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Abstract 21 

Numerical models for variable-density flow and solute transport (VDFST) are widely used to 22 

simulate seawater intrusion and related problems. The mathematical model for VDFST is a 23 

coupled nonlinear dynamical system, so the numerical discretizations in time and space are 24 

usually required to be as fine as possible. As a result, fine-scale transient models requirelarge 25 

computational time, which is a disadvantage for state estimation, forward prediction or model 26 

inversion. The purpose of this research is to develop mathematical and numerical methods to 27 

simulate VDFST via a model order reduction technique called Proper Orthogonal 28 

Decomposition(POD) designed for nonlinear dynamical systems. POD was applied to extract 29 

leading “model features” (basis functions) through singular value decomposition (SVD) from 30 

observational data or simulations(snapshots) of high-dimensional systems. These basis functions 31 

were then used in the Galerkin projection procedure that yielded low-dimensional (reduced-32 

order) models. The original full numerical models were alsodiscretized by the GalerkinFinite-33 

Elementmethod (GFEM). The implementation of the POD reduced-order method was 34 

straightforward when applied to the full order model to the complex model. The developed 35 

GFEM-POD model was applied to solve two classic VDFST cases, the Henry problem and the 36 

Elder problem, in order to investigate the accuracy and efficiency of the POD model reduction 37 

method. Once the snapshots from full model results are obtained, the reduced-order model can 38 

reproduce the full model results with acceptableaccuracybutwith less computational costin 39 

comparison with the full model, which is useful formodel calibration and data assimilation 40 

problems. We found that the accuracy and efficiency of the POD reduced-order model is mainly 41 

determined by the optimal selection of snapshotsand POD bases.Validation and verification 42 

experiments confirmed our POD model reduction procedure. 43 
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1. Introduction 49 

Standard spatial discretization schemes for hydrogeological models usually lead to large-size, 50 

high-dimensional, and in general, nonlinear systems ofcoupled partial differential equations. Due 51 

to limited computational and storage capabilities, model reduction techniques provide an 52 

attractive approach to approximate the large-size discretized state equations using low-53 

dimensional model. Thus, the model reduction techniques have received significant attention in 54 

recent years. The application of model reduction techniques for subsurface flow problems has 55 

been developed, analyzed and implemented by Vermeulenand his colleagues(Vermeulen et al., 56 

2004a; 2004b; 2005; Vermeulen and Heemink, 2006a). In these pioneering studies, a proposed 57 

minimization procedure results in a significant time reduction, whereas the forward original full 58 

model must be executed certain times in order to determine optimal design or the operating 59 

parameters. The model reduction procedures developed for subsurface flow applications are 60 

based on the use of proper orthogonal decomposition (POD)(Cardoso and Durlofsky,2010). 61 

Lumley (1967)introducedPOD in the context of analysis of turbulent flow.It is a powerful 62 

and efficient method of data analysis aiming at obtaining low-dimensional approximate 63 

descriptions (reduced-order model) of high-dimensional processes(Holmes et al., 2012). Data 64 

analysis using POD is often conducted to extract dominant “model characters” or basis functions, 65 

from an ensemble of experimental data or detailed simulations of high-dimensional systems, for 66 
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subsequent use in the Galerkin projection procedure that yield low-dimensional 67 

models(Chatterjee, 2000).This model reduction technique identifies the most energetic modes in 68 

a time-dependent system, thus providing a wayto obtain a low-dimensional description of the 69 

system’s dynamics (Fang et al., 2008).POD reduced-order approach is introduced to transform 70 

the original flow and transport equations into a reduced form that can reproduce the dominant 71 

behaviors of the original model. The basic idea is to collect an ensemble of data of state variables 72 

(hydraulic head or solute concentration)called snapshots, by running the original model, and then 73 

use SVD to create a set of basis functions that span the snapshot collection. The reduced order 74 

model can be reconstructed using the POD basis functions by solving the rsulting set of coupled 75 

ODEs.The state variable at any time and location in the domain is expressed as a linear 76 

combination of these POD basis functions and time coefficients. Afinite-element discretization 77 

method is applied to the original model to obtain a set of ordinary differential equations for the 78 

time coefficients in the linear representation (Kunisch and Volkwein, 2002).  79 

POD has been introduced and applied to various nonlinear systems (Kunisch and Volkwein, 80 

2002; Zheng et al., 2002; Ravindran, 2002; Meyer and Matthies, 2003; Vermeulen et al., 2006b; 81 

Cao et al., 2006; Khalil et al., 2007; Fang et al., 2008; Reis and Stykel, 2007, Siade et al., 2010) 82 

. In practice, groundwater related problems that can be solved by a single flow model are very 83 

limited. More complicated groundwater processes are involved in coupled modeling using 84 

different numerical models. Robinson et al. (2009) attempted a simulation on solute transport in 85 

heterogeneous porous media using model reduction techniques. POD was also applied to 86 

multiphase (oil-water) flow (van Doren et al., 2006). Overall, model reduction via POD 87 

procedures is still a relatively new mathematical technique in the area of hydrogeological 88 
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modeling. Its effective application to other groundwater flow and transport processes, such as the 89 

VDFST,constitutesa challenging issue.  90 

Numerical models of VDFST are widely used to simulateseawater intrusion and submarine 91 

groundwater discharge processes (Bear, 1999; Diersch and Kolditz, 2002; Guo and Langevin, 92 

2002; Voss and Provost, 2002; Li et al., 2009).In the process of high-density fluid mixing with 93 

low-density fluid in an aquifer, fresh water flow causes the redistribution of fluid density and 94 

thus the variationofsolute concentration, and conversely affectsgroundwater movement. The 95 

groundwater flow and the solute transport are coupled processes, and the governing equations for 96 

the two processes must be solved jointly.Consequently, governing equations for VDFST 97 

problems are both transient and nonlinear. The classical numerical method, Galerkin Finite 98 

ElementMethod (GFEM), is often adopted to solve the VDFST problem, converting a continuous 99 

operator problem to a discrete problem(Segol et al., 1975; Navon, 1979; Navon and Muller, 100 

1979).  101 

In a previous study, Li and Hu (2013) described a POD-reduced implicit finite difference 102 

(FD) scheme (FD-POD) for uncoupled transient mass transports in heterogeneous 103 

media.However, the classical Galerkin projection method originated from the finite element 104 

analysis by defining specific weighting function (test function)tobe the same as the trial function 105 

used to compute the weighted residuals. Thus, GFEM is a natural choice for POD-based 106 

Galerkin projectionas opposed to the FD method.In other words, GFEM-POD is straightforward 107 

for implementation becausetheGFEMhas a similar weighting structure for trial solution of the 108 

POD reduced-order model.In general, the accuracy and efficiency of the GFEM-POD outweigh 109 

the counterparts for FD-POD due to its internal consistency especially when dealing with 110 

complex and coupled systems. 111 
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In this study, a GFEM-POD reduced-order method was developed to transform the original 112 

VDFST model into a low-dimensional form that can approximately reproduce thehigh-113 

dimensional high-fidelity full model simulation results, which can be further used for state 114 

estimation, forward prediction or model inversionwith reducedcomputationalcost. To the best of 115 

our knowledge, this is the first time when POD reduction method is applied to a density-116 

dependent flow system. Two benchmark cases were used to testify the capability of this method 117 

to approximately solve density-dependent flow problems. As a boundary controlled system, the 118 

modified Henry problem was used to test the quality of the GFEM-POD model. Additionally, the 119 

