
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

POD/DEIM nonlinear model order reduction of an ADI implicit
shallow water equations model
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a b s t r a c t

In the present paper we consider a 2-D shallow-water equations (SWE) model on a b-plane
solved using an alternating direction fully implicit (ADI) finite-difference scheme on a rect-
angular domain. The scheme was shown to be unconditionally stable for the linearized
equations.

The discretization yields a number of nonlinear systems of algebraic equations. We then
use a proper orthogonal decomposition (POD) to reduce the dimension of the SWE model.
Due to the model nonlinearities, the computational complexity of the reduced model still
depends on the number of variables of the full shallow – water equations model. By
employing the discrete empirical interpolation method (DEIM) we reduce the computa-
tional complexity of the reduced order model due to its depending on the nonlinear full
dimension model and regain the full model reduction expected from the POD model.

To emphasize the CPU gain in performance due to use of POD/DEIM, we also propose
testing an explicit Euler finite difference scheme (EE) as an alternative to the ADI implicit
scheme for solving the swallow water equations model.

We then proceed to assess the efficiency of POD/DEIM as a function of number of spatial
discretization points, time steps, and POD basis functions. As was expected, our numerical
experiments showed that the CPU time performances of POD/DEIM schemes are propor-
tional to the number of mesh points. Once the number of spatial discretization points
exceeded 10000 and for 90 DEIM interpolation points, the CPU time decreased by a factor
of 10 in case of POD/DEIM implicit SWE scheme and by a factor of 15 for the POD/DEIM
explicit SWE scheme in comparison with the corresponding POD SWE schemes. Moreover,
our numerical tests revealed that if the number of points selected by DEIM algorithm
reached 50, the approximation errors due to POD/DEIM and POD reduced systems have
the same orders of magnitude, thus supporting the theoretical results existing in the
literature.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

The shallow water equations are the simplest form of the equations of motion that can be used to describe the horizontal
(motion) structure of the atmosphere. They describe the evolution of an incompressible and inviscid fluid in response to
gravitational and rotational accelerations and their solutions represent East West propagating Rossby waves and inertia –
gravity waves.
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To avoid the limitations imposed by the Courant Friedrichs–Lewy (CFL) stability conditions restricting the time steps in
explicit finite difference approximations, implicit scheme must be considered. We propose here the alternating direction im-
plicit (ADI) method introduced by Gustafsson [1]. Linear and nonlinear versions of ADI scheme may be found in studies pro-
posed by Fairweather and Navon [2] and Navon and De Villiers [3]. Kreiss and Widlund [4] established the convergence of
alternating direction implicit methods for elliptic problems. Such methods reduce multidimensional problem to systems of
one dimensional problems (Douglas and Gunn [5], Yanenko [6] and Marchuck [7]).

The nonlinear algebraic systems corresponding to the discrete model were solved using the quasi-Newton method pro-
posed in Gustafsson [1]. This quasi-Newton method performs an LU decomposition done every Mth time step, where M is a
fixed integer. Since back substitution is a fast operation the scheme will be efficient as long as the number of iterations is
small.

The major issue in large scale complex modelling is that of reducing the computational cost while preserving numerical
accuracy. Among the model reduction techniques, the proper orthogonal decomposition (POD) method provides an efficient
means of deriving the reduced basis for high-dimensional nonlinear flow systems. The POD method has been widely and
successfully applied to signal analysis and pattern recognition as Karhunen–Loève, statistics as principal component analysis
(PCA), geophysical fluid dynamics and meteorology as empirical orthogonal functions (EOF) etc. The POD method was ap-
plied also to SWE model and we mention here the work of Cao et al. [8], Vermeulen and Heemink [9], Daescu and Navon
[10] and Altaf et al. [11].

In this paper we reduced the dimension of the SWE model by employing the POD method. However due to the nonlin-
earities of the implicit SWE model the computational complexity of the reduced shallow water equations model still de-
pends on the number of variables of the full shallow – water equations model. To mitigate this problem, we apply the
discrete empirical interpolation method (DEIM) to address the reduction of the nonlinear components and thus reduce
the computational complexity by implementing the POD/DEIM method.

DEIM is a discrete variant of the empirical interpolation method (EIM) proposed by Barrault et al. [12] for constructing an
approximation of a non-affine parameterized function, which was proposed in the context of reduced-basis discretization of
nonlinear partial differential equations. The application was suggested and analysed by Chaturantabut and Sorensen [13–
16].

The paper is organized as follows. In Section 2 we introduce the Gustafsson ADI fully implicit method applied to the shal-
low water equations model and briefly describe its algorithmic components since they are already available in archived lit-
erature. In Section 3 we describe in some detail the snapshot POD procedure and its implementation to the ADI method for
the SWE model. Section 4 addresses the snapshot POD combined with DEIM methodology and provides the detailed algo-
rithmic description of the DEIM implementation. In Section 5 we present the numerical experiments related to the POD/
DEIM procedure for both explicit and implicit schemes applied to the SWE models.

The POD/DEIM procedure amounts to replace orthogonal projection with an interpolation projection of the nonlinear
terms that requires the evaluation of only a few selected components of the nonlinear terms.

We evaluate the efficiency of DEIM as a function of number of spatial discretization points, time steps and basis functions
for this quadratically nonlinear problem and additional studies about the conservation of the integral invariants of the SWE,
root mean square errors (RMSEs) and correlation coefficients between full model, POD and POD/DEIM systems were
performed.

2. Brief description of the Gustafsson ADI method

In meteorological and oceanographic problems, one is often not interested in small time steps because the discretization
error in time is small compared to the discretization error in space. The fully implicit scheme considered in this paper is first
order in both time and space and it is stable for large CFL condition numbers. It was proved by Gustafsson [1] that the meth-
od is unconditionally stable for the linearized version of the SWE model.

Here we shortly describe the Gustafsson shallow water alternating direction implicit method Gustafsson [1], Fairweather
and Navon [2], Navon and de Villiers [3]. We are solving the SWE model using the b-plane approximation on a rectangular
domain.

@w
@t
¼ AðwÞ @w

@x
þ BðwÞ @w

@y
þ CðyÞw; ð1Þ

0 6 x 6 L; 0 6 y 6 D; t 2 ð0; tf �;

where w ¼ ðu;v ;/ÞT is a vector function, u;v are the velocity components in the x and y directions, respectively, h is the
depth of the fluid, g is the acceleration due to gravity and / ¼ 2

ffiffiffiffiffiffi
gh

p
.

The matrices A;B and C are expressed

A ¼ �
u 0 /=2
0 u 0

/=2 0 u

0
B@

1
CA; B ¼ �

v 0 0
0 v /=2
0 /=2 v

0
B@

1
CA; C ¼

0 f 0
�f 0 0
0 0 0

0
B@

1
CA;
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where f is the Coriolis term given by

f ¼ f̂ þ bðy� D=2Þ; b ¼ @f
@y
; y 2 ½0;D�; D > 0;

with f̂ and b constants.
We assume periodic solutions in the x-direction

wðx; y; tÞ ¼ wðxþ L; y; tÞ; x ¼ 0; y 2 ½0;D�; t 2 ð0; tf �;

while in the y�direction

vðx;0; tÞ ¼ vðx;D; tÞ ¼ 0; x 2 ½0; L�; L > 0; t 2 ð0; tf �:

Initially wðx; y;0Þ ¼ wðx; yÞ;w : R� R! R; ðx; yÞ 2 ½0; L� � ½0;D�. Note that no boundary conditions are necessary for u and / at
y ¼ 0;D.

