
The Florida State University
DigiNole Commons

Electronic Theses, Treatises and Dissertations The Graduate School

3-18-2011

4-D Var Data Assimilation and POD Model
Reduction Applied to Geophysical Dynamics
Models
Xiao Chen
Florida State University

Follow this and additional works at: http://diginole.lib.fsu.edu/etd

This Dissertation - Open Access is brought to you for free and open access by the The Graduate School at DigiNole Commons. It has been accepted for
inclusion in Electronic Theses, Treatises and Dissertations by an authorized administrator of DigiNole Commons. For more information, please contact
lib-ir@fsu.edu.

Recommended Citation
Chen, Xiao, "4-D Var Data Assimilation and POD Model Reduction Applied to Geophysical Dynamics Models" (2011). Electronic
Theses, Treatises and Dissertations. Paper 3836.

http://diginole.lib.fsu.edu?utm_source=diginole.lib.fsu.edu%2Fetd%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://diginole.lib.fsu.edu/etd?utm_source=diginole.lib.fsu.edu%2Fetd%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://diginole.lib.fsu.edu/tgs?utm_source=diginole.lib.fsu.edu%2Fetd%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://diginole.lib.fsu.edu/etd?utm_source=diginole.lib.fsu.edu%2Fetd%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
http://diginole.lib.fsu.edu/etd/3836?utm_source=diginole.lib.fsu.edu%2Fetd%2F3836&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-ir@fsu.edu


THE FLORIDA STATE UNIVERSITY

COLLEGE OF ARTS AND SCIENCES

4-D VAR DATA ASSIMILATION AND POD MODEL REDUCTION

APPLIED TO GEOPHYSICAL DYNAMICS MODELS

By

XIAO CHEN

A Dissertation submitted to the
Department of Mathematics
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Degree Awarded:
Spring Semester, 2011



The members of the Committee approve the Dissertation of Xiao Chen defended on

March 18, 2011.

Ionel Michael Navon
Professor Directing Dissertation

Mark Sussman
Professor Co-Directing Dissertation

Robert Hart
University Representative

Xiaoming Wang
Committee Member

Erlebacher Gordon
Committee Member

Approved:

Philip L. Bowers, Chair
Department of Mathematics

Dr. Joseph Travis, Dean, College of Arts and Sciences

The Graduate School has verified and approved the above named committee members.

ii



This thesis is dedicated to my beloved wife and my parents for their patient love, endless
encouragement and unconditional support.

iii



ACKNOWLEDGEMENTS

The realization of this work was only possible due to the several people’s collaboration,

to whom I desire to express my gratitude.

I would first like to acknowledge my gratitude to my Ph.D advisor, Professor I. M. Navon

through out my past five years at Florida State University. His encouragement, guidance

and support from the initial to the final level have enabled me to develop a comprehensive

understanding of the research project. Prof. Navon has helped me to develop the capability

to carry on a large variety of challenging research topics on my own independently. He

also provided me the freedom to collaborate with many other researchers working on similar

domains. Working with Prof. Navon is inspiring and I was contaminated by his enthusiasm.

He is the one of the smartest and knowledgeable people I have ever known.

I am also very grateful to Prof. Mark Sussman for his unconditional help. He provided

insightful discussions and suggestions about my research many times last year. He has to fly

to FSU in order to attend my Ph.D defense out of his busy schedule. I would like to express

my gratitude to Prof. Xiaoming Wang, Prof. Gordon Erlebacher, Prof. Robert Hart, Prof.

Xiaolei Zhou, Prof. Gunzburger Max, Prof. Peterson Janet and Prof. Ming Ye for providing

valuable inputs and advices. This dissertation would not have been possible without their

patient help.

I would like to thank many of my dear friends including Mr. Zheng Guoxian, Dr. Zheng

Weiwei, Dr. Willy, Mr. Kwok, Phil, Takahara, Mingxin Chen, Peilin Yu, Qiang Zhang,

Xiangrong Xu, Jianyang Liu, Dr. Nan Liu, Dr. Xia Liao, Dr. Sandosh and Charley from

my days at Florida State University.

I owe my deepest gratitude to Dr. Xiaoguang Li for his technical support. He was always

available and willing to help whenever I ask. I am indebted to many of my colleagues for

supporting me including Dr. Fang, Dr. Juan Du, Dr. Jeff Steward, Dr. Santha Akella,

Prof. Bill Hu, Prof. Adrian Sandu, Dr. Mihai Alexe, Dr. Xinya Li, Dr. Jinshan Xie, Dr.

iv



Surujan, Dr. Qinshan Chen, Dr. Jardak, Dr. Burkardt John, Dr. Hailin Deng, McLaughlin

Ben, Dr. Chunhong Qi, Liang Li, Nathan Lay and Dr. Charles Tong. I offer my regards

and blessings to all of those who supported me in any way during the completion of my

Ph.D degree. The successful completion of this manuscript was made possible through the

invaluable contribution of a number of people. To say “thank you” to all of you is clearly

not even enough to express my gratitude.

It is an honor for me to thank the financial support for this research which is provided

partially by the National Science Foundation (NSF) from 2007 to 2008. I would especially

like to thank my parents for their continued moral support and my wife who was always

there for me with her love and continued support. Finally, I would like to thank the Lord

Father for his truly knowing my weakness, showing me the way like a bright morning star

and giving me the strength to complete my Ph.D degree.

v



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. SPACES AND NORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Norms of finite-dimensional vectors and matrices . . . . . . . . . . . . . 9
2.2 Time and frequency domain spaces and norms . . . . . . . . . . . . . . . 11

3. LINEAR SYSTEMS AND MODEL TRUNCATION . . . . . . . . . . . . . . 15
3.1 Linear state-space systems . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Approximation criteria and projection . . . . . . . . . . . . . . . . . . . 17
3.3 Petrov projection and Galerkin projection . . . . . . . . . . . . . . . . . 18
3.4 Balanced Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4. PROPER ORTHOGONAL DECOMPOSITION . . . . . . . . . . . . . . . . . 22
4.1 Karhunen-Loeve Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Essence of POD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Method of snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 POD Galerkin Projection and Error estimation . . . . . . . . . . . . . . 25
4.5 Links between POD and balanced truncation . . . . . . . . . . . . . . . 27
4.6 Variants of POD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Limitations of POD ROM . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5. POD 4-D VARIATIONAL DATA ASSIMILATION . . . . . . . . . . . . . . . 37
5.1 4-D variational data assimilation problem . . . . . . . . . . . . . . . . . 37
5.2 Dual-weighted POD basis . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Reduced-order POD 4-D Var . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Trust-Region based optimal control approach . . . . . . . . . . . . . . . 47
5.5 Incremental balanced truncated POD 4-D Var . . . . . . . . . . . . . . . 55

