singular values.

After diagnosing where the ill-posedness originates from,
we propose to regularize the ill-posedness by eliminating the
effects of the small singular values si . The addition of Tikhonov
regularization at each iteration is equivalent to solving the
following overdetermined linear problem:[

A
λL

]
Xk+1 =

[
B
0

]
(19)

When L represents a higher order Tikhonov regularization
operator, as in our case, the analytical solution of (19) can be
obtained by applying a generalized singular value decomposi-
tion(GSVD) of the matrix pair [AT , LT ]T , see Hansen (1998)
andAster et al. (2005) for details. But, GSVD of the matrix pair
is computationally expensive especially since the dimension
of our problem is large. In addition, most GSVD packages
require the explicit form of matrices A and L, neither of which
is generated explicitly in our method. Extra computation and
storage are necessary to generate and store the matrices A and
L in order to use the GSVD packages. Furthermore, if we need
to carry out a GSVD to find the regularization parameter λ at
each iteration, the total computational cost of the minimization
of (12) becomes very expensive.

To avoid using GSVD, we consider the special case when L
is the identity matrix in order to gain insight of the problem.
When L is the identity matrix, the regularized solution of (19)
assumes the following analytical form of (20), see Hansen
(1998) for the derivation.

Xλ =
m∑

i=1

si
2

λ2 + si
2

(U., i )
T B

si
V., i (20)

When λ 	 si , the weighting factor f = si
2

λ2+si
2 is about

0. When λ 
 si , f is about 1. Choosing a λ that is smaller
than the leading singular values and greater than the smallest
singular values eliminates the ill-posedness caused by small
singular values, yet does not affect the information represented
by the large singular values. The under-determined part X̃
is also eliminated. Inspired by this insight, we choose our
regularization parameter λ to be one of the singular values of
A determined by the truncation level defined in the following:∑i

k=1 si∑m
k=1 si

= truncation level = 50% (21)

where the singular values are sorted in order of magnitude such
as s1 ≥ s2 ≥ . . . ≥ sm ≥ 0, where m is the total number of
singular values.

Now, the question is how to compute the singular values of
A at each iteration? We need an algorithm that can compute the
singular values without requiring the explicit form of matrix
A. For this purpose, we will use the package ARPACK which
meets this requirement.All it requires is the product of matrices
A and AT with a vector. For our problem, the tangent linear
code and adjoint code derived from the automatic differen-
tiation tools readily compute these two products. ARPACK
is based upon an algorithmic variant of the Arnoldi process
called the Implicitly Restarted Arnoldi Method (IRAM). See
Lehoucq et al. (1998) for details.

Computing the singular values at each iteration to determine
λ is the most computationally expensive part of our algorithm.

From our numerical tests carried out in the following section,
we found out that the λ selected in this manner does not change
much throughout the minimization. By using a fixed λ, the
reconstructed volatility surface remains the same as the one
reconstructed by repeatedly updating λ at each iteration. But,
the computational time is significantly reduced by using a fixed
λ. If we assume that λ selected according to (21) is almost a
constant during the minimization of (12), an alternative and
efficient strategy of choosing λ consists in using a constant λ

selected according to (21) throughout the minimization process
of (12). This assumption is valid when the Jacobian matrix A
does not change significantly during the minimization process.
If we assume that the initial guess X0 is not far away from the
optimal solution X∗, then we can assume A is almost constant.
In our calibration problem, the initial guess X0 is set as a
constant volatility surface obtained by averaging the Black–
Scholes implied volatilities of theATM options across different
maturities. If we assume that the true local volatility surface
does not deviate much from the average of the Black–Scholes
implied volatility surface of ATM options, then the assumption
that A is constant is reasonable. In this case, we can assume λ

is constant. However, for a general model when Xk changes
significantly across iterations, we have to choose a λ at each
iteration. For this reason, we still present the pseudo-algorithm
for the general case in algorithm (2) on the following page.