Now we introduce a mesh of Nx � Ny equidistant points on ½0; L� � ½0;D�, with Dx ¼ L=ðNx � 1Þ;Dy ¼ D=ðNy � 1Þ. We also
discretize the time interval ½0; tf � using NT equally distributed points and Dt ¼ tf =ðNT � 1Þ. Next we define vectors of un-
known variables of dimension nxy ¼ Nx � Ny containing approximate solutions such as

uðtnÞ � uðxi; yj; tnÞ; vðtnÞ � vðxi; yj; tnÞ; /ðtnÞ � /ðxi; yj; tnÞ 2 Rnxy ;

i ¼ 1;2; . . . ;Nx; j ¼ 1;2; . . . ;Ny; n ¼ 1;2; . . . ;NT:

Then Gustafsson’s nonlinear ADI finite difference shallow water equations scheme (ADI FD SWE) is defined by

I. First step – get solution at tnþ1
2

u tnþ1
2

� �
þ Dt

2
F11 u tnþ1

2

� �
;/ tnþ1

2

� �� �
¼ uðtnÞ �

Dt
2

F12 uðtnÞ;vðtnÞð Þ þ Dt
2
½f; f; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Nx

�T � vðtnÞ;

v tnþ1
2

� �
þ Dt

2
F21 u tnþ1

2

� �
;v tnþ1

2

� �� �
þ Dt

2
½f; f; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Nx

�T � u tnþ1
2

� �
¼ vðtnÞ �

Dt
2

F22 vðtnÞ;/ðtnÞð Þ;

/ tnþ1
2

� �
þ Dt

2
F31 u tnþ1

2

� �
;/ tnþ1

2

� �� �
¼ /ðtnÞ �

Dt
2

F32 vðtnÞ;/ðtnÞð Þ;

ð2Þ

with ‘‘⁄’’ denoting the componentwise multiplication, f is a Ny-dimensional vector storing the Coriolis components
f ðyjÞ; j ¼ 1;2; . . . ;Ny and the nonlinear functions F11; F12; F21; F22; F31; F32 : Rnxy� Rnxy ! Rnxy are defined as follows

F11ðu;/Þ ¼ u � Axuþ 1
2

/ � Ax/;

F12ðu;vÞ ¼ v � Ayu; F21ðu;vÞ ¼ u � Axv;

F22ðv;/Þ ¼ v � Ayv þ
1
2

/ � Ay/;

F31ðu;/Þ ¼
1
2

/ � Axuþ u � Ax/;

F32ðv;/Þ ¼
1
2

/ � Ayv þ v � Ay/;

where Ax;Ay 2 Rnxy�nxy are constant coefficient matrices for discrete first-order and second-order differential operators which
take into account the boundary conditions.

II. Second step – get solution at tnþ1

uðtnþ1Þ þ
Dt
2

F12 uðtnþ1Þ;vðtnþ1Þð Þ � Dt
2
½f ; f ; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Nx

�T � vðtnþ1Þ ¼ u tnþ1
2

� �
� Dt

2
F11 u tnþ1

2

� �
;/ tnþ1

2

� �� �
;

vðtnþ1Þ þ
Dt
2

F22 vðtnÞ;/ðtnÞð Þ ¼ v tnþ1
2

� �
� Dt

2
F21 u tnþ1

2

� �
;v tnþ1

2

� �� �
� Dt

2
½f ; f ; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Nx

�T � u tnþ1
2

� �
;

/ðtnþ1Þ þ
Dt
2

F32 vðtnþ1Þ;/ðtnþ1Þð Þ ¼ / tnþ1
2

� �
� Dt

2
F31 u tnþ1

2

� �
;/ tnþ1

2

� �� �
:

ð3Þ

R. S�tefănescu, I.M. Navon / Journal of Computational Physics 237 (2013) 95–114 97



Author's personal copy

The nonlinear systems of algebraic Eqs. (2) and (3) are solved using the quasi-Newton method. Thereby we rewrite (2) and
(3) in the form

gðaÞ ¼ 0

where a is the vector of unknowns. Due to the fact that no more than two variables are coupled to each other on the left-
hand side of Eqs. (2) and (3), we first solve system (2) for u ¼ ½u1;u2; . . . ;unxy � and / ¼ ½/1;/2; . . . ;/nxy

� i.e. the first and the
third equations in (2) and define

a ¼ ðu1;/1;u2;/2; . . . ;unxy ;/nxy
Þ 2 R2nxy :

The iterative Newton method is given by

aðmþ1Þ ¼ aðmÞ � J�1ðaðmÞÞgðaðmÞÞ;

where the superscript denotes the iteration and J 2 R2nxy�2nxy is the Jacobian

J ¼ @g
@a

:

Owing to the structure of the Gustafsson algorithm for the SWE, the Jacobian matrix is either block cyclic tridiagonal or
block tridiagonal.

J�1g is solved by first applying an LU decomposition to J. Then it is computed by backsubstitution in two stages. First z is
solved from

Lz ¼ g;

and then J�1g is obtained from

UðJ�1gÞ ¼ z:

In the quasi-Newton method, the computationally expensive LU decomposition is performed only once every Mth time-step,
where M is a fixed integer.

Because the backsubstitution is a fast operation, the quasi-Newton method is computationally efficient especially when
the number of nonlinear iterations at each time step is small. Gustafsson proved in [1] that even one quasi-Newton iteration
is sufficient at each time step.

The quasi-Newton formula is

aðmþ1Þ ¼ aðmÞ �bJ�1ðaðmÞÞgðaðmÞÞ; where

bJ ¼ Jðað0ÞÞ þ OðDtÞ:

The method works when M, the number of time-steps between successive updating of the LU decomposition of the Jacobian
matrix J, is a relatively small number. For our numerical experiments we took M ¼ 6.

The second part of the system (2), the second equation in (2) is solved for v ¼ ½v1;v2; . . . ;vnxy � by employing the same
quasi-Newton method. Thus a is defined as

a ¼ ðv1;v2; . . . ; vnxy Þ 2 Rnxy :

In order to obtain the SWE numerical solution at tnþ1 we applied the same quasi-Newton technique for system (3). This time
the coupled variables were

a ¼ ðv1;/1; v2;/2; . . . ;vnxy ;/nxy
Þ 2 R2nxy

for the second and third equation in (3), while u was solved from the remaining equation.

3. The POD version of SWE model

Proper orthogonal decomposition provides a technique for deriving low order model of dynamical systems. It can be
thought of as a Galerkin approximation in the spatial variable built from functions corresponding to the solution of the phys-
ical system at specified time instances. Noack et al. [17] proposed a system reduction strategy for Galerkin models of fluid
flows leading to dynamic models of lower order based on a partition in slow, dominant and fast modes.

Let us denote by Y ¼ ½u1;u2; . . . ;uNT � 2 Rnxy�NT an ensemble of NT� time instances of the numerical solution obtained from
ADI FD SWE scheme at t1; t2; . . . ; tNT for the horizontal component of the velocity. Due to possible linear dependence, the
snapshots themselves are not appropriate as a basis. Instead three methods can be employed, singular value decomposition
(SVD) for Y 2 Rnxy�NT , eigenvalues decomposition for YYT 2 Rnxy�nxy or eigenvalue decomposition for YT Y 2 RNT�NT (see
[18,19]) and the leading generalized eigenfunctions are chosen as a basis, referred to as POD basis. Error estimates for proper
orthogonal decomposition models for nonlinear dynamical systems may be found in [20].
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Here we built the POD decomposition of each variables separately and we present only the construction of the POD basis
corresponding to u since we applied a similar procedure to determine the POD bases for v and /. Taking into account that
NT � nxy, we choose to construct the POD basis U 2 Rnxy�k; k 2 N� by solving the eigenvalue problem

YT Yûi ¼ kiûi; i ¼ 1;2; . . . ;NT;

and retaining the set of right singular vectors of Y corresponding to the k largest singular values, i.e. U ¼ fuigk
i¼1; ui ¼ 1ffiffiffi

ki

p Yûi.