6. 4-D VAR OF FINITE-ELEMENT LIMITED-AREA SHALLOW-WATER
EQUATIONS MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



6.1 Shallow-Water equations model on an f plane . . . . . . . . . . . . . . . 63
6.2 Discretization of the SWE model . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Optimal Control of FE-SWE Model . . . . . . . . . . . . . . . . . . . . . 71
6.4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7. ADAPTIVE POD 4-D VAR APPLIED TO FE-SWE MODEL . . . . . . . . . 90
7.1 Generation of POD using Finite-Element formulation . . . . . . . . . . . 91
7.2 POD Galerkin Projection of FE-SWE model . . . . . . . . . . . . . . . . 95
7.3 Optimal Control of POD reduced FE-SWE model . . . . . . . . . . . . . 102
7.4 Discussion of numerical results obtained by trust-region POD 4-D Var

combined with dual-weighted snapshots selection . . . . . . . . . . . . . 109

8. GENERALIZATION TO A REAL-LIFE MODEL IN TWO SPACE DIMEN-
SIONS PLUS TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.1 Global finite-volume shallow-water equations model . . . . . . . . . . . . 122
8.2 Generation of dual weighted POD reduced model applied to FV-SWE . . 123
8.3 Preconditioning of the POD 4-D Var applied to FV-SWE . . . . . . . . . 126
8.4 POD 4-D Var using full ERA-40 observations . . . . . . . . . . . . . . . 129
8.5 Results with incomplete observations . . . . . . . . . . . . . . . . . . . . 141

9. SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . 148

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

vii



LIST OF TABLES

6.1 L-BFGS: Data assimilation window = 12h, ∆x = ∆y = 400km, 4t = 1800s,
and minimization convergence tolerance ε = 10−11 . . . . . . . . . . . . . . . 83

6.2 Results of using L-BFGS: data assimilation window = 12h, ∆x = ∆y =
200km, mesh resolution= 30× 30, 4t= 1800s, and minimization convergence
tolerance ε = 10−16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Results of using L-BFGS: data assimilation window = 12h, ∆x = ∆y =
400km, random perturbations = 5%, 4t= 900s, and tolerance of convergence
of minimization is ε = 10−15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 Comparison of iterations, outer projections, error and CPU time for ad-hoc
POD 4-D Var, ad-hoc dual weighed POD 4-D Var, trust-region POD 4-D Var,
trust-region dual weighed POD 4-D Var and the full model 4-D Var. . . . . . 112

8.1 Comparison of iterations, outer projections, error, and CPU time for ad-hoc
POD 4-D Var, trust-region POD 4-D Var, trust-region dual-weighted POD
4-D Var and full 4-D Var . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

viii



LIST OF FIGURES

1.1 Process to a Reduced-Order Modeling . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Input-output systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Classification of basic Reduced-Order Modeling methodologies . . . . . . . . 3

3.1 Petrov Projection and Galerkin Projection . . . . . . . . . . . . . . . . . . . 18

5.1 4 D-Var in a numerical forecasting system . . . . . . . . . . . . . . . . . . . 38

5.2 Trust-region based POD reduced-order optimization method . . . . . . . . . 52

5.3 Dual weighted TRPOD approach flowchart . . . . . . . . . . . . . . . . . . . 56

6.1 Modularized Galerkin FEM code organization . . . . . . . . . . . . . . . . . 72

6.2 Modularized L-BFGS code organization . . . . . . . . . . . . . . . . . . . . . 72

6.3 Calls graph of L-BFGS implementation . . . . . . . . . . . . . . . . . . . . . 73

6.4 Flowchart of the Test of Tangent Linear Galerkin Finite-Element Model . . . 76

6.5 Correlation between Nonlinear Galerkin FEM model and its TLM, where α
defines the perturbation factor. . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.6 Gradient Test:Variation of F (α) with respect to logα. . . . . . . . . . . . . . 78

6.7 Gradient Test:Variation of log (F (α)− 1) with respect to logα, where α
defines the perturbation factor. . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.8 Initial geopotential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.9 Initial wind fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.10 5% random perturbation of the initial geopotential . . . . . . . . . . . . . . 81

6.11 5% random perturbation of the initial wind-field . . . . . . . . . . . . . . . . 82

ix



6.12 Data assimilation window = 12h, ∆x = ∆y = 400km, random perturbation
= 5%. The contours of difference between retrieved initial geopotential and
true initial geopotential are plotted. . . . . . . . . . . . . . . . . . . . . . . . 84

6.13 Data assimilation window = 12h, ∆x = ∆y = 400km, random perturbation
= 5%. The contours of difference between retrieved initial u-momentum and
true initial u-momentum from -0.5 to 0.5 by 0.2 are displayed. . . . . . . . . 85

6.14 Data assimilation window = 12h, ∆x = ∆y = 400km, random perturbation
= 5%. The contours of difference between retrieved initial v-momentum and
true initial v-momentum from -0.3 to 0.3 by 0.05 are also displayed. . . . . . 86

6.15 L-BFGS minimization: Normalized cost function scaled by initial cost function
versus the number of minimization iterations . . . . . . . . . . . . . . . . . . 87

6.16 L-BFGS minimization: The norm of gradient scaled by initial norm of the
gradient versus the number of minimization iterations . . . . . . . . . . . . . 87

6.17 L-BFGS minimization: Normalized cost function scaled by initial cost function
versus the number of minimization iterations . . . . . . . . . . . . . . . . . . 88

6.18 L-BFGS minimization: The norm of gradient scaled by initial norm of the
gradient versus the number of minimization iterations . . . . . . . . . . . . . 88

7.1 Flowchart of the methodology using adaptive POD reduced-order model for
dual-weighted snapshots of the full model . . . . . . . . . . . . . . . . . . . . 111

7.2 Comparison of the performance of minimization of cost functional in terms of
number of iterations for ad-hoc POD 4-D Var, ad-hoc dual weighed POD 4-D
Var, trust-region POD 4-D Var, trust-region dual weighed POD 4-D Var and
the full model 4-D Var. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 The dual weights of the snapshots data determined by the full adjoint variable
for the trust-region POD 4-D Var . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Comparison of the RMSE of between ad-hoc POD 4-D Var, ad-hoc dual
weighed POD 4-D Var, trust-region POD 4-D Var, trust-region dual weighed
POD 4-D Var and the full model 4-D Var. . . . . . . . . . . . . . . . . . . . 115

