
THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

CALIBRATION OF LOCAL VOLATILITY MODELS AND PROPER ORTHOGONAL

DECOMPOSITION REDUCED ORDER MODELING FOR STOCHASTIC

VOLATILITY MODELS

By

JIAN GENG

A Dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Summer Semester, 2013

Jian Geng defended this dissertation on June 14, 2013.

The members of the supervisory committee were:

Ionel Michael Navon
Professor Directing Dissertation

Bettye Anne Case
Professor Co-Directing Dissertation

Rob Contreras
University Representative

Giray Ökten
Committee Member

Alec N. Kercheval
Committee Member

Brian Ewald
Committee Member

The Graduate School has verified and approved the above-named committee members,
and certifies that the dissertation has been approved in accordance with the university
requirements.

ii

This thesis is dedicated to my wife Yingyun, my parents, my brother, and our expected
daughter.

iii

ACKNOWLEDGMENTS

First of all, I would like to thank my major advisor professor I. Michael Navon for patiently
mentoring me for the last five years. He introduced me to the area of optimal control,
parameter calibration, and POD reduced order modeling. Without his guidance, I would
not have gotten to the stage where I am right now. His profound knowledge in optimal
control, hardworking style, and passion for research has benefited and inspired my PhD
research. I am very fortunate to be one of his PhD students. It was a pleasant experience
to work with him.

Second, I want to express my gratitude to my co-advisor professor Bettye A. Case. Dr.
Case was the first professor that I met in the Mathematics department in FSU. I still have
a vivid impression of that date of the graduate orientation. Ever since then, Dr. Case was
closely involved in every step of my maturing from a graduate student to a PhD, on and
off school. She genuinely cares about students especially about me. Working for her as the
administrative TA was a great experience and I learned a lot from it. I was blessed to have
Dr. Case as my co-advisor and to be a student of her own.

I want to extend my thanks to professor Giray Ökten, professor Alec N. Kercheval, and
Dr. Brian Ewald for being my PhD committee members and for what I learned from their
courses. I also want to thank professor Rob Contreras for joining my Ph.D. committee as
the University Representative. I thank Dr. Kopriva and Dr. Nichols for the various courses
that I signed up with them. I want to thank Dr. Kirby for training us to be excellent TAs.
The wonderful TA training programs and the solo classes, which I did not like in the first
place, gave me a great opportunity to hone my presentations skills, which was proved to
be very useful during my job hunting. I also want to specially thank Dr. Mike Mesterton-
Gibbons, my wife’s advisor, and his family, for their nice friendship and hospitality. Dr.
Xiao Chen, a previous student of Dr. Navon, helped me overcome a problem when it could
have gotten stagnant, which I sincerely appreciate.

I want to thank the Department of Mathematics in general for providing a good envi-
ronment for students like me to study financial mathematics.

Last, I owe my thanks to my family members especially my beloved wife Yingyun, for
their support during my PhD study. They are the light and meaning of my life.

iv

TABLE OF CONTENTS

List of Figures . vii

Abstract . x

1 Introduction 1
1.1 Calibration of local volatility models . 1
1.2 Proper orthogonal decomposition reduced order modeling with application

in stochastic volatility models . 2

2 Local volatility model 4
2.1 Constant elasticity of variance (CEV) model 4
2.2 Quadratic volatility model . 6
2.3 Dupire equation . 7
2.4 Dynamics of local volatility model . 10

3 Calibration of local volatility models 11
3.1 Description of the calibration problem . 11
3.2 Gradient of the cost function . 13

3.2.1 Derivation of the adjoint code . 14
3.2.2 Gradient test . 15

3.3 Tikhonov regularization . 16
3.3.1 The second order Tikhonov regularization 16
3.3.2 Strategy for selecting the Tikhonov regularization parameter λ . . . 19

3.4 Numerical tests . 23
3.4.1 Tests with theoretical volatility models 23
3.4.2 Tests with market data . 25

4 Stochastic volatility models 39
4.1 Description of stochastic volatility models 39
4.2 PDE method . 39

4.2.1 PDE formulation . 39
4.2.2 Heston PDE . 42
4.2.3 SABR PDE . 42

4.3 An alternating direction implicit (ADI) approach 43
4.4 Test of Craig-Sneyd(CS) scheme . 48

v

5 Proper orthogonal decomposition (POD) reduced order modeling 51
5.1 Introduction . 51
5.2 Proper orthogonal decomposition (POD) . 52

5.2.1 Construction of POD basis . 52
5.2.2 Choosing the dimension . 53
5.2.3 Method of snapshots . 54
5.2.4 POD and singular value decomposition (SVD) 54
5.2.5 Galerkin projection . 55

5.3 Application to the Heston model . 57

6 Summary and future work 65

Bibliography . 66

Biographical Sketch . 71

vi

LIST OF FIGURES

3.1 The true volatility surface and optimal volatility surface for the volatility model σ(s, t) = 15
s

27

3.2 The true volatility surface and optimal volatility surface for the volatility model σ(s, t) = 2
√

s
28

3.3 The true volatility surface and optimal volatility surface for the volatility model σ(s, t) = 0.002s 28

3.4 ∗ : option prices; : relative errors = |vobs-vcmpt|/vobs. Left axis: The true option prices.

Right axis: The relative errors of the computed option prices using optimal volatility surface

with respect to the true prices for the volatility model σ(s, t) = 0.002s 29

3.5 The true volatility surface and optimal volatility surface for the volatility model σ(s, t) = 15
s

using the first order Tikhonov regularization . 29

3.6 The true volatility surface and optimal volatility surface for the volatility model σ(s, t) =

0.002s using the first order Tikhonov regularization 30

3.7 The true volatility surface and optimal volatility surface for the volatility model σ(s, t) =

0.1(1 + s0
s
+ (s−s0)

2

100s
) . 30

3.8 ∗ : option prices; : relative errors. Left axis: The true option prices. Right axis: The

relative errors of the computed option prices using optimal volatility surface with respect to

the true prices for the volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
) 31

3.9 The evolution of the regularized cost function versus the number of minimization iterations

for the volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
) 31

3.10 Variation of the norm of the projected gradient of the cost function vs the number of iterations

for the volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
) 32

3.11 The optimal volatility surfaces obtained from the non-noisy and noisy option prices(2%

uniformly distributed absolute noise) for the volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
) 32

3.12 The true volatility surface and the optimal volatility surface obtained from the noisy option

prices(2% uniformly distributed relative noise) for the volatility model σ(s, t) = 0.1(1+ s0
s
+

(s−s0)
2

100s
) . 33

3.13 The regularization parameter λ computed at each iteration for volatility model σ(s, t) =

0.1(1 + s0
s
+ (s−s0)

2

100s
) . 33

vii

3.14 The optimal volatility surfaces obtained by using a constant λ = 0.94 and a λ updated at

each iteration for volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
) 34

3.15 The optimal volatility surface obtained for S&P 500 index European call options in October

1995. s0 =$ 590, r=0.06, q=0.0262. Note: the available maturities are plotted on the T axis

in units of years. 34

3.16 ∗ : scaled option prices; : relative errors. Left axis: The scaled prices of S&P 500 index

European call options in October 1995 [4]. Right axis: The relative errors of computed option

prices with respect to observed price. Option prices are plotted in an order of increasing

maturities. 35

3.17 The optimal volatility surface obtained for Eurostoxx 50(SX5E) equity options on March 1,

2010, as studied in [7]. Note: the available maturities are plotted on the T axis in units of

years. 35

3.18 ∗ : option prices in terms of implied volatilities; : absolute difference of the implied volatili-

ties between market data and reconstructed option prices. Left axis: The absolute difference

of implied volatilities between market data and reconstructed data. Right axis: The option

prices for SX5E in terms of implied volatilities on March 1, 2010. 36

3.19 ∗ : scaled option prices ; : relative error between market data and reconstructed option

prices. Left axis: The scaled option prices for SX5E on March 1, 2010. Right axis: The

relative error between market data and reconstructed data. Option prices are plotted in an

order of increasing maturities. 36

3.20 The optimal volatility surface obtained when nt= 500 for Eurostoxx 50 (SX5E) equity options

on March 1, 2010, as studied in [7]. Note: the available maturities are plotted on the T axis

in units of years. 37

3.21 ∗ : option prices in terms of implied volatilities; : absolute difference of the implied volatili-

ties between market data and reconstructed option prices. Left axis: The absolute difference

of implied volatilities between market data and reconstructed data when nt=500. Right axis:

The option prices for SX5E in terms of implied volatilities on March 1, 2010. Option prices

are plotted in an order of increasing maturities. 37

3.22 The optimal volatility surface obtained for European call options of US dollar/ Deutsche

mark rate. The spot price was s0 =1.48875; US dollar interest rate was rUSdollar = 5.91%;

Deutsche mark rate was rDeutschemark= 4.27%. Note: the available maturities are plotted on

the T axis in units of years. 38

3.23 ∗ : scaled option prices; : relative errors. Left axis: The scaled prices of European call

options on US dollar/Deutsche mark rate recovered from 20, 25, and 50 delta risk reversals

[10]. Right axis: The relative errors of computed option price with respect to observed price.

Option prices are plotted in an order of increasing maturities. 38

4.1 Sample grid defined by (4.23) and (4.24) when m = n = 30, K = 100. 45

viii

4.2 The absolute error between the computed option prices using CS scheme and the analytical

solution . 49

4.3 log10(e(2n, n)) versus log10(n) as n = 30, 40, 50, 100 50

4.4 log10(ê(nt)) versus log10(nt) as nt = 10, 20, 30, 40, 50, 60. Blue curve: plot of the data points.

Red line: a line fitted to the data points . 50

5.1 log10(λi) where λi is the eigenvalues defined in (5.2) 57

5.2 Full model solution of {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1} for the parameter set in Case I. . . 58

5.3 Absolute errors of the option prices {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1.0} between the full

model and POD reduced model for the parameter set in Case I. 59

5.4 Relative errors of the option prices {u(s, t) | 70 ≤ s ≤ 150, 0.1 ≤ v ≤ 1.1} between the full

model and POD reduced model for the parameter set in Case I. 59

5.5 Full model solution of {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1} for the parameter set in Case II. . 60

5.6 Absolute errors of the option prices {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1.0} between the full

model and POD reduced model for the parameter set in Case II. 60

5.7 Relative errors of the option prices {u(s, t) | 70 ≤ s ≤ 150, 0.1 ≤ v ≤ 1.1} between the full

model and POD reduced model for the parameter set in Case II. 61

5.8 Full model solution of {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1} for the parameter set in Case III. 62

5.9 Absolute errors of the option prices {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1.0} between the full

model and POD reduced model for the parameter set in Case III. 62

5.10 Relative errors of the option prices {u(s, t) | 70 ≤ s ≤ 150, 0.1 ≤ v ≤ 1.1} between the full

model and POD reduced model for the parameter set in Case III. 63

5.11 The first two modes of the reduced model space. Left figure: the first mode;
Right figure: the second mode . 63

5.12 The third and fourth modes of the reduced model space. Left figure: the third
mode; Right figure: the fourth mode . 64

5.13 The fifth mode of the reduced model space 64

ix

ABSTRACT

There are two themes in this thesis: local volatility models and their calibration, and Proper
Orthogonal Decomposition (POD) reduced order modeling with application in stochastic
volatility models, which has a potential in the calibration of stochastic volatility models.

In the first part of this thesis (chapters II-III), the local volatility models are introduced
first and then calibrated for European options across all strikes and maturities of the same
underlying. There is no interpolation or extrapolation of either the option prices or the
volatility surface. We do not make any assumption regarding the shape of the volatility
surface except to assume that it is smooth. Due to the smoothness assumption, we apply a
second order Tikhonov regularization. We choose the Tikhonov regularization parameter as
one of the singular values of the Jacobian matrix of the Dupire model. Finally we perform
extensive numerical tests to assess and verify the aforementioned techniques for both local
volatility models with known analytical solutions of European option prices and real market
option data.

In the second part of this thesis (chapters IV-V), stochastic volatility models, POD
reduced order modeling are introduced first respectively. Then POD reduced order modeling
is applied to the Heston stochastic volatility model for the pricing of European options.
Finally, chapter VI summaries the thesis and points out future research areas.

x

CHAPTER 1

INTRODUCTION

“At its core, the study of finance is fundamentally about the trade-off between risk and
expected return. Various measures have been proposed to operationalize the risk component
of this trade-off, ...” (Peter Carr on volatility derivatives [16]). Based on the assumption of a
constant volatility, the celebrated Black-Scholes model [11] can be used to evaluate European
style options easily by using an estimated volatility or forecast volatility as an input. If this
model is true, then the implied volatility for all options under the same underlying with
different strikes and maturities would be the same. However, in the market, it is usually
observed that Black-Scholes implied volatility varies with strikes and maturity, which is
known as the “volatility smile” [42].

There have been various attempts to extend the Black-Scholes theory to account for
the volatility effect. One class of models considers the volatility term as a deterministic
volatility function that depends on the spot price and time; these are usually referred to as
local volatility models. For this class of models, the volatility contains only one source of
randomness and retains completeness, i.e., the ability to hedge options with the underlying
asset. Another class of models introduces another source of risk, such as stochastic volatility
[40] or jumps [51]. In this thesis, we focus on the calibration of local volatility models and a
proper orthogonal decomposition (POD) reduced order modeling approach, which has the
potential to speed up the calibration of stochastic volatility models. The importance of
calibration is obvious in that how well a volatility model can be utilized to price a financial
derivative depends on how well the model can be calibrated. This chapter consists of two
parts: one reviewing the research on the calibration of local volatility models, and the other
introducing POD reduced order modeling.

1.1 Calibration of local volatility models

The local volatility model is an extension of the Black-Scholes constant volatility model
[11] aimed at explaining the volatility smiles observed in the market. It assumes the volatil-
ity term is a deterministic function of both stock price and time. Dupire [27] established
that the local volatility function can be uniquely derived from European option prices given
the existence of European options with all strikes and maturities. However, in the market,
there are only a limited number of available European options with discrete strikes and ma-
turities. Up to the current date, there have been a large number of studies addressing the

1

reconstruction of the local volatility function from the limited number of options available
in the market.

Lagnado and Osher [48] first solved the calibration problem in a PDE framework without
assuming any shape of the local volatility function, ie, a non-parametric approach. They
used the first order derivatives of the volatility surface to regularize the inverse problem.
Most subsequent research followed the same regularization approach, see [13, 14]; [12];
[47, 46]; [25]; [28]; [39]; [1] and [65]. However, the recovered volatility surface is usually
very rough and it is hard to discern any patterns. [18]; [1] and [65] solved the calibration
problem using a parametric approach: the volatilities at several specially chosen points
on the volatility surface are computed first, and then the volatility surface is constructed
from those points using either linear interpolation or cubic splines. By parameterizing the
volatility surface, this approach reduces the dimension of the calibration problem. It works
well when the chosen points can represent well the key regions of the true volatility surface.
However, it runs the danger of allowing too few degrees of freedom to explain the data.
The recovered volatility surface is still either too rough (for the linear interpolation case)
or subject to extreme values (for the cubic spline case), especially for the market data.

In this thesis, we still use a non-parametric approach for the calibration of the local
volatility surface with the only assumption that a smooth volatility surface is preferable
to a non-smooth volatility surface. This assumption is inspired by “Occam’s razor”, a
principle from the 14th century philosopher William of Ockham, who argued that simpler
explanations should be preferred to more complicated explanations. The same idea was
introduced for solving nonlinear inverse problems by [19]. We hope that by imposing the
smoothness assumption a simpler solution can be obtained from which some patterns may
be detectable. The smoothness preference assumption has already been adopted in the
approach in [18]; [1] and [65] when cubic splines are used to connect the volatility surface.
Another reason for the smoothness assumption is due to the fact that this calibration
problem is an underdetermined problem. A second order regularization, which follows
from the smoothness assumptions, adds more constraints to the problem than a first order
regularization.

There have been some theoretical studies about the stability, uniqueness and convergence
of the calibration problem such as [13, 14]; [53]; [47]; [25]; [28] and [39]. However, to the
author’s knowledge, there is no conclusive answer as yet. We will not address these issues
in this thesis. We demonstrate the robustness of our calibration approach by extensive
numerical tests with both theoretical local volatility models with known analytical solutions
for European option prices and the real market option prices. The novelty of the calibration
method in this thesis consists in the use of second-order Tikhonov regularization and the
way we choose the Tikhonov regularization parameter. (See also [22] and [3])

1.2 Proper orthogonal decomposition reduced order

modeling with application in stochastic volatility
models

Although local volatility models are still very popular in the industry due to their
simplicity, the dynamics of local volatility models are inconsistent with the market, an

2

example of which will be introduced in chapter 2. Stochastic volatility models assume
that the volatility of the asset return is also a random process, which is usually correlated
with the asset price. They have better dynamics of the volatility surface compared to the
local volatility models, see [5]. For some specific stochastic volatility models, an analytical
solution for vanilla options exists, such as the Heston volatility model [40] and the stochastic
alpha beta rho (SABR) volatility model [37]. Because there are two sources of randomness,
computing the price of exotic financial derivatives under the stochastic volatility models
is usually expensive since there are two random processes to be simulated using a Monte
Carlo approach. The PDE approach usually involves a 2 dimensional partial differential
equation.