Similarly, let V ;U 2 Rnxy�k be the POD basis matrices of the vertical component of the velocity and geopotential, respec-
tively. Now we can approximate u;v and / as follows

uðtnÞ � U~uðtnÞ;vðtnÞ � V ~vðtnÞ;/ðtnÞ � U~/ðtnÞ;

~uðtnÞ; ~vðtnÞ; ~/ðtnÞ 2 Rk; n ¼ 1;2; . . . ;NT:

The POD reduced-order system is constructed by applying the Galerkin projection method to ADI FD SWE discrete model (2)
and (3) by first replacing u;v;/ with their approximations U~u;V ~v;U~/, respectively, and then premultiplying the correspond-
ing equations by UT ;VT and UT .

The resulting POD reduced system for the first step tnþ1
2

of the ADI FD SWE scheme is

~u tnþ1
2

� �
þ Dt

2
UTeF 11 ~u tnþ1

2

� �
; ~/ tnþ1

2

� �� �
¼ ~uðtnÞ �

Dt
2

UTeF 12 ~uðtnÞ; ~vðtnÞð Þ þ Dt
2

UT ½f; f; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Nx

�T � V ~vðtnÞ

0
B@

1
CA;

~v tnþ1
2

� �
þ Dt

2
VTeF 21 ~u tnþ1

2

� �
; ~v tnþ1

2

� �� �
þ Dt

2
VT ½f; f; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Nx

�T � U~u tnþ1
2

� �0
B@

1
CA ¼ ~vðtnÞ �

Dt
2

VTeF 22 ~vðtnÞ; ~/ðtnÞ
� �

;

~/ tnþ1
2

� �
þ Dt

2
UTeF 31 ~u tnþ1

2

� �
; ~/ tnþ1

2

� �� �
¼ ~/ðtnÞ �

Dt
2

UTeF 32 ~vðtnÞ; ~/ðtnÞ
� �

;

ð4Þ

where eF 11; eF 12; eF 21; eF 22; eF 31; eF 32 : Rk� Rk ! Rk are defined by

eF 11ð~u; ~/Þ ¼ ðU~uÞ � ðAxU|{z} ~uÞ þ 1
2
ðU~/Þ � ðAxU|{z} ~/Þ;

eF 12ð~u; ~vÞ ¼ ðV ~vÞ � ðAyU|{z} ~uÞ; eF 21ð~u; ~vÞ ¼ ðU~uÞ � ðAxV|{z} ~vÞ;

eF 22ð~v; ~/Þ ¼ ðV ~vÞ � ðAyV|{z} ~vÞ þ 1
2
ðU~/Þ � ðAyU|{z} ~/Þ;

eF 31ð~u; ~/Þ ¼ 1
2
ðU~/Þ � ðAxU|{z} ~uÞ þ ðU~uÞ � ðAxU|{z} ~/Þ;

eF 32ð~v; ~/Þ ¼ 1
2
ðU~/Þ � ðAyV|{z} ~vÞ þ ðV ~vÞ � ðAyU|{z} ~/Þ:

ð5Þ

The second step of the POD reduced system for the ADI FD SWE scheme is depicted below

~uðtnþ1Þ þ
Dt
2

UTeF 12 ~uðtnþ1Þ; ~vðtnþ1Þð Þ � Dt
2

UT ½f; f; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Nx

�T � V ~vðtnþ1Þ

0
B@

1
CA ¼ ~u tnþ1

2

� �
� Dt

2
UTeF 11 ~u tnþ1

2

� �
; ~/ tnþ1

2

� �� �

~vðtnþ1Þ þ
Dt
2

VTeF 22 ~vðtnþ1Þ; ~/ðtnþ1Þ
� �

¼ ~v tnþ1
2

� �
� Dt

2
VTeF 21 ~u tnþ1

2

� �
; ~v tnþ1

2

� �� �
� Dt

2
VT ½f; f; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Nx

�T � U~u tnþ1
2

� �0
B@

1
CA;

~/ðtnþ1Þ þ
Dt
2

UTeF 32 ~vðtnþ1Þ; ~/ðtnþ1Þ
� �

¼ ~/ tnþ1
2

� �
� Dt

2
UTeF 31 ~u tnþ1

2

� �
; ~/ tnþ1

2

� �� �
:

ð6Þ

The initial conditions are obtain by multiplying the following three equations with UT ;VT ;UT

uðt1Þ � U~uðt1Þ; vðt1Þ � V ~vðt1Þ; /ðt1Þ � U~/ðt1Þ:

We get

~uðt1Þ � UT uðt1Þ; ~vðt1Þ � VTvðt1Þ; ~/ðt1Þ � UT
/ðt1Þ:

Next we define A1;A2 2 Rnxy�k such as

A1ð:; iÞ ¼ ½f ; f ; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Nx

�T � Vð:; iÞ; A2ð:; iÞ ¼ ½f ; f ; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Nx

�T � Uð:; iÞ; i ¼ 1; . . . ; k
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and the linear terms in (4) and (6), UT ½f ; f ; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Nx

�T � V ~v

0
B@

1
CA and VT ½f ; f ; . . . ; f|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Nx

�T � U~u

0
B@

1
CA can be rewritten as UT A1|fflffl{zfflffl} ~v and VT A2|ffl{zffl} ~u

respectively.
The coefficient matrices UT A1;V

T A2 2 Rk�k defined in the linear terms of the POD reduced system as well as the coefficient
matrices in the nonlinear functions (i.e. AxU;AyU;AxV ;AyV ;AxU;AyU 2 Rn�k grouped by the curly braces in (5)) can be pre-
computed, saved and re-used in all time steps of the interval of integration ½0; tf �. However, performing the componentwise
multiplications in (5) and computing the projected nonlinear terms in (4) and (6)

UT|{z}
k�nxy

eF 11ð~u; ~/Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
nxy�1

; UTeF 12ð~u; ~vÞ; VTeF 21ð~u; ~vÞ;

VTeF 22ð~v; ~/Þ; UTeF 31ð~u; ~/Þ; UTeF 32ð~v; ~/Þ;
ð7Þ

still have computational complexities depending on the dimension nxy of the original system from both evaluating the non-
linear functions and performing matrix multiplications to project on POD bases. If we denote the complexity for evaluating
the nonlinear function eF 11 by aðnxyÞ, then the complexity for computing UTeF 11ð~u; ~/Þ is approximately OðaðnxyÞ þ 4nxykÞ.

By employing the discrete empirical interpolation method we aim to remove this dependency and regain the full model
reduction expected from the POD model.The projected nonlinear functions can be approximated by DEIM in a form that en-
ables precomputation so that the computational cost is decreased and independent of the original system. Only a few entries
of the nonlinear term corresponding to the specially selected interpolation indices from DEIM algorithm described in the
next section must be evaluated at each time step.

DEIM approximation is applied to each of the nonlinear functions eF 11; eF 12; eF 21; eF 22; eF 31; eF 32 defined in (5).

4. The POD/DEIM method and its application to the ADI/SWE model

4.1. Discrete empirical interpolation method

DEIM is a discrete variation of the empirical interpolation method (EIM) proposed by Barrault et al. [12]. The application
was suggested and analyzed by Chaturantabut and Sorensen [13,14,16]. In [13], authors present an error estimate of the
POD/DEIM method. This discrete empirical interpolation method provides an efficient way to approximate nonlinear func-
tions. It was also incorporated into the reduced-basis techniques to provide a better reduced-basis treatment (in terms of
CPU time) of nonaffine and non-linear parameterized PDEs. DEIM was successfully applied in conjunction with POD for mod-
els governing the voltage dynamics of neurons in [21], the integrated circuits with semiconductors with modified nodal anal-
ysis and drift diffusion (see [22]) and dynamics of the concentration of lithium ions in lithium ion batteries in [23]. In order
to improve the stability of POD/DEIM reduced order schemes in case of a nonlinear transmission line, a micromachined
switch and a nonlinear thermal model for a RF amplifier a few modifications to the DEIM based model reduction were pro-
posed by Hochman et al. [24].

