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Fig.2 Flowchart of approximation methods and their interconnections
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POD Galerkin reduced order model

POD Galerkin reduced order model

Let y(x , t) with x ∈ Ω and t ∈ (t0, t0 + T ) be the state variable
in the original system and let H be a Hilbert space.

The complex flow, typically nonlinear and time dependent is
governed by a system of PDE’s.

The PDE system comprised of an infinite numbers of degrees of
freedom reads

 Find y(·, t) ∈ H satisfying :
ẏ(x , t) = f (t, y(x , t))
y(x , t0) = y0(x)

(1)
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Ştefănescu

POD History

POD Galerkin
reduced order model

POD definition

POD/DEIM
POD/EIM
justification and
methodology

POD/DEIM nonlinear
model reduction for
SWE

POD/DEIM as a
discrete variant of
EIM and their pseudo
- algorithms

Dual weighted POD
in 4-D Var data
assimilation

Proper orthogonal
decomposition of
structurally
dominated turbulent
flows

Trust Region POD
4-D VAR of the
limited area FEM
SWE

POD Galerkin reduced order model

POD Galerkin reduced order model

An approximation of (12) using well established numerical
methods such as finite difference (FD) or finite element (FEM)
with large number of degrees of freedom generates an ODE
system that reads

 Find y(·, t) ∈ RN satisfying :
ẏ(x , t) = f (t, y(x , t))
y(x , t0) = y0(x)

(2)

The base premise of model reduction (MOR) is to approximate a
full order model (2) using only a handful of degrees of freedom.

The resulting low-dimensional model becomes a system of ODEs
with a dramatically reduced dimension r (r � N)
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POD Galerkin reduced order model

POD Galerkin reduced order model

POD is one of the most significant projection-based reduction
methods for non-linear dynamical systems.

It is also known as Karhunen - Loève expansion, principal
component analysis in statistics, singular value decomposition
(SVD) in matrix theory and empirical orthogonal functions
(EOF) in meteorology and geophysical fluid dynamics

Introduced in the field of turbulence by Lumley

It was Sirovich (1987 a,b,c) that introduced the method of
snapshots obtained from either experiments or numerical
simulation
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POD Galerkin reduced order model

POD Galerkin reduced order model

Generating POD-ROMs consists in first simulating the full-order
system and then finding a set of ”representative” state variable
vectors (snapshots) to find an optimal basis {ϕ1(x), .., ϕr (x)}
Use of Galerkin projection to obtain a low-order dynamical
system for the basis coefficients

{a1(t), a2(t), ..., ar (t)}
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POD Galerkin reduced order model

POD Galerkin reduced-order model I

Algorithm

Given y(·, t) from complex system 7 for t ∈ (t0, t0 + T )

1 Compute a POD basis {ϕ1(x), .., ϕr (x)} such that

X r = span{ϕ1, ϕ2, ..., ϕr}

is a good approximation to the data space

{y(·, t)}t∈(t0,t0+T )

2 Define reduced order approximation

yr (·, t) =
r∑

j=1

ϕj(·)aj(t) ∈ X r (3)

where {aj(t)}rj=1 are the sought time varying POD basis
coefficient functions.
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POD Galerkin reduced order model

POD Galerkin reduced-order model II

3 Substitute POD approximation into full-order system 7 and
apply Galerkin procedure


<

r∑
j=1

ϕj(·)ȧj(t), ϕi (·) >=< f (t,
r∑

j=1

ϕj(·)aj(t)), ϕi (·) >

<

r∑
j=1

ϕj(·)aj(0), ϕi (·) >=< y0, ϕi (·) >, for i = 1, .., r

yielding the POD-Galerkin ROM for {ai (t)}ri=1

 ȧi (t) =< f (t,
r∑

j=1

ϕj(·)aj(t)), ϕi (·) >

ai (0) =< y0, ϕi (·) >, for i = 1, .., r
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I.M. Navon, R.
Ştefănescu

POD History

POD Galerkin
reduced order model

POD definition

POD/DEIM
POD/EIM
justification and
methodology

POD/DEIM nonlinear
model reduction for
SWE

POD/DEIM as a
discrete variant of
EIM and their pseudo
- algorithms

Dual weighted POD
in 4-D Var data
assimilation

Proper orthogonal
decomposition of
structurally
dominated turbulent
flows

Trust Region POD
4-D VAR of the
limited area FEM
SWE

POD definition

POD definition

Assume y(x , t) ∈ L2(H, t0, t0 + T ) i.e.∫ t0+T

t0

|y(·, t)|2dt <∞

Given time instances t1, t2, .., tM ∈ [0,T ] consider ensemble of
snapshots

S = span{y(·, t1), ..., y(·, tM)}
with dimS = M.
POD MOR methods seek a low dimensional (r) basis {ϕ1, .., ϕr}
that optimally approximates the input collection s.t.

(∗)


min

1

M

M∑
l=1

||y(·, tl)−
r∑

j=1

< y(·, tl), ϕj(·) >H ϕj(·)||2H

s.t. conditions that
< ϕi , ϕj >H= δi,j , 1 ≤ i , j ≤ r ≤ M

δi,j is the Kroneker delta.
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POD definition

POD definition

To solve it we consider the eigenvalue problem

Kv = λv , K ∈ RM×M

and

Kkl =
1

M
< y(·, tl), y(·, tk) >H

is the snapshot correlation matrix, vj , j = 1, ..,M are the
eigenvectors

λM ≤ ... ≤ λ2 ≤ λ1

are the positive eigenvalues.

Then solution of (*) is given by

ϕj(·) =
1√
λj

M∑
l=1

(vj)ly(·, tl), 1 ≤ j ≤ r

where (vj)l is the l−th component of the eigenvector vj .
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POD definition

POD definition

A known error estimate is

1

M

M∑
l=1

||y(·, tl)−
r∑

j=1

< y(·, tl), ϕj(·) >H ϕj(·)||2H =
M∑

j=r+1

λj .

The relative error in L2

ε =
1
T

∫ t0+T

t0
||y(·, t)−

∑r
j=1 < y(·, t), ϕj(·) >H ϕj(·)||22dt

1
T

∫ t0+T

t0
||y(·, t)||22dt

=

∑M
j=r+1 λj∑M
j=1 λj

.

ε is a heuristic criterion to determine number of POD modes to
be retained in the ROM
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POD/DEIM POD/EIM justification and methodology

POD/DEIM POD/EIM justification and methodology

Model order reduction : Reduce the computational
complexity/time of large scale dynamical systems by
approximations of much lower dimension with nearly the same
input/output response characteristics.

Goal : Construct reduced-order model for different types of
discretization method (finite difference (FD), finite element
(FEM), finite volume (FV)) of unsteady and/or parametrized
nonlinear PDEs. E.g., PDE:

∂y

∂t
(x , t) = L(y(x , t)) + F(y(x , t)), t ∈ [0,T ]

where L is a linear function and F a nonlinear one.
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POD/DEIM POD/EIM justification and methodology

POD/DEIM methodology applied to FD SCHEMES

The corresponding FD scheme is a n dimensional ordinary
differential system

d

dt
y(t) = Ay(t) + F(y(t)), A ∈ Rn×n,

where y(t) = [y1(t), y2(t), .., yn(t)] ∈ Rn and yi (t) ∈ R are the
spatial components y(xi , t), i = 1, .., n. F is a nonlinear
function evaluated at y(t) componentwise, i.e.
F = [F(y1(t)), ..,F(yn(t))]T , F : I ⊂ R→ R.
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POD/DEIM POD/EIM justification and methodology

POD/DEIM methodology applied to FD SCHEMES

A common model order reduction method involves the Galerkin
projection with basis Vk ∈ Rn×k obtained from Proper
Orthogonal Decomposition (POD), for k � n, i.e. y ≈ Vk ỹ(t),
ỹ(t) ∈ Rk . Applying an inner product to the ODE discrete
system we get

d

dt
ỹ(t) = V T

k AVk︸ ︷︷ ︸
k×k

ỹ(t) + V T
k F(Vk ỹ(t))︸ ︷︷ ︸

Ñ(ỹ)

(4)
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Ştefănescu

POD History

POD Galerkin
reduced order model

POD definition

POD/DEIM
POD/EIM
justification and
methodology

POD/DEIM nonlinear
model reduction for
SWE

POD/DEIM as a
discrete variant of
EIM and their pseudo
- algorithms

Dual weighted POD
in 4-D Var data
assimilation

Proper orthogonal
decomposition of
structurally
dominated turbulent
flows

Trust Region POD
4-D VAR of the
limited area FEM
SWE

POD/DEIM POD/EIM justification and methodology

POD/DEIM methodology applied to FD SCHEMES

The efficiency of POD - Galerkin technique is limited to the
linear or bilinear terms. The projected nonlinear term still
depends on the dimension of the original system

Ñ(ỹ) = V T
k︸︷︷︸

k×n

F(Vk ỹ(t))︸ ︷︷ ︸
n×1

.