With the gradient obtained from the previous section and
the regularization parameter λ ready, we can use a constrained
optimization routine to find the optimal σ of (12). We use the
algorithm L-BFGS-B to carry out the optimization. For details
of L-BFGS-B, see Zhu et al. (1997). This is a robust algorithm
for bound-constrained minimization. Prior to discussing our
numerical tests, we summarize our pseudo-algorithm descrip-
tionin the following.

Algorithm 2 Main algorithm to reconstruct the local volatility
surface

1. Initialize volatility surface σ0(s, t).
2. Use (3) to compute option prices Vcmpt and cost

function G in (2).
3. Feed the difference between Vcmpt and Vobs into the

adjoint model AT , using (6) and (7), to compute the
gradient of G with respect to σ(s, t).

4. Use ARPACK to compute the singular values of
Jacobian matrix A and select the regularization
parameter λ according to (21).

5. Compute the regularized cost function J of (12) and
update the gradient after the regularization.

6. Insert the cost function J and its gradient into L-BFGS-
B routine to obtain the next estimate σk+1(s, t). k =
0, 1, 2, · · ·

7. When either the stopping criterion of L-BFGS-B is
satisfied or the number of function calls of the cost
function exceeds a preset limit, stop. Otherwise, go back
to step 2.

For theoretical volatility models, the limit of the number of
function calls is 1500 while for the case of real market data
the limit is 250. We allow more iterations for the theoretical
volatility models since the true volatility surfaces are known.
The recovered volatility surface actually displays the general
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Calibration of the local volatility surface for European options 7

features of the true volatility surface after 250 function calls,
which is why we set the upper limit of function calls for the
real market data as 250.

5. Numerical tests

For all of our numerical tests, the initial guess σ0 is the
average of Black–Scholes implied volatilities for the ATM
options across different maturities. We scale the spot price of
the underlying to 100 and then the option prices are scaled
accordingly. The scaling reduces the calibration problem for
different underlying instruments into the same problem. It has
the additional benefit that λ can be precomputed and applied
to different problems when we assume the regularization pa-
rameter λ is constant and r and q do not change significantly.

The Dupire equation (3) is solved using the backward Euler
scheme in time and a centered finite difference scheme in space
direction. The computation domain

[
0 T̄

] × [
0 K̄

]
is set

as K̄ = 2s0 as in Lagnado and Osher (1997) while T̄ is the
longest maturity. The space and time domain are divided into
nx = 200 and nt = 100 intervals respectively. Since only the
section of volatility surface σ(s, t) for which the ratio s/s0 lies
in [0.8, 1.2] can be recovered, the total number of parameters
to calibrate is 0.2 × 200 × 100 = 4000. The lower and upper
bound for σ is set to be 0.00001 and 1, respectively. We perform
two kinds of numerical tests: one for volatility models, whose
analytical solution for European options are known; and the
other one for the real market options data.

5.1. Tests with theoretical volatility models

We start with the constant elasticity of variance (CEV) model,
for which the analytical form of European option prices can be
found in Cox and Ross (1976). The CEV model assumes the
following form:

ds(t) = μsdt + κs pdW (t)

According to our definition of local volatility in (1), the local
volatility for the CEV model is:

σ(s, t) = κs p−1 (22)

We will test three cases: p = 0, p = 1
2 and p = 2. When

p = 0, it corresponds to the Bachelier model. When p = 1
2 ,

it corresponds to the square root process. When p = 2, it
is a special case of quadratic volatility model. The first case
was used as a test case in both Lagnado and Osher (1997) and
Coleman et al. (1999). Specifically, we test the following three
cases:

σ(s, t) = 15

s
(23)

σ(s, t) = 2√
s

(24)

σ(s, t) = 0.002s (25)

The constant κ in (22) is chosen in order that σ(s, t) is
contained in the interval of (0, 1) for all s and t . Twenty-two
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Figure 1. The true volatility surface and optimal volatility surface
for the volatility model σ(s, t) = 15

s .
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Figure 2. The true volatility surface and optimal volatility surface
for the volatility model σ(s, t) = 2√

s
.