7.5 Comparison of correlation between ad-hoc POD 4-D Var, ad-hoc dual weighed
POD 4-D Var, trust-region POD 4-D Var, trust-region dual weighed POD 4-D
Var and the full model 4-D Var. . . . . . . . . . . . . . . . . . . . . . . . . . 116

x



7.6 Errors between the retrieved initial geopotential and true initial geopotential
applying dual weighted trust-region POD 4-D Var to the 5% uniform random
perturbations of the true initial conditions taken as initial guess. (a) shows the
contour of 5% perturbation of true initial geopotential; (b) shows the contour
of difference between 5% perturbation of true initial geopotential; (c) shows
the contour of retrieved initial geopotential after 2days with dt = 1800s; (d)
shows the contour of difference between retrieved initial geopotential and true
initial geopotentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.7 Errors scaled by 100 between the retrieved initial wind field and true initial
wind field applying dual weighted trust-region POD 4-D Var to the 5%
uniform random perturbations of the true initial conditions taken as the initial
guess. (a) shows the contour of difference between true initial u-velocity and
perturbed initial u-velocity; (b) shows the contour of difference between true
initial v-velocity and perturbed initial v-velocity; (c) shows the contour of
difference between retrieved initial u-velocity and true initial u-velocity; (d)
shows the contour of difference between retrieved initial v-velocity and true
initial v-velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.8 Comparison of the RMSE between the full model and the ROM before and
after the data assimilation applying dual weighted trust-region POD 4-D Var
to the 5% uniform random perturbations of the true initial conditions taken
as the initial guess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.9 Comparison of the correlation between the full model and the ROM before
and after data assimilation applying dual weighted trust-region POD 4-D Var
to the 5% uniform random perturbations of the true initial conditions serving
as initial guess. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.1 Result obtained by operating with B on a single Dirac delta pulse in the height
field: isolines of the height field . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.2 Result obtained by operating with B on a single Dirac delta pulse in the height
field: geostrophic wind plotted along with the isolines of the height field . . . 131

8.3 Isopleths of the geopotential height for the reference trajectory . . . . . . . . 133

8.4 Singular value decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.5 Isopleths of the POD modes of dimension 1, 5 and 10 respectively . . . . . . 135

8.6 Comparison of the performance of the iterative minimization process of the
scaled cost functional for unweighted ad-hoc POD 4-D Var, dual weighted
ad-hoc POD 4-D Var, unweighted trust-region POD 4-D Var, dual weighted
trust-region 4-D Var, and full model 4-D Var respectively. . . . . . . . . . . . 137

xi



8.7 Comparison of the performance of the iterative minimization process of the
scaled norm of the gradient of the cost functional for dual weighted trust-
region 4-D Var and full model 4-D Var. . . . . . . . . . . . . . . . . . . . . . 138

8.8 Comparison of the RMSE in DAS-II experiments among unweighted ad-hoc
POD 4-D Var, dual weighted ad-hoc POD 4-D Var, unweighted trust-region
POD 4-D Var, dual weighted trust-region 4-D Var, and full model 4-D Var
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.9 Isopleths(scaled by multiplying 1000) of the geopotential height for the
difference between the 18h-forecast using true initial conditions and the one
using retrieved initial condition after DWTRPOD 4-D Var. . . . . . . . . . . 140

8.10 DAS-III(a)(Observations of height field only): Comparison of the performance
of the iterative minimization process of the scaled cost functional and the
scaled norm of the gradient of the cost functional for unweighted trust-region
POD 4-D Var and full 4-D Var. . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.11 DAS-III(a)(Observations of height field only): Comparison of the performance
of the iterative minimization process of the scaled cost functional and the
scaled norm of the gradient of the cost functional for unweighted trust-region
POD 4-D Var, dual weighted trust-region POD 4-D Var and full 4-D Var. . . 143

8.12 DAS-III: Isopleths(scaled by multiplying 1000) of the geopotential height for
the difference between the 18h-forecast using true initial conditions and the
one using retrieved initial condition after UWTRPOD 4-D Var. . . . . . . . 144

8.13 DAS-III(b)(5×2.5 Resolution): Comparison of the performance of the itera-
tive minimization process of the scaled cost functional and the scaled norm of
the gradient of the cost functional for unweighted trust-region POD 4-D Var
and full 4-D Var. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.14 DAS-III(c)(2.5×5 Resolution): Comparison of the performance of the iterative
minimization process of the scaled cost functional and the scaled norm of the
gradient of the cost functional for unweighted trust-region POD 4-D Var and
full 4-D Var. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.15 DAS-III(d): 2.5×2.5 Resolution with incomplete observations for u and v
wind fields from 20o north to north pole and 20o south to south pole and
complete observations for geopotential field, over entire globe. Comparison
of the performance of the iterative minimization process of the scaled cost
functional and the scaled norm of the gradient of the cost functional for
unweighted trust-region POD 4-D Var and full 4-D Var. . . . . . . . . . . . . 147

xii



ABSTRACT

Standard spatial discretization schemes for dynamical system (DS), usually lead to

large-scale, high-dimensional, and in general, nonlinear systems of ordinary differential

equations.Due to limited computational and storage capabilities, Reduced Order Modeling

(ROM) techniques from system and control theory provide an attractive approach to

approximate the large-scale discretized state equations using low-dimensional models.

The objective of 4-D variational data assimilation (4-D Var) is to obtain the minimum

of a cost functional estimating the discrepancy between the model solutions and distributed

observations in time and space. A control reduction methodology based on Proper Orthogo-

nal Decomposition (POD), referred to as POD 4-D Var, has been widely used for nonlinear

systems with tractable computations.

However, the appropriate criteria for updating a POD ROM are not yet known in the

application to optimal control. This is due to the limited validity of the POD ROM for

inverse problems. Therefore, the classical Trust-Region (TR) approach combined with POD

(TRPOD) was recently proposed as a way to alleviate the above difficulties. There is a

global convergence result for TR, and benefiting from the trust-region philosophy, rigorous

convergence results guarantee that the iterates produced by the TRPOD algorithm will

converge to the solution of the original optimization problem.

In order to reduce the POD basis size and still achieve the global convergence, a method

was proposed to incorporate information from the 4-D Var system into the ROM procedure

by implementing a dual weighted POD (DWPOD) method.

The first new contribution in my dissertation consists in studying a new methodology

combining the dual weighted snapshots selection and trust region POD adaptivity (DWTR-

xiii



POD). Another new contribution is to combine the incremental POD 4-D Var, balanced

truncation techniques and method of snapshots methodology. In the linear DS, this is done

by integrating the linear forward model many times using different initial conditions in order

to construct an ensemble of snapshots so as to generate the forward POD modes. Then

those forward POD modes will serve as the initial conditions for its corresponding adjoint

system. We then integrate the adjoint system a large number of times based on different

initial conditions generated by the forward POD modes to construct an ensemble of adjoint

snapshots. From this ensemble of adjoint snapshots, we can generate an ensemble of so-called

adjoint POD modes. Thus we can approximate the controllability Grammian of the adjoint

system instead of solving the computationally expensive coupled Lyapunov equations. To

sum up, in the incremental POD 4-D Var, we can approximate the controllability Grammian

by integrating the TLM a number of times and approximate observability Grammian by

integrating its adjoint also a number of times.