Next we describe the DEIM approximation procedure applied to a nonlinear function. Let f : D! Rn; D 	 Rn be a nonlin-
ear function. If U ¼ ½u1; . . . ;um�; ui 2 Rn; i ¼ 1; . . . ;m is a linearly independent set, for m 6 n, then for s 2 D, the DEIM
approximation of order m for f ðsÞ in the space spanned by fulgm

l¼1 is given by

f ðsÞ � UcðsÞ; U 2 Rn�m; cðsÞ 2 Rm: ð8Þ
The basis U can be constructed effectively by applying the POD method on the nonlinear snapshots
f ðsti Þ; sti 2 Dðs may be a function defined from ½0; T� ! D; and sti is the value of s evaluated at tiÞ; i ¼ 1; . . . ;ns;ns > 0.
Next, interpolation is used to determine the coefficient vector cðsÞ by selecting m rows q1; . . . ;qm;qi 2 N�, of the overdeter-
mined linear system (8) to form a m – by – m linear system

PT UcðsÞ ¼ PT f ðsÞ;

where P ¼ ½eq1
; . . . ; eqm

� 2 Rn�m; eqi
¼ ½0; . . . ;0; 1|{z}

qi

; 0; . . . ;0�T 2 Rn. The DEIM approximation of f 2 Rn becomes

f ðsÞ � UðPT UÞ�1PT f ðsÞ:

Now the only unknowns that need to be specified are the indices q1;q2; . . . ;qm or the matrix P whose dimensions are n�m.
These are determined by the following pseudo – algorithm

DEIM: Algorithm for Interpolation Indices
INPUT: fulgm

l¼1 	 Rn (linearly independent):
OUTPUT: ~q ¼ ½q1; . . . ;qm� 2 Nm

(A1) ½jwj;q1� ¼ maxju1j;w 2 R and q1 is the component position of the largest absolute value of u1, with the smallest index
taken in case of a tie.
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(A2) U ¼ ½u1� 2 Rn; P ¼ ½eq1
� 2 Rn;~q ¼ ½q1� 2 N.

(A3) For l ¼ 2; . . . ;m do
(a) Solve ðPT UÞc ¼ PT ul for c 2 Rl�1; U; P 2 Rn�ðl�1Þ.
(b) r ¼ ul � Uc; r 2 Rn.
(c) ½jwj;ql� ¼ maxfjrjg.
(d) U  ½Uul�; P  ½Peql

�;~q ~q
ql

� 	
.

end For.

The DEIM procedure inductively constructs a set of indices from a linearly independent set. An error analysis in [16]
shows that the POD basis is a suitable choice for this algorithm and the order of the input basis fulgm

l¼1 	 Rn according to
the dominant singular values must be utilized. Initially the algorithm searches for the largest value of the first POD basis
ju1j and the corresponding index represents the first DEIM interpolation index q1 2 f1;2; . . . ;ng. The remaining interpolation
indices ql; l ¼ 2;3::;m are selected so that each of them corresponds to the entry of the largest magnitude of jrj defined in
step ðA3Þ � ðbÞ. The vector r can be viewed as the residual or the error between the input basis ul; l ¼ 2;3::;m and its approx-
imation Uc from interpolating the basis fu1;u2; . . . ;ul�1g at the indices q1;q2; . . . ;ql�1. The linear independence of the input
basis fulgm

l¼1 guarantees that, in each iteration, r is a nonzero vector and the output indices fqig
m
i¼1 are not repeating.

An error bound for the DEIM approximation is provided in Chaturantabut and Sorensen [13,16]. An example of DEIM
approximation of a highly nonlinear function defined on a discrete 1D spatial domain can be found in [14], underlying
the DEIM efficiency.

4.2. The DEIM SWE model

The DEIM approximation presented earlier in this section is used to approximate the nonlinear terms in POD ADI SWE
model described in (7) so that the nonlinear approximations will have a computational complexity proportional to the num-
ber of reduced variables obtained with POD. Thus, the application of DEIM in POD framework will allow the construction of
faster reduced order models increasing the performances of reduced order hierarchy models such as the one presented in
Noack et al. [25].

Let UF11 2 Rnxy�m;m 6 nxy, be the POD basis matrix of rank m defined by the snapshots of the nonlinear function eF 11 (ob-
tained from ADI FD SWE scheme). Using the DEIM algorithm we select a set of m DEIM indices corresponding to UF11 , denot-
ing by ½qF11

1 ; . . . ;qF11
m �T 2 Nm, and determine the matrix PF11 2 Rnxy�m. The DEIM approximation of eF 11 assumes the form

eF 11 � UF11 ðPT
F11

UF11 Þ�1eF m
11;

so the projected nonlinear term UTeF 11ð~u; ~/Þ in the POD reduced system can be approximated as

UTeF 11ð~u; ~/Þ � UT UF11 ðPT
F11

UF11 Þ�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E12Rk�m

eF m
11ð~u; ~/Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

m�1

;

where eF m
11ð~u; ~/Þ ¼ PT

F11
eF 11ð~u; ~/Þ and E1 2 Rk�m.

Since eF 11 is a pointwise function (introduced in (5)), eF m
11 : Rk � Rk ! Rm can be defined as

eF m
11ð~u; ~/Þ ¼ ðPT

F11
U~uÞ � ðPT

F11
AxU|fflfflfflffl{zfflfflfflffl} ~uÞ þ 1

2
ðPT

F11
U~/Þ � ðPT

F11
AxU|fflfflfflffl{zfflfflfflffl} ~/Þ:

If we denote by UF12 ;UF21 ;UF22 ;UF31 ;UF32 2 Rnxy�m the POD bases matrices of rank m for the snapshots of the nonlinear func-
tions eF 12; eF 21; eF 22; eF 31; eF 32, we obtain in a similar manner the DEIM approximations for the rest of the projected nonlinear
terms in (7)

UTeF 12ð~u; ~vÞ � UT UF12 ðPT
F12

UF12 Þ�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E22Rk�m

eF m
12ð~u; ~vÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

m�1

;

VTeF 21ð~u; ~vÞ � VT UF21 ðPT
F21

UF21 Þ�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E32Rk�m

eF m
21ð~u; ~vÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

m�1

;

VTeF 22ð~v; ~/Þ � VT UF22 ðPT
F22

UF22 Þ�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E42Rk�m

eF m
22ð~v; ~/Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

m�1

;

UTeF 31ð~u; ~/Þ � UT UF31 ðPT
F31

UF31 Þ�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E52Rk�m

eF m
31ð~u; ~/Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

m�1

;
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UTeF 32ð~v; ~/Þ � UT UF32 ðPT
F32

UF32 Þ�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
E62Rk�m

eF m
32ð~v; ~/Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

m�1

;

where E2; E3; E4; E5; E6 2 Rk�m and

eF m
12ð~u; ~vÞ ¼ ðPT

F12
V ~vÞ � ðPT

F12
AyU|fflfflfflffl{zfflfflfflffl} ~uÞ; eF m

21ð~u; ~vÞ ¼ ðPT
F21

U~uÞ � ðPT
F21

AxV|fflfflfflffl{zfflfflfflffl} ~vÞ;

eF m
22ð~v; ~/Þ ¼ ðPT

F22
V ~vÞ � ðPT

F22
AyV|fflfflfflffl{zfflfflfflffl} ~vÞ þ 1

2
ðPT

F22
U~/Þ � ðPT

F22
AyU|fflfflfflffl{zfflfflfflffl} ~/Þ;

eF m
31ð~u; ~/Þ ¼ ðPT

F31
U~/Þ � ðPT

F31
AxU|fflfflfflffl{zfflfflfflffl} ~uÞ þ ðPT

F31
U~uÞ � ðPT

F31
AxU|fflfflfflffl{zfflfflfflffl} ~/Þ;

eF m
32ð~v; ~/Þ ¼ 1

2
ðPT

F32
U~/Þ � ðPT

F32
AyV|fflfflfflffl{zfflfflfflffl} ~vÞ þ ðPT

F32
V ~vÞ � ðPT

F32
AyU|fflfflfflffl{zfflfflfflffl} ~/Þ:

ð9Þ

Each of the k�m coefficient matrices grouped by the curly brackets in (9), as well as Ei; i ¼ 1;2; . . . ;6 can be precomputed
and reused at all time steps, so that the computational complexity for each of the approximate nonlinear terms is
OðaðmÞ þ 4mkÞ, thus not depending on the full-order dimension nxy. Finally, the POD/DEIM reduced system for the first step
of ADI FD SWE model is of the form

~u tnþ1
2

� �
þ Dt

2
E1
eF m

11
~u tnþ1

2

� �
; ~/ tnþ1

2

� �� �
¼ ~uðtnÞ �

Dt
2

E2
eF m

12
~uðtnÞ; ~vðtnÞð Þ þ Dt

2
UT A1 ~vðtnÞ;

~v tnþ1
2

� �
þ Dt

2
E3
eF m

21
~u tnþ1

2

� �
; ~v tnþ1

2

� �� �
þ Dt

2
VT A2 ~u tnþ1

2

� �
¼ ~vðtnÞ �

Dt
2

E4
eF m

22 ~vðtnÞ; ~/ðtnÞ
� �

;

~/ tnþ1
2

� �
þ Dt

2
E5
eF m

31
~u tnþ1

2

� �
; ~/ tnþ1

2

� �� �
¼ ~/ðtnÞ �

Dt
2

E6
eF m

32 ~vðtnÞ; ~/ðtnÞ
� �

; n ¼ 1; . . . ;NT � 1;

ð10Þ

while the second step is introduced below

~uðtnþ1Þ þ
Dt
2

E2
eF m

12
~uðtnþ1Þ; ~vðtnþ1Þð Þ � Dt

2
UT A1 ~vðtnþ1Þ ¼ ~u tnþ1

2

� �
� Dt

2
E1
eF m

11
~u tnþ1

2

� �
; ~/ tnþ1

2

� �� �
;

~vðtnþ1Þ þ
Dt
2

E4
eF m

22 ~vðtnþ1Þ; ~/ðtnþ1Þ
� �

¼ ~v tnþ1
2

� �
� Dt

2
E3
eF m

21
~u tnþ1

2

� �
; ~v tnþ1

2

� �� �
� Dt

2
VT A2 ~u tnþ1

2

� �
;

~/ðtnþ1Þ þ
Dt
2

E6
eF m

32 ~vðtnþ1Þ; ~/ðtnþ1Þ
� �

¼ ~/ tnþ1
2

� �
� Dt

2
E5
eF m

31
~u tnþ1

2

� �
; ~/ tnþ1

2

� �� �
; n ¼ 1; . . . ;NT � 1:

ð11Þ

The initial conditions remain the same as in the case of POD reduced system. The nonlinear algebraic systems (10) and (11)
as well as (4) and (6) obtained by employing POD/DEIM and POD methods on ADI FD SWE were first splitted into subsystems
according to the left-hand side of the equations where no more than two variables are coupled to each other and this was
done in the same manner as in the case of Gustafsson ADI FD SWE nonlinear systems. The derived systems were solved using
the Newton method.

5. Numerical experiments

In this section, we present two main experiments for the two - dimensional shallow water equations model to validate
the fesability and efficiency of the POD/DEIM method in comparison with POD technique. For all tests we derived the initial
conditions from the initial height condition No. 1 of Grammeltvedt [26] i.e.

hðx; yÞ ¼ H0 þ H1 þ tanh 9
D=2� y

2D


 �
þ H2sech2 9

D=2� y
2D


 �
sin

2px
L


 �
;

0 6 x 6 L;0 6 y 6 D:

The initial velocity fields were derived from the initial height field using the geostrophic relationship

u ¼ �g
f


 �
@h
@y
; v ¼ g

f


 �
@h
@x
:

Fig. 1 depicts the initial geopotential isolines and the geostrophic wind field.
The constants used were L ¼ 6000 km; D ¼ 4400 km; f̂ ¼ 10�4 s�1; b ¼ 1:5 � 10�11 s�1m�1; g ¼ 10 ms�2; H0 ¼ 2000 m;

H1 ¼ 220 m; H2 ¼ 133 m.
For the first test, the domain was discretized using a mesh of 301� 221 points, with Dx ¼ Dy ¼ 20 km. Thus the dimen-

sion of the full-order discretized model is 66521. The integration time window was 24 h and we used 91 time steps
(NT ¼ 91) with Dt ¼ 960 s.
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ADI FD SWE scheme proposed by Gustafsson [1] was first employed in order to obtain the numerical solution of the SWE
model. The implicit scheme allowed us to integrate in time using a larger time step deduced from the following Courant–
Friedrichs–Levy (CFL) condition

ffiffiffiffiffiffi
gh

p Dt
Dx


 �
< 7:188:

The nonlinear algebraic systems of ADI FD SWE scheme were solved with the Quasi-Newton method and the LU decompo-
sition was performed only once every 6-th time step. The SWE solutions at t ¼ 24 h are illustrated in Fig. 2.

The POD basis functions were constructed using 91 snapshots obtained from the numerical solution of the full – order ADI
FD SWE model at equally spaced time steps in the interval ½0;24h�. Fig. 3 shows the decay around the eigenvalues of the
snapshot solutions for u;v ;/ and the nonlinear snapshots F11; F12; F21; F22; F31; F32.

The dimension of the POD bases for each variable was taken to be 35, capturing more than 99.9% of the system energy. We
applied the DEIM algorithm for interpolation indices to improve the efficiency of the POD approximation and to achieve a
complexity reduction of the nonlinear terms with a complexity proportional to the number of reduced variables. Fig. 4 illus-
trates the distribution of the first 40 spatial points selected from the DEIM algorithm using the POD bases of F31 and F32 as
inputs.

We emphasize the performances of POD/DEIM method in comparison with the POD approach using the numerical solu-
tion of the ADI FD SWE model. Fig. 5 depicts the grid point local error behaviors between POD, POD/DEIM ADI SWE solutions
and ADI FD SWE solutions, where we used 90 DEIM points.

Using the following norms
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Fig. 1. Initial condition: Geopotential height field for the Grammeltvedt initial condition (left). Wind field (the velocity unit is 1 km/s) calculated from the
geopotential field by using the geostrophic approximation (right).
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Fig. 2. The geopotential field (left) and the wind field (the velocity unit is 1 km/s) at t ¼ tf ¼ 24 h obtained using the ADI FD SWE scheme for Dt ¼ 960 s.
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1
NT

Xtf

i¼1

kwADI FDð:; iÞ �wPOD ADIð:; iÞk2

kwADI FDð:; iÞk2
;

1
NT

Xtf

i¼1

kwADI FDð:; iÞ �wPOD=DEIM ADIð:; iÞk2

kwADI FDð:; iÞk2
;

i ¼ 1;2; . . . ; tf we calculated the average relative errors in Euclidian norm for all three variables of SWE model w ¼ u;v ;/. The
results are presented in Table 1.

In addition to the ADI FD SWE scheme we propose an Euler explicit FD SWE scheme as the starting point for a POD and a
POD/DEIM reduced model. The POD bases were constructed using the same 91 snapshots as in the POD ADI SWE case, only
this time the Galerkin projection was applied to the Euler FD SWE model. The DEIM algorithm was used again and the
numerical results are provided in Table 2. This time we employed the root mean square error calculation in order to compare
the POD and POD/DEIM techniques at time t ¼ 24 h.