European call option prices are generated using the closed-
form solution for two maturities T = 0.5 and T = 1.0. For
each maturity, we select eleven options whose strikes range
from 90.0 to 110.0 with an increment of 2.0. These option
prices are used to recover the volatility surface for (23)–(25).
Similar to the study of Lagnado and Osher (1997) and
Coleman et al. (1999), s0 = 100, the risk free interest rate
r = 0.05 and the dividend yield q = 0.02 for all three cases.

Figures 1–3 show the recovered volatility surface and the
true volatility surface. For all the three cases, the recovered
volatility surfaces approximate the true volatility surfaces very
well. The relative errors of the computed option prices with re-
spect to the true option prices are of the order of 10−4. Figure 4
shows the plot of relative errors and option prices with respect
of the number of options for the case (25). For the other two
cases, the plots of relative errors exhibit similar patterns.

To compare the difference between the first-order Tikhonov
regularization and the second-order Tikhonov regularization,
Figures 5 and 6 show the recovered volatility surface by using
the first-order Tikhonov regularization for two CEV models.
We can see that even for these two simple CEV models, the
first-order Tikhonov regularization could not match the true
volatility surface as precisely as the second order Tikhonov
regularization.

For all of the above CEV models, σ(s, t) are monotonic
functions of s. Next, we deliberately choose a quadratic
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8 I. M. Navon et al.
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Figure 3. The true volatility surface and optimal volatility surface
for the volatility model σ(s, t) = 0.002s.
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Figure 4. ∗ : option prices; _ : relative errors = |vobs-vcmpt|/vobs.
Left axis: the true option prices. Right axis: the relative errors of the
computed option prices using optimal volatility surface with respect
to the true prices for the volatility model σ(s, t) = 0.002s.
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Figure 5. The true volatility surface and optimal volatility surface
for the volatility model σ(s, t) = 15

s using the first order Tikhonov
regularization.

volatility model that is not monotonically changing as our
test case. Andersen (2011) summarizes the analytical solution
of European option prices for different quadratic volatility
models. The following quadratic volatility model is taken from
his paper.

σ(s, t) = 0.1

(
1 + s0

s
+ (s − s0)

2

100s

)
(26)

A total of 22 European put options with the same set of
maturities and strikes as the previous tests are computed as
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Figure 6. The true volatility surface and optimal volatility surface
for the volatility model σ(s, t) = 0.002s using the first order
Tikhonov regularization.
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Figure 7. The true volatility surface and optimal volatility surface

for the volatility model σ(s, t) = 0.1
(

1 + s0
s + (s−s0)

2

100s

)
.

market data. s0 is set to 100 and the risk-free interest rate r
and the dividend yield q are both zero. (When the drift is not
zero, a change of measure can reduce the drift to zero). Figure 7
plots both the true volatility surface and the recovered volatility
surface.We can see that the recovered volatility surface approx-
imates the true volatility surface fairly well. Figure 8 displays
the relative errors of computed option prices with respect to
the true prices. We can see that the relative errors are of order
of 10−4. Figure 9 displays the cost function J with respect to
iteration number. Figure 10 shows the decrease of the norm of
the projected gradient as the number of iterations increases.

To test the stability of our methods, we add noises to the
true option prices to assess whether we can still recover the
volatility surface. The noise is introduced as in (Coleman et al.
1999):

ṽi = vi + 0.02εi

where vi is the true price of the i th option, εi is a uniformly
distributed random number between 0 and 1. The noises are
introduced as absolute errors rather than relative errors. The
plot of the reconstructed volatility surfaces using noisy option
prices and noise-free option prices is shown in Figure 11 for the
quadratic volatility model. We can see that the two volatility
surfaces are indistinguishable from each other with the maxi-
mum absolute difference of the order of 10−3. It means that our
method is stable with respect to a small amount of perturbation.
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Calibration of the local volatility surface for European options 9
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Figure 8. ∗ : option prices; _ : relative errors. Left axis: The true
option prices. Right axis: The relative errors of the computed option
prices using optimal volatility surface with respect to the true prices
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Figure 10. Variation of the norm of the projected gradient of the cost
function vs the number of iterations for the volatility model σ(s, t) =
0.1
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Next, we test the case when the noises are introduced as
relative errors:

ṽi = vi (1 + 0.02εi )
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Figure 11. The optimal volatility surfaces obtained from the non-
noisy and noisy option prices(2% uniformly distributed absolute

noise) for the volatility model σ(s, t) = 0.1
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Figure 12. The true volatility surface and the optimal volatility
surface obtained from the noisy option prices(2% uniformly
distributed relative noise) for the volatility model σ(s, t) =
0.1
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Figure 13. The regularization parameterλ computed at each iteration

for volatility model σ(s, t) = 0.1
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2% of uniformly distributed noises are added as relative errors
to the option prices. A direct calibration without any weighting
of the noisy option prices fails to recover the true volatility
surface. When relative errors are introduced, a proper weight-
ing scheme needs to be assigned in order to reflect the relative
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10 I. M. Navon et al.
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Figure 14. The optimal volatility surfaces obtained by using a
constant λ = 0.94 and a λ updated at each iteration for volatility

model σ(s, t) = 0.1
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Figure 15. The optimal volatility surface obtained for S&P500 index
European call options in October 1995. s0 =$ 590, r=0.06, q=0.0262.
Note: the available maturities are plotted on the T axis in unit of years.

importance of different options.We adopt the weighting method
as in Cont and Tankov (2004) to scale the noisy prices in this
case, which is defined as :

wi = 1

vega(Ii )2

where Ii is the Black–Scholes implied volatility of the i th noisy
option price, vega() is the Black–Scholes vega evaluated as a
function of implied volatility. Figure 12 displays the recovered
the volatility surface with respect to the true volatility surface.
We can see that the recovered volatility surface approximates
the true volatility surface very well.

The total CPU time for each of the previous six tests lies
between 332 and 480 s using a Dell Vostro 1720 with Intel
Core Duo CPU @2.2G HZ and 2GB RAM.

The above calibration updates the regularization parameter
λ at each iteration. Figure 13 displays λ against the number of
iterations for the quadratic volatility model.At the beginning, λ
is set to zero. We can see that λ does not vary much throughout
iterations and that it almost stays constant after a number of
iterations. The same phenomenon is observed for other test
cases as well as the real market data cases in the following
section. Based on this observation, we use as a constant λ dur-
ing the optimization. Figure 14 shows the recovered volatility
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Figure 16. ∗ : scaled option prices; _ : relative errors. Left axis: the
scaled prices of S&P 500 index European call options in October 1995
(Andersen and Brotherton-Ratcliffe 1998). Right axis: the relative
errors of computed option prices with respect to observed price.
Option prices are plotted in an order of increasing maturities.

surface by using a constant λ vs an updated λ for the quadratic
volatility model with noise free prices. The two constructed
volatility surfaces are indistinguishable from each other with
the maximum absolute difference being of the order of 10−3.
By using a constant λ the total CPU time for each of the
previous six tests is now just between 13 and 20 s.

5.2. Tests with market data

Our market data are all obtained from previous studies on the
calibration of local volatility surface. Our first test uses option
prices as in Coleman et al. (1999), Andersen and Brotherton-
Ratcliffe (1998) and Turinici (2009). The options are European
call options on S&P 500 index in October 1995. There are a
total of 57 options with seven maturities. The initial index,
interest rate, and dividend yield are provided in the footnotes
of Figure 15. Figure 15 shows the optimal volatility obtained.
Contrary to previous studies, the volatility surface has an ob-
vious skew structure as expected for the equity market. The
volatility surface is also smoother. Furthermore, the recovered
volatility surface is in a range between 0.08 and 0.30 without
local extreme values. The relative errors of computed prices
with respect to observed prices are plotted in Figure 16. The
relative errors are mostly close to zero except for options whose
prices are close to zero. This is acceptable since the bid and
ask spreads for out of money options are usually much higher
than or comparable with the option prices. In other words,
out of money option prices allow a much higher degree of
approximation errors. The mean absolute relative error is 4.7%.
Excluding the seven options with big absolute relative errors,
the mean absolute relative error is as small as 0.2%.