A new idea contributed in this dissertation is to extend the snapshots based POD

methodology to the nonlinear system. Furthermore, we modify the classical algorithms

in order to save the computations even more significantly. We proposed a novel idea to

construct an ensemble of snapshots by integrating the tangent linear model (TLM) only

once, based on which we can obtain its TLM POD modes. Then each TLM POD mode

will be used as an initial condition to generate a small ensemble of adjoint snapshots and

their adjoint POD modes. Finally, we can construct a large ensemble of adjoint POD modes

by putting together each small ensemble of adjoint POD modes. To sum up, our idea in a

forthcoming study is to test approximations of the controllability Grammian by integrating

TLM once and observability Grammian by integrating adjoint model a reduced number of

times.

Optimal control of a finite element limited-area shallow water equations model is

explored with a view to apply variational data assimilation(VDA) by obtaining the minimum

of a functional estimating the discrepancy between the model solutions and distributed

observations. In our application, some simplified hypotheses are used, namely the error of the

model is neglected, only the initial conditions are considered as the control variables, lateral

boundary conditions are periodic and finally the observations are assumed to be distributed

in space and time. Derivation of the optimality system including the adjoint state, permits
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computing the gradient of the cost functional with respect to the initial conditions which

are used as control variables in the optimization. Different numerical aspects related to the

construction of the adjoint model and verification of its correctness are addressed. The data

assimilation set-up is tested for various mesh resolutions scenarios and different time steps

using a modular computer code. Finally, impact of large-scale unconstrained minimization

solvers L-BFGS is assessed for various lengths of the time windows.

We then attempt to obtain a reduced-order model (ROM) of above inverse problem,

based on proper orthogonal decomposition(POD), referred to as POD 4-D Var. Different

approaches of POD implementation of the reduced inverse problem are compared, including

a dual-weighed method for snapshot selection coupled with a trust-region POD approach.

Numerical results obtained point to an improved accuracy in all metrics tested when dual-

weighing choice of snapshots is combined with POD adaptivity of the trust-region type.

Results of ad-hoc adaptivity of the POD 4-D Var turn out to yield less accurate results than

trust-region POD when compared with high-fidelity model.

Finally, we study solutions of an inverse problem for a global shallow water model

controlling its initial conditions specified from the 40-yr ECMWF Re-Analysis (ERA-

40) datasets, in presence of full or incomplete observations being assimilated in a time

interval (window of assimilation) presence of background error covariance terms. As an

extension of this research, we attempt to obtain a reduced-order model of above inverse

problem, based on proper orthogonal decomposition (POD), referred to as POD 4-D

Var for a finite volume global shallow water equations model based on the Lin-Rood

[89, 90, 91, 92, 96] flux-form semi-Lagrangian semi-implicit time integration scheme. Different

approaches of POD implementation for the reduced inverse problem are compared, including

a dual-weighted method for snapshot selection coupled with a trust-region POD adaptivity

approach. Numerical results with various observational densities and background error

covariance operator are also presented. The POD 4-D Var model results combined with the

trust region adaptivity exhibit similarity in terms of various error metrics to the full 4-D Var

results, but are obtained using a significantly lesser number of minimization iterations and

require lesser CPU time. Based on our previous and current research work, we conclude that

POD 4-D Var certainly warrants further studies, with promising potential for its extension

to operational 3-D numerical weather prediction models.

xv



CHAPTER 1

INTRODUCTION

Computational simulation, or more generally, computational science is now regarded as

the third discipline, besides the classical disciplines of pure theory and real experiment in

science and industry. It has now become a useful part of modeling many of systems in

physics, chemistry, biology, economics and engineering allowing us to get deep insight into

the operations of those systems.

The ever increasing demand for real-time simulation, control and prediction of complex

systems, places a heavy burden on the shoulders of computational mathematicians, since

appropriate mathematical modeling often leads to optimal control problems of dynamical

system (DS), where the governing equations are partial differential equations (PDE).

The past several decades produced major advances in techniques for solving DS numeri-

cally, thanks to the increase in computational power and speed-up in numerical algorithms.

Many essential problems that were impossible to solve a few decades before can be solved

trivially and routinely nowadays.

However, there are still many of the tools in either simulation and control that have

gone largely unused, because standard spatial discretization schemes for high resolution

DS usually lead to very large-scale, high-dimensional and in general nonlinear systems of

ordinary differential equations.

In order to perform robust simulation and active control of complex virtual models, model

order reduction (MOR) or control order reduction (COR) as a branch from system and

control theory provide an attractive approach to approximate large-scale discretized systems

of state equations using low-dimensional Reduced-Order Modeling (ROM) (Figure 1.1).

In the former case of MOR, one seeks to find a low-dimensional approximation for a high-

dimensional DS, based on a few dominant modes of the underlying DS, resulting in simulation
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Figure 1.1: Process to a Reduced-Order Modeling

with reduced computational complexity. It is required that such a simplification preserve the

essential input-output behaviors (Figure 1.2) of the high-fidelity, but with relatively small

approximation errors. It is also required that the reduction procedure should be reliable,

computationally efficient and restricted to a limited storage capacity.

x1(.)
x2(.)
…

xn(.)

u1(.)
u2(.)
…

up(.)

y1(.)
y2(.)
…

yq(.)

Figure 1.2: Input-output systems

The basic MOR methods for DS can be classified into three general categories as shown

in Figure 1.3: Singular Value Decomposition (SVD) based methods, Krylov methods and

combination into so-called SVD-Krylov methods.

Using the SVD methodology, one can obtain an optimal lower-rank approximation of a

matrix, as measured by l2 norm. One of the SVD-based approach designed for linear DS is

2



Figure 1.3: Classification of basic Reduced-Order Modeling methodologies

called Balanced Model Truncation (BMT). The central concept of BMT is to find a ROM of

the high-fidelity linear DS such that the degree of reachability and degree of observability of

each state are the same. This is achieved by simultaneously diagonalizing the reachability

and the observability Grammian. BMT was first introduced by Mullis and Roberts [1] and

later in the systems and control literature by Moore [2]. One of the BMT methods is called

Lyapunov Balanced Reduction (LBR), which is implemented by solving reachability and

the observability Lyapunov equations simultaneously. The stability of LBR was found by

Pernebo and Silverman [3] and a bound on the approximation error of LBR was provided

by Enns [4]. Besides the LBR, there are other types of balancing methods. The stochastic

balancing method was first proposed by Desai and Pal [5] for balancing stochastic systems

and later generalized by Green [6, 7]. The relative error bound for stochastic balancing is

3



due to Green [6]. A closely related balancing method is positive real balancing by Desai

and Pal [5], which is applied for model reduction of positive real DS by solving two positive

real Riccati equations. Another method which also requires solving two Riccati equations, is

bounded real balancing which is applied to the bounded real systems. This method, together

with the absolute error bound, was first introduced by Opdenacker and Jonckheere [8]. Also,

LQG balancing referred to as the closed-loop balancing was introduced by Jonckheere and

Silverman [9]. In the meantime, LBR was extended to the frequency weighted balanced

reduction by Enns [4]. Stability of frequency weighted balancing methods was studied

by Wang [10] and Zhou [11]. For a detailed survey on balancing related model reduction

methods, please see Gugercin and Antoulas [12]. A closely related method based on BMT is

called Optimal Hankel Norm Reduction [13], in which the truncated system of size can be

calculated and specified given a so-called Hankel norm.