To mitigate this inefficiency we introduce ”Discrete Empirical
Interpolation Method (DEIM) ” for nonlinear approximation.
For m� n

Ñ(ỹ) ≈ V T
k U(PTU)−1︸ ︷︷ ︸

precomputed k×m

F(PTVk ỹ(t))︸ ︷︷ ︸
m×1

.
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POD/DEIM POD/EIM justification and methodology

POD/EIM methodology applied to FE SCHEMES

The corresponding Finite Element (FE) scheme is a n
dimensional ordinary differential system

Mh
d

dt
y(t) = Khy(t) + Nh(y(t)), Mh,Kh ∈ Rn×n,

(5)

Mh is the mass matrix

Kh corresponds to the linear terms in the PDE

y(t) = [y1(t), y2(t), .., yn(t)] ∈ Rn, yi (t) ∈ R.

y(t, x) '
n∑

j=1

ψj(x)yj(t) = Ψ(x)y(t), Ψ(x) ∈ R1×n.
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POD/DEIM POD/EIM justification and methodology

POD/EIM methodology applied to FE SCHEMES

Nh(y(t)) ∈ Rn is a nonlinear functional which can be of the
following form

[Nh(y(t))]i =

∫
Ω

∂ψi (x)

∂x
F (Ψ(x)y(t))dΩ, i = 1, ..n.

[Nh(y(t))]i =

∫
Ω

ψi (x)F (Ψ(x)y(t))dΩ, i = 1, ..n.
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POD/DEIM POD/EIM justification and methodology

POD/EIM methodology applied to FE SCHEMES

Using the Galerkin projection with basis Φ(x) = Ψ(x)Uk ,
Φ(x) ∈ R1×k , Uk ∈ Rn×k calculated via POD, for k � n, i.e.
y(t, x) ≈ Φ(x)ỹ(t), ỹ(t) ∈ Rk we apply the following inner
product

< x , y >Mh
= xTMhy .

One obtains the corresponding discretized reduced order model:

UT
k MhUk︸ ︷︷ ︸
I∈Rk×k

d

dt
ỹ(t) = UT

k KhUk︸ ︷︷ ︸
k×k

ỹ(t) + UT
k Nh(ỹ(t))︸ ︷︷ ︸

Ñ(ỹ(t))

.

(6)
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POD/DEIM POD/EIM justification and methodology

POD/EIM methodology applied to FE SCHEMES

The projected nonlinear term still depends on the dimension of
the original system

Ñ(ỹ(t)) = UT
k︸︷︷︸

k×n

Nh(ỹ(t))︸ ︷︷ ︸
n×1

.

[Nh(ỹ(t))]i =

∫
Ω

ψi (x)F (Φ(x)ỹ(t))dΩ, i = 1, ..n.
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POD/DEIM POD/EIM justification and methodology

POD/EIM methodology applied to FE SCHEMES

The Empirical Interpolation Method (EIM) approximation of the
nonlinear function F (Φ(x)ỹ(t)) is given by

F (Φ(x)ỹ(t)) ' Q(x)ρ(t) = Q(x)(Q(z))−1F (Φ(z)ỹ(t)),

Q(x) = [q1(x), ..., qm(x)], z = [z1, ..., zm], m� n

Q(z) ∈ Rm×m, Φ(z) ∈ Rm×k ,

F (Φ(z)ỹ(t)) ∈ Rm×1 − F is applied componentwise
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POD/DEIM POD/EIM justification and methodology

POD/EIM methodology applied to FE SCHEMES

Thus

Nh(ỹ(t)) '
∫

Ω

Ψ(x)TQ(x)dΩ︸ ︷︷ ︸
n×m

(Q(z))−1︸ ︷︷ ︸
m×m

F (Φ(z)ỹ(t))︸ ︷︷ ︸
m×1

Now we are able to separate the unknown ỹ(t) from the
integrals allowing us the precomputation of the integrals which
then can be used in all of the time steps.

Ñ(ỹ(t)) ' UT
k︸︷︷︸

k×n

∫
Ω

Ψ(x)TQ(x)dΩ(Q(z))−1︸ ︷︷ ︸
n×m

F (Φ(z)ỹ(t))︸ ︷︷ ︸
m×1

.
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POD/DEIM nonlinear model reduction for SWE

POD/DEIM nonlinear model reduction for SWE

We applied DEIM to a POD alternating direction implicit (ADI)
FD scheme of the SWE on a rectangular domain.

We considered the alternating direction fully implicit
finite-difference scheme (Gustafsson 1971, Fairweather and
Navon 1980, Navon and De Villiers 1986, Kreiss and Widlund
1966) on a rectangular domain since the scheme remains stable
at large Courant numbers (CFL).
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POD/DEIM nonlinear model reduction for SWE

SWE model

∂w

∂t
= A(w)

∂w

∂x
+ B(w)

∂w

∂y
+ C (y)w , (7)

0 ≤ x ≤ L, 0 ≤ y ≤ D, t ∈ [0, tf ],

where w = (u, v , φ)T , u, v are the velocity components in the x and
y directions, respectively, h is the depth of the fluid, g is the
acceleration due to gravity and φ = 2

√
gh.

The matrices A, B and C are expressed

A = −

 u 0 φ/2
0 u 0
φ/2 0 u

 , B = −

 v 0 0
0 v φ/2
0 φ/2 v


C =

 0 f 0
−f 0 0
0 0 0

 ,

f = f̂ +β(y−D/2) (Coriolis force), β =
∂f

∂y
,with f̂ and β constants.
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Ştefănescu

POD History

POD Galerkin
reduced order model

POD definition

POD/DEIM
POD/EIM
justification and
methodology

POD/DEIM nonlinear
model reduction for
SWE

POD/DEIM as a
discrete variant of
EIM and their pseudo
- algorithms

Dual weighted POD
in 4-D Var data
assimilation

Proper orthogonal
decomposition of
structurally
dominated turbulent
flows

Trust Region POD
4-D VAR of the
limited area FEM
SWE

POD/DEIM nonlinear model reduction for SWE

SWE model

We assume periodic solutions in the x-direction

w(x , y , t) = w(x + L, y , t),

while in the y−direction we have

v(x , 0, t) = v(x ,D, t) = 0.

The initial conditions are derived from the initial height-field
condition No. 1 of Grammelvedt (1969), i.e.

h(x , y) = H0+H1+tanh

(
9
D/2− y

2D

)
+H2sech

2

(
9
D/2− y

2D

)
sin

(
2πx

L

)
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POD/DEIM nonlinear model reduction for SWE

SWE model

The initial velocity fields were derived from the initial height
field using the geostrophic relationship

u =

(
−g
f

)
∂h

∂y
, v =

(
g

f

)
∂h

∂x .

The constants used were:

L = 6000km g = 10ms−2

D = 4400km H0 = 2000m

f̂ = 10−4s−1 H1 = 220mm

β = 1.5 · 10−11s−1m−1 H2 = 133m.
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POD/DEIM nonlinear model reduction for SWE

The nonlinear Gustafsson ADI finite difference implicit scheme

First we introduce a network of Nx · Ny equidistant points on
[0, L]× [0,D], with dx = L/(Nx − 1), dy = D/(Ny − 1). We
also discretize the time interval [0, tf ] using NT equally
distributed points and dt = tf /(NT − 1).

Next we define vectors of unknown variables of dimension
nxy = Nx · Ny containing approximate solutions such as

u(t) ≈ u(xi , yj , t), v(t) ≈ v(xi , yj , t),φ ≈ φ(xi , yj , t) ∈ Rnxy

The idea behind the ADI method is to split the finite difference
equations into two, one with the x-derivative taken implicitly
and the next with the y-derivative taken implicitly,
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For tn+1, the Gustafsson nonlinear ADI difference scheme is
defined by

I. First step - get solution at t(n + 1
2 )

u(tn+ 1
2
) +

∆t

2
F11

(
u(tn+ 1

2
),φ(tn+ 1

2
)

)
= u(tn)− ∆t

2
F12

(
u(tn), v(tn)

)
+

∆t

2
[f , f , .., f︸ ︷︷ ︸

Nx

]T ∗ v(tn),

v(tn+ 1
2
) +

∆t

2
F21

(
u(tn+ 1

2
), v(tn+ 1

2
)

)
+

∆t

2
[f , f , .., f︸ ︷︷ ︸

Nx

]T ∗ u(tn+ 1
2
) = v(tn)−

∆t

2
F22

(
v(tn),φ(tn)

)
,

φ(tn+ 1
2
) +

∆t

2
F31

(
u(tn+ 1

2
),φ(tn+ 1

2
)

)
= φ(tn)− ∆t

2
F32

(
v(tn),φ(tn)

)
,

(8)

with ”*” denoting MATLAB componentwise multiplication and
the nonlinear functions F11,F12,F21,F22,F31,F32 : Rnxy×
Rnxy → Rnxy are defined as follows



I.M. Navon, R.
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POD/DEIM nonlinear model reduction for SWE

The nonlinear Gustafsson ADI finite difference implicit scheme

F11(u,φ) = u ∗ Axu +
1

2
φ ∗ Axφ,

F12(u, v) = v ∗ Ayu,F21(u, v) = u ∗ Axv,

F22(v,φ) = v ∗ Ayv +
1

2
φ ∗ Ayφ,

F31(u,φ) =
1

2
φ ∗ Axu + u ∗ Axφ,

F32(v,φ) =
1

2
φ ∗ Ayv + v ∗ Ayφ,

where Ax ,Ay ∈ Rnxy×nxy are constant coefficient matrices for discrete
first-order and second-order differential operators which take into
account the boundary conditions.
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POD/DEIM nonlinear model reduction for SWE

The Quasi-Newton Method

The nonlinear systems of algebraic equations denoted by
g(α) = 0 are solved using the quasi-Newton method.

The computationally expensive LU decomposition is performed
only once every M − th time-step, where M is a fixed integer.

