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2LIMSI-CNRS, Orsay, France and Institut für Strömungsmechanik, Technische Universität Braunschweig, Germany

3Computational Science Laboratory, Department of Computer Science, Virginia Tech, Blacksburg, Virginia, USA, 24060

Received . . .

Professor Ionel Michael Navon retired in September 2014 from the Scientific Computing
Department, Florida State University, Tallahassee Florida after a brilliant academic career. Since
1997, he is a fellow of American Meteorological Society and recently he became an honorary
member of Academy of Romanian Scientists. His distinguished pioneering achievements in the
domains of data assimilation, inverse problems and reduced order modeling during the last few
decades have greatly contributed to the establishment and development of these aforementioned
fields. In particular, his rich interdisciplinary expertise allowed him to advance the science reduced
order modeling and inverse modeling as core techniques for data-driven modeling. He generalized
predictive computational modeling leading to fast novel solution approaches for real-world inverse
problems of oceanography and weather forecast. At the same time, Professor Ionel Michael Navon
has been an outstanding mentor, advisor, role model and friend to his 9 PhD students and 11
postdoctoral scholars, with the large majority of them pursuing successful academic, scientific, and
industry careers.

This year Professor Ionel Michael Navon celebrates his 75th anniversary and this special
issue recognizes his accomplishments. The contributors to this special issue are former students,
postdoctoral scholars, colleagues, close collaborators, and friends of Professor Ionel Michael Navon.
The next three paragraphs describe his most important contributions to data assimilation and reduced
order modeling fields in the last 10 years while the last part of the editorial focuses on the special
issue’s contributions.

Professor Navon’s work addressed fundamental issues in both variational and statistical data
assimilation with applications in fluid dynamics and atmospheric flows. Professor Navon extended
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and proposed frameworks to tackle non-differentiability in models and objective functions. For
example, he formulated the Maximum Likelihood Ensemble Filter (MLEF) equations without
the differentiability requirement for the prediction model and for the observation operators 1]
and measured the impact of non-smooth observation operators on variational and sequential data
assimilation 2]. Other efforts include coupling a Gaussian resampling method to generate more
effective and efficient Particle Filter posterior analysis ensembles 3], improvement on the ensemble
Kalman filters 4–7] and MLEF 8]. Professor Navon is also the co-author of a recent book 9] and
several book chapters 10–13] describing the recent advancements and methodologies in variational
data assimilation and non-linear sensitivity analysis. Goal-oriented adjoint sensitivity methods were
proposed to guide to the adaptivity of finite element meshes 14, 15]. Moreover, he developed
different approaches to model error formulation 16] and identify targeted observations 17] in 4D-
Var, and formulated several 4D-Var lighting data assimilation schemes 18] for Weather Research and
Forecasting model. He is also the co-author of the recently proposed independent set perturbation
adjoint method 19] that facilitates the differentiating of the mesh based fluids models.

Professor Navon is also among the pioneers of coupled reduced order modeling and 4D-Var
methods with applications in oceanography 20] and atmospheric flows 21]. In the latter, a Hessian-
free truncated-Newton (HFTN) minimization algorithm in the Proper Orthogonal Decomposition
(POD)-based space was developed based on a reduced second-order adjoint model. Adaptivity
of the POD basis was employed as minimization advances in a proposed reduced order 4D-Var
system using the Imperial College Ocean Model 22]. Trust-region methods were subsequently used
to guide the adaptivity of the reduced order model during the optimization process 23, 24]. Dual
weighted methods based on sensitivity analysis 25, 26] were pioneered by his group to enrich the
reduced order bases and increase the accuracy of the reduced order 4D-Var analyses. Reduced-order
observation sensitivity was also formulated 27]. Recently, it was shown that accurate reduced order
Karush-Kuhn-Tucker conditions with respect to their full order counterparts represent a fundamental
requirement for an accurate reduced order optimization solution 28].

Professor Navon’s research work in the field of reduced order modeling is extremely rich.
Together with his collaborators he developed POD-Galerkin and reduced order models and
associated error estimates for various discrete high-fidelity flow models such as the Upper Tropical
Pacific Ocean Model 29] based on finite difference 30–32], finite element 33,34], finite volume 35]
and unstructured meshes 36–40]. Petrov-Galerkin projections were also employed in the context
of finite element models 41–43]. Efficient POD reduced order models were constructed for other
type of models such as the chemical vapor deposit equations 44], nuclear radiation transport models
45, 46], prey-predator systems 47], borehole induction systems 48] and fluid-structure interactions
models 49]. A particular attention was given to reducing the computational complexity of the
non-linear reduced order models using Discrete Empirical Interpolation Method 50–52], tensorial
POD 53] and non-intrusive methods 54, 55]. Very important studies on the practical and theoretical
aspects of dynamic mode decomposition have been recently published 56, 57].

The special issue contains 18 original papers including those presented at the mini-symposium
dedicated to “Inverse Problems and Data Assimilation”, at the SIAM Conference on Computational
Science and Engineering, Salt Lake City, Utah, USA, March 14-18, 2015. The aim of this special
issue is to document recent mathematical developments in the field of reduced order modeling
and inverse problems based on theoretical and numerical grounds that are relevant for various
scientific and real life applications. The main topics consist in reduced order modeling framework
(6 manuscripts), deterministic and statistical approaches to inverse problems and data assimilation
(9 manuscripts) and sensitivity analysis (3 manuscripts).