Another SVD-based methodologies designed for nonlinear DS is well known as Proper

Orthogonal Decomposition (POD). The POD ROM method essentially identifies an or-

thonormal basis for representing the given data in a certain least squares optimal sense.

Historically, POD goes by the names of Karhunen-Loeve decomposition (KLD) [14, 15] or

Principal Components Analysis (PCA) and before them it was discovered by Kosambi [16].

The method originated in the work of Pearson [17] who invented the principal component

analysis (PCA) which involves a mathematical procedure that transforms a number of

possibly correlated variables into a smaller number of uncorrelated variables called principal

components. It was also put forward in statistical framework by Hotelling [18]. POD was

introduced in the context of analysis of turbulent flow by Lumley [19], Berkooz et al. [20].

Sirovich [21] introduced the idea of snapshots. See the book of Holmes [22] and the book of

Michael Kirby [23]. Wiener [24] proposed Polynomial chaos decomposition as an extension to

KLD. Dongbin Xiu [25] presented a new method for solving stochastic differential equations

based on Galerkin projections and extensions of Wieners’ Polynomial Chaos [24].

However, there are some drawbacks of POD ROM in a transient DS, where dominant

flow structures tend to change significantly as the underlying DS traverses from unstable

trajectories to reference attractors. The price of the low-dimensionality entails a lack of

stability especially for transitional and turbulent flows (Couplet et al., 2005 [39]; Noack et

al., 2010 [27]; Galletti et al., 2004 [37]; Gloerfelt, 2006 [40]). This either restricts reduced

order models to a narrow range of parameters or to a short-time integration span. To improve
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the accuracy of POD-Galerkin models, the effect of these unresolved modes must be included

to provide insight into the turbulent energy.

A modification of POD ROM consists of calibration in flow problems and adding a shift-

mode so that it includes an accurate representation of the unstable steady solution [26].

Noack et al proposed a systematic strategy to eliminate dynamic degrees of freedoms in

Galerkin systems of incompressible fluid flows. The proposed system reduction strategy was

derived from a Finite-Time Thermodynamics closure [27]. Also, the POD ROM method

heavily relies on the input of DS and the time instances at which the snapshots are taken.

Consequently, singular values and modes obtained by POD ROM are not invariants of DS.

Also, Abury [28] studied POD ROM for Kuramoto-Sivashinsky equation and found that a

model based on the leading six POD modes could not reproduce the right dynamics, even

though those six POD modes represent 99.9995% of the variance. Similar problems with

models based on POD modes were reported by Armbruster et al. (1992) [29] in a study

of Kolmogorov flow in a regime of bursting behavior. Majda [30] studied Charney-DeVore

model [34] and compared POD methods, optimal persistence patterns(OPPs) (introduced

by DelSole [32] )and principal interaction patterns(PIPs) (introduced by Hasselmann [33])

It is shown that the PIPs and OPP based ROM methods are superior to the POD based

ROM methods.

Nevertheless, POD ROM method has been widely applied to high-complexity linear DS

as well as nonlinear DS, due to its tractable computation using SVD eigenvalue solvers.

Recently, the method of empirical Grammians has been proposed to remedy the issues

arising in POD methods, at the expense of added computational complexity. Furthermore,

snapshots-based balanced truncation was developed by Lall [45] and Rowley [46].

A different type of MOR method, mainly based on iterative solver, is Krylov-based

approximation. These methods do not depend on the SVD. Instead, they relie on moment

matching of the impulse response of the system. If the moment matches infinity, two

widely used methods fall under this category, namely the Lanczos [48] and the Arnoldi

[49] procedures. Otherwise, if the moment matches zero, the problem becomes Pade

approximation. For general matching at an arbitrary point, the problem becomes the

so-called rational Lanczos procedure. For an overview of relavant materials, please refer

to Antoulas and Sorensen [50]. It turns out to be that SVD-based methodologies have

a number of desirable features, namely, there exists a local/global error bound and the
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stability is preserved. The drawback is that they can only be applied to DS with relatively

low dimensions. On the other hand, the Krylov-based methodologies are iterative in nature

and thus can be applied to DS with very high dimensions. The drawbacks are that the

resulting ROM has no guaranteed error bound and stability is not necessarily preserved.

These considerations lead to the so-called SVD-Krylov-based methodologies, which aims to

combine the advantages and eliminate the disadvantages of two approximation methodologies

described above. In this dissertation, we are focused on the SVD-based methodologies using

ARPACK package. The ARPACK [51] package is designed by Lehoucq, Sorensen and Yang

to compute a few eigenvalues and corresponding eigenvectors of large sparse or structured

matrices, using the Implicitly Restarted Arnoldi Method (IRAM) or, in the case of symmetric

matrices, the corresponding variant of the Lanczos algorithm.

In the latter case of COR, one seeks to find a way to drastically decrease the dimension of

the control space without significantly compromising the quality of optimization but sizably

reducing the cost in memory and CPU time. The difficulties encountered in COR, as opposed

to just MOR, have been a significant target of systems and control theory during the last

twenty years or so. A control reduction methodology based on POD, referred to as POD

4-D Var, has been widely used with tractable computations. One approach consists of an

ad-hoc adaptive method, namely ad-hoc POD 4-D Var, in which new snapshots are regularly

determined during the optimization process when the effectiveness of the existing POD ROM

to represent the DS is considered to be insufficient. For recent work on ad-hoc POD 4-D Var,

see Hinze and Kunish [52, 53, 54, 55, 56], Cao [58], Fang [62, 63, 64, 65, 66], Vermeulen [67],

Luo [60, 61], Sachs [68] and Altaf [69]. However, the appropriate criteria for updating a POD