The quasi-Newton formula is

α(m+1) = α(m) − Ĵ−1(α(m))g(α(m)), where

Ĵ = J(α(0)) + O(dt).
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POD/DEIM nonlinear model reduction for SWE

The POD version of SWE model

The POD reduced-order system is constructed by applying the
Galerkin projection method to ADI FD discrete model by first
replacing u, v,φ with their POD based approximation Uũ, V ṽ ,
Φφ̃, respectively, and then premultiplying the corresponding
equations by UT , V T and ΦT , the POD bases.
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The resulting POD reduced system for the first step (tn+ 1
2
) of

the ADI FD scheme is

ũ(tn+ 1
2
) +

∆t

2
UT F̃11

(
ũ(tn+ 1

2
), φ̃(tn+ 1

2
)

)
= ũ(tn)− ∆t

2
UT F̃12

(
ũ(tn), ṽ(tn)

)
+

∆t

2
UT

(
[f , f , .., f︸ ︷︷ ︸

Nx

]T ∗ V ṽ(tn)

)
,

ṽ(tn+ 1
2
) +

∆t

2
V T F̃21

(
ũ(tn+ 1

2
), ṽ(tn+ 1

2
)

)
+

∆t

2
V T

(
[f , f , .., f︸ ︷︷ ︸

Nx

]T ∗ Uũ(tn+ 1
2
)

)

= ṽ(tn)− ∆t

2
V T F̃22

(
ṽ(tn), φ̃(tn)

)
,

φ̃(tn+ 1
2
) +

∆t

2
ΦT F̃31

(
ũ(tn+ 1

2
), φ̃(tn+ 1

2
)

)
= φ̃(tn)− ∆t

2
ΦT F̃32

(
ṽ(tn), φ̃(tn)

)
,

(9)

where F̃11, F̃12, F̃21, F̃22, F̃31, F̃32 : Rk× Rk → Rk are defined by
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POD/DEIM nonlinear model reduction for SWE

The POD version of SWE model

F̃11(ũ, φ̃) = (Uũ) ∗ (AxU︸︷︷︸ ũ) +
1

2
(Φφ̃) ∗ (AxΦ︸︷︷︸ φ̃),

F̃12(ũ, ṽ) = (V ṽ) ∗ (AyU︸︷︷︸ ũ), F̃21(ũ, ṽ) = (Uũ) ∗ (AxV︸︷︷︸ ṽ),

F̃22(ṽ , φ̃) = (V ṽ) ∗ (AyV︸︷︷︸ ṽ) +
1

2
(Φφ̃) ∗ (AyΦ︸︷︷︸ φ̃),

F̃31(ũ, φ̃) =
1

2
(Φφ̃) ∗ (AxU︸︷︷︸ ũ) + (Uũ) ∗ (AxΦ︸︷︷︸ φ̃),

F̃32(ṽ , φ̃) =
1

2
(Φφ̃) ∗ (AyV︸︷︷︸ ṽ) + (V ṽ) ∗ (AyΦ︸︷︷︸ φ̃).

(10)
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POD/DEIM nonlinear model reduction for SWE

The POD version of SWE model

The coefficient matrices defined in the linear terms of the POD
reduced system as well as the coefficient matrices in the
nonlinear functions (i.e. AxU,AyU,
AxV ,AyV ,AxΦ,AyΦ ∈ Rn×k grouped by the curly braces) can
be precomputed, saved and re-used in all time steps.

However, performing the componentwise multiplications in (10)
and computing the projected nonlinear terms in (9)

UT︸︷︷︸
k×nxy

F̃11(ũ, φ̃)︸ ︷︷ ︸
nxy×1

,UT F̃12(ũ, ṽ),V T F̃21(ũ, ṽ),

V T F̃22(ṽ , φ̃),ΦT F̃31(ũ, φ̃),ΦT F̃32(ṽ , φ̃),

(11)

still have computational complexities depending on the
dimension nxy of the original system from both evaluating the
nonlinear functions and performing matrix multiplications to
project on POD bases.
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POD/DEIM as a discrete variant of EIM and their pseudo - algorithms

Discrete Empirical Interpolation Method (DEIM)

DEIM is a discrete variation of the Empirical Interpolation
method proposed by Barrault et al. (2004). The application was
suggested by Chaturantabut and Sorensen (2008, 2010, 2012).

Let f : D → Rn, D ⊂ Rn be a nonlinear function. If
U = {ul}ml=1, ui ∈ Rn, i = 1, ..,m is a linearly independent set,
for m ≤ n, then for τ ∈ D, the DEIM approximation of order m
for f (τ) in the space spanned by {ul}ml=1 is given by

f (τ) ≈ Uc(τ), U ∈ Rn×m, c(τ) ∈ Rm. (12)

The basis U can be constructed effectively by applying the POD
method on the nonlinear snapshots f (τ ti ), i = 1, .., ns .
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Discrete Empirical Interpolation Method (DEIM)

Interpolation is used to determine the coefficient vector c(τ) by
selecting m rows ρ1, .., ρm, ρi ∈ N∗, of the overdetermined linear
system (12)

f1(τ)
...
...

fn(τ)


︸ ︷︷ ︸

f (τ)∈Rn

=


u11 . . . u1m

... . . .
...

... . . .
...

un1 . . . unm


︸ ︷︷ ︸

U∈Rn×m

 c1(τ)
...

cm(τ)


︸ ︷︷ ︸

c(τ)∈Rm

.

to form a m-by-m linear system fρ1 (τ)
...

fρm(τ)


︸ ︷︷ ︸

f~ρ(τ)∈Rm

=

 uρ11 . . . uρ1m

... . . .
...

uρm1 . . . uρmm


︸ ︷︷ ︸

U~ρ∈Rm×m

 c1(τ)
...

cm(τ)


︸ ︷︷ ︸

c(τ)∈Rm

.
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Discrete Empirical Interpolation Method (DEIM)

In the short notation form

U~ρc(τ) = f~ρ(τ).

Lemma 2.3.1 in Chaturantabut (2008) proves that U~ρ is
invertible, thus we can uniquely determine c(τ)

c(τ) = U−1
~ρ f~ρ(τ).

The DEIM approximation of F (τ) ∈ Rn is

f (τ) ≈ Uc(τ) = UU−1
~ρ f~ρ(τ).
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POD/DEIM as a discrete variant of EIM and their pseudo - algorithms

Discrete Empirical Interpolation Method (DEIM)

U~ρ and f~ρ(τ) can be written in terms of U and f (τ)

U~ρ = PTU, f~ρ(τ) = PT f (τ)

where
P = [eρ1 , .., eρm ] ∈ Rn×m, eρi = [0, ..0, 1︸︷︷︸

ρi

, 0, .., 0]T ∈ Rn.

The DEIM approximation of f ∈ Rn becomes

f (τ) ≈ U(PTU)−1PT f (τ).
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Discrete Empirical Interpolation Method (DEIM)

Using the DEIM approximation, the complexity for computing
the nonlinear term of the reduced system in each time step is
now independent of the dimension n of the original full-order
sytem.

The only unknowns need to be specified are the indices
ρ1, ρ2, ..., ρm or matrix P.



DEIM: Algorithm for Interpolation Indices

INPUT: {ul}ml=1 ⊂ Rn (linearly independent):

OUTPUT: ~ρ = [ρ1, .., ρm] ∈ Rm

1 [|ψ| ρ1] = max |u1|, ψ ∈ R and ρ1 is the component position of
the largest absolute value of u1, with the smallest index taken in
case of a tie.

2 U = [u1], P = [eρ1 ], ~ρ = [ρ1].

3 For l = 2, ..,m do

a Solve (PTU)c = PTul for c

b r = ul − Uc

c [|ψ| ρl ] = max{|r |}

d U ← [U ul ], P ← [P eρl ], ~ρ←
[
~ρ
ρl

]
4 end for.
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POD/DEIM as a discrete variant of EIM and their pseudo - algorithms

The DEIM version of SWE model

DEIM is used to remove this dependency.

The projected nonlinear functions can be approximated by DEIM
in a form that enables precomputation so that the computational
cost is decreased and independent of the original system.

Only a few entries of the nonlinear term corresponding to the
specially selected interpolation indices from DEIM must be
evaluated at each time step.

DEIM approximation is applied to each of the nonlinear
functions F̃11, F̃12, F̃21, F̃22, F̃31, F̃32 defined in (10).
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POD/DEIM as a discrete variant of EIM and their pseudo - algorithms

The DEIM version of SWE model

Let UF11 ∈ Rnxy×m, m ≤ n, be the POD basis matrix of rank m
for snapshots of the nonlinear function F̃11 (obtained from ADI
FD scheme).