GFEM-POD model was applied to another classic VDFST problem, the Elder problem, in which 120 

the calculation results are determined by coupled governing equations and not by boundary 121 

forcing. Verification and prediction tests were performed for the two problems with various 122 

permeability distributions so as to investigate the accuracy and efficiency of the POD method in 123 

approximating the density-dependent flow fields.The developed method paves the way for future 124 

study onoptimal parameter estimation for VDFST problem based on POD reduced-order 125 

modeling. 126 

This paper is organized as follows. In section 2, the variable density flow and solute transport 127 

model is introduced and a numerical GFEM is applied to solve the mathematical model. In 128 

section 3, the model reduction method using POD to a density dependent flow approximation is 129 

developed.  The method developed here is applied to two density dependent flow problems to 130 

illustrate the efficiency and accuracy of the POD method for various scenarios tested in section 4. 131 

Finally, in section 5, we provide conclusive remarks based on the numerical findings from this 132 

study. 133 

 134 
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2. Variable Density Flow and Solute Transport (VDFST) Model 135 

2.1. Mathematical Description of Variable-Density Flow and Solute transport Problems 136 

Using a Cartesian coordinate system with the axes of coordinates coinciding with the 137 

principal directions of an anisotropic medium, the governing equation of two-dimensional (cross-138 

section) variable-density flow in terms of equivalent freshwater head and fluid concentration is 139 

(Guo and Langevin, 2002): 140 

, 0

f f f f f f

fx fz f s ss ss

f

h h h C
K K S E q

x x z z t t

x z t T

µ µ ρ ρ
ρ ρ ρ θ ρ

µ µ ρ

  ∂ ∂ − ∂ ∂ ∂ ∂
+ + = + −     ∂ ∂ ∂ ∂ ∂ ∂     

∈Ω ≤ ≤

(1) 141 

where ][Lh f is the equivalent freshwater head, ])[,( 1−
LTzxK f is the freshwater hydraulic 142 

conductivity tensor,
3[ ]MLρ −

  is the fluid density, 
3[ ]f MLρ −

 is the freshwater density, /fµ µ   is 143 

the ratio of freshwater and saltwater fluid viscosity and considered equal to 1,
1

[ ]sS L
−

is specific 144 

storage, θ is the effective porosity, ][
3−

MLssρ and ][
1−

Tqss represent the source and/or sink term, 145 

and
3[ ]C ML

−
is the fluid concentration. Eis a dimensionless constant that represents the density-146 

coupling coefficient, where

f
EC

E
C

ρ ρ

ρ

= +


∂
= ∂

.The relationship between concentration and density is 147 

assumed to be linear. Here,Ω  represents the bounded calculation spatial domain and T is the 148 

time period of calculation.Equation (1) is subject to the following initial and boundary 149 

conditions: 150 



  

 7 

1

2

0

1 1

f f 2

1

2

( , ,0) ( , ) ( , )

( , , ) ( , , ) ( , )

( , , ) ( , )

s :Dirichlet Boundary Condition

s :Neumann Boundary Condition

s

f f

x x z z s q

h x z h x z x z

h x z t h x z t x z s

h h
K n K c n q x y t x z s

x z
ρ ρ η ρ

= ∈Ω

= ∈

∂  ∂    
+ + = ∈    

∂ ∂    
          (2) 151 

A second governing equation for the two-dimensional transport of solute mass in the 152 

porousmediais (Guo and Langevin, 2002), 153 

( ) ( )

, 0

x ssz

xx zz ss

u C qu CC C C
D D C

x x z z x z t

x z t T

θ

∂ ∂∂ ∂ ∂ ∂ ∂   
+ − − = −   

∂ ∂ ∂ ∂ ∂ ∂ ∂   

∈Ω ≤ ≤

  (3) 154 

where
2 1[ ]D L T

−
 is the hydrodynamic dispersion coefficient, 

1[ ]u LT
−

 is the pore velocity, and 155 

][
3−

MLCss  is the solute concentration of source or sinks terms. 156 

Equation (3) is subject to the following initial and boundary conditions, 157 

1

2

0

1 1

2

( , , 0) ( , ) ( , )

( , , ) ( , , ) ( , )

( , , ) ( , )

s

xx x zz z s

c x z c x z x z

c x z t c x z t x z s

c c
D n D n g x z t x z s

x z

= ∈Ω

= ∈

∂ ∂   
+ = ∈   

∂ ∂   

           (4) 158 

Darcy’s Law is adopted in the variable-density form as, 159 

f

fz

fx

x

f

z

hK
u

x

hK
u c

z

θ

η
θ

∂
= −

∂

∂ 
= − + 

∂ 

          (5) 160 

Inserting (5) into (1) and (3) and using the empirical linear relation between the saltwater 161 

density and concentrationwe obtain, 162 



  

 8 

(1 ) (1 )

, 1 , , 0

f f f ss
fx fz s ss

f

f f

h h h C
C K C K C S q

x x z z t t

E
C x z t T

ρ
η η η θη

ρ

ρ
η η

ρ ρ

∂ ∂ ∂    ∂ ∂ ∂
+ + + + = + −    ∂ ∂ ∂ ∂ ∂ ∂    

= = + ∈ Ω ≤ ≤

(6) 163 

f fz

, 0

f fx ss
xx zz ss

h hK qKC C C
D D C C C C

x x z z x x z z t

x z t T

η
θ θ θ

∂  ∂    ∂ ∂ ∂ ∂ ∂ ∂ ∂   
+ + + + = −       

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

∈Ω ≤ ≤

 (7) 164 

Eqs. (6) and (7) are the governing equations of a coupled nonlinear system of VDFST. 165 

 166 

2.2 Numerical GFEM Solutions 167 

The approximate solutions for hydraulic head and solute concentration in Eq. (6) and (7) are 168 

defined in Eq. (8) using the nodal basis function according to Galerkin finite element method 169 

(Xue and Xie, 2007),  170 

( , , ) ( , , ) ( ) ( , )

( , , ) ( , , ) ( ) ( , )

NNODE

f L L

L

NNODE

L L

L

h x z t h x z t h t N x z

C x z t c x z t c t N x z

≈ =

≈ =

∑

∑

�

�

(8) 171 

where )(th
L is the approximated hydraulic head at node L (L = 1, …,NNODE)and time t, )(tc

L  is 172 

the approximate solute concentration at node Land time t. ),( zxN
L is the finite-element basis 173 

function, NNODE(or NN) is the total number of nodes used across the domain. 174 

An implicit time-extrapolated method was used to integrate the resulting system of ordinary 175 

differential equationsin time. The boundary conditions must be implemented into the global 176 

matrices by modifying the global matrices in GFEM. Aquifer parameters such as hydraulic 177 

conductivity distribution in space are represented in an element-wise discrete way (Voss and 178 

Provost, 2002).The coupling between flow and transport is accomplishedthrough the 179 

synchronous approach(Guo and Langevin, 2002),iterating the solutionsbetween the flow and 180 
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transport equations.This kind of procedure leads to a larger amount of calculation 181 

effort,compared with the constant-density flow and transport model due to the additional 182 

coupling loop and also entails additional difficultites when implementing parts of the POD 183 

model. The application of POD model will significantly reduce computation time in such a 184 

calculation- intensive system. 185 

 186 

3. Model Reduction using Proper Orthogonal Decomposition (POD) 187 

The reduced-order model construction methodology is given in Figure 1, modified from 188 