In this thesis, we explore a proper orthogonal decomposition (POD) reduced order
modeling approach to approximate the solution, in which only a small dimensional ODE
would be required to compute the solution. Reduced order modeling has already found
applications in a number of fields, such as meteorology, oceanography, electric circuit design,
etc. It seeks to find a subspace to approximate the dynamics of a usually large dimension,
nonlinear dynamic system, for which the computational cost and storage requirements are
demanding. The necessity of reduced order modeling is even more obvious when it comes to
the inverse problem of a large-scale, nonlinear dynamic problem. Reduced order modeling
began to gain some interest in computational finance recently, such as [58], [20], [56], [59].
We applied the POD reduced order modeling to the Heston model for pricing European
options. Being capable of computing the option prices using a much simpler model, the
POD reduced model has a potential to speed up the calibration for stochastic volatility
models.

This thesis can be broadly divided into three parts: an introductory part, introduction
and calibration of local volatility models, and introduction of POD reduced order modeling
with application to stochastic volatility models. Specifically, it is organized in the following
manner. Chapter 1 consists of the introduction. In Chapter 2, the local volatility model
including the constant elasticity of variance (CEV) models and the Dupire equation, which
will be used in Chapter 3, are introduced. In Chapter 3, we address in detail a non paramet-
ric approach for the calibration of a local volatility surface using a second order Tikhonov
regularization. In this chapter, we cover several thorny issues of the non-parametric cali-
bration of the local volatility surface, such as using automatic differentiation tools to derive
the adjoint code required to compute the gradient of the cost function with respect to the
volatility surface, ill-posedness of the calibration problem, and proposing a method to select
the Tikhonov regularization parameter. In Chapter 4, we present stochastic volatility mod-
els including the popular Heston volatility model and SABR volatility model. In Chapter
5, POD reduced order modeling is introduced as an efficient way of computing the option
prices. Finally, the thesis concludes with a summary and conclusions chapter.

3

CHAPTER 2

LOCAL VOLATILITY MODEL

The local volatility model assumes that the price S of an asset follows a general diffusion
process:

dS

S
= µtdt+ σ(S, t)dWt (2.1)

where µt is the risk neutral drift rate, Wt is a standard Brownian motion process, and the
local volatility σ is a deterministic function that may depend on both the asset price S and
the time t. Typically, µt = rt − qt with rt being the risk-free continuously compounded
interest rate and qt being the continuous dividend yield of the asset. Without losing gener-
ality, we’ll assume qt is zero and rt is a constant unless they are specified otherwise. Due to
its simplicity and the availability of analytical solutions for certain cases, the local volatility
model is still very popular in the financial industry. In the following, we’ll introduce some
of the most popular local volatility models. Due to the existence of an analytical formula
for European options prices, they will also serve as ideal cases for testing our proposed
calibration methods.

2.1 Constant elasticity of variance (CEV) model

The CEV model assumes the form of:

dS

S
= (r − q)dt+ κSp−1dWt (2.2)

where κ and p are constant coefficients. When p = 0, (2.2) corresponds to the Ornstein-
Uhlenbeck process or is referred as the absolute CEV model; when p = 1, it is the Black-
Scholes model; when p = 0.5, it corresponds to a square root process; when p = 2, it is a
special case of quadratic volatility model. When 0 < p < 1, the volatility decreases as the
asset price S increases. This creates a probability distribution function (pdf) of the asset
return with a heavy left tail and less heavy right tail, for example, in the equity market.
When p > 1, the volatility increases as S increases. This creates a probability distribution
of the asset return with a heavy right tail and less heavy left tail, which corresponds to
a volatility smile where the implied volatility is an increasing function of the strike price.
This type of volatility smile is sometimes observed for options on futures [42].

4

The CEV model acquired its name from the fact that the elasticity of the variance of
the rate of return of S with respect to S is a constant. The elasticity of variable y with
respect to variable x is defined as :

Ey,x =

∣

∣

∣

∣

dy

y

/

dx

x

∣

∣

∣

∣

The elasticity of the variance of the rate of return of S with respect to S is

dVar(dS/S)

Var(dS/S)

/

dS

S
=

dVar(dS/S)

dS

/

Var(dS/S)

S

= κ2(2p − 2)S2p−3dt

/

κ2
S2p−2dt

S

=2p− 2

where we have used
Var(dS/S) = κ2S2p−2dt

The constant elasticity of variance means that the ratio of the relative change of the
variance of the rate of return of S and the relative change of S is a constant, i.e., for every
10% change of S, the change of the variance of the rate of return will also be 10%. In
the CEV model, σ changes monotonically with respect to S. So (2.2) is most appropriate
for markets where the volatility smile is close to a monotonic function of strike K. For a
detailed discussion of the properties of CEV models, please see [5] .

In this thesis, we’ll use the analytical solution of the cases p = 0, p = 1, and p = 2 as test
cases respectively for the proposed calibration method discussed in the following chapters.
So we list their analytical solutions here.

When 0 < p < 1, the price of an European call option with strike K and maturity T
under the CEV model is:

C = S0e
−qT

[

1− χ2(a, b+ 2, c)
]

−Ke−qTχ2(c, b, a) (2.3)

when p > 1, the pricing formula is:

C = S0e
−qT

[

1− χ2(a,−b, c)
]

−Ke−qTχ2(c, 2− b, a) (2.4)

where

a =

[

Ke−(r−q)T
]2(1−p)

(1− p)2ν

b =
1

1− p

c =
S
2(1−p)
0

(1− p)2ν

ν =
κ2

2(r − q)(p − 1)

[

e2(r−q)(p−1)T − 1
]

5

and χ2(z; k, v) is the cumulative distribution function for a noncentral Chi-squared distri-
bution with noncentrality parameter v and k degrees of freedom evaluated at z.

When p = 0, its pricing formula is :

C = (S0e
−qT −Ke−rT)N(y1) + (S0e

−qT +Ke−rT)N(y2) + ν [n(y1)− n(y2)]

where

ν = κ

(

e−2qT − e−2rT

2(r − q)

)

1
2

y1 =
S0e

−qT −Ke−rT

ν

y2 =
−S0e

−qT −Ke−rT

ν

and N(·) is the cumulative distribution function of a standard normal variable, n(·) is the
probability density function of a standard normal distribution. For a detailed derivation of
the above formulas, see [23] and [61].

2.2 Quadratic volatility model

The CEV model is limited in that it assumes the volatility smile is a monotonic function
with respect to strikes K. In reality it is not uncommon to see convex volatility smiles. In
order to introduce a volatility smile that’s easy to fit with arbitrary convexity, one of the
most popular deterministic approach is to use a quadratic volatility model. The quadratic
volatility model assumes the form:

dS = (r − q)dt+ (α+ βS + γS2)dWt (2.5)

For simplicity and without loss of generality, we will consider the process:

dS = (α+ βS + γS2)dWt (2.6)

Equation (2.6) can be derived from (2.5) through a change of measure. The behavior
of stochastic process of (2.6) depends strongly on the root configuration of the quadratic
equation α+βS+γS2 = 0. For example, if the two roots are l and u with S0 is sandwiched
between them, then S will be bounded between l and u. As S gets close to either l and u,
the volatility of (2.6) will approach zero, thus S will stop changing.

The analytical formula of European put option price under the quadratic volatility
model (2.6) is summarized in [6]. When S0 lies to the left or right of the two solutions l
and u, the local volatility is still a monotonic function with respect to S. But the reason
we choose the quadratic volatility model as a test case is its ability in generating convexed
volatility smiles. For this reason, we only adopt the case from [6] when there is no real
roots for equation α + βS + γS2 = 0, in which case the volatility smile is a convex curve.
For completeness, we list the analytical solution for European put prices from [6] in the
following. We only list the solution computed using the method of images.

6

(2.6) can be reformulated as:

dS = b

(

1 +

(

S − a

b

)2
)

dWt

(2.7)

Then the price of a European put option under the (2.7) is

P =
√

bA(S0)e
1
2
T e1 +

√

A(S0)

A(SL)
(K − SL)e2 (2.8)

where

A(x) = b
[

1 + ((x− a)/b)2
]

e1 =
2

mU −mL

∞
∑

n=1

e−αnT sin(−an)(K̃I(c)n − I(s)n)

e2 =
mU

mU −mL
− 1

(mU −mL)2

∞
∑

n=1

nπsin(−an)
e−(αn−

1
2
)T

αn − 1
2

αn =
n2π2

2(mU −mL)2

an = nπ
mL

mU −mL

m = z − z0

mU = zU − z0

mL = zL − z0

z = arctan
S − a

b

z0 = arctan
S0 − a

b

I(c)n =
mL

2

[

cos(c−n)

mL − an
− cos(c+n)

mL + an
+ 2

cos(zL)an
a2n −m2

L

]

I(s)n =
mL

2

[

sin(c−n)

mL − an
− sin(c+n)

mL + an
+ 2

sin(zL)an
a2n −m2

L

]

c±n = b±n k ∓ an + z0

b±n = 1± an/mL

k = arctan(K̃)− z0

K̃ =
K − a

b

2.3 Dupire equation

Dupire in his seminal work [27] established that the local volatility function can be
uniquely derived from European option prices given the existence of European options with

7

all strikes and maturities. Since there are only a limited number of options available in the
market, the analytical solution can not be directly used to compute the volatility surface.
However, the Dupire PDE provides a way to compute all the prices of European options
with different strikes and maturities for a fixed S0 by solving the PDE only once. It suits
well our purpose of calibration of the local volatility model in that we do not have to solve
the Black-Scholes equation multiple times. We include the derivation of Dupire equation as
follows.

For a vanilla European call option with strike K and maturity T , its price C can be
expressed as:

C(K,T) = e−rT

∫ ∞

0
(ST −K)+φ(ST , T ;S0, t0)dST = e−rT

∫ ∞

K

(ST −K)φ(ST , T ;S0, t0)dST

(2.9)
where φ is the risk-neutral transition probability density function of the final spot price ST

at time T given the current spot price S0 at t0.
The first and second partial derivatives of C with respect to K are given by

∂C

∂K
= −e−rT

∫ ∞

K

φ(ST , T ;S0, t0)dST (2.10)

∂2C

∂K2
= e−rTφ(K,T ;S0, t0) (2.11)

The partial derivative of C with respect to T is given by

∂C

∂T
= e−rT

∫ ∞

K

(ST −K)

(

−rφ(ST , T ;S0, t0) +
∂φ(ST , T ;S0, t0)

∂T

)

dST (2.12)

The transition probability density φ for the stochastic model (2.1) satisfies the following
Kolmogorov forward equation, which is also known as the Fokker-Planck equation.

∂φ(ST , T ;S0, t0)

∂T
= − ∂

∂ST
((r − q)STφ(ST , T ;S0, t0)) +

1

2

∂2

∂S2
T

(σ2(ST , T)S
2
Tφ(ST , T ;S0, t0))

(2.13)
In contrast to the Kolmogorov backward equation, in which T and ST are held constant

and the variables are S0 and t0, the Kolmogorov forward equation holds S0 and t0 as
constant and uses ST and T as the variables. The variables ST and T are called forward
variables. Please note the function σ(·, ·) in equation (2.13) has the same function form as
the function σ(·, ·) in equation (2.1).

Substituting equation (2.13) into the right hand side of equation (2.12) and integrating
by parts, we obtain three integrals:

e−rT

∫ ∞

K

−(ST −K)rφ(ST , T ;S0, t0)dST = −rC

8

e−rT

∫ ∞

K

−(ST −K)
∂

∂ST
((r − q)STφ(ST , T ;S0, t0)) dST

=− (r − q)e−rT

∫ ∞

K

(ST −K)
∂

∂ST
(STφ(ST , T ;S0, t0)) dST

=− (r − q)e−rT

[

(ST −K)STφ(ST , T ;S0, t0)|ST=∞
ST=K −

∫ ∞

K

STφ(ST , T ;S0, t0)dST

]

=(r − q)e−rT

∫ ∞

K

STφ(ST , T ;S0, t0)dST

=(r − q)(C −K
∂C

∂K
)

where we have used equation (2.10) and the following assumption (2.14).

lim
S→∞

(ST −K)STφ(S, T ;S0, t0) = 0 (2.14)

e−rT

∫ ∞

K

(ST −K)
1

2

∂2

∂S2
T

(σ2(ST , T)S
2
Tφ(ST , T ;S0, t0))dST

=
1

2
e−rT

∫ ∞

K

(ST −K)
∂2

∂S2
T

(σ2(ST , T)S
2
Tφ(ST , T ;S0, t0))dST

=
1

2
e−rT

[

(ST −K)
∂

∂ST
(σ2(ST , T)S

2
Tφ(ST , T ;S0, t0))|ST=∞

ST=K −
∫ ∞

K

∂

∂ST
(σ2(ST , T)S

2
Tφ(ST , T ;S0, t0))dST

]

=
1

2
e−rT

[

0− σ2(ST , T)S
2
Tφ(ST , T ;S0, t0)|ST=∞

ST=K

]

=
1

2
e−rTσ2(K,T)K2φ(K,T ;S0, t0)

=
1

2
σ2(K,T)K2 ∂

2C

∂K2

where we have used equation (2.11), assumptions (2.14) and (2.15).

lim
ST→∞

∂

∂S
σ2(ST , T)S

2
Tφ(ST , T ;S0, t0) = 0 (2.15)

Combining the above three integrals with the left hand side of equation (2.12), we obtain

∂C

∂T
=

1

2
σ2(K,T)K2 ∂

2C

∂K2
− (r − q)K

∂C

∂K
− qC (2.16)

This is the famous Dupire equation, which gives an analytical solution for the local volatility
surface σ given the existence of European options across all strikes and maturities:

σ2(K,T) =
∂C
∂T

+ (r − q)K ∂C
∂K

+ qC
1
2K

2 ∂2C
∂K2

9

When the drift term in (2.1) vanishes due to a change of measure, σ assumes a compact
form given by

σ2(K,T) =
∂C
∂T

1
2K

2 ∂2C
∂K2

2.4 Dynamics of local volatility model

While the local volatility model is easier to apply for computing option prices and is
still a popular model in the financial industry, it has a major drawback due to its non-
stationary dynamics, which is usually not in agreement with the actual market. This issue
can be illustrated by considering the following simple example.

Consider a local volatility model assuming the following form:

σ(S) = (c+ (S − S0)
2) (2.17)

where c > 0 is a constant. According to (2.1), the asset follows the process:

dS = µSdt+ S(c+ (S − S0)
2)dWt

For this local volatility model, when S = S0 at t = 0, the volatility surface has the shape of
a parabola, or a “smile”. When t > 0, if St > S0, then the volatility surface at that moment
will be a monotonic increasing function with respect to S. On the contrary, if St < S0, then
at time t, the volatility surface will decrease monotonically with respect to S. So the shape
of the volatility surface will depend strongly on the asset price S, which is often in conflict
with the market behavior. In order to overcome this issue, stochastic volatility models are
proposed as an alternative, which will be discussed in the second part of this thesis.

10

CHAPTER 3

CALIBRATION OF LOCAL VOLATILITY

MODELS

3.1 Description of the calibration problem

For consistency, the local volatility model is defined as in [48]. The local volatility model
assumes that the price s of an underlying follows a general diffusion process:

ds

s
= (r − q)dt+ σ(s, t)dWt (3.1)

where r is the risk-free continuously compounded interest rate, q is the continuous dividend
yield of the asset, Wt is a standard Brownian motion process, and the local volatility σ is a
deterministic function that may depend on both the asset price s and the time t. r and q
are assumed to be constant in this thesis. Let V (s0, 0,K, T, σ) denote the theoretical price
of an European option with strike K and maturity T at reference time 0 for an asset with
spot price s0 following the process in (3.1). Let T1,. . ., TN be the set of maturities of the
European options available in the market for the asset. For each maturity Ti, the strikes
available range from Ki1, . . ., KiMi

.
The calibration of the local volatility surface to the market is to find a local volatility

surface σ(s, t) such that the theoretical option price computed using this volatility surface
lies between the corresponding bid and ask prices for any option (Kij , Ti), i.e.,

V b
ij ≤ V (s0, 0,Kij , Tj , σ) ≤ V a

ij

for i = 1, . . . , N and j = 1, . . . ,Mi. V a
ij and V b

ij denote the bid and ask prices respectively
for an option with maturity Ti and strike Kij at the time t = 0.

This problem is usually solved by solving the following optimization problem:

min
0<σ≤1

G(σ) =
N

Σ
i=1

Mi

Σ
j=1

[(V (s0, 0,Kij , Ti, σ)− V ij)wij]
2 (3.2)

where V ij = (V b
ij + V a

ij)/2 is the mean of the bid and ask prices. wij is a scaling factor to
reflect the relative importance of different options. This scaling factor could play an impor-
tant role in the calibration problem especially when option prices contain “noises” since a
small amount of relative noise from deep-in-the-money option prices could easily mask the

11

“signals” implied by out-of-money option prices. One way of choosing the above weights
is based on a liquidity argument. The weights are computed as inversely proportional to
the square of the bid-ask spreads to give more weight to the liquid options. [21] suggested
computing the weights as the inverse of square of the Black-Scholes vegas evaluated at
the implied volatilities of the market option prices. They showed that it is approximately
equivalent to minimizing the differences of the Black-Scholes implied volatilities between
the market prices and the model computed prices. The weighting scheme is derived as an
efficient way of generating approximation errors proportional to the bid-ask spreads and it
also works for the case when the bid-ask spreads are not available. In this thesis, we set wij

to be one for all cases except for the case where we deliberately add enough artificial noise
to show the significance of the weighting scheme, when the weighting scheme in [21] is used.
The reason we set wij = 1 is that either we know the prices are true prices or wij = 1 was
used in other papers for the same market data used in the present thesis. We retain the
same weighting scheme in order to be able to compare our result with the previous studies.