Using the DEIM algorithm we select a set of m DEIM indices
corresponding to UF11 , denoting by [ρF11

1 , .., ρF11
m ]T ∈ Rm. The

DEIM approximation of F11 is

F̃11 ≈ UF11 (PT
F11

UF11 )−1F̃m
11,

so the projected nonlinear term UT F̃11(ũ, φ̃) in the POD
reduced system (9) can be approximated as

UT F̃11(ũ, φ̃) ≈ UTUF11 (PT
F11

UF11 )−1︸ ︷︷ ︸
E1∈Rk×m

F̃m
11(ũ, φ̃)︸ ︷︷ ︸
m×1

,

where F̃m
11(ũ, φ̃) = PT

F11
F̃11(ũ, φ̃).
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Since F̃11 is a pointwise function, F̃m
11 : Rk × Rk → Rm can be defined as

F̃m
11(ũ, φ̃) = (PT

F11
Uũ) ∗ (PT

F11
AxU︸ ︷︷ ︸ ũ) +

1

2
(PT

F11
Φφ̃) ∗ (PT

F11
AxΦ︸ ︷︷ ︸ φ̃)

Similarly we obtain the DEIM approximation for the rest of the projected
nonlinear terms in (11)

UT F̃12(ũ, ṽ) ≈ UTUF12 (PT
F12

UF12 )−1︸ ︷︷ ︸
E2∈Rk×m

F̃m
12(ũ, ṽ)︸ ︷︷ ︸
m×1

,

V T F̃21(ũ, ṽ) ≈ V TUF21 (PT
F21

UF21 )−1︸ ︷︷ ︸
E3∈Rk×m

F̃m
21(ũ, ṽ)︸ ︷︷ ︸
m×1

,

V T F̃22(ṽ , φ̃) ≈ V TUF22 (PT
F22

UF22 )−1︸ ︷︷ ︸
E4∈Rk×m

F̃m
22(ṽ , φ̃)︸ ︷︷ ︸
m×1

,

ΦT F̃31(ũ, φ̃) ≈ ΦTUF31 (PT
F31

UF31 )−1︸ ︷︷ ︸
E5∈Rk×m

F̃m
31(ũ, φ̃)︸ ︷︷ ︸
m×1

,

ΦT F̃32(ṽ , φ̃) ≈ ΦTUF32 (PT
F32

UF32 )−1︸ ︷︷ ︸
E6∈Rk×m

F̃m
32(ṽ , φ̃)︸ ︷︷ ︸
m×1

,
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POD/DEIM as a discrete variant of EIM and their pseudo - algorithms

The DEIM version of SWE model

F̃m
12(ũ, ṽ) = (PT

F12
V ṽ) ∗ (PT

F12
AyU︸ ︷︷ ︸ ũ),

F̃m
21(ũ, ṽ) = (PT

F21
Uũ) ∗ (PT

F21
AxV︸ ︷︷ ︸ ṽ),

F̃m
22(ṽ , φ̃) = (PT

F22
V ṽ) ∗ (PT

F22
AyV︸ ︷︷ ︸ ṽ) +

1

2
(PT

F22
Φφ̃) ∗ (PT

F22
AyΦ︸ ︷︷ ︸ φ̃),

F̃m
31(ũ, φ̃) = (PT

F31
Φφ̃) ∗ (PT

F31
AxU︸ ︷︷ ︸ ũ) + (PT

F31
Uũ) ∗ (PT

F31
AxΦ︸ ︷︷ ︸ φ̃),

F̃m
32(ṽ , φ̃) =

1

2
(PT

F32
Φφ̃) ∗ (PT

F32
AyV︸ ︷︷ ︸ ṽ) + (PT

F32
V ṽ) ∗ (PT

F32
AyΦ︸ ︷︷ ︸ φ̃).

(13)
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Each of the k ×m coefficient matrices grouped by the curly
brackets in (13), as well as Ei , i = 1, 2, .., 6 can be precomputed
and re-used at all time steps, so that the computational
complexity of the approximate nonlinear terms are independent
of the full-order dimension nxy . Finally, the POD-DEIM reduced
system for the first step of ADI FD SWE model is of the form

ũ(tn+ 1
2
) +

∆t

2
E1F̃

m
11

(
ũ(tn+ 1

2
), φ̃(tn+ 1

2
)

)
= ũ(tn)− ∆t

2
E2F̃

m
12

(
ũ(tn), ṽ(tn)

)
+

∆t

2
UTA1ṽ(tn),

ṽ(tn+ 1
2
) +

∆t

2
E3F̃

m
21

(
ũ(tn+ 1

2
), ṽ(tn+ 1

2
)

)
+

∆t

2
V TA2ũ(tn+ 1

2
)

= ṽ(tn)− ∆t

2
E4F̃

m
22

(
ṽ(tn), φ̃(tn)

)
,

φ̃(tn+ 1
2
) +

∆t

2
E5F̃

m
31

(
ũ(tn+ 1

2
), φ̃(tn+ 1

2
)

)
= φ̃(tn)− ∆t

2
E6F̃

m
32

(
ṽ(tn), φ̃(tn)

)
.

(14)
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Ştefănescu

POD History

POD Galerkin
reduced order model

POD definition

POD/DEIM
POD/EIM
justification and
methodology

POD/DEIM nonlinear
model reduction for
SWE

POD/DEIM as a
discrete variant of
EIM and their pseudo
- algorithms

Dual weighted POD
in 4-D Var data
assimilation

Proper orthogonal
decomposition of
structurally
dominated turbulent
flows

Trust Region POD
4-D VAR of the
limited area FEM
SWE

POD/DEIM as a discrete variant of EIM and their pseudo - algorithms

Numerical Results

The domain was discretized using a mesh of 301× 221 points,
with ∆x = ∆y = 20km. Thus the dimension of the full-order
discretized model is 66521. The integration time window was
24h and we used 91 time steps (NT = 91) with ∆t = 960s.

ADI FD scheme proposed by Gustafsson (1971) was first
employed in order to obtain the numerical solution of the SWE
model.

The initial condition were derived from the geopotential height
formulation introduced by Grammelvedt (1969) using the
geostrophic balance relationship.
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Numerical Results
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Fig.3 Initial condition: Geopotential height field for the Grammeltvedt initial

condition (left). Wind field (arrows are scaled by a factor of 1km) calculated

from the geopotential field by using the geostrophic approximation (right).
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Numerical Results

The implicit scheme allowed us to integrate in time using a
larger time step deduced from the following
Courant-Friedrichs-Levy (CFL) condition√

gh(
∆t

∆x
) < 7.188.

The nonlinear algebraic systems of ADI FD SWE scheme were
solved with the Quasi-Newton method and the LU
decomposition was performed only once every 6− th time step.

I.M. Navon, R. Ştefănescu (Florida State University) November 27, 2012 49 / 144



Numerical Results

18
00

0 18000

18500

18500

19000
19000

19500

1950020000

2000020500

2050021000

2100021500

21500

22000

22000

Contour of geopotential at time t
f
 = 24h

x(km)

y(
km

)

0 1000 2000 3000 4000 5000 6000
0

500

1000

1500

2000

2500

3000

3500

4000

0 1000 2000 3000 4000 5000 6000 7000
−500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Wind field at time t
f
 = 24h

x(km)

y(
km

)

Fig.4 The geopotential field (left) and the wind field (the velocity unit is

1km/s) at t = tf = 24h obtained using the ADI FD SWE scheme for

∆t = 960s.
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Numerical Results

The POD basis functions were constructed using 91 snapshots
obtained from the numerical solution of the full - order ADI FD
SWE model at equally spaced time steps in the interval [0, 24h].

Next figure shows the decay around the eigenvalues of the
snapshot solutions for u, v , φ and the nonlinear snapshots
F11, F12, F21, F22, F31, F32.
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Numerical Results
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Numerical Results

The dimension of the POD bases for each variable was taken to
be 35, capturing more than 99.9% of the system energy.

We applied the DEIM algorithm for interpolation indices to
improve the efficiency of the POD approximation and to achieve
a complexity reduction of the nonlinear terms with a complexity
proportional to the number of reduced variables.

Next image illustrates the distribution of the first 40 spatial
points selected from the DEIM algorithm using the POD bases
of F31 and F32 as inputs.
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Numerical Results
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Fig.6 First 40 points selected by DEIM for the nonlinear functions F31 (left)

and F32 (right)



Numerical Results

Using the following norms

1

NT

tf∑
i=1

||wADI FD(:, i)− wPOD ADI (:, i)||2
||wADI FD(:, i)||2

,

1

NT

tf∑
i=1

||wADI FD(:, i)− wPOD/DEIM ADI (:, i)||2
||wADI FD(:, i)||2

,

i = 1, 2, .., tf we calculated the average relative errors in
Euclidian norm for all three variables of SWE model w = u, v , φ.

POD ADI SWE POD/DEIM ADI SWE
Eφ 7.127e-005 1.106e-004
Eu 4.905e-003 6.189e-003
Ev 6.356e-003 9.183e-003

Table 1 Average relative errors for each of the model variables.
The POD bases dimensions were taken 35 capturing more than

99.9% of the system energy. 90 DEIM points were chosen.



Numerical Results

We also propose an Euler explicit FD SWE scheme as the
starting point for a POD, POD/DEIM reduced model. The
POD bases were constructed using the same 91 snapshots as in
the POD ADI SWE case, only this time the Galerkin projection
was applied to the Euler FD SWE model.

This time we employed the root mean square error calculation in
order to compare the POD and POD/DEIM techniques at time
t = 24h.

ADI SWE POD ADI SWE POD/DEIM ADI SWE POD EE SWE POD/DEIM EE SWE
CPU time seconds 73.081 43.021 0.582 43.921 0.639

RMSEφ - 5.416e-005 9.668e-005 1.545e-004 1.792e-004
RMSEu - 1.650e-004 2.579e-004 1.918e-004 3.126e-004
RMSEv - 8.795e-005 1.604e-004 1.667e-004 2.237e-004

Table 2 CPU time gains and the root mean square errors for
each of the model variables at t = tf . The POD bases

dimensions were taken as 35 capturing more than 99.9% of the
system energy. 90 DEIM points were chosen.



Numerical Results

Applying DEIM method to POD ADI SWE model we reduced
the computational time by a factor of 73.91.
In the case of the explicit scheme the DEIM algorithm decreased
the CPU time by a factor of 68.733.
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Fig.7 Cpu time vs. Spatial discretization points; POD DIM = 35, No. DEIM
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Conclusion and future research

POD/DEIM Nonlinear model order reduction of an ADI implicit
shallow water equations model, R. Stefanescu and I.M. Navon,
Journal of Computational Physics, in press (2012).