ROM are not yet known in the application to optimal control. This is due to the limited

validity of the POD ROM for inverse problems. Therefore, the classical Trust-Region (TR)

approach [70, 71] combined with POD (TRPOD) was recently proposed as a way to overcome

the above difficulties. The trust region method goes back to [72, 73, 74]. See also work of [75]

followed by important work of [76, 77]. Finally the terminology of trust region and Cauchy

point was put forward by [78] and systematized by [79]. The trust-region proper orthogonal

decomposition (TRPOD) was recently proposed in [81, 82] as a way to overcome difficulties

related to POD reduced order modeling (ROM) used for solving partial differential equations

(PDE) constrained optimization problem. For a comprehensive survey on the techniques

combining POD with the concept of trust-region (TRPOD) with general model functions,
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see Toint [83, 85]. For an introduction to trust region methods, see Nocedal and Wright

[70]. TRPOD presents a framework for decision as to when an update of the POD-ROM

is necessary during the optimization process. Moreover, from a theoretical point of view,

we have a global convergence result for TRPOD [81] proving that the iterates produced by

the optimization algorithm, started at an arbitrary initial iterate, will converge to a local

optimizer for the original model. In order to reduce the POD basis size and still achieve the

global convergence, another novel method was proposed to incorporate information from the

4-D Var system into the ROM procedure by implementing a dual weighted POD (DWPOD)

method by Daescu [102]. Yaremchuk [103] proposed a version of the reduced 4-D Var in a

sequence of low-dimensional subspaces of the control space. This method does not require

development of the tangent linear, adjoint and POD model for implementation. Vahid [104]

presented a version of Equation-Free/Galerkin-Free Reduced-Order Modeling of the Shallow

Water Equations Based on Proper Orthogonal Decomposition.

The contributions of this dissertation are as follows. The first novelty in the dissertation

is to study a new methodology combining the dual weighted snapshots selection and trust

region POD adaptivity (DWTRPOD). The second novelty in the dissertation is to combine

the incremental POD 4-D Var, balanced truncation techniques and method of snapshots

methodology. In the linear DS, this is done by integrating the linear forward model many

times using different initial conditions in order to construct an ensemble of snapshots so as

to generate the forward POD modes. Those forward POD modes then serve as the initial

conditions for its corresponding adjoint system. We then integrate the adjoint system a large

number of times based on different initial conditions generated by the forward POD modes

to construct an ensemble of adjoint snapshots. From this ensemble of adjoint snapshots,

we can generate an ensemble of so-called adjoint POD modes. Thus we can approximate

the controllability Grammian of the adjoint system instead of solving the computationally

expensive coupled Lyapunov equations. To sum up, in the incremental POD 4-D Var, we can

approximate the controllability Grammian by integrating the TLM a large number of times

and approximate observability Grammian by integrating its adjoint also a large number of

times.

The third novelty is to extend the snapshots based POD methodology to the nonlinear

system. Furthermore, we modify the classical algorithms in order to save the computations

even more significantly. We proposed a novel idea to construct an ensemble of snapshots
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by integrating the tangent linear model (TLM) only once, based on which we can obtain

its TLM POD modes. Then each TLM POD mode will be used as an initial condition to

generate a small ensemble of adjoint snapshots and their adjoint POD modes. Finally, we can

construct a large ensemble of adjoint POD modes by putting together each small ensemble

of adjoint POD modes. To sum up, we can approximate the controllability Grammian by

integrating TLM only once and approximate observability Grammian by integrating adjoint

model only a reduced number of times.

The plan of this dissertation is as follows. In chapter 2, we briefly review the time and

frequency domain spaces and their corresponding norms. In chapter 3, we discuss the classical

model reduction methodologies widely used for linear systems. In chapter 4, we focus on

the theories and issues arising the Proper Orthogonal Decomposition techniques, followed

by chapter 5 in which we discuss the POD reduced 4-D Var assimilation approaches. Then,

in chapter 6, we explor the feasibility of carrying out a modular structured variational data

assimilation (VDA) using a finite-element method of the nonlinear shallow water equations

model on a limited area domain. In chapter 7, we address the POD model reduction along

with inverse solution of a two-dimensional finite-element shallow-water equations model on

a limited area domain. In chapter 8, we address a POD model reduction along with inverse

solution of a two-dimensional global shallow water equations model. Our intention in this

chapter is to generalize the efficient state-of-the-art POD implementation from our previous

chapter on finite element SWE on the limited area to global FV-SWE model with realistic

initial conditions. Finally the dissertation concludes with a summary and conclusions chapter

9, in which directions of future research are also outlined.
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CHAPTER 2

SPACES AND NORMS

2.1 Norms of finite-dimensional vectors and matrices

Let V→ R be a linear space over the field of reals R or complex numbers C. A norm on V

is a function

v : V→ R

such that the following three properties are satisfied:

• strict positiveness: v(x) ≥ 0 ∀x ∈ V with equality iff x = 0

• triangle inequality: v(x + y) ≤v(x) +v(y) ∀x,y ∈ V

• positive homogeneity: v (αx) = |α| v (x) ∀α ∈ C, ∀x ∈ V

For any vector x =
(
x1 · · · xn

)T ∈ Cn, the Holder or p−norm is defined as follows:

‖x‖p =


(
∑n

i=1 |xi|
p)

1
p 1 ≤ p <∞

max
16i6n

|xi| p =∞

An important class of matrix norms are those that are induced by the vector p−norm

defined above. More precisely, for a given matrix A = (aij) ∈ Cn×m, the induced p−norm is

defined as follows:

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

In particular, for p = 1, 2,∞, the following expressions hold:

9



‖A‖p =



max
1≤j≤m

∑n
i=1 |aij| p = 1

max
1≤i≤n

∑m
j=1 |aij| p = 2

(λmax (AA∗))
1
2 p =∞

where (λmax (AA∗))
1
2 denotes the square root of the largest eigenvalue of the positive-

semidefinite matrix AA∗, A∗ denotes the conjugate transpose of the matrix A.

There exist other matrix norms besides the induced matrix norms. An important case is

the Schatten p−norms. These non-induced norms are unitarily invariant. To define them,

we introduce the singular value decomposition as follows:

Given a matrix A ∈ Cn×m, there exist unitary matrices

U =
(

u1 u2 . . . un

)
, UU∗ = In

V =
(

v1 v2 . . . vm

)
, VV∗ = Im

where In and Im denote n × n identity matrix and m ×m identity matrix respectively,

such that

A = U
∑

V∗

where

Σ =

(
Σ1 0
0 0

)
∈ Cn×m

Σ1 =

 σ1

. . .