The second test uses data-set from Andreasen and Huge
(2011), which contained 155 European options on the Eu-
rostoxx(SX5E) index spanning 12 maturities. The shortest ma-
turity was about one week (T = 0.025) and the longest matu-
rity was about 5.8 years (T = 5.778). Since the original data
only had market data in terms of implied volatilities without the
interest rate structure, we computed the option prices just using
these implied volatilities under the assumption the interest
rates were zero. This assumption is reasonable since the local
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Figure 17. The optimal volatility surface obtained for Eurostoxx
50(SX5E) equity options on March 1, 2010, as studied in
Andreasen and Huge (2011). Note: the available maturities are plotted
on the T axis in unit of years.
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Figure 18. ∗ : option prices in terms of implied volatilities; _ :
absolute difference of the implied volatilities between market data
and reconstructed option prices. Left axis: the absolute difference of
implied volatilities between market data and reconstructed data. Right
axis: the option prices for SX5E in terms of implied volatilities on
March 1, 2010.
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Figure 19. ∗ : scaled option prices ; _ : relative error between market
data and reconstructed option prices. Left axis: the scaled option prices
for SX5E on March 1, 2010. Right axis: the relative error between
market data and reconstructed data. Option prices are plotted in an
order of increasing maturities.

volatility model (1) can be changed into a driftless process by a
change a measure while the local volatility term keep the same
during the change. The recovered volatility surface is shown in
Figure 17. Figure 18 shows the absolute errors and the option
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Figure 20. The optimal volatility surface obtained when nt= 500 for
Eurostoxx 50(SX5E) equity options on March 1, 2010, as studied in
Andreasen and Huge (2011). Note: the available maturities are plotted
on the T axis in unit of years.

prices in terms of implied volatilities as inAndreasen and Huge
(2011). Figure 19 plots the relative errors and the option prices
in terms of prices. Figure 17 displays an obvious skew structure
although there is a lot of fluctuations of the local volatility
surface close to the region when T = 0.025. The computed
data do not match the market data very well either for that
maturity. However, one of the possible reasons is that our
finite difference scheme does not have enough resolution at
T = 0.025. By setting T̄ = 5.778, nt = 100 and using
a uniform grid, �t = 0.058 > 0.025. A finer mesh grid
should be used to improve the accuracy of the computed the
option prices at this maturity. Ignoring the 15 options with
maturity T = 0.025, Figures 18 and 19 demonstrate a very
good fit of the market prices. Again, high relative errors occur
when the option prices are close to zero (Figure 19). For the
remaining 140 options, the mean relative error is 2% and the
mean absolute difference in terms of implied volatility is 0.6%.
Next, we refine the grids by setting nt = 500. Figure 20
shows the recovered volatility surface. Compared to Figure 17,
the volatility surface does not change significantly. Anyway,
the region when T ≤ 0.025 just occupies a small section of
the volatility surface. Figure 21 exhibits the absolute difference
in terms of implied volatility. Compared to Figure 18, we can
see there are some improvements in terms of matching the
prices for the options with T = 0.025. The CPU time in this
case is very high, 32 minutes when λ is selected iteratively. A
non-uniform grid should be used to reduce the computational
cost when it is necessary to resolve cases like this with the
maximum maturity T̄ large yet the soonest maturity being very
small.