To obtain the approximate solution in case of both POD and
POD/DEIM reduced systems, one must store POD or
POD/DEIM solutions of order O(kNT ), k being the POD bases
dimension and NT the number of time steps in the integration
window.

The coefficient matrices that must be retained while solving the
POD reduced system are of order of O(k2) for projected linear
terms and O(nxyk) for the nonlinear term, where nxy is the
space dimension.
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Conclusion and future research

In the case of solving POD/DEIM reduced system the
coefficient matrices that need to be stored are of order of O(k2)
for projected linear terms and O(mk) for the nonlinear terms,
where m is the number of DEIM points determined by the DEIM
indexes algorithm, m� nxy .

Therefore DEIM improves the efficiency of the POD
approximation and achieves a complexity reduction of the
nonlinear term with a complexity proportional to the number of
reduced variables.

We proved the efficiency of DEIM using two different schemes,
the ADI FD SWE fully implicit model and the Euler explicit FD
SWE scheme.

In future research we plan to apply the DEIM technique to
different inverse problems such as POD 4-D VAR of the limited
area finite element shallow water equations and adaptive POD
4-D VAR applied to a finite volume SWE model on the sphere.
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Work of Meyer and Matthies (2003)

Goal oriented model constrained optimization

Bui-Thanh et al. (2007)

We aim to incorporate data assimilation system (DAS) into
model reduction

We propose a dual-weighted POD method (DW POD)

Combine info from both model dynamics and DAS

Data weighting in POD, considered by Graham and Kevrekidis
(1996)

Kunisch and Volkwein (2002) use time distribution of snapshots
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Dual weighted POD in 4-D Var data assimilation

Start by defining weighted ensemble average of the data

x̄ =
i=n∑
i=1

wix
i ,

with the snapshots weights wi ∈ (0, 1) and
∑n

i=1 wi = 1.
They assign degree of importance to each member of the
assemble
In standard approach wi = 1

n .
The modified m × n matrix obtained by subtracting the mean
from each snapshot is

X = [x1 − x̄, x2 − x̄, . . . , xn − x̄]

Weighted covariance matrix CıRm×m

C = XWXT

where
W = diag[w1, ..,wn].
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Dual weighted POD in 4-D Var data assimilation

We consider general norm

||X||2A = 〈x, x〉A = xTAx,

A ∈ Rm×m is s.p.d.

POD basis of order k ≤ n minimizes the averaged projection
error

min
{ψ1,ψ2,...,ψk}

n∑
i=1

wi

∥∥(xi − x̄
)
− PΨ,k

(
xi − x̄

)∥∥2

2

s.t. A orthonormality constraint
〈
ψi , ψj

〉
l2

= δij and PΨ,k is the
projection operator onto the k−dimensional space
Span

{
ψ1, ψ2, . . . , ψM

}
PΨ,k(x) =

k∑
i=1

〈x, ψi 〉A ψi .
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Dual weighted POD in 4-D Var data assimilation

POD modes ψi ∈ Rm are eigenvectors of m dimensional
eigenvalue problem

CAψi = σ2
i ψi

Compute
W1/2XTAXW1/2µi = σ2

i µi

1 A is identity for Euclidian norm
2 A is diagonal for total energy metric

Once we obtain eigenvectors µi ∈ Rn orthonormal w.r.t.
Euclidian norms, compute the POD modes

ψi =
1

σi
XW

1
2µi .
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Reduced-order 4D-Var

The k-dimensional reduced-order control problem is obtained by
projecting x0 − x̄ on the POD space

PΨ,k(x0 − x̄) = Ψη =
k∑

i=1

ηiψi

where matrix
Ψ = [ψ1, .., ψk ] ∈ Rm×k

has the POD basis vectors as columns, and
η = (η1, .., etak)T ∈ Rk is the coordinate vector in reduced space

ηi = ψT
i A(x0 − x̄)

η = ΨTA(X0 − X̄)
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Reduced-order 4D-Var

Large scale 4-D Var optimization

min
x0∈Rm

J(x0)

for x0
a = argmin J.

J =
1

2
(x0 − xb)T B−1 (x0 − xb)

+
1

2

k=N∑
k=0

(Hkxk − yo
k )T R−1

k (Hkxk − yo
k )

B background error covariance matrix

Rk observation error covariance matrix at time level k

Hk observation operator at time level k which has linear
representation

x0 control variables vector represented by POD basis

xk vector of variables obtained from the reduced-order model at
the time level k
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Reduced-order 4D-Var

It is now replaced by reduced-order 4D-Var of finding optimal
coefficients η s.t.

Ĵ(η) = J(x + Ψη) and min
η∈Rk

Ĵ(η).

If ηa denotes solution of this problem, an approximation to
analysis (∗) is given by

xa0 ' x̄ + Ψηa.

Only the initial conditions are projected into the POD space and
cost functional is computed using the full-model dynamics

∇η Ĵ(η) = ΨT (∇x0J)|x0 = x̄ + Ψη,
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Reduced-order 4D-Var

For any fixed time instant τ < t, we have x(t) =Mτ,t [x(τ ].

We make use of time-varying sensitivities of 4-D Var functional
w.r.t. perturbations in the state at time instants ti , i = 1, 2, .., n
where snapshots are taken.

We can estimate impact of perturbation δxi in state vector at
snapshot time ti ≤ t on J using the TLM model M(ti , t) and its
adjoint model M∗(t, ti )

∇J '< ∇x(t)J[x(t)], δx(t) >= ∇x(t)J[x(t)],M(ti , t)δx(ti ) >

=< M∗(t, ti )∇x(t)J[x(t)], δx(ti ) >=< λ(ti ), δx(ti ) > .
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Reduced-order 4D-Var

where λ(ti ) ∈ Rm, λ(ti ) = M∗(t, ti )∇x(t)J[x(t)] are the adjoint
state variables at time ti .

It follows

|δJ| ' | < λ(ti ), δx(ti ) > | = | < A−1λ(ti ), δx(ti ) >A |

≤ ||A−1λ(ti )||A||δx(ti )||A
The dual weights wi corresponding to the snapshots are defined
as normalized values

αi = ||A−1λ(ti )||A and wi =
αi∑n
j=1 αj

, for i = 1, 2, .., n.
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Reduced-order 4D-Var

They provide a measure of relative impact of the state errors
||δx(ti )||A on the cost functional.

The weights are determined by the cost functional s.t.
information from DAS is incorporated directly into the
optimality criteria.

This is a time - targeting assigning weights to time distributed
snapshot data using a time-varying adjoint sensitivity field.

It requires (evaluation of all dual weights) only one adjoint
model integration.

λ(tN+1) = 0

λ(tk) = M∗(tk+1, tk)λ(tk+1) + HT
k R−1

k (Hkxk − yk)

for k = N,N − 1, .., 0, and

λ(t0) = λ(t0) + B−1(x0 − xb)
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Ştefănescu

POD History

POD Galerkin
reduced order model

POD definition

POD/DEIM
POD/EIM
justification and
methodology

POD/DEIM nonlinear
model reduction for
SWE

POD/DEIM as a
discrete variant of
EIM and their pseudo
- algorithms

Dual weighted POD
in 4-D Var data
assimilation

Proper orthogonal
decomposition of
structurally
dominated turbulent
flows

Trust Region POD
4-D VAR of the
limited area FEM
SWE

Dual weighted POD in 4-D Var data assimilation

Numerical Experiments

Uses 2-D S-W equations model on the sphere using the explicit
flux form semi-Lagrangian (FF-SL) scheme

Adjoint developed by Akella and Navon (2006) using TAMC
(Giering and Kaminski, 1998) AD Software

We consider a total energy norm

||x||2A =
1

2
(||u||2 + ||v ||2 +

g

h̄
||h||2),

where h̄ is the mean height of the reference data.
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Results

DAS-I - data provided for all discrete state components - no
background term included.

DAS-II - background term included, data provided every fourth
grid point in longitudinal and latitudinal directions
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Results

Fig.8 Isopleths of the geopotential height (m) for the reference run:

configuration at the initial time specified from ERA-40 datasets;
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Ştefănescu

POD History

POD Galerkin
reduced order model

POD definition

POD/DEIM
POD/EIM
justification and
methodology

POD/DEIM nonlinear
model reduction for
SWE

POD/DEIM as a
discrete variant of
EIM and their pseudo
- algorithms

Dual weighted POD
in 4-D Var data
assimilation

Proper orthogonal
decomposition of
structurally
dominated turbulent
flows

Trust Region POD
4-D VAR of the
limited area FEM
SWE

Dual weighted POD in 4-D Var data assimilation

Results

Fig.9 Isopleths of the geopotential height (m) for the reference run: the 24-h

forecast of the shallow-water model.

I.M. Navon, R. Ştefănescu (Florida State University) November 27, 2012 73 / 144



I.M. Navon, R.
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Results

Fig.10 The fraction of the variance captured by the POD and DWPOD modes

from the snapshot data as a function of the dimension of the reduced space.
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Results

Fig.11 Comparative results for the reduced-order POD and DWPOD forecasts

as the dimension of the reduced space varies for k = 5, 10, 15, 20, and 25.

(left) Error (log 10) in the reduced order representation of the time-integrated

total energy of the system. (right) Time-averaged state forecast error (log 10).
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Results

Fig.12 The dual weights for the snapshot data determined by the adjoint

model in DAS-I and in DAS-II.
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Results

Fig.13 The iterative minimization process in the reduced space for the POD

and DWPOD spaces of dimension 5, 10, and 15. (left) Optimization without

background term and dense observations, corresponding to DAS-I. (right)

Optimization with background term and sparse observations, corresponding to

DAS-II
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Conclusions

Beneficial results for use with small dimensional bases in context
of adaptive order reduction as minimization approaches optimal
solution.