Applying DEIM method to POD ADI SWE model we reduced the computational time by a factor of 73.91. In the case of the
explicit scheme the DEIM algorithm decreased the CPU time by a factor of 68:733. The POD/DEIM EE SWE model was solved
using the Runge–Kutta–Fehlberg method (RKF45). Due to the large number of spatial discretization points, small number of
time steps and only one Newton iteration threshold imposed when solving the nonlinear algebraic systems of POD and POD/
DEIM ADI SWE schemes made these two implicit schemes faster than the POD and POD/DEIM EE SWE explicit schemes. The
numerical results obtained showed also that the implicit schemes are slightly more accurate than the explicit ones.

Fig. 6 illustrates the efficiency of POD/DEIM methods as a function of spatial discretization points. Once the number of
spatial discrete points is larger than 10,000 the POD/DEIM schemes are faster than the POD schemes by a factor of 10, for
90 points selected by DEIM algorithm.
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Fig. 3. The decay around the singular values of the snapshots solutions for u;v ;/ and nonlinear functions for Dt ¼ 960 s.

Fig. 4. First 40 points selected by DEIM for the nonlinear functions F31 (left) and F32 (right).
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Next we carried out a second experiment to test the performances of POD/DEIM methods. We increased the number of
time steps as well as the number of snapshots used to generate the POD bases. Thus, we took NT ¼ 181 and the number of
snapshots ns ¼ 181. Due to the rather demanding memory requirement we had to decrease the number of spatial discreti-
zation points. As a consequence we choose Nx ¼ 151 and Ny ¼ 111, with Dx ¼ Dy ¼ 40 km and Dt ¼ 480 s.

We solved again the SWE model using the ADI FD SWE scheme in order to generate the 181 snapshots required for POD
and POD/DEIM reduced systems. This time the Courant–Friedrichs–Levy (CFL) condition wasffiffiffiffiffiffi

gh
p

ðDt
Dx
Þ < 1:797:

The results obtained are similar with the ones obtained for a CFL condition
ffiffiffiffiffiffi
gh

p
ðDt
DxÞ < 7:188 underlying the performance of

fully implicit Gustafsson scheme. The geopotential and wind field at final time tf ¼ 24 h are depicted in Fig. 7.
Fig. 8 shows the decay of the singular values of the snapshot solutions for u;v ;/ and the nonlinear snapshots

F11; F12; F21; F22; F31; F32. We noticed that the singular values of F31 and F32 are decreasing slowly when compared with the
singular values of the other nonlinear functions.
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Fig. 5. Local errors between POD, POD/DEIM ADI SWE solutions and the ADI FD SWE solutions at t ¼ 24 h (Dt ¼ 960 s). The number of DEIM points was
taken 90.

Table 1
Average relative errors for each of the model variables. The POD bases dimensions were taken 35 capturing more
than 99.9% of the system energy. 90 DEIM points were chosen.

POD ADI SWE POD/DEIM ADI SWE

E/ 7.127e�005 1.106e�004
Eu 4.905e�003 6.189e�003
Ev 6.356e�003 9.183e�003

Table 2
CPU time gains and the root mean square errors for each of the model variables at t ¼ tf . The POD bases dimensions were taken as 35 capturing more than 99.9%
of the system energy. 90 DEIM points were chosen.

ADI SWE POD ADI SWE POD/DEIM ADI SWE POD EE SWE POD/DEIM EE SWE

CPU time seconds 73.081 43.021 0.582 43.921 0.639
RMSE/ – 5.416e�005 9.668e�005 1.545e�004 1.792e�004
RMSEu – 1.650e�004 2.579e�004 1.918e�004 3.126e�004
RMSEv – 8.795e�005 1.604e�004 1.667e�004 2.237e�004
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The dimension of the POD bases for each variable was taken 35. Next we apply the DEIM algorithm using as input the POD
bases corresponding to the nonlinear functions. The first 40 points selected by the discrete empirical interpolation method
for F31 and F32 are illustrated in Fig. 9.
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Fig. 9. First 40 points selected by DEIM for the nonlinear functions FF31 (left) and FF32 (right).
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Fig. 10. Local errors between POD, POD/DEIM ADI SWE solutions and the ADI FD SWE solutions at t ¼ 24 h (Dt ¼ 480 s). The number of DEIM points was
taken 80.

Table 3
Average relative errors for each of the model variables at t ¼ tf ; Dt ¼ 480 s. The POD bases dimensions were
taken 35 capturing more than 99.9% of the system energy. 80 DEIM points were chosen.

POD ADI SWE DEIM/POD ADI SWE

E/ 2.648e�005 3.073e�005
Eu 1.279e�003 1.292e�003
Ev 2.207e�003 2.471e�003
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Next we determineed solutions of the POD ADI SWE model and the POD/DEIM ADI SWE model using 80 DEIM points. The
solutions of POD/DEIM implicit scheme are very accurate, local errors depicted in Fig. 10, average relative errors in Table 3
and RMSE results in Table 4 confirm it and showing that POD/DEIM ADI SWE scheme is much faster and almost as accurate
as POD ADI SWE scheme.

Compared with the first experiment we reduced the number of spatial discretization points by a factor of 4. This does not
affect the magnitude of the local errors even if they were decreased for both POD and POD/DEIM ADI methods with factors
between 3 and 4, when compared with the results obtained in the first case. The increased number of time steps and snap-
shots is responsible for improving the accuracy of the solutions. This can be observed in Fig. 11 where we illustrate the local
errors for the POD and POD/DEIM ADI SWE solutions using the same configuration as in the second experiment but having
decreased the number of time steps and snapshots at 91.

Table 3 compares the accuracy of POD and POD/DEIM ADI SWE schemes measuring the average relative errors of the solu-
tions with respect to the ADI FD SWE solutions.

Once again we calculate the solution of SWE model using the POD and POD/DEIM EE SWE schemes. By employing the
DEIM method on the POD ADI SWE model we reduced the CPU time with a factor of 13. In the case of explicit scheme
the DEIM algorithm decreased the computational time by a factor of 21. The adaptative Runge–Kutta–Fehlberg method in-
volved in the explicit reduced order models (ROMs) was faster than the Newton method used to solve the nonlinear alge-
braic systems in implicit ROMs mostly because we doubled the number of time steps and thus the RKF45 did not need to
generate a large amount of intermediary time steps as it did in the first experiment in order to generate an accurate solution.
From Table 4 we notice that the RMSEs for both implicit and explicit POD/DEIM schemes are almost similar with the ones
generated by the implicit and explicit POD systems with respect to the ADI FD SWE numerical solutions.

Collecting the results obtained from experiments 1 and 2 we conclude that the POD and POD/DEIM ADI SWE schemes are
more accurate than the POD and POD/DEIM EE SWE schemes.

Table 4
CPU time gains and the root mean square errors for each of the model variables at t ¼ tf ; Dt ¼ 480 s. The POD bases dimensions were taken 35 capturing more
than 99:9% of the system energy. 80 DEIM points were chosen.

ADI SWE POD ADI SWE DEIM/POD ADI SWE POD EE SWE DEIM/POD EE SWE

CPU time 24.353 8.848 0.686 8.019 0.386
RMSE/ – 1.607e�005 1.743e�005 3.999e�005 4.074e�005
RMSEu – 4.076e�005 4.233e�005 5.089e�005 5.780e�005
RMSEv – 2.397e�005 2.755e�005 4.613e�005 4.919e�005
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Fig. 11. Local errors between POD, POD/DEIM ADI SWE solutions and the ADI FD SWE solutions at t ¼ 24 h (Dt ¼ 960 s). The number of snapshots is 91 and
the number of DEIM points was taken 80.

108 R. S�tefănescu, I.M. Navon / Journal of Computational Physics 237 (2013) 95–114



Author's personal copy

0 5 10 15 20 25 30 35
0

5

10

15

20

25
CPU time

tim
e(

se
co

nd
s)

POD dimension

FULL
POD ADI SWE
POD EE SWE
DEIM/POD ADI SWE 50
DEIM/POD ADI SWE 120
DEIM/POD EE SWE 50
DEIM/POD EE SWE 120

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2
x 10−3 Root mean square error of φ

POD dimension

POD ADI SWE
POD EE SWE
DEIM/POD ADI SWE 50
DEIM/POD ADI SWE 120
DEIM/POD EE SWE 50
DEIM/POD EE SWE 120
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Table 5
Comparison between CPU times of POD and DEIM/POD implicit and explicit schemes. The computational time of the full model (ADI FD SWE) was 24.3530.