When there is more than one maturity, the theoretical option price V can be efficiently
computed by solving the Dupire equation (3.3). The Dupire equation establishes the option
prices as a function of strike K and maturity T for a fixed asset price s0 at reference time
t = 0. By solving the following Dupire equation (3.3) just once, we can obtain the theoretical
prices for all the European options of the same underlying asset at s0:

∂V

∂T
− 1

2
K2σ2(K,T)

∂2V

∂2K
+ (r − q)K

∂V

∂K
+ qV = 0 (3.3)

Notice in (3.3), σ is a function of K and T instead of s and t. We just point out that the
function form of σ is not changed, and that the K, T , s, or t are all just dummy variables,
details of which are in [27].

Before attempting to solve the optimization problem in (3.2), we want to point out some
aspects of the problem that render it complicated. The optimization problem in (3.2) is a
large scale nonlinear under-determined inverse problem. (a) The number of parameters to
estimate is very large. To estimate the volatility surface, we want to find the volatility at
each grid point. While similar to other archival material as well as we find that only the
section of volatility surface near the money can be estimated from market prices, the number
of parameters to estimate is still quite large. (b) The Dupire or Black-Scholes equation is
a nonlinear operator in σ or σ2. (c) The total number of options available is usually much
less than the number of parameters to be estimated. Thus it is also an under-determined
problem. (d) As for most inverse problems, it is ill-posed in the sense that small changes in
the option prices may lead to big changes in the volatility surface. When noises are included
in the option prices, which is usually the case in reality, the reconstructed volatility surface
tends to be unstable. To resolve the issues (c) and (d), we propose use of a second order
Tikhonov regularization, details of which will be introduced in later sections.

To deal with the issues of (a) and (b), a gradient-based optimization routine is usually
used. Most papers [13, 14, 47, 46, 25, 28, 39, 1, 65] derive the gradient of cost function G
in (3.2) with respect to σ by solving the adjoint model of the Dupire model. By using an
adjoint approach, the gradient can be computed by integrating the adjoint model backwards
in time just once. In all of these papers, the adjoint model of the Dupire model was derived
first and then solved numerically. This way of using the adjoint belongs to the differentiate-

12

then-discretize approach, i.e., one differentiates the partial differential equations (along with
initial and boundary conditions), takes the adjoint of the results, and then discretizes the
continuous system of adjoint equations.

There is an alternative way of deriving the adjoint, namely the discretize-then-differentiate
approach, see for example [30], in which one first discretizes the original model and then
obtains a system of adjoint equations of the discretized model. Both approaches yield a
set of discrete equations for the adjoint variables. But the discretization and differentiation
operators do not commute. [36] found that the gradient derived using the differentiate-
then-discretize approach can be inconsistent with the true gradient. The inconsistency can
result in a serious difficulty for minimizing the cost function. In this thesis, we will adopt
the discretize-then-differentiate approach: we first discretize the Dupire model using a finite
difference method and then differentiate the discrete version of the Dupire model to obtain
its adjoint model. In the step of differentiation of the discrete Dupire model, automatic
differentiation in reverse mode can be utilized to generate the discrete adjoint model. In
the following section, we set up the derivation of the gradient in a general framework so that
the same technique can be used for calibration of other models or with respect to exotic
options.

3.2 Gradient of the cost function

Algorithmic differentiation has already been employed in the quantitative finance field.
For example, [32], [15] used it to speed up the calculation of Greeks. It has long been estab-
lished in other domains of research such as computational fluid dynamics that the gradient
of a cost function in the form of (3.2) can also be computed by using automatic differenti-
ation, such as displayed in [31]. We’ll just list some results for the sake of completeness of
this thesis. For a more general formulation, see [17], [53].

Let M be a general model such that

∂X
∂t

= M(X,α) (3.4)

where X ∈ Rm is a vector containing the state variables of the model, α ∈ Rn denotes the
model parameters. A typical cost function used for parameter calibration assumes the form

J(X,α) =
1

2

∫ tτ

t0

〈W (X −X
obs),W (X −X

obs)〉dt (3.5)

where [t0, tτ] is the observation window, W is a weighting factor to reflect the relative
importance of each observation. X

obs is the observation vector. It can be shown [50] that
the gradient of the cost function with respect to the parameters α is given by

∇αJ =

∫ tτ

t0

(−[
∂M

∂α
]TP)dt (3.6)

where P ∈ Rm is adjoint variable of the state variables and is governed by the following
system:

{

∂P
∂t

+ [∂M
∂X

]TP = W (X −X
obs)

P (tτ) = 0
(3.7)

13

where [∂M
∂X

]T and[∂M
∂α

]T represent the transpose of the Jacobian matrix of the model with
respect to state variables and model parameters respectively in the discrete case. When P

is known by integrating backward in time the system described by (3.8), all the components
of the gradient J with respect to α can be computed using equation (3.6).

Equations (3.6) and (3.8) show that we can compute the gradient of cost function J(α)
by running the adjoint model only once. [34] shows that the required numerical operations
will require only 2− 5 times the CPU time required for the forward cost function.

In this thesis, [∂M
∂X

]T and[∂M
∂α

]T are obtained using automatic differentiation tools. A
complete detailed discussion of the rationale of automatic differentiation is beyond the
scope of this thesis. In the following, we will use a simple example to briefly explain how
to implement automatic differentiation. See [35] for a detailed discussion of automatic
differentiation.1

3.2.1 Derivation of the adjoint code

The models [∂M
∂X

]T or[∂M
∂α

]T are referred to as adjoint model. In this section, we provide
a simple example to demonstrate the concept of the adjoint model, the meaning of adjoint
variables and how to code an adjoint model in straightforward fashion. It is not intended to
cover extensively the general principles behind the reverse mode of automatic differentiation.

Let us consider a model given by a function F = X ∗ sin(Y 2), where we assume X,Y ,
and F all depend on time t. To get the adjoint of this model F (X,Y), we first generate its
Jacobian matrix (or sometimes called the tangent linear model).

δFn = sin((Y n−1)2)δXn−1 +Xn−1 ∗ cos((Y n−1)2)2Y n−1δY n−1

Using the Jacobian, this can be expressed as:

δF
δY
δX

n

=

0 cos((Y n−1)2)2Y n−1 sin((Y n−1)2)
0 1 0
0 0 1

δF
δY
δX

n−1

where n, n− 1 denote subsequent time levels. Given an initial perturbation of δX and δY ,
this model computes how the perturbation would be transmitted after linearizing the model
F .

Thus the adjoint model would be

ADF
ADY
ADX

n−1

=

0 0 0
cos((Y n−1)2)2Y n−1 1 0

sin((Y n−1)2) 0 1

ADF
ADY
ADX

n

(3.8)

ADF, ADY and ADX represents the adjoint variable of F , Y and X respectively. (3.8) can
be written as:

ADY = ADY +ADF ∗X ∗ cos(Y ∗ Y) ∗ 2 ∗ Y
ADX = ADX +ADF ∗ sin(Y ∗ Y)
ADF = 0.0

1There are several free automatic differentiation tools available, whose details are to be found on the web-
site www.autodif.org. Automatic differentiation can help speed up the process of developing the numerical
code of an adjoint model especially for complicated models. However, some debugging and verification is
usually necessary for checking the validity of the code generated by the free automatic differentiation tools.

14

The assignment of ADF = 0.0 must be the last one since its previous value is used by all
other corresponding adjoint assignments. That ADF needs to be set to zero in the end is
because the previous value of F is overwritten by executing the assignment. Consequently,
the previous value has no influence on the function output considering ADF measures the
gradient of output with respect to F .

This adjoint model computes the derivative of ∂F
∂X

, ∂F
∂Y

(or sensitivity) in reverse direc-
tion. When integrated backward in time, this adjoint model would enable us the find out
the source area that leads to the final perturbation of ADF . Classical methods are slow at
computing the partial derivatives of a function with respect to many inputs, as is needed
for gradient-based optimization algorithms. Automatic differentiation solves all of these
problems.

3.2.2 Gradient test

The generation of correct adjoint code for the simple example above is trivial. But for
a complicated system, it is not an easy task and thus it becomes especially necessary to
test the correctness of adjoint code. The adjoint code is tested using the following adjoint
identity, see Navon et al. [54]

< AδX,AδX >=< δX,AT (AδX) > for any δX (3.9)

where δX is an arbitrary perturbation vector. It is also the input of code A. A represents
the tangent linear code or a segment of it, say a subroutine, a do loop or even a single
statement. AT is the adjoint of A. If (3.9) holds within machine accuracy, it can be said
that the adjoint is correct versus the tangent linear code.

1. Test of the accuracy of the Tangent Linear Model (TLM)
To use (3.9) test the correctness of adjoint model, the tangent linear model A is used.
Thus first we need to test the correctness of tangent linear model A. The accuracy of
tangent linear model determines the accuracy of the adjoint model and the accuracy
of the gradient of cost function with respect to the control variables.

To verify A, we use the fact that A is a linearization of the model F :

F (X + α ∗ δX) − F (X) = A(α ∗ δX) +O(α2)

where δX is an arbitrary perturbation around X, α is a nonzero scalar.

We compare the result of TLM with the difference of the twice model call, with and
without perturbation respectively. If the TLM is correct, then the ratio between these
two,

r =
F (X + α ∗ δX)− F (X)

A(α ∗ δX)
= 1 +O(α) (3.10)

will approach one as α gets close to zero.

15

2. Verification of Adjoint Model
After verifying the TLM, we can then use it to test the adjoint model using the adjoint
identity:

< AδX,AδX >=< δX,AT (AδX) > for any X (3.11)

where δX is a small perturbation around X. If (3.11) holds within machine precision,
then it can be said that the adjoint code is correct with respect to tangent linear model.

3. Verification of Gradient
Even though the TLM and adjoint models are correct, the gradient generated by the
adjoint code needs to be verified because the accuracy of the adjoint gradient not
only depends on the accuracy of the tangent linear and adjoint model, but also on the
approximation involved in linearizing the cost function.

Suppose the initial X is perturbed by a small amount αh, where α is a small scalar
and h is a vector of unit length. According to Taylor expansion, we get the cost
function:

J(X + αh) = J(X) + αhT ▽ J(X) +O(α2)

We can define a function of α as:

Φ(α) =
J(X + αh)− J(X)

αhT ▽ J(X)
= 1 +O(α) (3.12)

So as α tends to zero but is not close to machine precision, this ratio Φ should be
close to 1. Here the gradient of ▽J(X) is calculated by the adjoint model. This test
is usually called α-test.

3.3 Tikhonov regularization

3.3.1 The second order Tikhonov regularization

To deal with the ill-posedness of the calibration problem, regularization is usually re-
quired. Tikhonov regularization is one of the most popular regularization methods for
ill-posed inverse problems [63]. In addition to minimizing the cost function, it seeks to
minimize some measure of the solution, for example, the size of the solution or the norm of
the first and second derivative of the solution. It usually assumes the following form.

J(σ) = G(σ) + λ ‖ Lσ ‖22 (3.13)

where G(σ) is as defined in (3.2) and λ is the regularization parameter. L is an operator
on σ. When L is the identity matrix, it is called the zeroth order Tikhonov regularization.
When L is an operator approximating the first or second derivative of σ with respect to
s and t, it is called the first or second order Tikhonov regularization respectively. As
mentioned in the introduction, most papers on the calibration of local volatility surfaces
used the following first order Tikhonov regularization, see [48], [13, 14]; [12]; [47, 46]; [25];
[28]; [39]; [1] and [65].

16

J(σ) = G(σ) + λ(‖ ∂σ

∂s
‖22 + ‖ ∂σ

∂t
‖22) (3.14)

However, the volatility surface generated by the first order Tikhonov regularization is
usually rough. Assuming the volatility surface is smooth, we propose to use a second order
Tikhonov regularization: the regularization term ‖ Lσ ‖22 would be a measure of the norm
of the second derivatives of σ with respect to s and t. Since the calibration problem is
under-determined, a second order Tikhonov regularization also imposes more constraints
on the calibration problem than the first order Tikhonov regularization. Our regularization
term ‖ Lσ ‖22 is an approximation of the following :

‖∂
2σ

∂s2
‖22 + ‖∂

2σ

∂t2
‖22 + ‖ ∂2σ

∂t∂s
‖22 (3.15)

If σ were just an one dimensional vector of size n, the exact form of L could be written
as follows:

1 −2 1 0
1 −2 1

· · ·
1 −2 1

0 1 −2 1

(n−2)×n

(3.16)

At each grid point, the second derivative of σ is approximated by a second order accurate
finite difference scheme up to a constant. Due to the fact that σ is a two dimensional
surface rather than a vector, the explicit matrix form of operator L could not be easily
written down since we have to approximate three second derivatives at each grid point. For
our computation, we actually do not need the explicit form of L, since we just need the
term ‖ Lσ ‖22 . The following simple algorithm (1) describes the computation of ‖ Lσ ‖22
and the update of gradient of J with respect to σ when the regularization part is added.
In the algorithm (1), ∂2σ/∂s2, ∂2σ/∂t2, ∂2σ/∂t∂s are all approximated by a second order
accurate finite difference scheme up to a constant.

17

Algorithm 1 Compute λ(‖∂2σ
∂s2

‖22 + ‖∂2σ
∂t2

‖22 + ‖ ∂2σ
∂t∂s

‖22) and update gradient

//Compute ||∂2σ
∂s2

||2
norm1 = 0.0
for i = 1 to nt do

for j = a+ 1 to b− 1 do
temp = σj+1,i + σj−1,i − 2σj,i
norm1 = norm1 + temp ∗ temp
g(j + 1, i) = g(j + 1, i) + temp ∗ alpha
g(j − 1, i) = g(j − 1, i) + temp ∗ alpha
g(j, i) = g(j, i) − 2 ∗ temp ∗ alpha

end for
end for
// Compute ||∂2σ

∂t2
||2

norm2 = 0.0
for i = a to b do

for j = 2 to nt − 1 do
temp = σi,j+1 − 2σi,j + σi,j−1

norm2 = norm2 + temp ∗ temp
g(i, j + 1) = g(i, j + 1) + temp ∗ alpha
g(i, j) = g(i, j) − 2.0 ∗ temp ∗ alpha
g(i, j − 1) = g(i, j − 1) + temp ∗ alpha

end for
end for
// Compute ‖ ∂2σ

∂t∂s
‖22

norm3 = 0.0
for i = a to b do

for j = 2 to nt − 1 do
temp = σi+1,j+1 + σi−1,j−1 − σi+1,j−1 − σi−1,j+1

norm3 = norm3 + temp ∗ temp
g(i+ 1, j + 1) = g(i+ 1, j + 1) + temp ∗ alpha
g(i− 1, j + 1) = g(i− 1, j + 1)− temp ∗ alpha
g(i+ 1, j − 1) = g(i+ 1, j − 1)− temp ∗ alpha
g(i− 1, j − 1) = g(i− 1, j − 1) + temp ∗ alpha

end for
end for
Lsigma = norm1 + norm2 + norm3
f = f+ λ∗Lsigma

Since only the section of the volatility surface that is near the money is sensitive to option
prices and can be recovered, the regularization is just applied to the part of volatility surface
σ(s, t) for which the ratio between s and spot s0 lies within the interval [0.8, 1.2].

For the regions of the volatility surface outside the interval defined above, no regulariza-
tion is performed. Since the components of the gradient vector corresponding to volatilities
at these regions are zero, the volatilities at these regions cannot be updated by a gradient

18

based optimization routine and are thus kept constant throughout the optimization. The
constant is the initial guess of the local volatility surface.

In the algorithm (1), σ(nx, nt) is a two dimensional matrix representing σ(s, t) where
nx, nt are the number of intervals along the s and t direction, respectively. a and b are
the indices that correspond to 0.8s0 and 1.2s0 along the s direction. f and g are inputted
respectively as the cost function and gradient before any regularization, and then returned
as the regularized cost function and the gradient of the regularized cost function with respect
to σ, respectively.

The calibration problem now assumes the form of a constrained minimization problem:

min
0<σ(s, t)≤1

J(σ) = G(σ) + λ ‖ Lσ ‖22 (3.17)

3.3.2 Strategy for selecting the Tikhonov regularization parameter λ

A Tikhonov regularization solution of an inverse problem depends critically on a suit-
able selection of the regularization parameter λ. How to suitably choose a regularization
parameter is still at the stage of active research. For linear inverse problems, λ is usually
selected by either the L-curve method or by generalized cross validation theory, see [38],
[9], [22] and [3]. For nonlinear inverse problems, the L-curve method is still applicable to
select the optimal λ. The L-curve method plots the cost function G(σ) with respect to
‖ Lσ ‖22. This plot usually assumes an L shape. The corner of the L-curve is considered
the best compromise point between the size of the solution and the magnitude of the cost
function. The λ at the corner of L-curve is considered the optimal regularization parameter
λ. However, we found from our numerical tests that we cannot generate an L-shaped curve
for this nonlinear inverse problem since λ chosen close to any sort-of L-corner generates a
volatility surface far away from the true volatility surface.

As many nonlinear problems are solved iteratively by solving a linear problem at each
iteration, we will adopt an iterative regularization strategy to solve the nonlinear inverse
problem, in which a suitable regularization parameter λ is selected at each iteration. By
linearizing the problem at each iteration, some of the analysis for linear inverse problems
can be applied.

To determine how to select a suitable regularization parameter at each iteration, we
carry out the following analysis to see how ill-posedness occurs.

We are actually solving for a vector X from

FX = Ỹ (3.18)

where F is a nonlinear model, X is the input of model F and Ỹ consists of observation
data.