The last example is for European call options in the for-
eign exchange market. The option data were studied by both
Avellaneda etal. (1997) and Turinici (2009). There are 15 Eu-
ropean call options for the US dollar/Deutsche mark with five
maturities, which are computed from 20, 25 and 50 delta risk-
reversals quoted on 23 Aug 1995. The spot price and interest
rates are shown in the captions of Figure 22. The optimal
volatility surface and relative errors are plotted in Figures 22
and 23 respectively. The volatility surface has a shape similar
to the smile shape as expected for volatilities in the foreign
exchange market. The mean absolute relative error is as small
as 1.9%.
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Figure 21. ∗ : option prices in terms of implied volatilities; _ :
absolute difference of the implied volatilities between market data
and reconstructed option prices. Left axis: the absolute difference of
implied volatilities between market data and reconstructed data when
nt=500. Right axis: the option prices for SX5E in terms of implied
volatilities on March 1, 2010. Option prices are plotted in an order of
increasing maturities.
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Figure 22. The optimal volatility surface obtained for European call
options of US dollar/ Deutsche mark rate. The spot price was s0
=1.48875; US dollar interest rate was rUSdollar = 5.91%; Deutsche
mark rate was rDeutschemark= 4.27%. Note: the available maturities
are plotted on the T axis in unit of years.
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Figure 23. ∗ : scaled option prices; _ : relative errors. Left axis:
the scaled prices of European call options on US dollar/Deutsche
mark rate recovered from 20, 25, and 50 delta risk reversals
(Avellaneda etal. 1997). Right axis: the relative errors of computed
option price with respect to observed price. Option prices are plotted
in an order of increasing maturities.

There may still be some instability in the volatility surface
recovered, for example the reconstructed volatility surface for

the last example. We attribute this partially to the assumption
that every option is equally important. The amount of noises
in the market option prices is unknown. A proper weighting
scheme is necessary to reflect the relative importance of dif-
ferent options. This will constitute an interesting follow-up
future research area.

For the above three numerical tests, the CPU time is 158,
232, and 12 s respectively, using a Dell Vostro 1720 with Intel
Core Duo CPU @2.2G HZ and 2GB RAM.Again, when we use
a constant λ, the CPU time is just as small as 3.4, 3.6 and 3.6 s
respectively. The changes of the relative errors and recovered
implied volatility surface are again very small compared to
those obtained using an updated λ. From here, we can see that
when using a constant λ, the CPU time is independent of the
number of the options. When nt = 500, the CPU time for
the data set from Andreasen and Huge (2011) is 18.9 seconds.
From this example, we can see when using a constant λ the
CPU time grows linearly as the number of parameter increases,
which results from the linear dependence of computational cost
of a adjoint model on the number of parameters, as mentioned
by Giles and Glasserman (2005).

The only parameter that is subject to change in our algorithm
is the truncation level. It is fixed at 50% throughout our numer-
ical tests. Other truncation levels were also tested. The relative
error and the general shape of the optimal volatility surface
did not change significantly overall when the truncation level
was less than 0.9 although as the truncation level gets lower
the volatility surface tends to be smoother. This means this
method is fairly robust for different choices of truncation levels
as long as the regularization parameter selected is not close to
the smallest singular values at the end of the singular values
spectrum. The fact that we used the same truncation level for all
numerical tests also serves as an indication that the calibration
is not very sensitive to the truncation levels.

6. Summary and conclusions

Our present research addresses solving the calibration of the lo-
cal volatility surface for European options in a non-parametric
approach by using a second-order Tikhonov regularization.
We select one of the singular values of the Jacobian matrix
of the Dupire model as the regularization parameter. For the
theoretical volatility models with known analytical solution for
European option prices, the proposed method recovers almost
exactly the true volatility surface. This method was also tested
and proves to be stable for a small amount of noises in the
option prices. We also show the significance of the weighting
of option prices when the option prices contain a significant
amount of noises.

This method also performs reasonably well for real market
data. The observed option prices can be matched very well.
The obtained volatility surface lies in a reasonable range with
nice general pattern, for example, the skew structure in the
equity market and the smile structure in the foreign exchange
market. Some instability may still persists in the volatility
surface recovered. We attribute this partially to the noises in
market data and our assumption that every option is equally
important in the market data. A proper weighting scheme may
prove to be necessary to reflect the relative importance of
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Calibration of the local volatility surface for European options 13

different options when they exhibit different amount of noises.
When using a constant regularization parameter, the total CPU
time is as small as 3–4 seconds for market data.

Last, although this paper focuses on calibration for local
volatility model for European options, the calibration tech-
nique proposed here is developed in a very general framework
so that it can be generalized to explore the calibration of other
models such as the hybrid local-stochastic volatility models
or calibration with respect to other options, such as American
options.
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