Vermeulen et al. (2004b). First, the original full numerical model is run to generate several 189 

snapshots of model states. Second, we extract dominant patterns (the basis functions) from these 190 

state snapshots via SVD. These two steps can be treated as the preprocessing steps for the 191 

reduced-order model. With the unchanged numerical formulation and system inputs (e.g. 192 

parameters, boundary conditions, initial conditions) of the original model, the selected bases are 193 

used in Galerkin projection. The Galerkin projection is the central procedure used toconstructthe 194 

reduced-order model by projecting both the partial differential equations of groundwater flow 195 

and solute transport into a low-dimensional space. After the projection step, the reduced-order 196 

model is able to simulate the same model behaviors through the reconstruction of model states 197 

with a significantly reduced computational burden. In this section, we will describe the 198 

condensed formulation of the GFEM-POD model, which is capable of simulating the coupled 199 

process of VDFST. 200 

 201 

3.1. Snapshots and SingularValue Decomposition 202 
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As known for the VDFST model, the most importantsimulation results from the numerical 203 

model as described above are the equivalent freshwater heads and the solute concentrations in 204 

the model domain. The two variables are sampled from simulation results at defined time 205 

stepsduring the simulation period referred to as snapshots. An ensemble of nodal-value 206 

represented snapshots chosen in the analysis time interval [0, T] can be written as(Chen et al., 207 

2011):  208 

{ }

{ }

1 2

1 2

, , ..., , 1,2,...,

, , ..., , 1,2,...,

ns k NN

f f f f

ns k NN

h h h h R k ns

c c c c R k ns

∈ =

∈ =
 (9) 209 

wherens is the number of snapshots and NN is the number of nodes across the mesh, the vectors 210 

k

fh and k
c both have NN entries: 211 

( )

( )

,1 ,NN

1 NN

...

...

T
k k k

f f f

T
k k k

h h h

c c c

=

=
(10) 212 

The collection of all 
k

fh  results in a rectangular NN ns×  matrix Rh,and the collection of all 213 

k
c results in a rectangular NN ns×  matrix Rc. The aim of POD is to find a set of orthonormal 214 

basis functions of Rh and Rcrespectively that can capturemost of energetic information in the 215 

original VDFST system(Fang et al., 2008). 216 

Singular Value Decomposition (SVD) is a well-known technique for extracting dominant 217 

“features” and coherent structures from data and “compressing” that information into a few low 218 

order “weights” (singular values) and associated orthonormal eigenfunctions(Golub and van 219 

Loan, 1996). The SVD of the matrix R, is calculated through the equation, 220 

TR USV=           (11) 221 
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whereU isan NNNN × orthogonal matrix whose columns are constructed by the singular 222 

eigenvectors of T
RR , V is an ns ns× orthogonal matrix whose columns are constructed by the 223 

eigenvectors of RR
T , and S is a diagonal NN ns× matrix with singular values. The singular 224 

values in S are square roots of the eigenvalues from T
RR or RR

T . The singular values are 225 

arranged in descending order.An optimal rank m approximation to R is calculated by, 226 

T

m m
R US V=           (12) 227 

In computation, one would actually replace U and V with the matrices of their first m columns; 228 

and replace mS  by its leading mm ×  principal minor, the sub-matrix consisting of first m rows 229 

and first m columns of S. The optimality of the approximation in Eq. (12) lies in the fact that no 230 

other rank m matrix can be closer to R in the Frobenius norm, which is a discrete version of the 231 

L2 norm (Chatterjee, 2000). So the first m-th columns of the matrix U (for any m) give an 232 

optimal orthonormal basis for approximating the data. The basis vectors are given by: 233 

, 1
i i

U i Mψ = ≤ ≤           (13) 234 

whereM is the number of basis functions. 235 

SVDis applied to snapshots matricesRh and Rc,respectively, to obtain the POD basis functions 236 

of head and concentration: 237 

{ }

{ }

,,1 ,2

,,1 ,2

, , ...,

, ,...,

h

c

h Mh h h

c Mc c c

ψ ψ ψ

ψ ψ ψ

Ψ =

Ψ =
          (14) 238 

where hM  is the number of bases from snapshots of hydraulic head, cM  is the number of bases 239 

from snapshots of solute concentration.  240 

The eigenvalues i
λ are real and positive, and they are sorted in descending order where the i

th
 241 

eigenvalue is a measure of the information transferred within the i
th

 basis mode(Fang et al., 242 
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2008). Hence, if i
λ decays very fast, the basis functions corresponding tosmall eigenvaluesmay 243 

be neglected. The following formula is defined as the criterion of choosing a low-dimensional 244 

basis of size M (M<< ns)(Fang et al., 2008): 245 

( )

M

i

i

ns

i

i

I M

λ

λ

=
∑

∑
(15) 246 

whereI(M) represents the percentage of informationwhich is captured by the POD basis 247 

1,..., ,...,m MΨ Ψ Ψ . This equation is used for both heads and concentrations. 248 

 249 

3.2. Generation of POD Reduced-Order Model Using Galerkin Projection 250 

To obtain thePOD reduced-order model, we solved the numerical models of (6) and (7) to 251 

obtain an ensemble of snapshots to generate POD bases, and then used a Galerkin projection 252 

scheme to project the model equations onto the subspace spanned by the POD basis 253 

elements(Chen et al., 2011). The POD solution can be expressed as(Chatterjee, 2000; Pinnau, 254 

2008): 255 

,

1

,

1

( , , ) ( , ) ( )

( , , ) ( , ) ( )

h

c

M
POD h i FEM POD h

f i

i

M
POD c i FEM POD c

i

i

h x z t x z t

c x z t x z t

ψ α

ψ α

−

=

−

=


=



 =


∑

∑
 (16) 256 

where ( , )i x zψ are POD basis functions, also known as POD modes. These modes can be used to 257 

incorporate characteristics of the solution into a bounded problem by using results from 258 

numerical simulation and/or observationaldata. ),,( tzxh f and ),,( tzxc  are decomposed into 259 

linear combinations of time coefficients and POD modes which are the functions of space. 260 
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The POD modes are interpolated using finite element basis functions to form the GFEM-261 

POD modes as(Aquino et al., 2009): 262 

, ,

1

, ,

1

( , ) ( , ) 1,...

( , ) ( , ) 1,...