PODDIM POD ADI SWE DEIM/POD ADI SWE50 DEIM/POD ADI SWE120 POD EE SWE DEIM/POD EE SWE50 DEIM/POD EE SWE120

1 0.0009 0.0003 0.0002 0.0004 0.0001 0.0002
5 0.0264 0.0109 0.0111 0.0235 0.0014 0.0014
10 0.1896 0.0244 0.0249 0.1838 0.0066 0.0071
15 0.6478 0.0599 0.0615 0.6211 0.0238 0.0251
20 1.5336 0.1245 0.1283 1.4795 0.0586 0.0615
25 2.9991 0.2326 0.2403 2.8901 0.1165 0.1237
30 5.1956 0.3840 0.4013 5.0250 0.2202 0.2292
35 8.8480 0.6718 0.6971 8.0190 0.3773 0.3992

Table 6
Comparison between RMSE of POD and DEIM/POD implicit and explicit schemes.

PODDIM POD ADI SWE DEIM/POD ADI SWE50 DEIM/POD ADI SWE120 POD EE SWE DEIM/POD EE SWE50 DEIM/POD EE SWE120

1 1.182e�003 1.182e�003 1.182e�003 1.182e�003 1.182e�003 1.182e�003
5 5.018e�004 5.087e�004 5.047e�004 5.037e�004 5.110e�004 5.070e�004
10 4.526e�004 5.122e�004 4.609e�004 4.553e�004 5.155e�004 4.635e�004
15 1.587e�004 1.682e�004 1.589e�004 1.584e�004 1.669e�004 1.595e�004
20 1.009e�004 1.101e�004 1.012e�004 9.876e�005 1.097e�004 9.876e�005
25 5.075e�005 5.526e�005 5.438e�005 5.909e�005 6.319e�005 6.281e�005
30 2.765e�005 2.898e�005 2.800e�005 4.788e�005 5.149e�005 4.923e�005
35 1.607e�005 1.846e�005 1.835e�005 3.999e�005 4.439e�005 4.175e�005

0 20 40 60 80 100 120 140 160 180 200
5.4224

5.4225

5.4226

5.4227

5.4228

5.4229

5.423

5.4231 x 1020 Total Energy

Time

ADI SWE
POD ADI SWE
DEIM/POD ADI SWE
POD EE SWE
DEIM/POD EE SWE

0 20 40 60 80 100 120 140 160 180 200
7.8518

7.852

7.8522

7.8524

7.8526

7.8528

7.853

7.8532

7.8534

7.8536

7.8538
Potential Enstrophy

Time

ADI SWE
POD ADI SWE
DEIM/POD ADI SWE
POD EE SWE
DEIM/POD EE SWE

0 20 40 60 80 100 120 140 160 180 200
199.9985

199.999

199.9995

200

200.0005

200.001

200.0015

200.002

200.0025
Average Height of the Free Surface

Time

ADI SWE
POD ADI SWE
DEIM/POD ADI SWE
POD EE SWE
DEIM/POD EE SWE

Fig. 13. Shallow water equations invariants, POD dimension = 35, No of DEIM points = 120.
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Next we evaluate the efficiency of POD/DEIM method as a function of POD dimension. Fig. 12 gives the root mean square
errors of / and the corresponding average CPU times for different dimensions of POD and DEIM approximations.

The results in Tables 5 and 6 show the performances of POD/DEIM method. Once the POD dimension exceeds 15ð5Þ in
case of DEIM/POD ADI (EE) SWE scheme the CPU time is decreased at least by a factor of 10. When DEIM dimension reached
50, we notice that RMSE results between POD and POD/DEIM are almost identical. All the methods performed well when
POD dimension exceeded 25 leading to RMSE results of order Oð10�5Þ.

Numerical experiments carried out for a 1-day integration showed that the POD/DEIM ADI SWE scheme as well as the
POD/DEIM EE SWE discrete model conserve the average height of the free surface and the potential enstrophy while another
integral invariant of the SWE model, the total energy, is not preserved largely due to the absence of a staggered C-grid in the
numerical discretization. Arakawa in [27] showed that when the finite difference Jacobian expression for the advection term
is restricted to a form which properly represents the interaction between grid points the computational instability is pre-
vented thereby preserving all the integral invariants. Thus the POD and POD/DEIM systems behave in a similar way as
the ADI FD SWE full scheme in the matter of integral invariants conservations and Fig. 13 depicts their evolution in time.

Tables 7–9 present integral invariants measures for all the schemes involved in this study using max–min evaluation and
Euclidian norm with respect to SWE invariants calculated with ADI FD SWE full scheme.

In Fig. 14, the Pearson correlation coefficient defined below is used as an additional metric to evaluate the quality of POD/
DEIM schemes

ri ¼
cov i

12

ri
1ri

2

; i ¼ 1; . . . ;NT;

where

ri
1 ¼

Xj¼nxy

j¼1

Wi;j �Wj
� �2

; r2 ¼
Xj¼nxy

j¼1

Wscheme
i;j �Wscheme

j

� �2
; i ¼ 1; . . . ;NT;

Table 7
Average Height of the conservation of the mass.

ADI SWE POD ADI SWE DEIM/POD ADI SWE POD EE SWE DEIM/POD EE SWE

Max–Min 0.0017 0.0063 0.0125 0.0060 0.0237
Norm 0.0000 0.0331 0.0693 0.0348 0.0795

Table 8
Potential Enstrophy.

ADI SWE POD ADI SWE DEIM/POD ADI SWE POD EE SWE DEIM/POD EE SWE

Max–Min 0.0012 0.0011 0.0014 0.0011 0.0008
Norm 0.0000 0.0014 0.0023 0.0024 0.0040

Table 9
Total Energy.

ADI SWE POD ADI SWE DEIM/POD ADI SWE POD EE SWE DEIM/POD EE SWE

Max–Min 5.6440e+016 5.7392e+016 5.6140e+016 6.0441e+016 6.3439e+016
Norm 0.0000e+000 1.4289e+016 3.3597e+016 2.9898e+016 5.3457e+016
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Fig. 14. Correlation coefficients for the SWE variables, POD dimension = 35.
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cov12 ¼
Xj¼nxy

j¼1

Wi;j �Wj
� �

Wscheme
i;j �Wscheme

j

� �
; i ¼ 1; . . . ;NT;

where W ¼ u;v;/ represents the ADI FD SWE solution and Wscheme ¼ uscheme;vscheme;/scheme the solution calculated with one of
the following schemes: POD ADI SWE, POD/DEIM ADI SWE, POD EE SWE and POD/DEIM EE SWE using 50 and 120 DEIM

points. Wj and Wscheme
j are corresponding means over the simulation period 0; tf

� 
at spatial node j.

We also tested the SWE discrete schemes in context of parametric variation of the Coriolis parameter. For these tests we
used a mesh of 301� 221 points and we run the ADI FD scheme to generate 91 snapshots using f̂ ¼ 10�4. Next we derived
the POD bases and then we solved the POD ADI SWE and POD/DEIM SWE discrete problems for f̂ ¼ 3 � 10�4. Fig. 15 depicts
the grid point local error behaviours between POD, POD/DEIM ADI SWE solutions and ADI FD SWE solutions obtained by
assigning the Coriolis parameter the value 3 � 10�4. The DEIM scheme used 90 interpolations points.
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Fig. 15. Local errors between POD, POD/DEIM ADI SWE solutions and the ADI FD SWE solutions at t ¼ 24 h (Dt ¼ 960 s) in context of parameter settings.
The number of DEIM points was taken 90.