σr

 ∈ Rr×r

with r = Rank (A) and the singular values

σ1 ≥ σ2 ≥ . . . ≥ σr > 0

while the columns of U and V are called the left and right singular vectors of A,

respectively.
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Hence, for a given matrix A = (aij) ∈ Cn×m for m ≤ n, the non-induced Schatten

p−norm is defined as follows:

‖A‖s,p =

 (
∑m

i=1 (σi (A))p)
1
p 1 ≤ p <∞

σmax (A) p =∞

where σi (A) can be viewed as the singular values of A or as the square root of the ith

largest eigenvalues of AA∗

Similarly, in particular, for p = 1, 2,∞, the following expressions hold:

‖A‖s,p =



∑m
i=1 σi (A) p = 1 trace norm

(∑m
i=1 (σi (A))2) 1

2 = trace (A∗A) p = 2 Frobenius norm

σmax (A) = (λmax (AA∗))
1
2 p =∞ spectral− norm

2.2 Time and frequency domain spaces and norms

Consider a linear space V defined over R, not necessarily finite dimensional. Let a norm be

defined onV, satisfying the strict positiveness, triangle inequality and positive homogeneity,

then V is called a normed space. In such spaces the concept of convergence can be defined

as follows. We say that a sequence {xk}∞k=1 ∈ V converges to x∗ if the sequence of real

numbers v (xk − x∗)=‖xk − x∗‖ goes to zero as k goes to infinity. A sequence {xk}∞k=1 ∈ V
is a Cauchy sequence if for all ε > 0, there exists an integer N such that ‖xp − xq‖ < ε for

all p, q > N . If every Cauchy sequence converges, then V is called complete.

2.2.1 Banach and Hilbert spaces

A Banach space is a normed linear space V that is complete defined over the field of scalars F
that can either be the field of reals R or the field of complex numbers C . Hilbert spaces have

more structure than Banach spaces with additional structure resulting from the existence of

an inner product. The inner product is a function from the Cartesian product V× V→ R:

〈 , 〉 : V× V→ R, (x,y) 7→ 〈x,y〉 ∈ R

11



v : V→ R

such that the following four properties are satisfied:

• strict positiveness: 〈x,x〉 ≥ 0 ∀x ∈ V with equality iff x = 0

• linearity in the first argument: 〈αx + βy, z〉 = α 〈x, z〉+β 〈y, z〉 ∀x,y ∈ V, ∀α, β ∈ F

• conjugate symmetry:〈x,y〉∗ = 〈y,x〉

This inner product induces a norm on V, namely,

x 7−→ ‖x‖ = 〈x,x〉
1
2

2.2.2 The time-domain Lebesgue spaces lp and Lp

lp spaces

Considering the discretized vector-valued sequences f : Z+ → Rn, the Holder p−norms of

these sequences can be defined as:

‖f‖lp =


(∑

i∈Z+ ‖f (i)‖pp
) 1
p

1 ≤ p <∞

supi∈Z+ ‖f (i)‖p p =∞
The corresponding lp spaces are defined as

lnp (Z+) =
{

f : Z+ → Rn, ‖f‖lp <∞
}

Lp spaces

Similarly, considering the continuous-time vector-valued functions f : R+ → Rn, the Holder

p−norms of these functions can be defined as:

‖f‖Lp =


(∫

t∈R+ ‖f (t)‖pp
) 1
p

1 ≤ p <∞

supt∈R+ ‖f (t)‖p p =∞

Lnp (R+) =
{

f : R+ → Rn, ‖f‖Lp <∞
}
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2.2.3 The frequency-domain Lebesgue spaces hp and Hp

hp spaces

considering the complex matrix-valued function F : C → Cn×m, which is defined over the

analytic closed unit disc D, the Schatten p−norms of these functions can be defined as:

‖F‖hp =



(
1

2π
sup
|r|<1

∫ 2π

0

∥∥F (reiθ)∥∥p
p
dθ

) 1
p

1 ≤ p <∞

sup
z∈D
‖F (z)‖p = sup

z∈D
σmax (F (z)) p =∞

The corresponding hp spaces are defined as

hn×mp

(
D
)

=
{

F : C→ Cn×m, ‖F‖hp <∞
}

Hp spaces

Let C+ ⊂ C denote the (open) right half of the complex plane:s = x + iy ∈ C,x > 0.

Considering the complex matrix-valued function F : C → Cn×m, which is defined over the

analytic closed unit disc C+, the Schatten p−norms of these functions can be defined as:

‖F‖Hp =


(

sup
x>0

∫∞
−∞ ‖F (x+ iy)‖pp dθ

) 1
p

1 ≤ p <∞

sup
z∈C+

‖F (z)‖p = sup
z∈C+

σmax (F (z)) p =∞

The corresponding Hp spaces are defined as

Hn×m
p (C+) =

{
F : C→ Cn×m, ‖F‖Hp <∞

}
The search for the ‖F‖H∞ above can be simplified by making use of the maximum modulus

theorem, which states that a function F continuous inside a domain D ⊂ C as well as on its

boundary ∂D and analytic inside D attains its maximum on the boundary ∂D of D. Hence,

we obtain

‖F‖h∞ = sup
θ∈[0,2π]

σmax
(
F
(
eiθ
))
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‖F‖H∞ = sup
y∈R

σmax (F (iy))

Sobolev spaces H1 (Ω) and H1
0 (Ω)

Let Ω be a bounded domain in Rd,

H1 = H1 (Ω) =

{
v (x) , x ∈ Ω : v ∈ L2 (Ω)

∂v

∂xj
∈ L2 (Ω) , j = 1, . . . , d

}

H1
0 = H1

0 (Ω) =
{
v (x) , x ∈ Ω : v ∈ H1 (Ω) , v = 0, x ∈ ∂Ω

}

H1
g = H1

g (Ω) =
{
v (x) , x ∈ Ω : v ∈ H1 (Ω) , v = g, x ∈ ∂Ω

}

14



CHAPTER 3

LINEAR SYSTEMS AND MODEL TRUNCATION

3.1 Linear state-space systems

We consider linear state-space systems

G :


ẋ = Ax + Bu x (0) = x0

y = Cx + Du

with state x(t) ∈ Rn, input u(t) ∈ Rm, and output y(t) ∈ Rp. Let φ (u,x, t) denote the

solution of the state equations . In particular, for the continuous-time state equations the

solution can be written as

φ (u,x, t) = eAtx0 +

∫ t

0

eA(t−τ)Bu (t) dτ, t ≥ 0

y(t) = Cφ (u,x, t) + Du(t), t ≥ 0

where

eAt = In +
t

1!
A +

t2

2!
A2 + · · ·+ tk

k!
Ak + · · ·

Furthermore, the linear state-space systems G with m inputs and p outputs can be

viewed as an operator mapping the input space to the output space, in particular, we will

be concerned with systems which may be written by means of convolution integral

G : u −→ y, y (t) =

∫ ∞
−∞

h (t, τ) u(τ)dτ, t ∈ R

where h (t, τ) is a matrix-valued function called the kernel of system G
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Let the input u(t) ∈ Rm be the impulse function that may be represented mathematically

by a Dirac delta function as follows:

δ (t) =:


∞ t = 0

0 t 6= 0

Then in the time domain, h is called the impulse response and can be written as

h (t) =


CeAtB + δ (t)D t ≥ 0

0 t < 0

It is easier to perform the analysis in the frequency domain for linear state-space systems.