NN
h i FEM POD h i

j j h

j

NN
c i FEM POD c i

j j c

j

x z N x z i M

x z N x z i M

ψ ψ

ψ ψ

−

=

−

=


= =



 = =


∑

∑
          (17) 263 

where{ }iψ  is a column vector that contains the nodal values of mode i. 264 

The POD involves a mathematical procedure that transforms a number of possibly correlated 265 

state variables into a smaller number of uncorrelated variables called principal components as an 266 

ensemble of distinct state variables for the POD-reduced model.Then, the nodal-value 267 

represented POD bases are interpolated by FE-bases to obtain the corresponding FE represented 268 

continuous POD bases. Therefore, we must use a Galerkin projection approach to smooth the 269 

derivatives of the modes later(Aquino et al., 2009).Based on Eq. (16) and (17), corresponding 270 

finite-element represented POD solution can be expressed as(Chen et al., 2011): 271 

,

1 1

,

1 1

ˆ( , , ) ( , , ) ( , ) ( )

ˆ( , , ) ( , , ) ( , ) ( )

h

c

M NN
h i h

f j j i

i j

M NN
c i c

j j i

i j

h x z t h x z t N x z t

c x z t c x z t N x z t

ψ α

ψ α

= =

= =


≈ =



 ≈ =


∑∑

∑∑
          (18) 272 

The model states are decomposed into linear combinations of GFEM base functions, POD 273 

modes and time coefficients. 274 

From Eqs (6) and (7), we define two residual functions, 275 
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( ) ( )

( )

f f

0

f fz

( , , , , )

1 1

( , , , , )

f

f f f ss
x z s ss

f

f fx ss
xx zz ss

h c x z t

h h h c
c K c K c S q

x x z z t t

h c x z t

h hK qKc c c c
D D c c c

x x z z x x z z

ρ
η η η θη

ρ

η
θ θ θ

=

∂  ∂  ∂   ∂ ∂ ∂
+ + + + − − +    

∂ ∂ ∂ ∂ ∂ ∂    

=

∂  ∂    ∂ ∂ ∂ ∂ ∂ ∂ ∂   
+ + + + − − −       

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        

1

2

f

f

c

t∂

(19) 276 

The Galerkin method requires the residualsto be orthogonal with respect to the basis 277 

functions.Therefore,we need to project the original high-dimensional model onto a low-278 

dimensional subspace generated by full model snapshots(Vermeulen et al., 2005). 279 

Substituting (18) into (19) and integrating with respect to the POD bases according to 280 

Galerkin method gives: 281 

,

,

ˆ ˆ( , , , , ), , 0 1,..., ; 1,...,

ˆˆ( , , , , ), , 0 1,..., ; 1,...,

h m

k h

c m

k c

h c x z t N k NN m M

c h x z t N k NN m M

ψ

ψ

= = =

= = =

1

2

f

f
          (20) 282 

usingthe inner product 283 

,f g fgd
Ω

= Ω∫  284 

andL2norm 285 

1

2,f f f=  286 

In the reduced-order model, equations (6) and (7) are finally changed to: 287 

( )

( )

f

f

0

ˆ
ˆ1

ˆ
ˆ ˆ1 , 0

ˆ ˆ

x

h

z k

ss
s ss

h
c K

x x

h
c K c N dxdz

z z

h c
S q

t t

η

η η

ρ
θη

ρ

Ω

  ∂ ∂
+   ∂ ∂  

 
  ∂ ∂ 

+ + + Ψ =     ∂ ∂   
 ∂ ∂
 − − +

∂ ∂  

∫∫ (21) 288 



  

 15 

( )

f fz

ˆ ˆ

ˆ ˆˆ ˆ
ˆ , 0

ˆ
ˆ

xx zz

cx

k

ss

ss

c c
D D

x x z z

K Kh c h c
c N dxdz

x x z z

q c
c c

t

η
θ θ

θ

Ω

 ∂ ∂ ∂ ∂    
+    ∂ ∂ ∂ ∂    

     ∂ ∂ ∂ ∂
 + + + Ψ =        ∂ ∂ ∂ ∂     
 

∂ − − −
 ∂ 

∫∫ (22) 289 

The key ofgenerating a POD reduced-order model is to solve system of coupled ODEs of 290 

)(tcα and )(thα  according to Eq. (18)-(20).This key is also known as Galerkin Projection, 291 

which involves two basic steps: (a) introducing the solutions expansions into the formulation of 292 

the deterministic or stochastic or any general spectral problem and (b) project the resulting 293 

spectral system onto the basis chosen to be the same as one for spectral expansion to yield a set 294 

of ordinary differential equations that the expansion coefficients must satisfy and construct in the 295 

POD-reduced dynamical system. 296 

The integrations in equation (21) and (22) are the same as those for the numerical full model. 297 

The trial solutions substituted into (19) are now equation (18) rather than equation (8). Finite-298 

element basis function has a different expression for each element, so Eq. (19) must be 299 

calculated per element before making the summation of all the elements.  It should be noted that 300 

the GFEM basis functions ),( zxN j are the only spatial functions related to the areal integration 301 

of each element. Since POD bases hΨ and cΨ , and time coefficients hα  and cα are not spatial 302 

functions,they can be extracted out of the areal integrations(Chen et al., 2011). 303 

The coupled system ODEs of ( ),  ( )c ht tα α  are expressed as, 304 

( ) ( )

( ) ( )

1 2 3 4 5 6 1

1 2 3 4 2

h c
T T

h c h c c c

c
T T

c h c c c

d d
A A A A A A F

dt dt

d
B B B B F

dt

α α
α α α α α α

α
α α α α α


+ + + + + =


 + + + =


          (23) 305 
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along with the initial conditions: 306 
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0 0
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0 0
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h h m

m h

c m
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t h x z t m m
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 = =


= =

         (24) 307 

where 308 

( ) ( )1 1( ) ( ),..., ( ) ; ( ) ( ),..., ( )
h c

T T
h c

m mt t t t t tα α α α α α= =  309 

with the matrix notation: 310 
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 312 

The detailedderivation of the GFEM-POD model for a VDFST system is presented in 313 

Li(2010). The dimensions of the matrices A1-A6 and B1-B4 in Eq. (23) are now determined by the 314 

number of POD bases (NB) instead of the number of nodes (NN), where NB << NN. Thus, the 315 

dimension of the reduced-order model is much smaller than the dimension of the original full 316 

model, which will save a large amount of computational labor. Thesystem of coupled ODEs, Eq. 317 

(23), still need to be solved according to the same implicit scheme stated in section 2.1. The 318 

estimated nodal values of  fh and c  in the domain at a certain time can be reconstructed through 319 

Eq. (16). 320 

 321 

3.3. Error analysis 322 

In this subsection, the error estimates between numerical solutionsof the original model and 323 

the reduced model based on POD bases are discussed. 324 
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Let ),...,2,1( Tnu
n

NN = generally refers to the solution of theoriginal full model, and 325 

*
( 1,2,..., )

n

NNu n T=  be the vector constituted with solutions of the reduced model. NN equals to 326 

the number of active nodesacross the discretization mesh. T represents the number of time steps. 327 

If { }1,2,...,n T∈ , the error estimates are obtained as follows (Aquino et al., 2009; Di et al, 328 

2011): 329 

{ }
2

*

( 1) 1, 2,...,
u

n n

NN NN ML
u u n Tλ +− ≤ ∈  (25) 330 

where λ represents the set of the eigenvalues of the matrices T
RR or RR

T , R is the matrix of an 331 

ensemble of snapshots { }(1 )l

NN
u l L≤ ≤ . uM is the number of basis functions chosen in the 332 

reduced model. 333 

Else, if { }1,2,...,n T∉ , when ( )1
l

t l L≤ ≤ are uniformly chosen from ( )1
n

t n N≤ ≤ , and  334 

2

1( )NN

L

u

t

ζ∂

∂
and

2

*

2
( )

NN

L

u

t

ζ∂

∂
are bounded (i.e., 

2

1( )NN

L

u

t

ζ
ω

∂
≤

∂
and 

2

*

2
( )