This problem can not be solved directly due to its nonlinearity. Instead, it is solved by
minimizing a cost function of the form (3.5). Usually a gradient based optimization scheme
is used to minimize the cost function in (3.5) iteratively. At each iteration, it attempts to
find a better estimate Xk+1 from the current estimate Xk using the gradient information of
the cost function at Xk. This process is in fact equivalent to solving the following linearized
problem:

19

FXk+1 = FXk +A(δX) + o(δX) = Ỹ (3.19)

where A is the Jacobian matrix of nonlinear operator F at Xk, δX represents the changes
from Xk to Xk+1. Xk+1 is then updated by Xk+1 = Xk + δX. If equation (3.19) is not
well-posed, then the optimization routine is much likely to find an unstable solution. If
equation (3.19) is well posed, the optimization routine has a better chance to find stable
solutions.

Equation (3.19) can be reformulated as:

A(δX) = Ỹ − FXk (3.20)

Considering Xk+1 =Xk + δX, (3.20) is equivalent to:

AXk+1 = Ỹ − FXk +AXk (3.21)

Let B = Ỹ − FXk +AXk, then
AXk+1 = B (3.22)

Let matrix A be an m by n matrix. In our case, n is the number of parameters to estimate;
m is the number of options. A can be reduced to the following form using Singular Value
Decomposition (SVD).

Amn = UmmSmnV
T
nn

= [Up,U0]

[

Sp 0
0 0

]

[Vp,V0]
T

= UpSpV
T
p

where p is the number of non-zero singular values si of matrix A. Since m is less than
n in our problem, p ≤ m. Umm,Vnn are orthogonal matrices. Smn is a diagonal matrix.
Up,Vp are the first p columns of matrices U and V respectively. Sp is a diagonal matrix
containing all the non-zero singular eigenvalues si. The singular values si are all positive
and gradually decrease to zero.

The solution to (3.22) then can be written as in [9] :

Xk+1 = X† + X̃ = VpS
−1
p UT

p B + X̃ =
p

Σ
i=1

(U., i)
T
B

si
V., i +

n
∑

i=p+1

αiV.,i (3.23)

where V.,i is the ith column of matrix V.
From (3.23) we can see that the solution Xk+1 is composed of two parts: X† and X̃. X†

is the solution obtained from solving UpSpV
T
p X = B while X̃ =

∑n
i=p+1 αiV.,i is a vector

that lies in the null space of matrix A. The existence of X̃ shows the under-determined
nature of this inverse problem.

For the solution X† = Σ
p
i=1 (U., i)

T
B/siV., i, if (U., i)

T
B does not decay as fast as si,

Xk+1 will become unstable as si tends to zero, since a small amount of noise from B will
be amplified by the small singular values.

After diagnosing where the ill-posedness originates from, we propose to regularize the ill-
posedness by eliminating the effects of the small singular values si. The addition of Tikhonov

20

regularization at each iteration is equivalent to solving the following over-determined linear
problem:

[

A
λL

]

Xk+1 =

[

B

0

]

(3.24)

When L represents a higher order Tikhonov regularization operator, as in our case,
the analytical solution of (3.24) can be obtained by applying a generalized singular value
decomposition (GSVD) of the matrix pair [AT ,LT]T , see [38] and [9] for details. But
GSVD of the matrix pair is computationally expensive especially since the dimension of our
problem is large. In addition, most GSVD packages require the explicit form of matrices
A and L, neither of which is generated explicitly in our method. Extra computation and
storage are necessary to generate and store the matrices A and L in order to use the GSVD
packages. Furthermore, if we need to carry out a GSVD to find the regularization parameter
λ at each iteration, the total computational cost of the minimization of (3.17) becomes very
expensive.

To avoid using GSVD, we consider the special case when L is the identity matrix in
order to gain insight of the problem. When L is the identity matrix, the regularized solution
of (3.24) assumes the following analytical form of (3.25), see [38] for the derivation.

Xλ =
m

Σ
i=1

si
2

λ2 + si2
(U., i)

T
B

si
V., i (3.25)

When λ ≫ si , the weighting factor f = si
2

λ2+si2
is about 0. When λ ≪ si, f is about 1.

Choosing a λ that is smaller than the leading singular values and greater than the smallest
singular values eliminates the ill-posedness caused by small singular values, yet does not
affect the information represented by the large singular values. The under-determined part
X̃ is also eliminated. Guided by this insight, we choose our regularization parameter λ to be
one of the singular values of A determined by the truncation level defined in the following:

∑i
k=1 si

∑m
k=1 si

= truncation level = 50% (3.26)

where the singular values are sorted in order of magnitude such as s1 ≥ s2 ≥ . . . ≥ sm ≥ 0,
where m is the total number of singular values.

Now the question is how to compute the singular values of A at each iteration? We need
an algorithm that can compute the singular values without requiring the explicit form of
matrix A. For this purpose we will use the package ARPACK which meets this requirement.
All it requires is the product of matrices A and AT with a vector. For our problem, the
tangent linear code and adjoint code derived from the automatic differentiation tools readily
compute these two products. ARPACK is based upon an algorithmic variant of the Arnoldi
process called the Implicitly Restarted Arnoldi Method (IRAM). See [49] for details.

Computing the singular values at each iteration to determine λ is the most compu-
tationally expensive part of our algorithm. We found out from numerical experiments,to
be detailed in the following section, that the λ selected in this manner does not change
much throughout the minimization. By using a fixed λ, the reconstructed volatility surface
remains the same as the one reconstructed by repeatedly updating λ at each iteration. How-
ever the computational time is significantly reduced by using a fixed λ. If we assume that λ

21

selected according to (3.26) is almost a constant during the minimization of (3.17), an alter-
native and efficient strategy of choosing λ consists in using a constant λ selected according
to (3.26) throughout the minimization process of (3.17). This assumption is valid in the
case where the Jacobian matrix A does not change significantly during the minimization
process. If we assume that the initial guess X0 is not far away from the optimal solution
X

∗, then we can assume that A is almost constant. In our calibration problem, the initial
guess X0 is set as a constant volatility surface obtained by averaging the Black-Scholes
implied volatilities of the ATM options across different maturities. If we assume the true
local volatility surface does not deviate much from the average of the Black-Scholes implied
volatility surface of ATM options, then the assumption that A is constant is reasonable.
In this case, we can assume λ is constant. However, for a general model when Xk changes
significantly across iterations, we have to choose a λ at each iteration. For this reason,
we still exhibit the pseudo-algorithm for the general case in algorithm (2) on the following
page.

With the gradient obtained from the previous section and the regularization parameter
λ ready, we can use a constrained optimization routine to find the optimal σ of (3.17). We
use the algorithm L-BFGS-B to carry out the optimization. For details of L-BFGS-B, see
[66]. This is a robust algorithm for bound-constrained minimization. Prior to discussing
our numerical tests, we summarize our pseudo-algorithm description in the following.

Algorithm 2 Main algorithm to reconstruct the local volatility surface

1. Initialize volatility surface σ0(s, t).

2. Use (3.3) to compute option prices Vcmpt and cost function G in (3.2).

3. Feed the difference between Vcmpt and Vobs into the adjoint model AT , using (3.6) and
(3.8), to compute the gradient of G with respect to σ(s, t).

4. Use ARPACK to compute the singular values of Jacobian matrix A and select the
regularization parameter λ according to (3.26).

5. Compute the regularized cost function J of (3.17) and update the gradient after the
regularization.

6. Insert the cost function J and its gradient into L-BFGS-B routine to obtain the next
estimate σk+1(s, t). k = 0, 1, 2, · · ·

7. When either the stopping criterion of L-BFGS-B is satisfied or the number of function
calls of the cost function exceeds a preset limit, stop. Otherwise, go back to step 2.

For theoretical volatility models, the limit on the number of function calls is 1500 while
for the case of real market data the limit is 250. We allow more iterations for the theoretical
volatility models since the true volatility surfaces are known. The recovered volatility surface
actually displays the general features of the true volatility surface after 250 function calls,
which is why we set the upper limit of function calls for the real market data as 250.

22

3.4 Numerical tests

For all of our numerical tests, the initial guess σ0 is the average of Black-Scholes implied
volatilities for the ATM options across different maturities. We scale the spot price of the
underlying to 100 and then the option prices are scaled accordingly. The scaling reduces
the calibration problem for different underlying instruments into the same problem. It has
the additional benefit that λ can be precomputed and applied to different problems when
we assume the regularization parameter λ is constant and when r and q do not change
significantly.

The Dupire equation (3.3) is solved using the backward Euler scheme in time and a
centered finite difference scheme in space direction. The computation domain

[

0 T̄
]

×
[

0 K̄
]

is set as K̄ = 2s0 as in [48] while T̄ is the longest maturity. The space and time
domain are divided into nx = 200 and nt = 100 intervals respectively. Since only the section
of volatility surface σ(s, t) for which the ratio s/s0 lies in [0.8, 1.2] can be recovered, the
total number of parameters to calibrate is 0.2 × 200 × 100 = 4000. The lower and upper
bound for σ is set to be 0.00001 and 1, respectively. We perform two kinds of numerical
tests: one for volatility models, whose analytical solution for European options are known,
and the other one for the real market options data.

3.4.1 Tests with theoretical volatility models

We start with the constant elasticity of variance (CEV) model, for which the analytical
form of European option prices can be found in [23]. The CEV model assumes the following
form:

ds(t) = µsdt+ κspdW (t)

According to our definition of local volatility in (3.1), the local volatility for the CEV
model is :

σ(s, t) = κsp−1 (3.27)

We will test three cases: p = 0, p = 1
2 and p = 2. When p = 0, it corresponds to the

Bachelier model. When p = 1
2 , it corresponds to the square root process. When p = 2, it is

a special case of quadratic volatility model. The first case was used as a test case in both
[48] and [18]. Specifically, we test the following three cases:

σ(s, t) =
15

s
(3.28)

σ(s, t) =
2√
s

(3.29)

σ(s, t) = 0.002s (3.30)

The constant κ in (3.27) is chosen in order that σ(s, t) is contained in the interval of (0,
1) for all s and t. Twenty two European call option prices are generated using the closed-
form solution for two maturities T = 0.5 and T = 1.0. For each maturity, we select eleven
options whose strikes range from 90.0 to 110.0 with an increment of 2.0. These option prices

23

are used to recover the volatility surface for (3.28-3.30). Similar to the study of [48]; [18],
s0 = 100, the risk free interest rate r = 0.05 and the dividend yield q = 0.02 for all three
cases.

Figures 3.1-3.3 show the recovered volatility surface and the true volatility surface. For
all the three cases, the recovered volatility surfaces approximate the true volatility surfaces
very well. The relative errors of the computed option prices with respect to the true option
prices are of the order of 10−4. Figure 3.4 shows the plot of relative errors and option prices
with respect of the number of options for the case (3.30). For the other two cases, the plots
of relative errors exhibit similar patterns.

In order to compare the difference between the first order Tikhonov regularization and
the second order Tikhonov regularization, we exhibit Figures 3.5 and 3.6 which show the
recovered volatility surface by using the first order Tikhonov regularization for two CEV
models. We can see that even for these two simple CEV models, the first order Tikhonov
regularization could not match the true volatility surface as precisely as the second order
Tikhonov regularization.

For all of the above CEV models, σ(s, t) are monotonic functions of s. Next, we delib-
erately choose a quadratic volatility model that is not monotonically changing as our test
case. [6] summarizes the analytical solution of European option prices for different quadratic
volatility models. The following quadratic volatility model is taken from his paper.

σ(s, t) = 0.1(1 +
s0
s

+
(s − s0)

2

100s
) (3.31)

A total of 22 European put options with the same set of maturities and strikes as the
previous tests are computed as market data. s0 is set to 100, the risk free interest rate r
and the dividend yield q are both zero. (When the drift is not zero, a change of measure
can reduce the drift to zero). Figure 3.7 plots the true volatility surface as well as the
recovered volatility surface. We observe that the recovered volatility surface approximates
the true volatility surface fairly well. Figure 3.8 displays the relative errors of computed
option prices with respect to the true prices. We notice that the relative errors are of order
of 10−4. Figure 3.9 displays the cost function J with respect to iteration number. Figure
3.10 shows the decrease of the norm of the projected gradient as the number of iterations
increases.

To test the stability of our methods, we add noise perturbation to the true option prices
to assess whether we can still recover the volatility surface. The noise perturbation is
introduced as in ([18]):

ṽi = vi + 0.02ǫi

where vi is the true price of the ith option, ǫi is a uniformly distributed random number
between 0 and 1. The noises are introduced as absolute errors rather than relative errors.
The plot of the reconstructed volatility surfaces using noisy option prices and noise-free
option prices is shown in Figure 3.11 for the quadratic volatility model. We notice that the
two volatility surfaces are indistinguishable from each other with the maximum absolute
difference of the order of 10−3. It means that our method exhibit stability with respect to
a small amount of perturbation.

24

Next, we test the case when the noises are introduced as relative errors:

ṽi = vi(1 + 0.02ǫi)

2% of uniformly distributed noises are added as relative errors to the option prices. A
direct calibration without any weighting of the noisy option prices fails to recover the true
volatility surface. When relative errors are introduced, a proper weighting scheme needs to
be introduced so as to reflect the relative importance of different options. We adopt the
weighting method as in [21] to scale the noisy prices in this case, which is defined as :

wi =
1

vega(Ii)2

where Ii is the Black-Scholes implied volatility of the ith noisy option price, vega() is the
Black-Scholes vega evaluated as a function of implied volatility. Figure 3.12 displays the
recovered the volatility surface with respect to the true volatility surface. We notice that
the recovered volatility surface approximates the true volatility surface very well.

The total CPU time required for each of the previous six tests lies between 332 and 480
seconds using a Dell Vostro 1720 with Intel Core Duo CPU @2.2G HZ and 2GB RAM.

The above calibration updates the regularization parameter λ at each iteration. Figure
3.13 displays λ against the number of iterations for the quadratic volatility model. At the
beginning, λ is set to zero. We notice that λ does not vary much throughout iterations and
that it almost stays constant after a number of iterations. The same phenomenon is observed
for other test cases as well as the real market data cases in the following section. Based
on this observation, we use a constant λ during the optimization. Figure 3.14 shows the
recovered volatility surface by using a constant λ vs an updated λ for the quadratic volatility
model with noise free prices. The two constructed volatility surfaces are indistinguishable
from each other with the maximum absolute difference being of the order of 10−3. By using
a constant λ the total CPU time required for each of the previous six tests is now just
between 13 and 20 seconds.

3.4.2 Tests with market data

All our market data are obtained from previous studies on the calibration of local volatil-
ity surface. Our first test uses option prices as in [18]; [4] and [65]. The options are European
call options on S&P 500 index in October 1995. There are a total of 57 options with seven
maturities. The initial index, interest rate, and dividend yield are provided in the footnotes
of Figure 3.15. Figure 3.15 shows the optimal volatility obtained. Contrary to previous
studies, the volatility surface exhibits an obvious skew structure as expected for the equity
market. The volatility surface is also smoother. Furthermore, the recovered volatility sur-
face is in a range between 0.08 and 0.30 without local extreme values. The relative errors
of computed prices with respect to observed prices are plotted in Figure 3.16. The relative
errors are mostly close to zero except for options whose prices are close to zero. This is
acceptable since the bid and ask spreads for out of money options are usually much higher
than or comparable with the option prices. In other words, out of money option prices allow
a much higher degree of approximation errors. The mean absolute relative error is 4.7%.

25

Excluding the seven options with big absolute relative errors, the mean absolute relative
error is as small as 0.2%.

The second test uses data set from [7], which contains 155 European options on the
Eurostoxx (SX5E) index spanning 12 maturities. The shortest maturity was about one
week (T = 0.025) and the longest maturity was about 5.8 years (T = 5.778). Since the
original data only had market data in terms of implied volatilities without the interest
rate structure, we computed the option prices just using these implied volatilities under
the assumption the interest rates were zero. This assumption is reasonable since the local
volatility model (3.1) can be changed into a driftless process by a change a measure while
the local volatility term keep the same during the change. The recovered volatility surface is
shown in Figure 3.17. Figure 3.18 shows the absolute errors and the option prices in terms
of implied volatilities as in [7]. Figure 3.19 plots the relative errors and the option prices in
terms of prices. Figure 3.17 displays an obvious skew structure although there are a lot of
fluctuations of the local volatility surface close to the region when T = 0.025. The computed
data does not match the market data very well either for that maturity. However, one of
the possible reasons is that our finite difference scheme does not have enough resolution at
T = 0.025. By setting T̄ = 5.778, nt = 100 and using a uniform grid, ∆t = 0.058 > 0.025.
The situation is alleviated by a finer mesh grid. Ignoring the 15 options with maturity
T = 0.025, Figures 3.18 and 3.19 demonstrate a very good fit of the market prices. Again,
high relative errors occur when the option prices are close to zero (Figure 3.19). For the
remaining 140 options, the mean relative error is 2% and the mean absolute difference in
terms of implied volatility is 0.6%. Next, we refine the mesh by setting nt = 500. Figure
3.20 shows the recovered volatility surface. Compared to Figure 3.17, the volatility surface
does not change significantly. Anyway, the region when T ≤ 0.025 just occupies a small
section of the volatility surface. Figure 3.21 exhibits the absolute difference in terms of
implied volatility. Compared to Figure 3.18, we can see that there are some improvements
in terms of matching the prices for the options with T = 0.025. The CPU time in this case
is very high, namely 32 minutes when λ is selected iteratively. A non-uniform grid should
be used to reduce the computational cost when it is necessary to resolve cases like this with
the maximum maturity T̄ large yet the shortest maturity being very small.