While still in its infancy, the field of reduced order modeling is becoming attractive especially for
the potential of drastically reducing the computational complexity of problems in data assimilation,
inverse problems, uncertainty quantification, etc. Six intrusive and non-intrusive reduced order
modeling studies for simulations of swirling and multiphase porous media flows, shallow water
equations model, fluid-structure interaction problems with prescribed boundary motion and heat
equation are proposed.
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58] investigate the potential of POD reduced order models to accurately approximate the solutions
of nonlocal diffusion equations. 59] make use of POD-Galerkin and reduced basis methods to
develop a novel reduced order modelling framework for fluid-structure interaction problems with
prescribed boundary motion using efficient geometrical techniques. 60] propose a sparse matrix
discrete interpolation method to efficiently compute matrix approximations in the reduced order
modeling framework. 61] focus on a difficult task in hydrodynamic stability analysis by modeling
the dynamics of swirl intense flows. A linear stability analysis is elaborated, and a Dynamic Mode
Decomposition (DMD) is carried out yielding an excellent prediction of the instability frequency
and identifying the coherent structures of dynamic modes. 62] describe the first time application of
non-intrusive Proper Orthogonal Decomposition (POD) reduced order modeling based on Smolyak
sparse grids to porous media multiphase flows. A set of interpolation functions (hyper-surface) is
constructed to represent the reduced unsteady dynamical system and its solution at the current time
step is calculated by inputting the previous time steps solutions. 63] introduce another non-intrusive
POD method by coupling a least squares fitting method and Smolyak sparse grid collocation
procedure which performed well for two computational fluid dynamics models.

Theoretical and practical aspects involving inverse problems framework have been considered.
Let us evoke the development of a novel variational data assimilation smoother together with
its practical version relying on projected reduced order models with applications on a Shallow
Water Equations model. Ensemble based data assimilation is well represented by three studies
involving an unstructured adaptive mesh ocean model, a novel method for creating static reduced
rank error covariance matrix and a new version of Kalman filter suitable for parallel implementation.
A hybrid variational ensemble study is also available. Uncertainty quantification for strong and
weak constraint variational data assimilation problems is addressed with a study on the influence
of the model errors on the analysis error covariance. An adaptive observation study based on
reduced order adjoint models is also present. Finally, solutions to accommodate a wide range of
temporal and spatial scales in atmospheric and oceanic data assimilation problems are elaborated.
64] construct an ensemble-based sampling smoother for four-dimensional data assimilation using
a Hybrid/Hamiltonian Monte-Carlo (HMC) approach. Unlike the well-known ensemble Kalman
smoother, which is optimal only in the linear Gaussian case, the proposed methodology naturally
accommodates non-Gaussian errors and non-linear model dynamics and observation operators. 65]
explore the applications of projected reduced order models based on POD and Discrete Empirical
Interpolation Method (DEIM) to develop economical versions of the HMC sampling smoother.
Projection of the posterior distribution in the linear case is theoretical analyzed. Using block
circulant matrices, 66] creates a high-dimensional global covariance matrix from a low-dimensional
local sub-matrix for potential use in hybrid variational-ensemble data assimilation. 67] make the
first attempt to construct an Ensemble Kalman Filter method to accommodate an unstructured
adaptive mesh ocean model. 68] propose a Quasi-Newton approximation for the covariance matrix
employed by the Kalman filter algorithm and derive parallel formulation of the filtering task. 69]
use the variational Ensemble Kalman Filter and the Coupled-Hydrodynamical-Ecological Model for
Regional and Shelf Seas to assimilate high resolution satellite images of turbidity and chlorophyll-
a with application in ecology. An uncertainty quantification research proposed by 70] focuses on
evaluating the analysis error covariance matrix for weak constraint variational data assimilation
problems. Besides the inverse Hessian of an associated objective function, the analysis error includes
an additional component associated to the model error. 71] use an adjoint sensitivity technique
based on reduced order models to identify the impact of observations on the predictive accuracy
of a quantity of interest, and to guide placing the sensors at the locations with high impacts. For
atmospheric and oceanic fine resolution data assimilation problems, 72] revealed that the use of
a various temporal and spatial resolutions having different dynamical and statistical properties
imposes fundamental difficulties. Their research shows a set of theoretical and numerical analyses
to highlight these shortcomings and suggests possible solutions.

Three sensitivity analyses studies complete the current list of the manuscripts. Advances to the
current sensitivity analyses methods are proposed and their applications include: the construction of
a quantitative risk assessment for design and development of a renewable energy system to support
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decision-making among design alternatives - 73], implementation of computationally efficient
operator-type response sensitivities for uncertainty quantification and predictive modeling - 74] and
the development of a second order adjoint model to better understand the impact of the changes in
pollutant emission onto a target region 75].

As a researcher, Professor Navon excels in multiple disciplines. His significant research
achievements are closely related to the topics of inverse problems, data assimilation and reduced
order modeling. This special issue celebrates the enduring legacy of Professor Navon’s work.

The papers featured here will be collected together as a ’virtual’ special issue at the IJNMF home-
page and can be accessed directly at the following link: http://onlinelibrary.wiley.
com/journal/10.1002/(ISSN)1097-0363/homepage/virtual_issues.html.
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