NN

L

u

t

ζ
ω

∂
≤

∂
), the 335 

following error estimates exist(Di et al, 2011): 336 

{ }
2

*

( 1) ( , , , ) 1, 2, ...,
n

n n

NN NN ML
u u f T L t n Tλ ω+− ≤ + ∆ ∉  (26) 337 

whereu can replaced by hfor c in equation(25) and (26).Equation (25) indicates that the error can 338 

be controlled through optimal basis selection when the sampling time period of snapshots is the 339 

same as the simulation period (e.g. a reproduction test), but the error will be inevitably larger 340 

according to Eq. (26) when the sampling time period of snapshots is different from the 341 

simulation period (e.g. a prediction test). The error in prediction test is not bounded by the 342 

descending sorted eigenvalues because of the existence of an added error function ),,,( ωtLTf ∆ . 343 

The VDFST problems described in the present manuscript adopted an assumption of linear 344 

relationship between concentration and density. For coupled system, from equations (23), the 345 
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time-dependent coefficients to be determined, α
h
 and α

c
, are solved by construction of two 346 

groups of POD bases for head and concentration.  The dimensions of the matrices A1-A6 and B1-
347 

B4 are largely decreased. For each time step, the two ODEs are commonly solved iteratively until 348 

both of the alphas converge. Referring to the single state ODE (such as transient groundwater 349 

flow), the efficiency of the reduced model in this coupled system is more significant 350 

comparedwith the original model. Meanwhile, if the two types of POD bases are generated from 351 

insufficient head and concentration snapshots simultaneously, the errors are transmitted faster 352 

and accumulated in both α
h
 and α

c
. 353 

 354 

4. Numerical Application Cases: Henry Problem And Elder Problem 355 

4.1. Henry Problem 356 

Henry problem(Henry, 1964), a classic variable-density flow and solutetransport problem, is 357 

applied to test the proposed GFEM-POD model.The Henry problem has played a key role in 358 

understanding of seawater intrusion into coastal aquifers, and in benchmarking density 359 

dependent flow codes(Abarca et al., 2007). The problem has been studied for decades, and its 360 

importance on parametric analysis of seawater intrusion is still attracting great attention (Sanz 361 

and Voss, 2006).  362 

Numerical programs were compiled by Li(2010)to solveVDFST models using 363 

GFEM.Toexamine the accuracy of thesenumerical programs, we used the same model inputs as 364 

Simpson and Clement(2004)to simulate a standard Henry problem (Dm = 1.62925m
2
/d), except 365 

the time step is 1 minute and the convergence criteria is 10
-6

 kg/m
3
 for the fluid concentration 366 

between consecutive iterations. The system reached a steady state after approximately 250 367 

minutes. The concentration solutions from this numerical model are compared with the semi-368 
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analytical results (Simpson and Clement,2004). The isochlors revealed anexcellent 369 

correspondence, as revealed by the fact thatboth the shape and position of the isochlorsmatched 370 

very well(Li, 2010). 371 

By halving the recharge rate of freshwater (Qin), a modified Henry problem (Simpson and 372 

Clement, 2004) is simulated, to increasethe relative importance of the density-dependent effects 373 

as compared to the boundary forcing. It served as the original full model. All the other model 374 

inputs are still the same as the standard Henry problem. Meanwhile, the maximum grid Peclet 375 

number is reduced from 4.1 under the standard conditions to 2.8 for the modified conditions on 376 

this 2141 ×  grid(Simpson and Clement, 2004).Under the modified conditions, the isochlor 377 

distribution will be more diffuse, which can help alleviate potential oscillation near the top-right 378 

of the aquifer(Segol et al., 1975). The system required approximately 460 minutes CPU time for 379 

the solution when the change of fluid concentration is smaller than 10
-3

 kg/m
3
 between two 380 

successive time steps. The CPU time required to simulate 500 minutes in MATLAB with a time 381 

step of 1 minute is approximately 1500 seconds for the original full model. 382 

 383 

4.2. Model Reduction of the Henry Problem 384 

To demonstrate the application of model reduction, POD method discussed in section 3 is 385 

illustrated using the modified Henry problem in various cases withdifferent combination of 386 

heterogeneity and anisotropy of the conductivity field in the aquifer.In the first case, a 387 

homogeneous and isotropic aquifer is considered for the modified Henry problem. The hydraulic 388 

conductivity fK  throughout the domain is 864 m/day.Following the same procedure, the original 389 

numerical model was used to generate snapshots.  390 



  

 21 

For a prediction test, the snapshots were selected initially every 1 minute from the original 391 

model solutions of the first 100 minutes for both head and concentration. We have an ensemble 392 

of snapshots with a size of 100. Reduced model  extracted a certain number of POD bases from 393 

the 100 snapshots to predict the head and concentration distributions in a time period of 400 394 

minutes, from t = 101 minute to t = 500 minutes and the predicted time step is 1 minute. 395 

The number of POD bases (NB), snapshots selection, and the predicted time length are the 396 

most important factors in this study to determine the accuracy and efficiency of the reduced 397 

model. The impactsof these three factors on prediction were investigated as follows according to 398 

the prediction test. 399 

 400 

4.2.1. Basis selection 401 

Previously discussed in section 3.1, in many cases, the first few eigenvalues comprise most 402 

of the total information of a matrix. Under this condition, weneed to choose an adequatenumber 403 

of bases to capture the most information to predict the concentrationwith limited calculation. The 404 

relationship between the percentage of the total information and the number of eigenvalues is 405 

illustrated in Figure 2. By retaining only the first 5 eigenvalues (NB = 5) of the ensemble of 406 

snapshots of head solutions, 99.99% of total information is extracted. However, for concentration 407 

solutions,we need more than 12 eigenvalues of the same size of snapshotsto reach the same level 408 

of percentage. Hence, concentration can be approximated and predicted from the reduced model 409 

using a number of bases exceeding 12 in order to obtain an accurate reproduction of original 410 

model.  411 

To investigate the effect of NB on the solution accuracy, we vary the size of NB, but keep the 412 

size of the ensemble of snapshots to be 100 and the predicted time steps to be 400. The accuracy 413 
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of the computed concentrations using model reduction with various NBs is presented in Figure 3. 414 

Two error metrics are employed to compare the predicted results between the reduced model and 415 

the original full model,by calculating root mean square error (RMSE) and the correlation 416 

coefficient for each predicted time step over the domain. Correlation is defined asthe correlation 417 

coefficient of solution vector from the original model and solution vector from the reduced 418 

model, which is calculated from: 419 

 (27) 420 

whereu indicates the freshwater head or the concentration. 421 

From Figure 3, the accuracy of the reduced model is positively correlated with the number of 422 

bases. The computation time of the reduced model with different NB is listed in Table 1. As NB 423 

increasing, the required computation time increases. An optimal value of NB is important to 424 

increase the efficiency of reduce model without sacrifice the accuracy. Employing more bases 425 

during the reduction process will not efficiently increase the accuracy, but require more 426 

computation time. In Figure 3, the accuracy of the reduced model decreases gradually as the 427 

increase of prediction time steps. The accuracy of the reduced model is best at the time t = 100 428 

minutes. The predicted results using 20 bases have a relatively lower accuracy at t = 500 minute 429 