The last example is for European call options in the foreign exchange market. The
option data were studied by both [10] and [65]. There are 15 European call options for
the US dollar/Deutsche mark with 5 maturities, which are computed from 20, 25 and 50
delta risk-reversals quoted on Aug 23, 1995. The spot price and interest rates are shown in
the captions of Figure 3.22. The optimal volatility surface and relative errors are plotted
in Figures 3.22 and 3.23 respectively. The volatility surface has a shape similar to the
smile shape as expected for volatilities in the foreign exchange market. The mean absolute
relative error is as small as 1.9%.

There may still be some instability in the volatility surface recovered, for example the
reconstructed volatility surface for the last example. We attribute this issue partially to
the assumption that every option is equally important. The amount of noises in the market
option prices is unknown. A proper weighting scheme is necessary to reflect the relative
importance of different options. This will constitute an interesting follow-up future research
area.

For the above three numerical tests, the required CPU time is 158, 232, and 12 seconds

26

0

0.5

1.0

0.8
0.9

1.0
1.1

1.2

0.1

0.12

0.14

0.16

0.18

0.2

Maturity
K

S0

0.12

0.13

0.14

0.15

0.16

0.17

0.18

Figure 3.1: The true volatility surface and optimal volatility surface for the volatility model σ(s, t) = 15
s

respectively, using a Dell Vostro 1720 with Intel Core Duo CPU @2.2G HZ and 2GB RAM.
Again, when we use a constant λ, the CPU time required is just as small as 3.4, 3.6, 3.6
seconds respectively. The changes of the relative errors and recovered implied volatility
surface are again very small compared to those obtained using an updated λ. From here
we can see that when using a constant λ, the CPU time is independent of the number of
the options. When nt = 500, the CPU time for the data set from [7] is 18.9 seconds. From
this example, we observe that when using a constant λ the CPU time grows linearly as the
number of parameters increases, which results from the linear dependence of computational
cost of an adjoint model on the number of parameters, as mentioned by [32].

The only parameter that is subject to change in our algorithm is the truncation level.
It is fixed at 50% throughout our numerical tests. Other truncation levels were also tested.
The relative error and the general shape of the optimal volatility surface did not change
significantly overall when the truncation level was less than 0.9 although as the truncation
level gets lower the volatility surface tends to be smoother. This means this method is
fairly robust for different choices of truncation levels as long as the regularization parameter
selected is not close to the smallest singular values at the end of the singular values spectrum.
The fact that we used the same truncation level for all numerical tests also serves as an
indication that the calibration is not very sensitive to the truncation levels.

27

0

0.5

1.0

0.8
0.9

1.0
1.1

1.2

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Maturity
K

S0

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

Figure 3.2: The true volatility surface and optimal volatility surface for the volatility model σ(s, t) = 2
√

s

0

0.5

1.0

0.80.91.01.11.2

0.16

0.18

0.2

0.22

0.24

0.26

K

S0

Maturity

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

Figure 3.3: The true volatility surface and optimal volatility surface for the volatility model σ(s, t) = 0.002s

28

0 5 10 15 20 25
0

5

10

15

20

Number of Options

O
bs

er
ve

d
O

pt
io

n
Pr

ic
es

: v
ob

s

0 5 10 15 20 25
0

2

4

6

8
x 10

−4

R
el

at
iv

e
Er

ro
rs

Figure 3.4: ∗ : option prices; : relative errors = |vobs-vcmpt|/vobs. Left axis: The true option prices.
Right axis: The relative errors of the computed option prices using optimal volatility surface with respect
to the true prices for the volatility model σ(s, t) = 0.002s

0

0.5

1.0

0.80.91.01.11.2

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

Maturity
K

S0

Figure 3.5: The true volatility surface and optimal volatility surface for the volatility model σ(s, t) = 15
s

using the first order Tikhonov regularization

29

0

0.5

1.0

0.80.91.01.11.2

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

Maturity
K

S0

Figure 3.6: The true volatility surface and optimal volatility surface for the volatility model σ(s, t) = 0.002s
using the first order Tikhonov regularization

0

0.5

1.0

0.8
0.9

1.0
1.1

1.2

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Maturity
K

S0

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Figure 3.7: The true volatility surface and optimal volatility surface for the volatility model σ(s, t) =

0.1(1 + s0
s
+ (s−s0)

2

100s
)

30

0 5 10 15 20 25
0

5

10

15

20

O
bs

er
ve

d
O

pt
io

n
Pr

ic
es

: v
ob

s

Number of Options
0 5 10 15 20 25

0

2

4

6

8
x 10

−4

R
el

at
iv

e
Er

ro
rs

Figure 3.8: ∗ : option prices; : relative errors. Left axis: The true option prices. Right axis: The relative
errors of the computed option prices using optimal volatility surface with respect to the true prices for the

volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
)

0 200 400 600 800 1000 1200 1400
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

number of iterations

Lo
g1

0(
J)

Figure 3.9: The evolution of the regularized cost function versus the number of minimization iterations

for the volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
)

31

0 200 400 600 800 1000 1200 1400
−6

−5

−4

−3

−2

−1

0

number of iterations

Lo
g1

0(
no

rm
 o

f p
ro

je
ct

ed
 g

ra
di

en
t)

Figure 3.10: Variation of the norm of the projected gradient of the cost function vs the number of iterations

for the volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
)

0

0.5

1.0

0.80.91.01.11.2

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Maturity
K

S0

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Figure 3.11: The optimal volatility surfaces obtained from the non-noisy and noisy option prices(2%

uniformly distributed absolute noise) for the volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
)

32

0

0.5

1.0

0.80.91.01.11.2

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Maturity
K

S0

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Figure 3.12: The true volatility surface and the optimal volatility surface obtained from the noisy option

prices(2% uniformly distributed relative noise) for the volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
)

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of iterations

re
gu

la
riz

at
io

n
pa

ra
m

et
er

 λ

Figure 3.13: The regularization parameter λ computed at each iteration for volatility model σ(s, t) =

0.1(1 + s0
s
+ (s−s0)

2

100s
)

33

0

0.5

1.0

0.80.91.01.11.2

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Maturity
K

S0

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Figure 3.14: The optimal volatility surfaces obtained by using a constant λ = 0.94 and a λ updated at

each iteration for volatility model σ(s, t) = 0.1(1 + s0
s
+ (s−s0)

2

100s
)

0.175
0.425

0.695
0.941.0

1.50

2.0

0.8
0.9

1.0
1.1

1.2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Maturity
K

S0

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Figure 3.15: The optimal volatility surface obtained for S&P 500 index European call options in October
1995. s0 =$ 590, r=0.06, q=0.0262. Note: the available maturities are plotted on the T axis in units of
years.

34

0 10 20 30 40 50 60
0

5

10

15

20

25

O
bs

er
ve

d
O

pt
io

n
Pr

ic
es

: v
ob

s

Number of Options
0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
Er

ro
rs

Figure 3.16: ∗ : scaled option prices; : relative errors. Left axis: The scaled prices of S&P 500 index
European call options in October 1995 [4]. Right axis: The relative errors of computed option prices with
respect to observed price. Option prices are plotted in an order of increasing maturities.

0.025
0.5230.772

1.769
2.267

2.784
3.781

4.778
5.774

0.8
0.9

1.0
1.1

1.2

0

0.1

0.2

0.3

0.4

0.5

MaturityK

S0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 3.17: The optimal volatility surface obtained for Eurostoxx 50(SX5E) equity options on March 1,
2010, as studied in [7]. Note: the available maturities are plotted on the T axis in units of years.

35

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

|c
on

st
ru

ct
ed

 im
pl

ie
d

vo
l−

ob
se

rv
ed

 im
pl

ie
d

vo
l|

Number of Options
0 20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

ob
se

rv
ed

 im
pl

ie
d

vo
l

T=0.025

T=0.101

T =0.197

T =0.274

T =0.523
T =0.772

T =1.769

T= 2.267

T =2.784
T =3.781

T =4.778

T =5.774

Figure 3.18: ∗ : option prices in terms of implied volatilities; : absolute difference of the implied
volatilities between market data and reconstructed option prices. Left axis: The absolute difference of
implied volatilities between market data and reconstructed data. Right axis: The option prices for SX5E in
terms of implied volatilities on March 1, 2010.

0 20 40 60 80 100 120 140 160
0

50

100

O
bs

er
ve

d
O

pt
io

n
Pr

ic
es

: v
ob

s

Number of Options
0 20 40 60 80 100 120 140 160

0

0.5

1

R
el

at
iv

e
Er

ro
rs

Figure 3.19: ∗ : scaled option prices ; : relative error between market data and reconstructed option
prices. Left axis: The scaled option prices for SX5E on March 1, 2010. Right axis: The relative error
between market data and reconstructed data. Option prices are plotted in an order of increasing maturities.

36

0.0250.5230.772
1.7692.2672.784

3.781
4.778

5.774

0.8
0.9

1.0
1.1

1.2

0

0.1

0.2

0.3

0.4

0.5

Maturity
K

S0

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 3.20: The optimal volatility surface obtained when nt= 500 for Eurostoxx 50 (SX5E) equity options
on March 1, 2010, as studied in [7]. Note: the available maturities are plotted on the T axis in units of
years.

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

|c
on

st
ru

ct
ed

 im
pl

ie
d

vo
l−

ob
se

rv
ed

 im
pl

ie
d

vo
l|

Number of Options
0 20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

ob
se

rv
ed

 im
pl

ie
d

vo
l

Figure 3.21: ∗ : option prices in terms of implied volatilities; : absolute difference of the implied volatilities
between market data and reconstructed option prices. Left axis: The absolute difference of implied volatilities
between market data and reconstructed data when nt=500. Right axis: The option prices for SX5E in terms
of implied volatilities on March 1, 2010. Option prices are plotted in an order of increasing maturities.

37

0.082
0.16

0.25

0.49

0.74

0.8
0.9

1.0
1.1

1.2

0.05

0.1

0.15

0.2

0.25

MaturityK

S0

0.08

0.1

0.12

0.14

0.16

0.18

Figure 3.22: The optimal volatility surface obtained for European call options of US dollar/ Deutsche
mark rate. The spot price was s0 =1.48875; US dollar interest rate was rUSdollar = 5.91%; Deutsche mark
rate was rDeutschemark= 4.27%. Note: the available maturities are plotted on the T axis in units of years.

0 5 10 15
0

2

4

6

O
bs

er
ve

d
O

pt
io

n
Pr

ic
es

: v
ob

s

Number of Options
0 5 10 15

0

0.02

0.04

0.06

R
el

at
iv

e
Er

ro
rs

Figure 3.23: ∗ : scaled option prices; : relative errors. Left axis: The scaled prices of European call
options on US dollar/Deutsche mark rate recovered from 20, 25, and 50 delta risk reversals [10]. Right axis:
The relative errors of computed option price with respect to observed price. Option prices are plotted in an
order of increasing maturities.

38

CHAPTER 4

STOCHASTIC VOLATILITY MODELS

4.1 Description of stochastic volatility models

A general stochastic volatility model follows the form of :

dSt = µS(St, Vt, t)dt+ σS(St, Vt, t)dW
1
t

dV (t) = µV (St, Vt, t)dt+ σV (St, Vt, t)dW
2
t (4.1)

dW 1
t dW

2
t = ρ

where St denotes the asset price, Vt is the variance of return of the asset, and the two
standard Brownian motion processes W 1

t , W
2
t are correlated with correlation ρ. µS, σS ,

µV , and σV are usually deterministic functions of St and Vt. Given all the conditions that
(4.1) needs to make it suitable to simulate asset prices, for example, non-negative asset price
and non negative variance, (4.1) is usually used as an extension of local volatility model to
price derivatives. Compared to the local volatility model, (4.1) has better dynamics of the
volatility surface, see [5]. For some specific models of (4.1), analytical solution for vanilla
options exists. However, for exotic derivatives, an analytical formula is usually not available
and other methods are needed to compute the prices. The Monte Carlo method is one of the
most popular methods. However, it converges slowly. Since (4.1) has two random processes,
the computation can be expensive. Another alternative is a Partial Differential Equation
(PDE) approach that relates the price of a derivative to a two dimensional convection
diffusion equation.

4.2 PDE method

4.2.1 PDE formulation

Let U denotes the price of a derivative with the underlying asset St satisfying the process
(4.1). Depending on whether using physical measure or risk neutral measure, there is some
subtle difference in the derivation of the PDE for U . For example, if using the physical
measure, the market price of risk is usually involved in the derivation, such as [40]. Since
our focus is pricing derivatives, we’ll use the risk neutral measure, which means µS = rS.
The following derivation closely follows [33]. Assuming U just depends on the terminal value

39

St, then U is a function of St, Vt. In notation, U = U(St, Vt, t). Applying Itô’s formula [44]
to derivative price U , we have:

dU =
∂U

∂t
dt+

∂U

∂S
dSt +

∂U

∂V
dVt +

1

2

∂2U

∂S2
(dSt)

2 +
1

2

∂2U

∂V 2
(dVt)

2 + ρ
∂2U

∂S∂V
dStdVt (4.2)

Substituting (4.1)into (4.2) and ignoring all the higher order terms with respect to dt, we
have:

dU =
∂U

∂t
dt+ µS

∂U

∂S
dt+ µS

∂U

∂S
dW 1

t + µV
∂U

∂V
dt+ µV

∂U

∂V
dW 2

t

+
1

2

∂2U

∂S2
σ2
Sdt+

1

2

∂2U

∂V 2
σ2
V dt+ ρσSσV

∂2U

∂S∂V
dt

=

[

∂U

∂t
+

1

2
σ2
S

∂2U

∂S2
+ µS

∂U

∂S
+

1

2
σ2
V

∂2U

∂V 2
+ µV

∂U

∂V
+ ρσSσV

∂2U

∂S∂V

]

dt

+ µS
∂U

∂S
dW 1

t + µV
∂U

∂V
dW 2

t (4.3)

For the sake of compact notation, let us denote

L(U) =
∂U

∂t
+

1

2
σ2
S

∂2U

∂S2
+ µS

∂U

∂S
+

1

2
σ2
V

∂2U

∂V 2
+ µV

∂U

∂V
+ ρσSσV

∂2U

∂S∂V

then

dU = L(U)dt+ µS
∂U

∂S
dW 1

t + µV
∂U

∂V
dW 2

t (4.4)

The following derivation is similar in method to the derivation of the PDE for Black-
Scholes constant volatility model. We want to construct a portfolio Π to hedge the risk of
U . Since (4.1) has two sources of randomness, in addition to including asset S, we need
another asset U1 whose payoff just depends on S in the portfolio Π in order to able to hedge
U .

Let Π be a self financing portfolio consisting of one derivative U , −∆ share of S and
−∆1 share of U1.

Π = U −∆S −∆1U1 (4.5)

The change in Π over a small amount of time dt is:

dΠ = dU −∆dS −∆1dU1

=

[

L(U)dt+ µS
∂U

∂S
dW 1

t + µV
∂U

∂V
dW 2

t

]

−∆
[

µSdt+ σSdW
1
t

]

−∆1

[

L(U1)dt+ µS
∂U1

∂S
dW 1

t + µV
∂U1

∂V
dW 2

t

]

(4.6)

40

Collecting all the terms with respect to dt, dS and dV 2 results in :

dΠ = [L(U)−∆µS −∆1L(U1)] dt

+

[

µS
∂U

∂S
−∆µS −∆1µS

∂U1

∂S

]

dW 1
t

+

[

µV
∂U

∂V
−∆1µV

∂U1

∂V

]

dW 2
t (4.7)

To get rid of the randomness of dΠ, ∆1 and ∆2 should satisfy the following system:

µS
∂U

∂S
−∆µS −∆1µS

∂U1

∂S
= 0

µV
∂U

∂V
−∆1µV

∂U1

∂V
= 0

Solving this yields:

∆1 =

(

∂U

∂V

)

/

(

∂U1

∂V

)

∆ =
∂U

∂S
− ∂U1

∂S

(

∂U

∂V

)

/

(

∂U1

∂V

)

(4.8)

Using the above hedge strategy, Π is a risk less portfolio with

dΠ = [L(U)−∆1L(U1)] dt

To be arbitrage free,
dΠ = rΠdt

where r is the risk free interest rate. So we have

rΠ = L(U)−∆1L(U1)

Inserting (4.5), (4.8), and µS = rS into the above equation and collecting all the terms with
respect to U and U1 results in:

L(U)− rU
∂U
∂V

=
L(U1)− rU1

∂U1
∂V

Since this equation satisfies any choices of U1 and U , both the left hand side and the right
hand side should equal to a function λ(S, V, t) independent of U and U1. Setting λ equal to
0 results in :

∂U

∂t
+

1

2
σ2
S

∂2U

∂S2
+ µS

∂U

∂S
+

1

2
σ2
V

∂2U

∂V 2
+ µV

∂U

∂V
+ ρσSσV

∂2U

∂S∂V
− rU = 0 (4.9)

This is a two dimensional convection-diffusion equation with mixed partial derivatives.
Together with initial and boundary conditions, the PDE can be solved numerically. For
some special choices of µS, µV , σS, σV , an analytical solution of U can be found. For
example, the popular Heston [40] and SABR models [37] which will be introduced in the
following sections.