Increase accuracy using DWPOD in representation of forecast
aspect by one order of magnitude
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Proper orthogonal decomposition of structurally dominated
turbulent flows

The POD/Galerkin finite-element model (FEM) lacks stability
and spurious oscillations can degrade the reduced order solution
for flows with high Reynolds numbers.

The instabilities commonly observed in the POD method are
due to the oscillations forming in the solutions as a result of
applying a standard Bubnov-Galerkin projection of the equations
onto the reduced order sapce.

These oscillations feed into the nonlinear terms at moderate to
high Reynolds number resulting in unstable simulations.

We address one specific way for turbulence closure the
Petrov-Galerkin projection with ROM
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Proper orthogonal decomposition of structurally dominated
turbulent flows

The reason for the inadequate behavior of POD-Galerkin
truncation is that although the discarded POD modes
{Φr+1, ..,Φd} do not contain a significant amount of kinetic
energy in the system, they do however have a significant role in
the dynamics of the reduced-order system.

Indeed, the interaction between the discarded POD modes
{Φr+1, ..,Φd} and the POD modes retained in the ROM
{Φ1, ..,Φr} is essential for an accurate prediction of th dynamics
of the ROM.

This situation is similar to the traditional Fourier setting for
turbulence, in which the effect of the discard Fourier modes
needs to be modeled, i.e. one needs to solve the celebrated
closure problem.

This similarity is not surprising since in the limit of
homogeneous flows the POD basis reduces to the Fourier basis
(Holmes et al. 1996, 2012).
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Proper orthogonal decomposition of structurally dominated
turbulent flows

It was recognized early that a simple Galerkin truncation of POD
basis will generally produce inaccurate results no matter that the
retained POD modes capture most of the system energy

Various closure methods have been proposed.

Basic work of Kunisch and Volkwein (1999,2002)

Calibration methods Galetti (1986,1987)

State calibration method and flow calibration method Couplet
(2004).
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Other methods

Numerical stability enhancing closure models

Sirisup and Karniadakis (2005) show that onset of divergence
from correct limit cycle depends on number of modes in the
Galerkin expansion, The Reynolds number and the flow geometry

Replacing L2 inner product with the H1 inner product Gradient
information is also incorporated in the POD modes

Bergman et al (2009) used streamline upwind Petrov-Galerkin
method

Closure models based on physical input (addition of eddy
viscosity) by Aubry et al. 1988
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Petrov-Galerkin method

Many stabilization methods involve optimization of many
parameters to achieve a required accuracy.

Recently Carlberg et al (2011) introduced the Petrov Galerkin
method to control the stability of a 1-D nonlinear static problem

The Petrov-Galerkin method offers a natural and easy way to
introduce a diffusion term into ROM without tuning
optimization.
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Petrov-Galerkin method

In Fang et al. (2012), a new Petrov-Galerkin method is used for
stabilization of reduced order modeling of a nonlinear hybrid
unstructured mesh applied to the Navier-Stokes equations.

A mixed P1DGP2 FEM pair (Cotter et al. 2009) which remains
LBB stable is introduced to further stabilize the numerical
oscillations.

It consists of discontinuous linear elements for velocity and
continuous quadratic elements for pressure in the Navier-Stokes
equations.
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Petrov-Galerkin ROM

The Petrov-Galerkin method is used to form a stable POD ROM
for nonlinear hybrid problems.

At a given time step the discretization of the Navier-Stokes
equations has the form

AΨ = b, (15)

where

Ψ = (U,V,W,P)T , U = (u1, . . . , ui , . . . , uN ),

V = (v1, . . . , vi , . . . , vN ), W = (w1, . . . ,wi , . . . ,wN )

P = (p1, . . . , pi , . . . , pN )

(N is the number of nodes in the computational domain).
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Petrov-Galerkin ROM

A modified system of equations (15) is written as

CTF−1AΨ = CTF−1b, (16)

in which for the least squares (LS) methods,

C = A

The solution of (16) is the same as that of equation (15), but it
is not the same when ROM is applied.
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Petrov-Galerkin ROM

F−the weighting matrix can be chosen to render the system of
equations dimensionally consistent and contains also the mass
matrix of system.

The LS methods have dissipative properties but are not
generally conservative for coupled systems of equations.

A common solution to divergence of ROM solutions is to add
diffusion terms to the equations and tune these diffusion terms
to best match the full forward solution.

It seems natural to explore using the above Petrov-Galerkin
methodology to introduce diffusion into ROM’s and avoid this
tuning.
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Petrov-Galerkin ROM

The matrix equation (15) can be converted into a reduced order
system spanned by a set of m POD basis functions
{Φ1, . . . ,ΦM} where each POD function is represented by a
vector of size N that represents the functions over the FEM
space.

The POD functions are grouped into a matrix MPOD of size
N ×M

MPOD = [Φ1, . . . ,ΦM ]

Using this matrix, the reduced order system can now be
generated by operating directly on the discretised system given
by equation (15).
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Petrov-Galerkin ROM

The standard Galerkin is resulting in the ROM system,

MPODT
AMPODΨPOD = MPODT

(b− AΨ̄), (17)

where ΨPOD are the reduced order solution coefficients, Ψ̄ is the
mean of the variables Ψ over the time, and the relationship
between the POD variables and full solutions is given by,

Ψ = MPODT
(ΨPOD + Ψ̄) (18)
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Petrov-Galerkin ROM

For LS methods, equation (17) is:

MPODT
CTF−1AMPODΨPOD = MPODT

CTF−1(b−AΨ̄).

(19)

and using the non-linear Petrov-Galerkin methods one obtains:

MPODT
(I+CTF−1)AMPODΨPOD = MPODT

(I+CTF−1)(b−AΨ̄),

(20)

or in a diffusion form:

(MPODT
AMPOD + D)ΨPOD = MPODT

(b− AΨ̄).

(21)
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Petrov-Galerkin ROM

Fig.15 a mixed finite element P1DGP2 pair for velocity and pressure (white one

for u nodes, black one for p nodes)

I.M. Navon, R. Ştefănescu (Florida State University) November 27, 2012 92 / 144



I.M. Navon, R.
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Petrov-Galerkin ROM

Example I: 2D-Navier-Stokes flow past a cylinder

Example II: Gyre problem

Example III: Sod shock tube problem

Example IV: 2D Advection
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Petrov-Galerkin ROM

(a) full model

(b) POD/Galerkin

(c) POD/Petrov-Galerkin

Fig.16 Flow past a cylinder: Velocity solution from the full, POD/Galerkin and

POD/Petrov-Galerkin models using P1P1 (t = 3.6, Re = 2000).
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Petrov-Galerkin ROM

(a) full model at t = 2.4 (b) full model at t = 7

(c) POD/Galerkin method at t = 2.4 (d) POD/Galerkin method at t = 7

(e) POD/Petrov-Galerkin method at t = 2.4 (f) POD/Petrov-Galerkin method at t = 7

Fig.17 Flow past a cylinder: Velocity solution from the full, POD/Galerkin and

POD/Petrov-Galerkin models using P1P1 at t = 2.4 and t = 7 (Re = 3600).
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Fig.18 Comparison of velocity results between the full and Petrov-Galerkin

POD models at a point(near right side of the circle).



Petrov-Galerkin ROM

(a) full model at t = 2.4 (b) full model at t = 7

(c) POD/Galerkin method at t = 2.4 (d) POD/Galerkin method at t = 7

(e) POD/Petrov-Galerkin method at t = 2.4 (f) POD/Petrov-Galerkin method at t = 7

Fig.19 Flow past a cylinder: solution of full model, POD/Galerkin and

POD/Petrov-Galerkin using P1DGP2 at t = 2.4 and t = 7 (Re = 3600)
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Fig.20 The comparison of velocity solution at point (x=0.3,y=0.3) between

the Galerkin/POD model and Petrov-Galerkin/POD model using P1DGP2.
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Fig.21 The correlation coefficient of the Galerkin/POD and

Petrov-Galerkin/POD models using a mixed finite element P1DGP2 pair for

velocity and pressure.
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Petrov-Galerkin ROM

(a) full model velocity (b) full model pressure

(c) POD/Galerkin method velocity (d) POD/Galerkin method pressure

(e) POD/Petrov-Galerkin method velocity (f) POD/Petrov-Galerkin method pressure

Fig.22 Gyre: Comparison of the results between the full and POD models at

t = 0.35 using P1DGP2.
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Fig.23 Gyre:RMSE between Full model and POD model; (a) RMSE of

Galerkin and Petrov-Galerkin; (b) Amplification of the lower part of

figure 9(a)
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Fig.24 Correlation coefficient of Galerkin/POD model and

Petrov-Galerkin/POD model.
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(a) Density (b) Density

(c) Velocity (d) Velocity

Fig.25 The Sod shock tube problem: Comparison of the results obtained from

the POD and full model at time level t = 0.2 s (where 15 POD bases are used

to represent 95% of the original energy).



(a) Density (b) Density

(c) Velocity (d) Velocity

Fig.26 The Sod shock tube problem: Comparison of the results obtained from

the POD and full model at time level t = 0.2 s (where 25 POD bases are used

to represent 99.4% of the original energy).