(Figure 4 (b) and (d)) than at t = 200 minutes (Figure 4 (a) and (c)), although, there are still good 430 

matches between the reduced model and the full model. Thesimulation of reduced model only 431 

took the snapshots from the first 100 minutes of model simulation. The coefficient )(tα is 432 

calculated in the reduced model as a function of time. Thus, calculation error accumulates as 433 

time increases. Normally, without additional information from new snapshots, the best prediction 434 

time period will be the same as that covered by the set of chosen snapshots. That is the reasonwe 435 

need to take more than 12 bases to maintain the accuracy, not dropping to a lower level (smaller 436 
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than 99%) in the future.The computation time using the original full model to predict 400 time 437 

steps is about 1150 seconds, whereas it tookonly 5 seconds of CPU time were required for the 438 

reduced model with NB = 20 to conduct the same prediction, which runs at least 230 times faster. 439 

It runs nearly 1200 times faster when NB = 5. 440 

 441 

4.2.2. Predicted Time Length 442 

To overcome the problem of accuracy decrease with time, the best approach is to add 443 

updated information in the prediction period. Observations will add significant amount of 444 

information to POD modes through new snapshots. Assuming that we add only one new 445 

snapshot which is obtained from the observations at the time t = 200 minutes to the old 446 

snapshots. The number of snapshots now is 101. The prediction period is still the same, from t = 447 

101 minutes to t = 500 minutes. The updated results are shown in Figure 5. The NB used is still 448 

20. Comparing withFigure 3, all predicted results were significantly improved. The reduced 449 

model can be calibrated with updated information from observations or new snapshots to 450 

significantly increase the accuracy. Addition of observation data will not only greatly increase 451 

the accuracy, but also leads to a better snapshots selection. It is worth mentioning that, the 452 

computational time is still the same, and it only changedslightly by increasing the number of 453 

snapshots. The computational time is mainly determined by the NB used in reduced model. 454 

 455 

4.2.3. Snapshot selection 456 

The ability of a reduced modelobtained from PODto accurately represent and, in practice, 457 

replace the full model is mainly based on the manner in which the full model snapshots are 458 

obtained (Siade et al., 2010), because both the number of snapshots and the time intervals of 459 
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sampling will affect the accuracy of the reduced model. If the snapshots did not include enough 460 

amount of information, the reduced order model will not provide accurate results no matter how 461 

many bases are used. Therefore,as shown in Figure 1, to maximize the accuracy, it is important 462 

to optimize the snapshots by the interaction between the original full model and the reduced-463 

order model (Kunisch and Volkwein, 2010). The number of snapshots is optimal when the 464 

addition of another snapshot does not add a significant amount of information to the reduced 465 

model(Siade et al., 2010). 466 

The sampling time of snapshots from solutions of original model determines the number of 467 

snapshots. If we sampled 100 time steps from the first 100 minutes, we have 100 snapshots. 50 468 

snapshots will be taken with a sampling time step of 2 minutes, and 25 snapshots will be taken 469 

with a sampling time step of 4 minutes. The results using different number of snapshots without 470 

changing NB are shownin Figure 6. The accuracy of the reduced model is slightly changed. The 471 

correlation coefficients are still higher than 99.99%, which means all the three ensembles of 472 

snapshots captured the dominant characters of the model. A small set of snapshots is efficient for 473 

the reduced model to perform accurately.  474 

In subsection 4.2.2, when the snapshot size was changed because of new information was 475 

included, selection of snapshots can be reevaluated. Figure 5 showed that the accuracy is further 476 

enhanced with a selection of 101 snapshots. The importance of this new snapshot is obvious. A 477 

large number of the old snapshots from the past 100 minutes will be not necessary. Adopting as 478 

many snapshots as possible in a certain time period isnot equal to a high level of accuracy. It is 479 

predictable that the 100+1 snapshots can be reduced to 25+1 snapshots to produce the results 480 

without sacrificing the accuracy. The result indicates that a snapshot from a new time period 481 

contains much more information that a snapshot from an old period of time. 482 
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 483 

4.2.4. Heterogeneous Case 484 

Hydraulic conductivity fields in natural media are commonly heterogeneous and anisotropic. 485 

Thus, it is required to test the application of POD method on a more “realistic” case with a 486 

variable conductivity field. The conductivity field will significantly affect the velocity field of 487 

the VDFST system, which controls solute advection and dispersion processes. In the case study, 488 

the variability of the conductivity field is represented by the pattern and parameter values of  fK  489 

in Eq. (6) and (7). 490 

In this case study, all the other settings for both the full model and the reduced model are 491 

same as those in the homogeneous case. Weproposed two common heterogeneous cases, a 492 

random field and a zonal field. From the homogeneous cases, we notice that the influences of 493 

snapshots, bases and predicted period length on prediction must be considered. Under various 494 

field conditions, we will investigate whether the reduced model via POD can still carry out the 495 

results efficiently and accurately with heterogeneous porous medium. 496 

The first caseemployed a hydraulic conductivity field generated by the geostatistical 497 

approach. Assume the fK (hydraulic conductivity) field is heterogeneous and anisotropic, where 498 

fK  is assumed to satisfy a Gaussian distribution, )200,864(N . The anisotropic ratio /
fx fz

K K  is 499 

5 all over the domain. The distribution of fK  in x-coordinate direction, fx
K , is displayed in 500 

Figure 7. The range of the parameter values is 200 m/day ~ 1400 m/day.Employing 20 bases 501 

from 100 snapshots for this case, the reduced model runs approximately 250 times faster than the 502 

full model. Comparing the predicted results (Figures8 - 9), the accuracy of the reduced model is 503 

illustrated according to the continuous good fit of head and concentration distributions with time 504 

between the full and the reduced model respectively. 505 
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The second case employed a zonal heterogeneous medium. It is assumed that the fK  field is 506 

zonally distributed and anisotropic. The anisotropic ratio /
fx fz

K K  is still 5 all over the domain. 507 

The distribution of fx
K  field is displayed in Figure 10.  The confined aquifer is divided into four 508 

zones. There are two patterns adopted to present the hydraulic conductivities. In this confined 509 

aquifer whose depth is 1m, the hydraulic conductivities decrease from zone 1 to zone 4 by depth 510 

in case A, and increase by depth from zone 1 to zone 4 in case B (Figure 10).  511 

No matter which pattern is chosen, the same procedure of model reduction is conducted. To 512 

run the reduced model efficiently while retaining calculation accuracy, 25 snapshots are sampled 513 

from the first 100 minutes, which is 1 snapshot every 4 minutes. 10 bases are then computed 514 

from SVD. The spatial and temporal distributions of head and concentration over a period of 400 515 

minutes are then solved from the reduced model. 516 

For case A, the computation time of the reduced model is nearly 950 times faster than the full 517 

model. Figure 11 shows the spatial distributions of hydraulic head and concentration at time t = 518 

500 minutes, which are identical with the results from the full model. 519 

For case B, the computation time of the reduced model is nearly 750 times faster than the full 520 

model. Figure 12 shows the spatial distributions of hydraulic head and concentration at time t = 521 

500 minutes, which are almost perfectly matched with the results from the original full model. 522 