41

4.2.2 Heston PDE

The Heston model [40] assumes following dynamics for the risky asset S

dSt = rStdt+
√

VtStdW
1
t (4.10)

dVt = κ(θ − Vt)dt+ σ
√

VtdW
2
t (4.11)

dW 1
t dW

2
t = ρdt (4.12)

where κ is the mean reversion rate, θ is the long run variance, σ is the volatility of variance,
ρ is the correlation parameter. Compared to (4.1), we have

µS = rSt

σS =
√

VtSt

µV = κ(θ − Vt)

σV = σ
√

Vt

Inserting them into (4.9) and ignoring the subscript t, we obtain the PDE for U under the
Heston model,

∂U

∂t
+

1

2
S2V

∂2U

∂S2
+ rS

∂U

∂S
+

1

2
σ2V

∂2U

∂V 2
+ κ(θ − V)

∂U

∂V
+ ρσSV

∂2U

∂S∂V
− rU = 0 (4.13)

The above derivation assumes the asset does not pay any dividends. When the dividends
are not zero, the above equation needs to be modified by replacing r with r−rf , where rf is
the continuous dividend rate. In order for the variance to be positive, the Feller condition

2κθ > σ2 (4.14)

should be satisfied.

4.2.3 SABR PDE

The SABR model was introduced by [37] and and its acronym stands for Stochastic
Alpha Beta Rho. It is defined on the forward price of asset. The model assumes the
following form:

dft = αtf
β
t dW

1
t

dαt = σαtdW
2
t (4.15)

dW 1
t dW

2
t = ρ

where ft is the forward price. α is used to denote the variance. In order to change the
above process with respect to ft into a process about spot price St so that we may use the
generic equation (4.9), we make use of the following relationship between ft and St:

St = ftD(t, T) = e−r(T−t)ft

42

Using Ito calculus together with (4.15) we obtain:

dSt = rStdt+D1−βαtS
β
t dW

1
t

dαt = σαtdW
2
t (4.16)

dW 1
t dW

2
t = ρdt

Following the same argument as for the Heston model, we have

µS = rSt

σS = D1−βαtS
β
t

µV = 0

σV = σαt

Substituting them into the generic PDE (4.9) and noting V is referred to as α, the PDE of
derivative U for SABR model is:

∂U

∂t
+

1

2
D2(1−β)α2S2β ∂

2U

∂S2
+ rS

∂U

∂S
+

1

2
σ2α2 ∂

2U

∂α2
+ ρσD1−βα2Sβ ∂2U

∂S∂α
− rU = 0 (4.17)

4.3 An alternating direction implicit (ADI) approach

The Heston and SABR models are usually calibrated with respect to liquid vanilla
options and then are used to price exotic derivatives. The numerical cost of calibrating
the Heston or SABR models depends critically on the computational cost and numerical
performance of solving the forward pricing model (4.13) and (4.17), since the calibration
process usually involves solving the forward model for a number of different parameter set.
Consequently, the faster and less computational cost demanding is the forward model, the
faster and less expensive would be the calibration process. In this section, we’ll introduce
an alternation direction (ADI) method to solve PDE (4.13) and (4.17) using non-uniform
grids.

We’ll use the Heston PDE (4.13) as an example. The ADI method introduced can
also be extended to the SABR PDE (4.17). The ADI method is a widely-used approach
for solving PDEs in higher dimensions. By solving the PDE implicitly along one spatial
dimension at each time, it significantly reduces the computational cost by only requiring
the inversion of a small dimension fixed-width banded matrix at each time step instead of
the inversion of a large dimension sparse matrix, details of which will be explained in the
following. They are several ADI schemes for solving the 2D Heston PDE (4.13), we will
adopt the Craig-Sneyd scheme. The following derivation including notations follows closely
the paper by [45].

For succinctness, we change the capital case characters in (4.13) into their low case. So
the Heston PDE is:

∂u

∂t
+

1

2
s2v

∂2u

∂s2
+ rs

∂u

∂s
+

1

2
σ2v

∂2u

∂v2
+ κ(θ − v)

∂u

∂v
+ ρσsv

∂2u

∂s∂v
− ru = 0

43

After a change the variable t = T − τ , where T is the maturity date of a derivative,
this PDE becomes an initial boundary value problem. Let t denote τ and we consider the
general case when the asset pays dividend, the above PDE becomes

∂u

∂t
=

1

2
s2v

∂2u

∂s2
+ (r − rf)s

∂u

∂s
+

1

2
σ2v

∂2u

∂v2
+ κ(θ − v)

∂u

∂v
+ ρσsv

∂2u

∂s∂v
− (r − rf)u (4.18)

where rf is the continuous dividend rate.
The initial value of the above PDE is the payoff of the derivative. For a European call

option, it is:
u(s, v, 0) = max(0, s −K) (4.19)

where K is the strike of the European option.
At s = 0, the boundary condition is

u(0, v, t) = 0 (4.20)

At v = ∞, the boundary condition is

u(s,∞, t) = se−rf t 0 ≤ t ≤ T (4.21)

At S = ∞, the boundary condition is

∂u(∞, v, t)

∂s
= erf t 0 ≤ t ≤ T (4.22)

At v = 0, no condition is specified. It will be solved using the Heston PDE (4.18).
To solve (4.18)-(4.22) numerically, we first restrict the spatial domain to a bounded set

[0, smax] × [0, vmax], where smax = 8K and vmax = 5. “This yields a negligible modeling
error compared to the unbounded spatial domain for a wide range of parameter values”
[45]. In order to use a small number of mesh points, yet achieve high accuracy when solving
(4.18), we adopt a non-uniform mesh grid. To select the grid points along the s and v
directions, the variables s, v are usually transformed into another two variables, which will
be discretized uniformly in the new space, and then the discretized mesh points in the new
space will be transformed back to get the mesh points along s and v direction. We employ
the non-uniform mesh as in [64].

In the s direction, the transform is defined by : sinh(ξ) = (s −K)/c, where c > 0 is a
constant. We choose c = K/5. Since 0 ≤ s ≤ smax, −K/c ≤ ξ ≤ (smax −K)/c. Assuming
that along the s direction, the grid points are 0 = s0 < s1 < · · · < sm = smax, where m > 0
is an integer, then si is defined according to the following transformation:

si = K + c sinh(ξi) (0 ≤ i ≤ m) (4.23)

where

ξi = ξ0 + i ∗∆ξ (0 ≤ i ≤ m)

∆ξ = (ξmax − ξ0)/m

ξ0 = sinh−1(−K/c)

ξmax = sinh−1((smax −K)/c)

44

In the v direction, the transform is : sinh(η) = v/d, where d > 0 is a constant. We
choose d = vmax/500. Let 0 = v0 < v1 < v2 < · · · < vn = vmax be the mesh points along the
v direction, where n > 0 is an integer, then vi is defined from the following transformation:

vi = sinh(ηi) (0 ≤ i ≤ n) (4.24)

where

ηi = i∆η (0 ≤ i ≤ n)

∆η =
1

n
sinh−1(vmax/d)

The spatial grid defined by (4.23) and (4.24) assigns relatively more points close to s = K
and v = 0 respectively. The parameter c controls the number of grid points around s = K
since

∆si ≈ c ∆ξ whenever si ≈ K

with ∆si = si − si−1. Similarly, the parameter d controls the number of grid points around
v = 0 since

∆vi ≈ d ∆η whenever vi ≈ 0

with ∆vi = vi − vi−1. Figure 4.1 shows the grids when m = 30 and n = 30.

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

Figure 4.1: Sample grid defined by (4.23) and (4.24) when m = n = 30, K = 100.

To use a finite difference scheme to solve (4.18), we need to approximate the spatial
derivatives on the right hand side of the equation with a non-uniform mesh. In each spatial
direction, there is one first order partial derivative and one second order partial derivative.
There is also a mixed second order partial derivative when ρ 6= 0. Regardless of the spatial
direction s or v, the following scheme can be used to approximate the partial derivatives.

45

Let f : R → R be a smooth function, let x0 < x1 < x2 · · · < xm be a set of discrete
points, ∆xi = xi − xi−1, then f ′(xi) can be approximated using any of the following finite
difference scheme:

f ′(xi) ≈ αi,−2f(xi−2) + αi,−1f(xi−1) + αi,0f(xi) (4.25)

f ′(xi) ≈ βi,−1f(xi−1) + βi,0f(xi) + βi,1f(xi+1) (4.26)

f ′(xi) ≈ γi,0f(xi) + γi,1f(xi+1) + γi,2f(xi+2) (4.27)

where

αi,−2 =
∆xi

∆xi−1(∆xi−1 +∆xi)
, αi,−1 =

−∆xi−1 −∆xi
∆xi−1∆xi

, αi,0 =
∆xi−1 + 2∆xi

∆xi(∆xi−1 +∆xi)

βi,−1 =
−∆xi+1

∆xi(∆xi +∆xi+1)
, βi,0 =

∆xi+1 −∆xi
∆xi∆xi+1

, βi,1 =
∆xi

∆xi+1(∆xi +∆xi+1)

γi,0 =
−2∆xi+1 −∆xi+2

∆xi+1(∆xi+1 +∆xi+2)
, γi,1 =

∆xi+1 +∆xi+2

∆xi+1∆xi+2
, γi,2 =

−∆xi+1

∆xi+2(∆xi+1 +∆xi+2)

f ′′(xi) can be approximated by the following scheme:

f ′′(xi) ≈ δi,−1f(xi−1) + δi,0f(xi) + δi,1f(xi+1) (4.28)

where

δi,−1 =
2

∆xi(∆xi +∆xi+1)
, δi,0 =

−2

∆xi∆xi+1
, δi,1 =

2

∆xi+1(∆xi +∆xi+1)

Schemes (4.25-4.28) can be proved to be second order accurate provided f is a smooth
function and the mesh consisting of xi is smooth. Both (4.26) and (4.28) are centered
schemes. (4.25) and (4.27) are upwind schemes.

Let f : R2 → R be a function of two variables x and y, let y0 < y1 < · · · < yn be a set
of discrete mesh points along the y direction with ∆yj = yj − yj−1. xi is still as defined
above. fxy(xi, yj) can be approximated using the following finite difference scheme:

∂2f

∂xy
(xi, yj) ≈

1
∑

k, l=−1

βi, kβ̂j, lf(xi+k, yj+l) (4.29)

where β̂j,l is defined analogous to the coefficients β in (4.26) but relevant to the y direction.
(4.29) can also be proved to be a second order accurate scheme provided f and the mesh
grids along x and y direction satisfy some smoothness conditions.

After the spatial finite difference approximation and including the boundary conditions,
the initial boundary value problem (4.18)-(4.22) is transformed into an ordinary initial value
problem:

dU

dt
= AU + b, U(0) = U0 (4.30)

46

where U is a vector of dimension p = m×n, A is a matrix of dimension p× p. b is a vector
of dimension p. U0 and b are obtained from the initial condition of (4.19) and the boundary
conditions (4.20)-(4.22) respectively.

A direct solution of the above initial boundary value problem can be summarized by
the following implicit-explicit(IMEX) scheme:

Uk+1 − Uk

∆t
= θ(An+1Un+1 + bn+1) + (1− θ)(AnUn + bn) (4.31)

(4.31) is also called θ-method. When θ = 0, it is the forward Euler scheme; when θ = 1,
it corresponds to the backward Euler scheme; when θ = 1/2, it is the Crank-Nicolson(CN)
scheme. The forward Euler scheme is an explicit scheme and it does not involve any matrix
inversion when computing the solution at the next time step. However, it is not stable.
When θ 6= 0, the θ-method is an implicit scheme. It is stable. However, solving it requires
the inversion of the matrix I − θ∆tA of size p = m × n at each time step, which can be
computationally demanding. The reason for this is the matrix I − θ∆tA, and hence the
matrices of LU decomposition, possesses a bandwidth proportional to min(m,n) [45]. In
addition, if the mesh grid is refined by a factor of 10 in each direction, the dimension of the
matrix I− θ∆tA will increase 100 times.

To improve the efficiency, the ADI approach, which stands for alternating direction
implicit, is introduced. It decomposes the spatial operator A into several sub-spatial opera-
tors, each of which contains only the spatial derivatives along one direction, and treats only
one sub-spatial operator implicitly at one time while keeping other sub-spatial operators
explicit. By doing this, it reduces the problem from a 2-D problem into a 1-D problem dur-
ing the implicit step, for which the matrix inversion is proportional to a fixed band width
independent of the dimension of the problem, see [29].

A is split into three matrices:

A = A0 +A1 +A2

where A0 represents the mixed spatial derivative operator, A1 denotes the spatial operator
in the s direction, and A2 denotes the spatial operator in the v direction. The ru term is
distributed equally into A1 and A2. Accordingly, we split b into three vectors in the same
way as for A:

b = b0 + b1 + b2

where b0, b1, b2 correspond to the mixed spatial component, the s component, and the v
component respectively. We can then rewrite (4.30) as follows:

dU

dt
=

2
∑

i=0

AiU + bi

For simplicity of notation, define F (t, U) = AY + b(t), where U ∈ R
p, b ∈ R

n, and A is
as defined above. Define Fj(t, U) = AjU + bj, where U ∈ R

p, bj ∈ R
n, and Aj is as defined

above. There are several different versions of ADI schemes for solving the PDE (4.18), such
as the Douglas(Do) scheme [26], Craig-Sneyd(CS) scheme [24], Modified Craig-Sneyd(MCS)

47

scheme, and the Hundsorfer-Verwer(HV) scheme [43]. Among them, the Douglas scheme
is simplest as listed in the following.

Douglas(Do) scheme

Y0 = Un−1 +∆tF (tn−1, Un−1)

Yj = Yj−1 + θ∆t(Fj(tn, Yj)− Fj(tn−1, Un−1)) (j = 1, 2) (4.32)

Un = Ỹ2

where θ is a parameter that controls the degree of implicity. For the Douglas scheme, at
each step, it first computes an estimate of the solution using an explicit scheme, then the
estimate is corrected in two consecutive substeps by solving the PDE implicitly along only
one spatial direction at each substep.

Craig-Sneyd(CS) scheme

Y0 = Un−1 +∆tF (tn−1, Un−1)

Yj = Yj−1 + θ∆t(Fj(tn, Yj)− Fj(tn−1, Un−1)) (j = 1, 2)

Ỹ0 = Y0 +
1

2
∆t(F0(tn, Y2)− F0(tn−1, Un−1)) (4.33)

Ỹj = Ỹj−1 + θ∆t(Fj(tn, Ỹj)− Fj(tn−1, Un−1)) (j = 1, 2)

Un = Ỹ2

The Craig-Sneyd scheme as listed above performs the “predictor-corrector” step twice.
The first three steps of the CS scheme is the same as the Do scheme. After the first round
of predictor-corrector operation, the CS scheme computes another estimate followed by
two steps of corrections. In both of these two schemes, the mixed operator F0 is treated
explicitly. The computational savings result from the fixed band width of the matrix to be
inverted during the correction step and that the band width is independent of m or n. The
matrices to be inverted in the correction step corresponding to the spatial operators F1 and
F2 are diagonal and pentadiagonal [52] respectively. As a result, the total floating point
operations of the above two schemes is directly proportional to p, which is more efficient
than an IMEX scheme.

For the Do scheme, the order of accuracy is 1 for any θ and for general F0, F1, and F2.
For the CS scheme, the order of accuracy is 2 when and only when θ = 1/2 for general
F0, F1, and F2. When θ ≥ 1/2, the Do scheme is unconditional stable. The CS scheme is
unconditionally stable for any θ. The MCS and HV schemes can attain second order of
accuracy for any θ. For details, see [45]. In this thesis, we adopt the CS scheme by fixing
θ = 1/2.

4.4 Test of Craig-Sneyd(CS) scheme

To verify the correctness of the Craig-Sneyd(CS) scheme, we carried out the following
numerical test. The parameters for the Heston model are κ = 1.5, θ = 0.04, σ = 0.3,
ρ = −0.9, r = 0.025, rf = 0 and s0 = 100. The parameters are the same as [2] and [45].

48

The European option has maturity T = 1.0 and strike K = 100. We are interested in the
price of the option for the region defined in the following.

{u(s, t) | 1
2
K < s <

3

2
K, 0.1 < v < 1.0}

There are two reasons why we choose this region: first, most options in the market lie
within this region, second, we use the non-uniform grid defined in (4.23) and (4.24) for
computation. The absolute error between the computed option prices using the CS scheme
and the analytical solution when m = 200 = 2n = 200 is displayed in Figure 4.2. For this
specific configuration of the Heston model, the absolute error is within one cent.

0
0.2

0.4
0.6

0.8
1

50

100

150
0

1

2

3

4

x 10
−3

vS

0.5

1

1.5

2

2.5

3

x 10
−3

Figure 4.2: The absolute error between the computed option prices using CS scheme and the analytical
solution

Next, we verify the correctness of Craig-Sneyd(CS) scheme by checking the order of
convergence as in [45]. We use the maximum norm as a measure of the global spatial
discretization error at time t = T :

e(m,n) = max{|u(si, vj , T)− Uk(T)| :
1

2
K < si <

3

2
K, 0.1 < vj < 1.0}

where u(si, vj , T) is the numerical solution of the Heston PDE (4.18-4.22) at grid point
(si, vj) when t = T , Uk(T) is the corresponding true price of the option at the grid point
(si, vj) when t = T . Figure 4.3 exhibits the plot of global spatial discretization error as
m = 2n increases. The absolute value of the slope of the line fitted to the plot is 2.1, which
suggests that the Heston PDE is quadratically convergent.