(a) Galerkin POD model at t = 0.2 s (b) Petrov-Galerkin POD model at t = 0.2 s

(c) Full model at t = 0.2 s

Fig.27 2D 45o advection: Comparison of the results obtained from the POD

models and full model, where 15 POD bases are used, which represent 95% of

the original energy.



(a) RMSE (10 POD base) (b) Correlation (10 POD bases)

Fig.28 2D 45o advection: RMSE and correlation coefficient of tracer results

between the POD and the full models
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Limited - Area SWE

The shallow - water equations model on a β−plane

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂φ

∂x
− fv = 0

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+
∂φ

∂y
+ fu = 0

∂φ

∂t
+ u

∂φ

∂x
+ v

∂φ

∂y
+ φ

∂u

∂x
+ φ

∂v

∂y
= 0

(x , y) ∈ [0, L]× [0,D], t > 0

where L and D are the dimensions of a rectangular domain of
integration, u and v are the velocity components in the x and y
axis respectively, φ = gh is the geopotential height, h is the
depth of the fluid and g is the acceleration of gravity.
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Limited - Area SWE

The scalar function f is the Coriolis parameter.

f = f̂ + β

(
y − D

2

)
, β =

∂f

∂y

The f̂ is the Coriolis frequency

f = f̂ + β

(
y − D

2

)
The Coriolis parameter

f̂ = 2Ω sin θ

is defined at a mean latitude θ0, where Ω is the angular velocity
of the earth’s rotation and θ is latitude.
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Limited - Area SWE

We impose initial conditions

w(x , y , 0) = ϕ(x , y), where state variables are

w = w(x , y , t) = (u(x , y , t), v(x , y , t), φ(x , y , t)) ,

with periodic boundary conditions are assumed in the
x-direction:

w(0, y , t) = w(L, y , t)

whereas solid wall boundary condition are used in y -direction:

v(x , 0, t) = v(x ,D, t) = 0.

I.M. Navon, R. Ştefănescu (Florida State University) November 27, 2012 109 / 144



I.M. Navon, R.
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POD version of SWE

To obtain a reduced model, we first employ a FEM scheme to
solve the PDE. Then we obtain an ensemble of snapshots and
use a Galerkin projection scheme of the model equations onto
the space spanned by the POD basis elements.

A system of ODE is obtained as follows

dαi

dt
=

〈
F

(
ȳh +

i=M∑
i=1

αiψ
h
i , t

)
, ψh

i

〉

with i.c.

αi (0) =
〈
yh(x , 0)− ȳh, ψh

i

〉
= 〈y0 − ȳ , ψi 〉A , i = 1, · · · ,M.
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Ştefănescu

POD History

POD Galerkin
reduced order model

POD definition

POD/DEIM
POD/EIM
justification and
methodology

POD/DEIM nonlinear
model reduction for
SWE

POD/DEIM as a
discrete variant of
EIM and their pseudo
- algorithms

Dual weighted POD
in 4-D Var data
assimilation

Proper orthogonal
decomposition of
structurally
dominated turbulent
flows

Trust Region POD
4-D VAR of the
limited area FEM
SWE

Trust Region POD 4-D VAR of the limited area FEM SWE

Reduced order POD 4-D VAR

We project the control variable on a basis of characteristic
vectors capturing most of the energy and main directions of
variability of the model, i.e. SVD.

We then attempt to control the vector of initial conditions in the
reduced space model

JPOD
(
yPOD

0

)
=

1

2

(
yPOD

0 − yb
)T

B−1
(
yPOD

0 − yb
)

+

1

2

k=n∑
k=0

(
Hky

POD
k − yo

k

)T
R−1

k

(
Hky

POD
k − yo

k

)
B background error covariance matrix

Rk observation error covariance matrix at time level k

Hk observation operator at time level k

yPOD
0 vector of control variables (initial conditions) represented

by POD basis

yPOD
k vector of variables obtained from the reduced-order model

at the time level k
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Reduced order POD 4-D VAR

The initial value yPOD
0 and the reduced-order model solution

yPOD
k can be expressed as

yPOD
0 = ȳ +

∑i=M
i=1 αi (0)ψi = ȳ + Ψα0

yPOD
k = ȳ +

∑i=M
i=1 αi

(
tk
)
ψi = ȳ + Ψαk

where Ψ =
{
ψ1, ψ2, . . . , ψM

}
is an ensemble of POD basis.
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Reduced order POD 4-D VAR

We can rewrite the reduced - order cost functional as follows

JPOD
α (α0) =

1

2

(
ȳ + Ψα0 − yb

)T
B−1

(
ȳ + Ψα0 − yb

)
+

1

2

k=n∑
k=0

(Hk (ȳ + Ψαk)− yo
k )T R−1

k (Hk (ȳ + Ψαk)− yo
k )

The reduced model can be written as

αk = MPOD
0→k (α0) ,∀k

αk = MPOD
k−1→k (αk−1) = MPOD

k (αk−1) ,∀k

and by recurrence

αk = MPOD
k · · ·MPOD

1 α0, ∀k
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Reduced order POD 4-D VAR

The reduced-order cost functional JPOD
α (α0) can be divided into

two components

JPOD
α = JPOD,b

α + JPOD,o
α

and more,

JPOD
α = JPOD,b

α +
n∑

k=0

JPOD,o
α,k

where JPOD,o
α,k = (Hk (ȳ + Ψαk)− yo

k )T dk and dk denotes the
’normalized departure’

dk = R−1
k (Hk (ȳ + Ψαk)− yo

k ) .
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Reduced order POD 4-D VAR

Hence the gradient of the POD reduced-order cost functional
w.r.t. α0 is written as

∇α0J
POD
α = ΨTB−1

(
ȳ + Ψα0 − yb

)
+

n∑
k=0

(
MPOD

1

)T
. . .
(
MPOD

k

)T
ΨTHT

k dk

where
(
MPOD

k

)T
is the POD reduced-order adjoint model at

time step k .
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Pseudo - Algorithmic form

1 Initialize reduced-order adjoint variables α∗ at final time to zero:
α∗n = 0

2 For each step k − 1, adjoint variables α∗k−1 are obtained by

adding reduced-order adjoint forcing term ΨTHT
k dk to α∗kand

performing reduced-order adjoint integration by multiplying

result by
(
MPOD

k

)T
, i.e. α∗k−1 =

(
MPOD

k

)T (
α∗k + ΨTHT

k dk
)

3 At the end of recurrence, the value of adjoint variable α∗0 = Joα0

yields the gradient of the observational cost functional

4 Compute

∇α0J
POD,b
α = ΨTB−1

(
ȳ + Ψα0 − yb

)
obtaining

∇α0J
POD
α = ∇α0J

POD,b
α +∇α0J

POD,o
α .
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Trust region POD optimal control approach

The Trust - Region algorithm hooks direction of descent and
step-size simultaneously. It approximate a certain region, the
trust region (a sphere in Rn of the objective function with a
quadratic model function

mk (p) = fk +∇f T
k +

1

2
pTBkp, where

fk = f (xk) , ∇fk = ∇f (xk) and Bk is an approximation to the Hessian.

We seek a solution of

min mk (p) =fk +∇f T
k +

1

2
pTBkp

s.t ‖p‖ ≤ δk ,

where δk > 0 is the trust-region radius.
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Trust region POD optimal control approach

The trust-region radius δk at each iteration is determined by
analyzing the following ratio

ρk =
f (xk)− f (xk + pk)

mk (0)−mk (pk)
.

If ρk < 0, the new objective value is greater than the current
value so that the step must be rejected.

If ρk is close to 1, there is good agreement between the
approximate model mk and the object function fk over this step,
so it is safe to expand the trust region radius for the next
iteration

If ρk is positive but not close to 1, we do not alter the trust
region radius, but if it is close to zero or negative, we shrink the
trust region radius.
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Trust region POD 4D-VAR algorithm I

Let 0 < η1 < η2 < 1 , 0 < γ1 < γ2 < 1≤ γ3 and y
(0)
0 , δ0 be given,

set k = 0

1 Compute snapshot set YSNAP
k based on initial condition y

(k)
0

2 Compute the POD basis Ψ(k) and build up the corresponding
POD based control model based on the initial condition
α

(0)
0 =

〈
y

(0)
0 − ȳ ,Ψ(0)

〉
3 Compute the minimizer sk of

min mk

(
α

(k)
0 + s

)
= JPOD

α

(
α

(k)
0 + s

)
subject to ‖s‖ ≤ δk
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Trust region POD 4D-VAR algorithm II

4 Compute the new J
(
ȳ + Ψ(k−1)

(
α

(k)
0 + sk

))
of the full model

and

ρk =
J
(
ȳ + Ψ(k−1)α

(k)
0

)
− J

(
ȳ + Ψ(k−1)

(
α

(k)
0 + sk

))
mk

(
α

(k)
0

)
−mk

(
α

(k)
0 + sk

)
5 Update the trust-region radius:

If ρk ≥ η2: implement outer projection

y
(k+1)
0 = ȳ + Ψ(k−1)

(
α

(k)
0 + sk

)
and increase trust-region radius

δk+1 = γ3δk and GOTO 1

If η1 < ρk < η2: implement outer iteration

y
(k+1)
0 = ȳ + Ψ(k−1)

(
α

(k)
0 + sk

)
and decrease trust-region

radius δk+1 = γ2δk and GOTO 1

If ρk ≤ η1: set y
(k+1)
0 = y

(k)
0 and decrease trust-region radius

δk+1 = γ1δk and GOTO 3
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Flow-chart of Dual Weighted TR-POD

Initial conditions

Snapshots from full FEM SWE

POD reduced-order FEM SWE

POD reduced-order adjoint and gradient

Sub-optimal initial conditions

Optimal initial conditions

Full adjoint to generate dual weights

Outer iteration cycle POD iteration

Initial conditions

Dual weighted snapshots

POD reduced-order modelling

YES

Trust region POD 4-D VAR

NO

Trust region ratio  ≤ η1

Full adjoint to generate dual weights

Cost functional  ≤ tolerance

YES

DW TRPOD 4-D VAR is completed

NO

Fig.29 1. adaptive POD reduced order model for dual - weighted snapshots of

the full model (left); 2. dual - weighted snapshots and TR-POD adaptivity.
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Numerical Results
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Fig.30 Initial condition:(a) Geopotential field for the Grammeltvedt initial

condition. (b) Wind field calculated from the geopotential field by the

geostrophic approximation.
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Numerical Results

We employed linear piecewise polynomials on triangular
elements in the formulation of Galerkin finite-element
shallow-water equations model, in which the global matrix was
stored into a compact matrix.