 523 

4.3. Model Reduction of the Elder Problem 524 

As a boundary controlled system, the modified Henry problem was used to study the 525 

accuracy and efficiency of the GFEM-POD reduced model in section 4.2.  TheGFEM-POD 526 

reduced model is applied to another classic VDFST problem, the Elder problem. The Elder 527 

problem(Elder, 1967a; 1967b; Voss and Souza, 1987)described a laminar fluid flow in a closed 528 
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rectangular aquifer and is commonly used to verify variable-density groundwater codes(Simpson 529 

and Clement, 2003).Compared with Henry Problem, the Elder problem has the characteristicthat 530 

the calculation results are only determined bycorrectly coupled governing equations, not by 531 

boundary forcing.  As a result, the Elder problem will be influenced more by nonlinearity 532 

induced by variable-density condition. 533 

For the Elder problem, we only consider advection and diffusion without dispersion. The 534 

coupled governing equations are still Eq. (6) and (7).To amplify the change of isolines of 535 

concentration by accelerating transport process and to avoid three stable steady state solutions 536 

(van Reeuwijk et al.,2009), a modified Elder problem is taken where the molecular diffusion 537 

coefficient (Dm) was doubled. For this modified Elder problem, the domain is regularly 538 

discretized using  18913161 =×  nodes and 3600 triangular elements. A uniform time interval of 539 

5 days is used for a simulation period of 5 years.All the other settings are still same as the 540 

standard Elder problem(Simpson and Clement, 2003). This modified Elder problem is used as the 541 

original full model. The five-year evolution of the dense fluid in this confined aquifer is shown 542 

in Figure 13. With symmetric system settings, the distribution of the plume lobes is also 543 

symmetric along the centerline of the aquifer. 544 

The full MATLAB code solving standard or modified Elder problem was adjusted from the 545 

code for the Henry problems. The CPU time in MATLAB to simulate 5 years with a time step of 546 

5 days is approximately 3 hours for the original full model. 547 

In the previous section, the reduced model is applied only to predict the results for modified 548 

Henry problems. The performance of model reduction is verified through different patterns of 549 

space variation. The importance of snapshots selection and bases selection is discussed. 550 
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To further investigate the quality of the reduced model for Elder problem, two types of 551 

calculation are performed, reproductionand the prediction. For the reproduction calculation, the 552 

simulation period of the reduced model is the same as the time period usedin the full model to 553 

generate snapshots. While for prediction calculation, the simulation period of the reduced model 554 

is beyond the time period for the full model to generate snapshots. Based on the error analysis in 555 

section 3.3, the errors of reproduction test are addressed by equation (25) and the errors of 556 

prediction test are expressed by equation (26). From the error analysis, the errors of reproduction 557 

test can be controlled through optimal snapshots selection and base selection, which determine 558 

the (M+1)
th
 eigenvalue. The errors of prediction tests are not only determined by the eigenvalues, 559 

but also by selected time period length and a case-specific coefficient. It is much more difficult 560 

to control the errors for prediction tests. The accuracy will decrease gradually as the prediction 561 

time increases. Therefore, the accuracy and efficiency of the reduced model have to be discussed 562 

according to different objects of reduced modeling. 563 

 564 

4.3.1. Reproduction Calculation 565 

The reproduction test is the repeated calculation of the forward simulation of the full model. 566 

The original full model was operated to simulate a time period of five years (1825 days) with a 567 

uniform time interval of 5 days. 73 snapshots were chosen from the full model results for 568 

hydraulic heads and concentrations, respectively. These 73 snapshots were sampled regularly, 569 

one from every 25 days. From SVD process, 11 POD bases are selected for the reduced model, 570 

which will reproduce the same time period with a time interval of 5 days and thus using 365 time 571 

steps. The reduced model ran approximately 2500 time faster in MATLAB than the original full 572 
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model. The comparison of the dense fluid distribution is shown in Figure 13 at the end of the 573 

first year, the third year and the fifth year, respectively. 574 

The accuracy of the reduced model is satisfied according to Figure 13. The results of the 575 

reduced model were over 99.9% matched with the results from the full model. For reproduction 576 

test, the error can be very low because the important system information in this time period is all 577 

available through optimal selection of snapshots. As long as the snapshots cover most 578 

information, the reduced model can reproduce the head and concentration results at any time 579 

inside this time period very accurately. The reproduction tests confirmed that the reduced model 580 

can be used to replace the full numerical model for state estimation and inverse modeling which 581 

normally require repeated forward run of the full model. 582 

 583 

4.3.2 Prediction Calculation 584 

The snapshots for prediction tests were sampled from the full-model results of first year. For 585 

the first 365 days, we selected one snapshot from each 5 days. 11 bases were selected from the 586 

73 snapshots. We used the information from the first year to predict the results in the next two 587 

years. The time interval used in the prediction test is 5 days. The correlation of predicted 588 

concentrations for the following two years between the reduced model and the full model is 589 

shown in Figure 14. The accuracy of the reduced model decreases rapidly with increase of 590 

prediction time. At the end of the second year ((number of time steps = 146), the accuracy is 591 

nearly 99%.  However, at the end of the third year (number of time steps = 219), the accuracy is 592 

only 80%. Apparently, the reduced model cannot attain a satisfactory predictionin a time period 593 

longer than one year for this modified Elder problem, if the accuracy must be kept higher than 594 

99% by a modeler.  595 
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More snapshots were included and more basis functions were adopted trying to predict more 596 

accurate results. However, the precision of the predicted results at the end of the third year is still 597 

not satisfied. As mentioned previously, the errors generated in prediction calculation will 598 

increase inevitably as the increase of predicted time length. The errors cannot be reduced by 599 

choosing more POD bases produced from the unchanged ensemble of snapshots. Elder problem 600 

is much more dependent on the accuracy of the coupling scheme. The evolution profile of the 601 

lobes and the fingering pattern is significantly different from previous time period, thus the 602 

snapshots extracted from a previous duration lose effectiveness of contained information rapidly 603 

during the state estimation of the predicted interval. 604 

In section 4.2.2, we proposed an appropriate approach to overcome the problem of accuracy 605 

decrease with time, adding updated information in the prediction period. The principle is very 606 

similar to the process of weather forecasting. The reduced model is kept running, but the 607 

snapshots used also need to be updated. Observations at a certain time in the prediction period 608 

will add significant amount of new information. Illustrated by Figure 5, new snapshots are 609 

obtainedfrom observations and are added to the old ensemble of snapshots. The updated 610 

snapshots are then applied in the reduced model to increase model prediction accuracy. This 611 

updating is continuously conducted to maintain the accuracy of the reduced model.  612 

To investigate efficiency of this method, another case is designed. The concentration results 613 

of the reduced model from the previous prediction test are compared with the results of the full 614 

model (Figure 15, (a) and (b)) at the end of the 2
nd

 year. The snapshots are all sampled from the 615 

first year. Although, the two contours display a good fitting with each other, the transport depths 616 

of the lobes at both sides do not match well, which is marked by the red dashed line in Figure 15. 617 

It is assumed that weobtained a small set of observation data at a certain time point early in the 618 
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2
nd

 year which was imitated from the simulation of the original full model. A new snapshot is 619 

generated based on the observation data and is included it into the old snapshots. With updated 620 

snapshots, we reran the reduced model to predict results in the same time period. The simulation 621 

results are clearly improved (Figure 15, (c)).  622 

The importance of updating snapshots indicates again that the accuracy of reduced model 623 

relies on the time period in which full-model snapshots are sampled as discussed in section 3.3. 624 