Similarly, we define the global temporal discretization error at time t = T = nt∆t by

ê(nt;m,n) = max{|u(si, vj , T)− Uk(T)| :
1

2
K < si <

3

2
K, 0.1 < vj < 1.0}

where nt is an integer. Here m,n are the number of mesh points along the s and v direction.
They are fixed in the test with m = 2n = 100. Again the maximum norm is used as
a measure of the error. Figure 4.4 plots the global temporal discretization error as nt
increases. The absolute value of the slope of the line fitted to the data is 1.9, which
indicates a quadratic order of convergence in the time coordinate.

49

1.4 1.5 1.6 1.7 1.8 1.9 2
−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

log10(n)

lo
g1

0(
S

pa
tia

l E
rr

or
)

Figure 4.3: log10(e(2n, n)) versus log10(n) as n = 30, 40, 50, 100

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

log10(nt)

lo
g1

0(
T

em
po

ra
l E

rr
or

)

y = − 1.9*x + 1.6

Figure 4.4: log10(ê(nt)) versus log10(nt) as nt = 10, 20, 30, 40, 50, 60. Blue curve: plot of the data points.
Red line: a line fitted to the data points

50

CHAPTER 5

PROPER ORTHOGONAL DECOMPOSITION

(POD) REDUCED ORDER MODELING

5.1 Introduction

In practice, traders who use models to price financial instruments usually go through
two processes: first, a model is calibrated to the market; second, with the parameters
obtained from the first step, the model is used to price a financial instrument. In this
way, the price of the instrument is considered to be consistent with the market. Traders
especially high frequency traders, never stop seeking algorithms that can achieve the above
two process as fast as possible. Accuracy, speed, cost are also constantly the three major
issues in computational finance. Typically, given the parameters of a model to compute the
output(price) of a model is called the forward problem. Calibration of a model is called
the inverse problem. The inverse problem is much more complex compared to the forward
problem and depends closely on the solution of the forward problem. The faster and less
expensive of the forward problem, the higher the possibility of a faster and less expensive
solution of the inverse problem. This is because the inverse problem usually involves solving
the forward problem a number of times for different parameter sets. While the non-uniform
grid ADI approach in the previous chapter is very efficient, we seek a method to speed up
the process of solving the forward problem even more in this chapter. The method we will
apply can be categorized in the framework of reduced order modeling. In particular, we
will adopt the method Proper Orthogonal Decomposition (POD) reduced order modeling
for our purposes.

Reduced order modeling has already found its applications in a number of research
fields, such as meteorology, oceanography, electric circuit design and etc. It seeks to find
a subspace to approximate the dynamics of a usually large dimension, nonlinear dynamic
system, for which the computational cost and storage requirements are demanding. The
necessity of reduced order modeling is even more obvious when it comes to the inverse
problem of a large-scale, nonlinear dynamic problems.

The original idea of proper orthogonal decomposition can be traced back to [55]. It has
been applied under other names such as Karhunen-Loève decomposition, principal compo-
nent analysis, factor analysis, or total least-squares estimation. To project a high dimension
dynamic system to a low dimension system, POD accomplishes this by first finding an or-
thogonal basis that spans the a given data set of the original high dimension system, then

51

retaining only several bases selected by a certain measure, and then forming a reduced model
in the subspace spanned by the bases retained to approximate the dynamics of original full
model. The number of bases retained constitutes the dimension of the reduced model. How
well the dynamics of the original full model can be represented by the reduced model de-
pends clearly on how well we choose the data set that is used to construct the orthogonal
basis. Here we use the method of snapshots introduced by [62]to generate the data set.
The full model is simulated up to a certain time T , during which a number of snapshots
of the dynamic system is taken and collected as the data to represent the dynamics of the
full model. Each snapshot contains the spatial information of the system at a certain time
t ∈ [0, T].

As shown in the following, the method of POD reduced order modeling requires only
standard matrix operations. Compared to the finite element method or Fourier transform
method, the POD reduced order modeling selects a basis that is relevant to the dynamics
of a system. By doing this, it is more likely to find a small number of bases or features
that best describe the dynamics of a system. In the following, we will introduce in detail
the method of POD reduced order modeling with an application for the Heston model.
Application to the SABR model can be derived similarly. The description of the POD is
analogous to [57] and [41].

5.2 Proper orthogonal decomposition (POD)

5.2.1 Construction of POD basis

We will limit our consideration for only finite dimension dynamic system. For infinite
dimensional problems, we assume it will be truncated and solved as a finite dimension
problem, as for the Heston model (4.18). Let us assume there is a data set describing the
dynamic system.

Y = [y1, y2, · · · , ym]

where yi ∈ R
n, 1 ≤ i ≤ m. n is the dimension of the dynamic system and it typically equals

to the number of mesh points. m is the number of snapshots. We want to find a subspace
of fixed rank d so that when Y is projected into this subspace, the residual is minimized,
i.e.,

min
{φ1,φ2,··· ,φd}

m
∑

i=1

‖ yi −Πdyi ‖2=
m
∑

i=1

‖ yi −
j=d
∑

j=1

αjφj ‖2 (5.1)

where ‖ · ‖2 is the L2 norm,

Πdyi =

j=d
∑

j=1

αjφj

is the projection of yi into the subspace spanned by the orthonormal basis [φ1, φ2, · · · , φd],
where φj ∈ R

n, j = 1, 2, · · · , d. αj =< yi, φj >, where < ·, · > is an inner product defined
for the vector space of Rn.

The solution of above problem turns out to be directly related to the solution of the
following eigenvector problem:

Kuj = λjuj j = 1, 2, · · · , n (5.2)

52

and

< ui, uj >=

{

0 if i 6= j

1 if i = j
(5.3)

where K is the covariance matrix given by K = YYT . Since K is always a positive
semidefinite square matrix, the eigenvalues λj satisfy: λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. uj is the
eigenvector of K corresponding to eigenvalue λj .

The optimal subspace is the space spanned by bases u1, u2, · · · , ud, which we denote as
Vd. The vectors uj, j = 1, 2, · · · , d are the bases φi to find and are called POD modes.
Furthermore, the residual of the projection equals the sum of the remaining eigenvalues of
K [57] :

min
{φ1,φ2,··· ,φd}

m
∑

i=1

‖ yi −Πdyi ‖2=
n
∑

i=n+d−1

λi (5.4)

Once the POD basis have been found, we seek to simulate the full model by constructing
a reduced model in the subspace of Vd.

yPOD =

d
∑

i=1

αi(t)φi (5.5)

where αi(t) is to be found and is utilized to simulate the time evolution of the dynamic
system.

The reduced model can be also formulated by removing the mean of data first and then
projecting the remaining data into a subspace. The reduced model then has the form of

yPOD = ȳ +

d
∑

i=1

αi(t)φi (5.6)

where ȳ =
∑m

i=1 yi, φi is the normalized eigenvector of the matrix K = YYT , and Y =
[y1 − ȳ, y2 − ȳ, · · · , ym− ȳ]. This form applies to cases when the mean of y is not the major
interest, for example, the Karman’s vortex street, which is a superposition of a mean flow
and a vortex structure, or cases when the boundary conditions are not homogeneous in
terms of the spatial variables.

5.2.2 Choosing the dimension

One important question for POD is how to choose the dimension d of the subspace?
Equation (5.4) gives us some guidance for this question. Since the eigenvalues λi are sorted
in a decreasing order, we can choose d such that the sum of the remaining eigenvalues is
close to zero. It makes sense since in practice large singular values correspond to major
modes of a dynamic system while small singular values correspond to small perturbations
of a dynamic system. We define the relative information content as follows.

I(d) =

∑d
i=1 λi

∑n
i=1 λi

(5.7)

53

The goal is to choose d so that I(d) is close to 1 to keep the most information of the data.
This is achieved by fixing a percentage γ close to 1 to represent the amount of information
to retain, then choose d such that

d = arg min {I(d) : I(d) > γ}

5.2.3 Method of snapshots

The size of the matrix K is n × n, where n is the dimension of a dynamic system.
If the dimension n is really large, for example, of the order of 106, a direct eigenvalue
decomposition of the matrix K to compute the POD basis is not effective any more. In
cases like this, the number of snapshots m is usually less than n. We still have data

Y = [y1 − ȳ, y2 − ȳ, · · · , ym − ȳ]

where ȳ =
∑m

i=1 yi is still the average of the ensemble of snapshots.
In the method of snapshots, instead of computing the eigenvectors directly of the co-

variance matrix K = YYT , we first solve the eigenvectors of matrix K̃ = YTY, which is
of size m ×m. m is usually much less than n. It is easy to compute the eigenvectors and
eigenvalues λj of K̃.

YTYνj = λjνj j = 1, 2, · · · ,m (5.8)

Then the POD basis φi can be computed in the following way:

φi =
1√
λi

Yνj j = 1, 2, · · · ,m (5.9)

The reason why we can use (5.9) to compute POD modes φi is detailed in the following
section, which is based singular value decomposition(SVD).

5.2.4 POD and singular value decomposition (SVD)

Equation (5.9) can be easily proved by using singular value decomposition(SVD) since
SVD can be applied to any rectangular matrix while the eigenvalue decomposition just
applies to square matrices. For a general matrix of the Y ∈ R

n×m with rank d, the singular
value decomposition of Y is in the form of:

Ynm = UnnSnmVT
mm

= [Ud,U0]

[

Sd 0
0 0

]

[Vd,V0]
T

= UdSdV
T
d

(5.10)

where Unn and Vmm are all orthonormal matrices. S is a diagonal matrix with only d
nonzero diagonal entries. Sd = diag(λ1, λ2, · · · , λd) with λ1 ≥ λ2 ≥ · · ·λd > 0.

From (5.10), we can obtain the following by matrix multiplication:

K = YYT = USVTVSTU = US2UT

54

where S2 = diag(λ2
1, λ

2
2, · · · , λ2

d). For simplicity, we have also dropped the subscript of d for
all the U,S,V terms. Multiplying U to both side of the above equation, we obtain:

KU = S2U (5.11)

From the above equation, we can deduce that the matrix K has only d nonzero eigenvalues,
which is the square of the λi defined in (5.10). The eigenvectors of K or the POD basis are
just the columns of U.

Similarly, we can obtain

K̃ = YTY = VTSUUTSV = VTS2V

thus
K̃VT = S2VT

So K̃ has the same eigenvalues as K, and its eigenvectors are the columns of matrix VT .
When n ≫ m, i.e. the dimension of a system is much larger than the number of

snapshots, it is computationally efficient to find the eigenvalues and eigenvectors of K̃ first,
then plug them into (5.10) to solve for the POD basis U. Note the λ defined in (5.9) and
(5.10) are different with the former being the square of the latter.

5.2.5 Galerkin projection

Assume a system given by,

∂y

∂t
= L(y, p, t) (5.12)

with y(0) = y0

where L is a spatial operator, y represents the multi-dimensional state variables, and p
represents all the parameters. There are usually additional boundary conditions imposed.
When discretized, y ∈ R

n represents the state variables for a mesh grid, where n is the
number of mesh points; L would be an n×n matrix representing the discretized spatial op-
erator. The boundary conditions are already considered in the discretized spatial operator.
So (5.12) represents a discretized dynamic system. It is an initial value problem.

Reduced order modeling is to find a reduced model, as in (5.6), so that yPOD constructed
in a small dimension subspace will approximate the full model y in higher dimension within
tolerable error.

Substituting (5.6) into (5.12), we obtain:

∂(ȳ +
∑d

i=1 αi(t)φi)

∂t
= L(ȳ +

d
∑

i=1

αi(t)φi, p, t) (5.13)

with ȳ +
d
∑

i=1

αi(0)φi = y0

In order to find the coefficients αi(t), we use the Galerkin projection. Galerkin projection
is to find an approximate solution yPOD so that the approximation error projected into the
reduced space is zero, see [8].

55

The approximation error is:

Errorappox =
∂(ȳ +

∑d
i=1 αi(t)φi)

∂t
− L(ȳ +

d
∑

i=1

αi(t)φi, p, t) (5.14)

Galerkin projection requires:

< Errorappox, φj >= 0 for j = 1, 2, · · · , d (5.15)

which is equivalent to

<
∂(ȳ +

∑d
i=1 αi(t)φi)

∂t
, φj >=< L(ȳ+

d
∑

i=1

αi(t)φi, p, t), φj > for j = 1, 2, · · · , d (5.16)

Since ȳ and the basis φi are independent of t, the above equation can be reduced to:

<

d
∑

i=1

dαi(t)

dt
φi, φj >=< L(ȳ +

d
∑

i=1

αi(t)φi, p, t), φj > for j = 1, 2, · · · , d (5.17)

The linearity of the inner product results in:

d
∑

i=1

dαi(t)

dt
< φi, φj >=< L(ȳ +

d
∑

i=1

αi(t)φi, p, t), φj > for j = 1, 2, · · · , d (5.18)

φi being an orthonormal basis leads to:

α̇i(t) =< L(ȳ +
d
∑

i=1

αi(t)φi, p, t), φi > (5.19)

where α̇i = dαi

dt
for i = 1, 2, · · · , d. In analogous to above derivation process, the initial

condition of αi(0) can be found by:

αi(0) =< y0 − ȳ, φi > (5.20)

for i = 1, 2, · · · , d.
In summary, the coefficients αi of the POD reduced model in the form of (5.6) is governed

by the following dynamics:

α̇i(t) =< L(ȳ +

d
∑

i=1

αi(t)φi, p, t), φi > (5.21)

αi(0) =< y0 − ȳ, φi >

for i = 1, 2, · · · , d. This is a set of ordinary differential equations with a dimension of d.

56

5.3 Application to the Heston model

In this section, we test three scenarios: strong negative correlation, strong positive
correlation, and no correlation. In all the three scenarios we assume rf = 0. However, the
POD method can be extended to the case when rf 6= 0.

Case I Case II Case III

κ 1.5 0.6067 2.0
θ 0.04 0.0707 0.2
σ 0.3 0.25 0.3
ρ -0.9 0.7 0.0
r 0.025 0.05 0.03
T 1.0 3.0 1.0
K 100 100 100

All of the three cases satisfy the Feller condition (4.14). Case I has been used in Chapter
4 for the verifying the CS scheme. Case II is from [45] and [60], where we use σ =0.25.
Case III represents the cases when ρ = 0. In all three cases, m = 2n = 100, and 40
snapshots distributed evenly in time are taken. Figure 5.1 shows the decay of eigenvalues
defined in (5.2) for all three cases. We retain only the five modes corresponding the first
five eigenvalues, i.e, we choose d = 5. This leads to the relative information content I(d)
defined in (5.7) to be more than 0.9999.

0 5 10 15 20 25 30 35 40
−15

−10

−5

0

5

10

Index i

lo
g1

0(
λ i)

Case I
Case II
Case 3

Figure 5.1: log10(λi) where λi is the eigenvalues defined in (5.2)

Case I. Case I corresponds to the case when there is strong negative correlation.
Figure 5.2 displays the solution u(s, t) of the full model (4.18-4.22) for the region when
0 ≤ s ≤ 200 and 0 ≤ v ≤ 1.0. The price of u ranges from 0 to more than 100 depending
on the initial asset price s and volatility v. Figure 5.3 shows the absolute errors of the
option prices u(s, t) between the full model and the POD reduced model (5.21) in this

57

0

0.5

1

1.5

0

100

200

300
0

50

100

150

v

Full model solution in interested domain

S
 0

20

40

60

80

100

Figure 5.2: Full model solution of {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1} for the parameter set in Case I.

region. The absolute errors are bounded by 10 cents for option prices ranging from 0− 100
dollars. Figure 5.4 exhibits the relative errors of u(s, t) between the full model and the
POD reduced model for the region when 70 ≤ s ≤ 100 and 0.1 ≤ v ≤ 1.1. We plot the
relative errors only in this region since this region contains most of the interesting option
prices. We can see that most of the relative errors are below 1%. Big relative errors occur
at the lower left corner when both s and v are small, where the option prices are close zero
and allow for higher tolerance of relative errors due to the bid and ask spreads. We do
not plot the relative errors for {u(s, v) | 0 ≤ s ≤ 70, 0 ≤ v ≤ 0.1} since the relative errors
are high in this region and they will mask the relative errors in other regions if they are
plotted. Furthermore, the option prices in this region are almost to zero, which we will not
be interested in.

Case II. Case II corresponds to the case when there is strong positive correlation.
Figure 5.5 displays the solution u(s, t) of the full model (4.18-4.22) for the region when
0 ≤ s ≤ 200 and 0 ≤ v ≤ 1.0. The price of u ranges from 0 to more than 120 depending on
the initial asset price s and volatility v. Figure 5.6 shows the absolute errors of the option
prices u(s, t) between the full model and the POD reduced model (5.21) in this region.
The absolute errors are bounded by 40 cents for option prices ranging from 0− 120 dollars.
Figure 5.7 exhibits the relative errors of u(s, t) between the full model and the POD reduced
model for the region when 70 ≤ s ≤ 100 and 0.1 ≤ v ≤ 1.1. We can observe that the relative
errors are in the order of 0.1%. Big relative errors again happen at the lower left corner
where both s and v are small, where the option prices are close zero and allow for higher
tolerance of relative errors. For the same reason as in Case I, we do not plot the relative
errors for {u(s, v) | 0 ≤ s ≤ 70, 0 ≤ v ≤ 0.1}.

58

0

0.5

1

1.5

0

100

200

300
0

0.02

0.04

0.06

0.08

0.1

0.12

v

Absolute Error between full solution and POD solution

S

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 5.3: Absolute errors of the option prices {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1.0} between the full model
and POD reduced model for the parameter set in Case I.

v

S

0.2 0.4 0.6 0.8 1

80

90

100

110

120

130

140

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 5.4: Relative errors of the option prices {u(s, t) | 70 ≤ s ≤ 150, 0.1 ≤ v ≤ 1.1} between the full
model and POD reduced model for the parameter set in Case I.