Table 10
Average relative errors for each of the model variables. The POD bases dimensions were taken to be 35
capturing more than 99.9% of the system energy. 90 DEIM points were chosen.

POD ADI SWE POD/DEIM ADI SWE

E/ 0.124508 0.14588
Eu 0.22403 0.27408
Ev 1.4169e�003 1.6294e�003

Table 11
Root mean square errors for each of the model variables at time t ¼ 24 h. The POD bases dimensions were
taken 35 and 90 DEIM points were chosen.

POD ADI SWE POD/DEIM ADI SWE

RMSE/ 5.6992e�004 8.3716e�004
RMSEu 8.8999e�004 1.2342e�003
RMSEv 3.56849e�004 5.2638e�003
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Tables 10 and 11 contain the average relative errors and RMSEs for u;v and /. Correlation coefficients are shown in
Fig. 16.

We can improve the accuracy of POD, POD/DEIM solutions and reduce the computational time by taking into account dif-
ferent POD bases dimensions according to the eigenvalues decay. The final numerical test presented here is dedicated to the
effect of different dimensions of POD bases in POD and POD/DEIM Euler explicit SWE schemes. As we expected, after a short
analysis of eigenvalues spectrum we chose the dimensions of POD bases to be 31;32 and 34. The results are presented in
Table 12 and we notice that the errors are smaller then the ones in Table 2 where we used 35 modes for each POD basis.

6. Conclusions

To obtain the approximate solution in case of both POD and POD/DEIM reduced systems, one must store POD or POD/
DEIM solutions of order OðkNTÞ; k being the POD bases dimension and NT the number of time steps in the integration win-
dow. The coefficient matrices that must be retained while solving the POD reduced system are of order of Oðk2Þ for projected
linear terms and OðnxykÞ for the nonlinear term, where nxy is the space dimension.

In the case of solving POD/DEIM reduced system the coefficient matrices that need to be stored are of order of Oðk2Þ for
projected linear terms and OðmkÞ for the nonlinear terms, where m is the number of DEIM points determined by the DEIM
indexes algorithm, m� nxy. Therefore DEIM improves the efficiency of the POD approximation and achieves a complexity
reduction of the nonlinear term with a complexity proportional to the number of reduced variables.

We proved the efficiency of DEIM using two different schemes, the ADI FD SWE fully implicit model and the Euler explicit
FD SWE scheme. We noticed, as we expected, that POD/DEIM CPU time is most sensitive to the number of spatial discreti-
zation points. The largest reduction of the CPU time was obtained in first experiment where it was reduced by a factor of
73.91 when using the POD/DEIM ADI SWE scheme while in the case of POD/DEIM EE SWE model we decreased the CPU time
by a factor of 68.733. Also we noticed that the approximation errors of POD/DEIM and POD reduced systems are almost iden-
tical once the dimension of DEIM attained the value of 50, for any of the methods used, either explicit or implicit. In the sec-
ond experiment, we increased the number of time steps and snapshots and consequently the solutions accuracy was higher
in comparison with the results obtained in the first experiment.

In future research we plan to apply the DEIM technique to different inverse problems such as POD 4-D VAR of the limited
area finite element shallow water equations and adaptive POD 4-D VAR applied to a finite volume SWE model on the sphere.

We are also interested to compare the discrete empirical interpolation method with the ‘best points’ interpolation (BPIM)
one in proper orthogonal decomposition framework applied to SWE equation. BPIM was proposed by Nguyen et al. [28]
where the interpolation points are defined as a solution of a least-squares minimization problem. Thus, BPIM replaces the
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Fig. 16. Correlation coefficients for the SWE variables in parameter settings, POD dimension = 35.

Table 12
The root mean square errors for each of the model variables at t ¼ 24h. Comparison between the errors calculated with the same number of modes (first and
second columns) and different number of modes (third and fourth columns). We used a mesh of 301� 221 points and 90 DEIM points were chosen.

POD EE SWE (35 modes) POD/DEIM EE SWE (35 modes) POD EE SWE (31,32,34 modes) POD/DEIM EE SWE (31,32,34 modes)

RMSE/ 1.545e�004 1.792e�004 1.1605e�004 1.4246e�004
RMSEu 1.918e�004 3.126e�004 9.3842e�005 1.712e�004
RMSEv 1.667e�004 2.2374e�004 9.551e�005 1.0791e�004
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greedy algorithm used in empirical interpolation method (EIM) by an optimization problem which provides higher accuracy
at the cost of greater computational complexity. For instance Galbally et al. [29] made a comparison between gappy POD,
EIM and BPIM techniques for a nonlinear combustion problem governed by an advection diffusion PDE.
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Appendix A

This appendix contains a definition for the componentwise multiplication operation and a more symbolic representation
of the Gustafsson’s nonlinear ADI finite difference shallow water equations scheme defined in (2–3), Section 2. The compo-
nentwise multiplication is also known as the Hadamard product.

Definition. The componentwise multiplication is a binary operation that takes two matrices of the same dimensions,
A;B 2 Rm�n;m;n 2 N�, and produces another matrix of the same dimensions A � B 2 Rm�n with elements satisfying the
following relationship

ðA � BÞi;j ¼ ðAÞi;j � ðBÞi;j:
Now, recall that the number of mesh points is nxy ¼ Nx � Ny. We shall denote by wn

i;jði ¼ 1; . . . ;Nx; j ¼
1; . . . ;Ny; n ¼ 1; . . . ;NT) an approximation to wðiDx; jDy;nDtÞ ¼ ðu;v ;/ÞðiDx; jDy;nDtÞ. The basic difference operators are

D0xwn
i;j ¼ ðwn

iþ1;j �wn
i�1;jÞ=ð2DxÞ;

Dþxwn
i;j ¼ ðwn

iþ1;j �wn
i;jÞDx;

D�xwn
i;j ¼ ðwn

i;j �wn
i�1;jÞDx;

respectively, with similar definitions for D0y;Dþy;D�y. We also define the operators Pn
i;j and Q n

i;j by

Pn
i;j ¼ Dt=2ðAðwn

i;jÞD0x þ Cð1Þj Þ;

Q n
i;j ¼ Dt=2ðBðwn

i;jÞDj þ Cð2Þj Þ;

with A;B defined at the beginning of Section (2),

Dj ¼
D0y; j ¼ 2; . . . ;Ny � 1;
Dþy; j ¼ 1;
D�y; j ¼ Ny;

8><
>: ;

(owing to the boundary conditions in the y� direction)

Cð1Þj ¼ �
0 0 0
�fj 0 0
0 0 0

0
@

1
A; Cð2Þj ¼ �

0 fj 0
0 0 0
0 0 0

0
@

1
A

and fj ¼ f ðjDyÞ; j ¼ 1; . . . ;Ny.
Thus we rewrite the Gustafsson’s nonlinear ADI difference scheme given in (2), (3)

ðI � Pnþ1=2
i;j Þwnþ1=2

i;j ¼ ðI þ Q n
i;jÞwn

i;j; ð12Þ

ðI � Qnþ1
i;j Þwnþ1

i;j ¼ ðI þ Q nþ1=2
i;j Þwnþ1=2

i;j ; ð13Þ

i ¼ 1; . . . ;Nx � 1; j ¼ 1; . . . ;Ny; n ¼ 1;2; . . . ;NT � 1:

The periodic boundary conditions in the x�direction allowed us to use only central differences to approximate the deriva-
tives with respect to x and eliminated the need of calculating the SWE solutions for i ¼ Nx.

The nonlinear algebraic equations do not apply to the v component for j ¼ 1; j ¼ Ny, but we used the condition
vn

i;1 ¼ vn
i;Ny
¼ 0; i ¼ 1; . . . ;Nx � 1; n ¼ 1;2; . . . ;NT.
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