In practice, the observations need to be filtered and weighted before they are adopted in the 625 

reduced model (Siade et al., 2010). 626 

 627 

5. Conclusion 628 

In this study, we developed a POD approach toefficiently simulate a coupled nonlinear 629 

subsurface flow and transport process. An integrated methodology of model reduction was 630 

developed through combining POD with the GFEM, so it is referred to as GFEM-POD method. 631 

The GFEM-POD method can reduce the dimension of stiffnessmatrices and forcing vectors in 632 

the full finite element numerical model to a very small size. The reduced dimension depends on 633 

the selected number of basis functions. 634 

This method is efficient because the reduced-order model represents new states in terms of 635 

the dominant basis vectors generated by a subset of old states. The simulations of the reduced-636 

order model must be performed in a low-dimensional space depending on the proper 637 

decomposition of model states (hydraulic head and solute concentration) in space and time. 638 

We applied this procedure to two benchmark VDFST problems with variousscenarios. These 639 

case studies results indicate that thisGFEM-POD reduced-order model can reproduce and predict 640 

the full model results of spatial distributions for both hydraulic head and solute concentration 641 
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very accurately.The computational time required for the reduced-order model is dramatically 642 

reduced compared to the timeused in the full model simulation. The calculation accuracy 643 

depends strongly on the sampling and updating strategyof the full-model snapshots. The selected 644 

snapshots further determine how many basis functions should be used in order to achieve 645 

satisfactory results in the reduced-order model. The optimal selection of snapshots and basis 646 

functions is crucial for the application of POD and should be carefully considered due to the 647 

model’s mathematical and parametric structures. We also observed that the POD approachis less 648 

robust for model prediction than for model reproduction. The reduced-order model will 649 

encounter significant calculation errors for long-term prediction. This phenomenon is more 650 

obvious when the study problem ishighly mathematically nonlinear. This requires by necessity 651 

application of interpolation methodology, such as DEIM (discrete empirical interpolation 652 

method) (Stefanescu and Navon, 2013). An effective approach of alleviating this issue is to 653 

update snapshots continuously to assimilate new information from observations or experiments.  654 

According to error analysis, two types of cases are considered: reproduction and prediction. 655 

In previous researches, such as Vermeulen et al 2005, for a groundwater flow model, the 656 

advantage of POD in the calibration process is demonstrable, because it required the repetition 657 

(reproduction) of simulation period of the original model. The accuracy of reduced model is 658 

proven high according to their error analysis, on the premise that snapshots covered most of the 659 

information. Indeed, when the snapshots failed to capture enough information, the accuracy of 660 

the reduced model is not robust any more. The application of POD should be directed into two 661 

major directions:  662 

1. Update snapshots by assimilating reliable information from measurements, observations 663 

under the condition that the original simulation is high-fidelity. 664 
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2. The original model has large uncertainties, which may leads to a low-fidelity simulation. 665 

The reduced model is employed as a substitute in calibration process. 666 

We will perform further investigations in future work with the emphasis on the above two 667 

topics considering the utilization of various types of field observations for both calibration and 668 

prediction. 669 
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Tables 789 

Table 1. Computation times of the reduced-order model for the homogeneous case with different 790 

NB to predict 400 time steps. 791 

Computation Time (seconds) Number of Bases (NB) 

0.125 1 

0.350 2 

0.880 5 

1.820 10 

3.250 15 

4.900 20 

 792 
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Figure Captions 793 

Figure 1.Methodology for constructing a reduced-order model. 794 

Figure 2. (Top) The percentage of total information of head exacted as function of number of 795 

eigenvalues for the homogeneous case; (Bottom) The percentage of total information of 796 

concentration exacted as function of number of eigenvalues for the homogeneous case. 797 

Figure3. RMSE (Top) and correlation (Bottom) of predicted concentrations between the 798 

reduced-order model and the original full model for the homogeneous case using different 799 

number of bases from 100 snapshots. 800 

Figure 4.Comparison of results between the reduced-order model (red dash) and the original full 801 

model (blue dash) for the homogeneous case. (a) Predicted head distribution (m) at time t = 200 802 

minutes; (b) Predicted head distribution (m) at time t = 500 minutes; (c) Predicted concentration 803 

distribution (kg/m
3
) at time t = 200 minutes; (d) Predicted concentration distribution (kg/m

3
) at 804 

time t = 500 minutes. 805 

Figure 5. RMSE of predicted concentrations between the reduced-order model and the original 806 

full model for the homogeneous case with addition of a new snapshot at t = 200 minutes (red) 807 

comparing to the previous simulation without new snapshots (black). 808 

Figure 6. RMSE of predicted concentrations between the reduced-order model and the original 809 

full model for the homogeneous case using different number of snapshots with the same NB =20. 810 

Figure 7. Stochastic distributed hydraulic conductivity field used in the first heterogeneous case 811 

with a Gaussian distribution, N (864, 200). 812 

Figure 8.Comparison of results between the reduced-order model (red dash) and original full 813 

model (blue dash) for the first heterogeneous case. (a) Predicted head distribution (m) at time t = 814 

200 minutes; (b) Predicted head distribution (m) at time t = 500 minutes. 815 

Figure 9.Comparison of results between the reduced-order model (red dash) and original full 816 

model (blue dash) for the first heterogeneous case. (Top) Predicted concentration distribution 817 

(kg/m
3
) at time t = 200 minutes; (Bottom) Predicted concentration distribution (kg/m

3
) at time t = 818 
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500 minutes. 819 

Figure 10. Diagrams display, in cross-section view, the two zonal patterns and parameter values 820 

used in the second heterogeneous case. (A) Hydraulic conductivities decrease by depth; (B) 821 

Hydraulic conductivities increase by depth. 822 

Figure 11.Comparison of results between the reduced-order model (red dash) and original full 823 

model (blue dash) for Case A using the zonal approach. (Top) Predicted head distribution (m) at 824 

time t = 500 minutes; (Bottom) Predicted concentration distribution (kg/m
3
) at time t = 500 825 

minutes. 826 

Figure 12.Comparison of results between the reduced-order model (red dash) and original full 827 

model (blue dash) for Case B using the zonal approach. (Top) Predicted head distribution (m) at 828 

time t = 500 minutes; (Bottom) Predicted concentration distribution (kg/m
3
) at time t = 500 829 

minutes. 830 

Figure 13.Comparison of dense fluid distribution between the reduced-order model (right) and 831 

original full model (left) in the reproduction test. The concentration contour interval is 28 kg/m
3
. 832 

Figure 14.Correlation of predicted concentrations between the reduced-order model and the 833 

original full model in the prediction test for the next 2 years with 146 time steps. 834 

Figure 15.Predicted dense fluid distribution of the reduced-order model (a), the original full 835 

model (b) and the updated reduced-order model (c) in the prediction test at the end of the 2
nd

 year. 836 

The concentration contour interval is 28 kg/m
3
. 837 
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 838 

Highlights 839 

1. Developing mathematical and numerical methods to simulate variable-density flow and 840 

solute transport;  841 

2. A model reduction technique called Proper Orthogonal Decomposition designed for both 842 

linear and nonlinear models;  843 

3. Model application to two classic variable-density flow and solute transport cases, the 844 

Henry problem and the Elder problem.  845 

4. High efficiency of the developed method 846 

 847 