59

0
0.2

0.4
0.6

0.8
1

0

100

200

300
0

50

100

150

v

Full model solution in interested domain

S
 0

20

40

60

80

100

120

Figure 5.5: Full model solution of {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1} for the parameter set in Case II.

0
0.2

0.4
0.6

0.8
1

0

100

200

300
0

0.1

0.2

0.3

0.4

v

Absolute Error between full solution and POD solution

S
 0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 5.6: Absolute errors of the option prices {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1.0} between the full model
and POD reduced model for the parameter set in Case II.

60

v

S

0.2 0.4 0.6 0.8 1

80

90

100

110

120

130

140

2

4

6

8

10

12

14

16

18
x 10

−3

Figure 5.7: Relative errors of the option prices {u(s, t) | 70 ≤ s ≤ 150, 0.1 ≤ v ≤ 1.1} between the full
model and POD reduced model for the parameter set in Case II.

Case III. Case III corresponds to the case when there is no correlation. Figure 5.8
displays the solution u(s, t) of the full model (4.18-4.22) for the region when 0 ≤ s ≤ 200
and 0 ≤ v ≤ 1.0. The price of u ranges from 0 to more than 100 depending on the initial
asset price s and volatility v. Figure 5.9 shows the absolute errors of the option prices u(s, t)
between the full model and the POD reduced model (5.21) in this region. The absolute
errors are bounded by 14 cents for option prices ranging from 0 − 100 dollars. Figure 5.10
exhibits the relative errors of u(s, t) between the full model and the POD reduced model
for the region when 70 ≤ s ≤ 100 and 0.1 ≤ v ≤ 1.1. We plot the relative errors only in this
region since this region contains most of the interested option prices. We can see that the
relative errors are in the order of 0.1%. Big relative errors again happen at the lower left
corner when both s and v are small, where the option prices are close zero and allow for
higher tolerance of relative errors. For the same reason as Cases I and II, we do not plot
the relative errors for {u(s, v) | 0 ≤ s ≤ 70, 0 ≤ v ≤ 0.1}

61

0
0.2

0.4
0.6

0.8
1

0

100

200

300
0

50

100

150

v

Full model solution in interested domain

S
 0

20

40

60

80

100

Figure 5.8: Full model solution of {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1} for the parameter set in Case III.

0
0.2

0.4
0.6

0.8
1

0

100

200

300
0

0.05

0.1

0.15

0.2

v

Absolute Error between full solution and POD solution

S
 0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Figure 5.9: Absolute errors of the option prices {u(s, t) | 0 ≤ s ≤ 200, 0 ≤ v ≤ 1.0} between the full model
and POD reduced model for the parameter set in Case III.

62

v

S

0.2 0.4 0.6 0.8 1

80

90

100

110

120

130

140

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Figure 5.10: Relative errors of the option prices {u(s, t) | 70 ≤ s ≤ 150, 0.1 ≤ v ≤ 1.1} between the full
model and POD reduced model for the parameter set in Case III.

Figures 5.11-5.13 displays the basis of the subspace of POD reduced order modeling for
the parameter set in case I.

0

0.5

1

1.5

50

100

150
−5

0

5

10

15

x 10
−3

vs
 0

2

4

6

8

10

12

x 10
−3

0

0.5

1

1.5

50

100

150
−0.01

−0.005

0

0.005

0.01

vs

−8

−6

−4

−2

0

2

4

6

x 10
−3

Figure 5.11: The first two modes of the reduced model space. Left figure: the first mode;
Right figure: the second mode

63

0

0.5

1

1.5

50

100

150
−0.01

−0.005

0

0.005

0.01

vs

−6

−4

−2

0

2

4

6

8
x 10

−3

0

0.5

1

1.5

50

100

150
−0.01

−0.005

0

0.005

0.01

vs

−4

−2

0

2

4

6

x 10
−3

Figure 5.12: The third and fourth modes of the reduced model space. Left figure: the third
mode; Right figure: the fourth mode

0

0.5

1

1.5

50

100

150
−0.01

−0.005

0

0.005

0.01

vs

−6

−4

−2

0

2

4

6

x 10
−3

Figure 5.13: The fifth mode of the reduced model space

64

CHAPTER 6

SUMMARY AND FUTURE WORK

In chapters II and III, we addressed the issue of solving the calibration of the local volatil-
ity surface for European options in a non-parametric approach by using a second order
Tikhonov regularization. We selected one of the singular values of the Jacobian matrix of
the Dupire model as the regularization parameter. For the theoretical volatility models
with known analytical solution for European option prices, the proposed method recovers
almost exactly the true volatility surface. This method was also tested and proves to be
stable for a small amount of noises in the option prices. We also showed the significance of
the weighting of option prices when the option prices contain a significant amount of noises.

This method also performs reasonably well for real market data. The observed option
prices can be matched very well. The obtained volatility surface lies in a reasonable range
with nice general pattern, for example, the skew structure in the equity market and the
smile structure in the foreign exchange market. Some instability may still persist in the
volatility surface recovered. We attribute this partially to the noises in market data and our
assumption that every option is equally important in the market data. A proper weighting
scheme may prove to be necessary to reflect the relative importance of different options when
they exhibit different amount of noises. When using a constant regularization parameter,
the total CPU time is as small as 3-4 seconds for market data.

Although the techniques introduced above focus on calibration for local volatility model
for European options, the calibration technique proposed here is developed in a very general
framework so that it can be generalized to explore the calibration of other models such as
the hybrid local-stochastic volatility models or calibration with respect to other options,
such as American options.

In chapters IV, we presented an ADI approach to solve the Heston PDE for European
options using a non-uniform mesh as a cheap method of computing the European option
prices. In Chapter V, POD reduced order modeling with application in the Heston stochastic
volatility model was introduced as a method to reduce the CPU time required to compute
the European option prices even further. The original two dimensional convection-diffusion
PDE used to pricing European options is approximated by a small dimension ODE. The
relative errors are well within the bid-ask spreads. One future research area would consist in
extending POD reduced order modeling to the pricing of other exotic derivatives. The other
interesting area would be to use POD reduced order modeling to speed up the calibration
of stochastic volatility models.

65

BIBLIOGRAPHY

[1] Y. Achdou and O. Pironneau. Computational Methods for Option Pricing. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, 2005.

[2] H. Albrecher, P. Mayer, W. Schoutens, and J. Tistaert. The little Heston trap. Wilmott
Magazine, January 2007.

[3] A. K. Alekseev and I. M. Navon. The analysis of an ill-posed problem using multi-
scale resolution and second-order adjoint techniques. Computer Methods in Applied
Mechanics and Engineering, 190:1937–1953, 2001.

[4] L. Andersen and R. Brotherton-Ratcliffe. The equity option volatility smile: an implicit
finite difference approach. The Journal of Computational Finance, 1:37–64, 1998.

[5] L. Andersen and V. V. Piterbarg. Interest Rate Modeling, volume I. Atlantic Financial
Press, London, New York, 2010.

[6] L. Anderson. Option pricing with quadratic volatility: a revisit. Finance and Stochas-
tics, 15:191–219, 2011.

[7] J. Andreasen and B. Huge. Volatility interpolation. Risk, page 7679, Mar 2011.

[8] A. C. Antoulas. Approximation of Large-Scale Dynamical Systems. Society for Industry
and Applied Mathematics (SIAM), Philadelphia, 2005.

[9] R. C. Aster, B. Borchers, and C. Thurber. Parameter Estimation and Inverse Problems.
Elsevier Academic Press, Burlington, 2005.

[10] M. Avellaneda, C. Fridman, R. Holems, and D. Samperi. Calibrating volatility surface
via relative entropy minimization. Applied Mathematical Finance, 4:667–686, 1997.

[11] F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of
Political Economy, 81:637–659, 1973.

[12] J. N. Bodurtha,Jr. and M. Jermakyan. Nonparametric estimation of an implied volatil-
ity surface. The Journal of Computational Finance, 2:29–61, 1999.

[13] I. Bouchouev and V. Isakov. The inverse problem of option pricing. Inverse Problems,
13:L11–L17, 1997.

[14] I. Bouchouev and V. Isakov. Uniqueness,stability and numerical methods for the inverse
problem that arises in financial markets. Inverse Problems, 15:R95–116, 1999.

66

[15] L. Capriotti and M. Giles. Fast correlation greeks by adjoint algorithmic differentiation.
Risk, 23:79–83, 2010.

[16] P Carr and R Lee. Volatility derivatives. Annual Review of Financial Economics,
1:319–339, October 2009.

[17] W. Castaings, D. Dartus, F. X. Le Dimet, and G.-M. Saulnier. Sensitivity analysis and
parameter estimation for the distributed modeling of infiltration excess overland flow.
Hydrology and Earth System Sciences Discussions, 4:363–405, 2007.

[18] T. F. Coleman, Y. Li, and A. Verma. Reconstructing the unknown local volatility
function. The Journal of Computational Finance, 2:77–100, 1999.

[19] C. S. Constable, L. R. Parker, and G. C. Constable. Occam’s inversion: A practical
algorithm for generating smooth models from electromagnetic sounding data. Geo-
physics, 52(3):289–300, 1987.

[20] R. Cont, N. Lantos, and O. Pironneau. A reduced basis for option pricing. SIAM
Journal on Financial Mathematics, 2:287–316, 2011.

[21] R. Cont and P. Tankov. Non-parametric calibration of jumpdiffusion option pricing
models. Journal of Computational Finance, 7(3):1–49, 2004.

[22] L. Cordier, B. Abou El Majd, and J. Favier. Calibration of POD reduced-order models
using Tikhonov regularization. International Journal for Numerical Methods in Fluids,
63(2):269–296, 2010.

[23] J. C. Cox and S. A. Ross. The valuation of options for alternative stochastic processes.
Journal of Financial Economics, 3:145–166, 1976.

[24] I. J. D. Craig and A. D. Sneyd. An alternating-direction implicit scheme for parabolic
equations with mixed derivatives. Comp. Math. Appl., 16:341–350, 1988.

[25] S. Crepey. Calibration of the local volatility in a generalized Black-Scholes model using
Tikhonov regularization. Journal of Mathematical Analysis on SIAM, 34(5):1183–1206,
2003.

[26] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems
in two and three space variables. Trans. Amer. Math. Soc., 82:421–439, 1956.

[27] B. Dupire. Pricing with a smile. Risk, 7:18–20, 1994.

[28] H. Egger and H. W. Engl. Tikhonov regularization applied to the inverse problem of
option pricing: convergence analysis and rates. Inverse Problems, 21:1027–1045, 2005.

[29] G. Fairweather and I. M. Navon. A linear ADI method for the shallow-water equations.
Journal of Computational Physics, 37:1–18, 1980.

67

[30] R. Giering. Tangent linear and adjoint biogeochemical models. In P. Kasibhatla,
M. Heimann, P. Rayner, N. Mahowald, R. G. Prinn, and D. E. Hartley, editors, Inverse
methods in global biogeochemical cycles, pages 33–47. American Geophysical Union,
Washington DC, 2000.

[31] R. Giering and T. Kaminski. Recipes for adjoint code construction. ACM on Trans-
actions on Mathematical Software, 24:437–474, 1998.

[32] M. Giles and P. Glassman. Smoking adjoints: Fast calculation of greeks in monte carlo
calculation. Technical Report, NA-05/15, 2005.

[33] C. S. L. Graaf de. Finite difference methods in derivatives pricing under stochastic
volatility models. Master’s thesis, Universiteit Leiden, 2012.

[34] A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Math-
ematical programming: Recent Developments and Applications, pages 83–108. Kluwer
Academic Publishers, Dordrecht, 1989.

[35] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation,second edition. Society for Industrial and Applied Mathe-
matics (SIAM), Philadelphia, 2008.

[36] M. Gunzburger. Adjoint equation-based methods for control problems in incompress-
ible, viscous flows. Flow, Turbulence and Combustion, 65:249–272, 2000.

[37] P. S. Hagan, D. Kumar, Lesniewski A. S., and Woodward D. E. Managing smile risk.
Willmot Magazine, pages 84–108, 2002.

[38] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: numerical aspects of
linear inversion. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
1998.

[39] T. Hein. Some analysis of Tikhonov regularization for the inverse problem of op-
tion pricing in the price dependent case. Journal for Analysis and its Applications,
24(3):593–609, 2005.

[40] S. L. Heston. A closed-form solution for options with stochastic volatility with ap-
plication to bond and currency options. The Review of Financial Studies, 6:327–343,
1993.

[41] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge,
UK, second edition, 2012.

[42] J. C. Hull. Options, futures, and other derivatives. Pearson Education, New Jersey,
2009.

[43] W. Hundsdorfer and J. G. Verwer. Numerical solution of time-dependent advection-
diffusion-reaction equations. Springer, Berlin, 2003.

68

[44] K. Itô. Stochastic integral. Proc. Imp. Acad. Jap., 20(8):519–524, 1944.

[45] IN’T Hout K. J. and S. Foulon. ADI finite difference schemes for option pricing in
the Heston model with correlation. International Journal of numerical analysis and
modeling, 7(2):303–320, 2010.

[46] L. Jiang, Q. Chen, L. Wang, and J. E. Zhang. A new well-posed algorithm to recover
implied local volatility. Quantitative Finance, 3:451–457, 2003.

[47] L. Jiang and Y. Tao. Identifying the volatility of underlying assets from option prices.
Inverse Problems, 17:137–155, 2001.

[48] R. Lagnado and S. Osher. Reconciling difference. Risk, 10:79–83, 1997.

[49] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’Guide: Solution of
Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, 1998.

[50] J. Lions. Optimal control of systems governed by partial differential equations. Springer-
Verlag, 1968.

[51] R. Merton. Option pricing when underlying stock returns are discontinuous. Journal
of Financial Economics, 3:125–44, 1976.

[52] I. M. Navon. Pent: a periodic pentadiagonal systems solver. Communications in
Applied Numerical Methods, 3:63–69, 1987.

[53] I. M. Navon. Practical and theoretical aspects of adjoint parameter estimation and
identifiability in meteorology and oceanography. Dynamics of Atmospheres and Oceans,
27:55–59, 1998.

[54] I. M. Navon, X. Zou, J. Derber, and J. Sela. Variational Data Assimilation with an
Adiabatic Version of the NMC Spectral Model. Monthly Weather Review, 120:1433–
1446, 1992.

[55] K. Pearson. On lines and planes of closest to points in space. Philosophical Magazine,
1901.

[56] O. Pironneau. Proper orthogonal decomposition for pricing options. The Journal of
Computational Finance, 16(1):33–46, Fall 2012.

[57] Pinnau R. Model reduction via proper orthogonal decomposition. In Model Order
Reduction: Theory, Research Aspects and Applications, pages 95–109. Springer, 2008.

[58] E. W. Sachs and M. Schu. Reduced order models (POD) for calibration problems
in finance. In Numerical Mathematics and Advanced Applications,ENUMATH 2007,
pages 735–742, Heidelberg, 2008. Springer-Verlag.

[59] E. W. Sachs and M. Schu. A priori error estimates for reduced order models in finance.
ESAIM: Mathematical Modelling and Numerical Analysis, 47:449–469, March 2013.

69

[60] W. Schoutens, E. Simons, and J. Tistaert. A perfect calibration ! now what ? Wilmott
Magazine, March 2004.

[61] M. Schroder. Computing the constant elasticity of variance option pricing formula.
The Journal of Finance, XLIV(1):211–219, March 1989.

[62] L. Sirovich. Turbulence and the dynamics of coherent structures. i-iii. Quarterly of
Applied Mathematics, 45(3):561–590, 1987.

[63] A. N. Tikhonov and V. Y. Arsenin. Solution of Ill-posed Problems. Winston and Sons,
Washington, 1977.

[64] D. Travella and C. Randall. Pricing Financial Instruments. Wiley, 2000.

[65] G. Turinici. Calibration of local volatility using the local and implied instantaneous
variance. The Journal of Computational Finance, 13(2):1–18, 2009.

[66] C. Zhu, R. H. Byrd, and J. Nocedal. L-BFGS-B: Algorithm 778: L-BFGS-B, FOR-
TRAN routines for large scale bound constrained optimization. ACM Transactions on
Mathematical Software, 23(4):550–560, 1997.

70

BIOGRAPHICAL SKETCH

Jian Geng

EDUCATION
Florida State University Ocean University of China
Department of Mathematics Department of Marine Science
M.S. in Financial Mathematics B.S. in Physical Oceanography
2010 2005

PUBLICATION
Non parametric calibration of the local volatility surface for European options using a second
order Tikhonov regularization by J. Geng, I.M. Navon and X.Chen. Accepted by Quanti-
tative Finance in June 2013.

PROFESSIONAL EXPERIENCE
Southern Company, Atlanta, May 2012-Aug 2012
Intern, Risk Analysis Service (RAS)
Research Institute of HuaChuang Securities, Beijing, May 2010-Jul 2010
Intern, Financial Engineering Group

TEACHING EXPERIENCE
Calculus III solo Instructor (Spring 2013, Fall 2012)
Calculus II solo Instructor (Summer 2011)
Pre Calculus solo Instructor (Spring 2010, Fall 2010)

RESEARCH INTERESTS
Local and stochastic volatility modeling and calibration, Interest rates modeling and cali-
bration, POD Reduced Order Modeling

AWARDS
The second prize in the poster competition in the 14th Annual Financial Mathematics Fes-
tival, FSU, 2012;
Distinguished Teaching Assistant, Mathematics Department, FSU, 2013;

71