A time-extrapolated Crank-Nicholson time differencing scheme
was applied for integrating in time the system of ordinary
differential equations.

The Galerkin finite-element boundary conditions were treated
using the approach suggested by Payne and Irons (1963) and
mentioned by Huebner (1975), i.e. modifying the diagonal terms
of the global matrix associated withthe nodal variables by
multiplying them by a large number, say 1016, while the
corresponding term in the right-hand vector is replaced by the
specified boundary nodal variable multiplied by the same large
factor times the corresponding diagonal term.
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Numerical Results

We applied a 1% uniform random perturbations on the initial
conditions in order to provide twin-experiment “observations”.

The data assimilation was carried on a 48 hours window using
the ∆t = 1800s in time and a mesh of 30× 24 grid points in
space with ∆x = ∆y = 200km.

We generated 96 snapshots by integrating the full finite-element
shallow-water equations model forward in time, from which we
choose 10 POD bases for each of the u(x , y),v(x , y),and φ(x , y)
to capture over 99.9% of the energy.

The dimension of control variables vector for the reduced-order
4-D Var is 10× 3 = 30.
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Numerical Results

The Polak Ribiere nonlinear conjugate gradient (CG) technique
was employed for high-fidelity full model 4-D VAR and all
variants of ad-hoc POD 4-D Var, while the steepest-descent
strategy was used in the trust-region POD 4-D Var.

In the ad-hoc POD 4-D Var, the POD bases are re-calculated
when the value of the cost function cannot be decreased by
more than 10−1 for ad-hoc POD 4-D Var and 10−2 for ad-hoc
DWPOD 4-D Var between the consecutive minimization
iterations.

In the trust-region 4-D Var, the POD bases are re-calculated
when the ratio ρk is larger than the trust-region parameter η1 in
the process of updating the trust-region radius.
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To quantify the performance of the dual weighted trust-region
4-D Var, we use two metrics namely the root mean square error
(RMSE) and correlation of the difference between the POD
reduced-order simulation and high-fidelity model.

POD 4-D Var ADPOD DWAHPOD TRPOD DWTRPOD Full

Iterations 22 42 46 57 80
Outer projections 2 6 10 12 N/A

Error 10−1 10−2 10−5 10−8 10−10

CPU time (s) 15.2 38.7 121.2 142.8 222.6

Table 1Comparison of iterations, outer projections, RMSE and
CPU time for ad-hoc POD 4-D Var, ad-hoc dual weighed POD
4-D Var, trust-region POD 4-D Var, trust-region dual weighed

POD 4-D Var and the full model 4-D Var.

Next image depicts the errors between the retrieved initial
geopotential and true initial geopotential applying dual weighted
trust-region POD 4-D Var to the 5% uniform random
perturbations of the true initial conditions taken as initial guess.
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Numerical Results

The correlation coefficient r used to evaluate quality of the
inversion simulation is defined below

ri =
cov i

12

σi
1σ

i
2

,

where

σi
1 =

j=N∑
j=1

(
Ui,j − U j

)2
, σ2 =

j=N∑
j=1

(
UPOD
i,j − UPOD

j

)2

, i , j = 1, . . . , n

cov12 =

j=N∑
j=1

(
Ui,j − U j

) (
UPOD
i,j − UPOD

j

)
, i , j = 1, . . . , n

with U j and UPOD
j are the means over the simulation period

[0,T ] obtained from the full model and ones obtained by
optimal POD reduced-order model at node j , respectively.
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Fig.32 Comparison of the correlation between the full model and the ROM

before and after data assimilation applying dual weighted trust-region POD

4-D Var to the 5% uniform random perturbations of the true initial conditions

serving as initial guess: geopotential (left), wind field (right).
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Fig.33 Comparison of the RMSE of between ad-hoc POD 4-D Var, ad-hoc dual

weighed POD 4-D Var, trust-region POD 4-D Var, trust-region dual weighed

POD 4-D Var and the full model 4-D Var: geopotential (left), wind field

(right).
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Fig.34 Comparison of correlation between ad-hoc POD 4-D Var, ad-hoc dual

weighed POD 4-D Var, trust-region POD 4-D Var, trust-region dual weighed

POD 4-D Var and the full model 4-D Var: geopotential (left), wind field

(right).
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The Global SWE model

Our intention here is to generalize the efficient state-of-the-art
POD implementation from the previous work on finite element
SWE on the limited area (FE-SWE) to global finite volume (FV)
SWE model with realistic initial conditions, i.e.,

This methodology combines efficiently the snapshot selection in
the presence of data assimilation system by merging dual
weighting of snapshots with trust region POD techniques.
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The Global SWE model

The global SWE model was discretized using a semi-lagrangian
finite volume scheme, which serves as the dynamical core in the
community atmosphere model (CAM), version 3.0, and its
operational version implemented at NCAR and NASA is known
as finite volume-general circulation model (FV-GCM).

A two grid combination based on C-grid and D-grid is used for
advancing from time step tn to tn + ∆t. In the first half of the
time step, advective winds (time centered winds on the C-grid:
(u∗, v∗)) are updated on the C-grid, and in the other half of the
time step, the prognostic variables (h, u, v) are updated on the
D-grid.
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Fig.35 Isopleths of the geopotential height for the reference trajectory. The

configuration at the initial time specified from ERA-40 data sets
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Fig.36 Isopleths of the geopotential height for the reference trajectory. The

18-h forecast of the FV-SWE model
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Fig.37 Isopleths of the POD modes of dimension 1, 5 and 10 respectively
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(a) DAS-I
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(b) DAS-II

Fig.38 Comparison of the performance of the iterative minimization process of

the scaled cost functional for unweighted ad-hoc POD 4-D Var, dual weighted

ad-hoc POD 4-D Var, unweighted trust-region POD 4-D Var, dual weighted

trust-region 4-D Var, and full model 4-D Var respectively.
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Fig.39 Isopleths(scaled by multiplying 1000) of the geopotential height for the

difference between the 18h-forecast using true initial conditions and the one

using retrieved initial condition after DWTRPOD 4-D Var - DAS-I
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Ştefănescu

POD History

POD Galerkin
reduced order model

POD definition

POD/DEIM
POD/EIM
justification and
methodology

POD/DEIM nonlinear
model reduction for
SWE

POD/DEIM as a
discrete variant of
EIM and their pseudo
- algorithms

Dual weighted POD
in 4-D Var data
assimilation

Proper orthogonal
decomposition of
structurally
dominated turbulent
flows

Trust Region POD
4-D VAR of the
limited area FEM
SWE

Trust Region POD 4-D VAR of the limited area FEM SWE

The observations of height field only

Suppose that only the geopotential field is observed but the
observations for the wind field are unavailable (i.e., the number
of observations is decreased from 144× 72× 3× 6 to
144× 72× 6).

We refer to this case by DAS-III(a), in which the initial
perturbed field is the same as the one used to start DAS-I.
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The observations of height field only

Suppose that only the geopotential field is observed but the
observations for the wind field are unavailable (i.e., the number
of observations is decreased from 144× 72× 3× 6 to
144× 72× 6).

We refer to this case by DAS-III(a), in which the initial
perturbed field is the same as the one used to start DAS-I.
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The observations of height field only
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(d) Scaled norm of the gradient

Fig.40 DAS-III(a)(Observations of height field only): Comparison of the

performance of the iterative minimization process of the scaled cost functional

and the scaled norm of the gradient of the cost functional for unweighted

trust-region POD 4-D Var and full 4-D Var.



The observations of height field only

Fig.41 DAS-III(a): Isopleths(scaled by multiplying 1000) of the geopotential

height for the difference between the 18h-forecast using true initial conditions

and the one using retrieved initial condition after UWTRPOD 4-D Var.



I.M. Navon, R.
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Conclusions

We compared several variants of POD 4-D Var, namely
unweighted ad-hoc POD 4-D Var, dual-weighed ad-hoc POD
4-D Var, unweighted trust-region POD 4-D Var and
dual-weighed trust-region POD 4-D Var, respectively.

We found that the ad-hoc POD 4-D Var version yielded the
least reduction of the cost functional compared with the
trust-region 4-D VAR . We assume that this result may be
attributed to lack of feedbacks from the high-fidelity model.

The trust-region POD 4-D Var version yielded a sizably better
reduction of the cost functional, due to inherent properties of
TRPOD allowing local minimizer of the full problem to be
attained by minimizing the TRPOD sub-problem. Thus
trust-region 4-D Var resulted in global convergence to the high
fidelity local minimum starting from any initial iterates.
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