In order to convert to the frequency domain, we need apply the Laplace Transform to the

impulse response h (t) to determine the transfer function H (s) of the system G.

H(s) = L (h(t)) =

∫ ∞
−∞

e−sth(t)dt = D + C (sI−A)−1 B ∈Hn×m
p

where s ∈ C is the complex frequency.

Hence, the Laplace Transform converts linear differential equations into algebraic expres-

sions which are easier to manipulate. The Laplace Transform also converts functions with a

real dependent variable (such as time) into functions with a complex dependent variable(such

as frequency).

As a measure of system size and to measure the distance between two different systems,

we regularly use the H∞−norm

‖H‖H∞ = sup
s∈C+

σmax (H (s))

where C+ denotes the open complex right-half plane, σmax (H (s)) denotes the largest

singular value of the matrix (H (s))in the MIMO(Multi-input-Multi-Output) case. In

the SISO(Single-Input-Single-Output) case, this is equal to the magnitude of the complex

number (H (s)).

Furthermore, ‖H‖H∞ is finite iff H (s)is stable, i.e, H(s) has no poles in the closed right

complex half planes C+ and we obtain

‖H‖H∞ = sup
y∈R

σmax (H (iy))
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3.2 Approximation criteria and projection

A reduced-order systems or an approximation of G of its order n is a state-space system Gr

Gr :


ż = Arz + Bru z (0) = z0

yr = Crz + Dru

such that z(t) ∈ Rr where r << n.

The main approximation criterion we are interested in is to make ‖G−Gr‖H∞ small, with

the motivation to measure worst-case error of approximation to the original system G by

the reduced-order system Gr. Other criteria include the relative criterion ‖G−1 (G−Gr)‖H∞
and the frequency-weighted criterion ‖W1 (G−Gr)W2‖H∞

The approximationGr can often be obtained by means of orthogonal truncation as follows:

Change the coordinates x (t) = Tx̄ (t), where we find a suitable invertible matrix

T ∈ Rn×n and transform the state-space model into

Ā = T−1AT =

(
Ā11 Ā12

Ā21 Ā22

)
, Ā11 ∈ Rr×r

B̄ = T−1B =

(
B̄1

B̄2

)
, B̄1 ∈ Rr×m

C̄ = CT=
(

C̄1 C̄2

)
, C̄1 ∈ Rp×r

D̄ = D ∈ Rp×m

Hence Gr is obtained by

(
Ar Br

Cr Dr

)
=

(
Ā11 B̄1

C̄1 D̄

)
Such an orthogonal truncation can also be viewed as a projection from the original state-

space G in Rn to the reduced state-space Rr.
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3.3 Petrov projection and Galerkin projection

Generally, for non-orthogonal projection, we have the transformations

WT =
(

Ir 0r×(n−r)
)
T−1, :Rn → Rr

V = T

(
Ir

0T
r×(n−r)

)
, :Rr → Rn

Notice that W and V satisfy

WTV = Ir, VWT =
(
VWT

) (
VWT

)
Such a projection is called a Petrov Galerkin projection. If WT = VT, i.e., T is an

orthogonal matrix, then the projection is called a Galerkin projection. For Petrov Galerkin

projection, we have that (
Ar Br

Cr Dr

)
=

(
WTAV WTB

CV D

)'

&

$

%

Simple Casek = 1 and n = 2

x - Px

x

L

K

Px

3

(a) Petrov Galerkin projection

'

&

$

%

Simple Casek = 1 and n = 2

x - Px

x

L

K

Px

4

(b) Galerkin Projection

Figure 3.1: Petrov Projection and Galerkin Projection

to understand the Petrov Galerkin projection, we can consider the following analysis.

Assuming we want to try to express the solution x(t) ∈ Rn of the original model G only in

r variables in the reduced-order model Gr, we can write
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x(t) = Vz(t) ∈ Range (V) , x(t) ∈ Rn, z(t) ∈ Rr

so that the residual can be expressed as

R = Vż−AVz−Bu

The Petrov Galerkin projection requires that the projection of residual R into Range (W)

is zero, which can be represented by

WTR = 0

Hence, we obtain the equation

WT(Vż−AVz−Bu) = ż−WTAVz−WTBu =0

Therefore,

ż = WTAVz + WTBu

3.4 Balanced Truncation

Let D = 0 in linear state-space systems G, so we obtain the impulse response, which can be

written as

h (t) = CeAtB t ≥ 0

Let hr (t) = eAtB, t ≥ 0 and ho (t) = CeAt, t ≥ 0 be the input-to-state and the state-to-

output response of the system G, respectively. The reachability Grammian is then defined

as

P =

∫ ∞
0

hr (t) h∗r (t) dt

while the observability Gramian is defined as

Q =

∫ ∞
0

ho (t) h∗o (t) dt
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In practice, assuming A is Hurwitz space (all eigenvalues of are in the open left complex

half plane), reachability Grammian P and observability Grammian Q are obtained as

solutions to the following differential Lyapunov equations

Ṗ = AP + PAT + BBT = 0, P (0) = 0

Q̇ = ATQ + QA + CTC = 0, Q (0) = 0

Let t→∞and we conveniently obtain algebraic Lyapunov equations

AP + PAT + BBT = 0

ATQ + QA + CTC = 0

The eigenvalues of the product of the controllability and observability Grammians play

an important role in system theory and control. Those eigenvalues are invariant under

coordinate transformations. Hence, we define the Hankel singular values as

σi = (λi (PQ))
1
2

With the above quantification of observability and controllability, one might be tempted

to prescribe some algorithm like eliminating the least observable or least controllable

dimensions in the state space to yield a lower-order approximate model. The procedure

has four steps

1. Compute the reachability gramian P and and observability gramian Q

2. Compute the Cholesky factor R of P, that is Q = RTR

3. Compute the singular value decomposition RPRT = UΣ2UT

4. Use the coordinate transformation x (t) = Tx̄ (t), where T = R−1UΣ
1
2

5. Compute the truncation Gr after the transformation of the state-space model G
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Ā = T−1AT =

(
Ā11 Ā12

Ā21 Ā22

)
, Ā11 ∈ Rr×r

B̄ = T−1B =

(
B̄1

B̄2

)
, B̄1 ∈ Rr×m

C̄ = CT=
(

C̄1 C̄2

)
, C̄1 ∈ Rp×r

D̄ = D ∈ Rp×m

(
Ar Br

Cr Dr

)
=

(
Ā11 B̄1

C̄1 D̄

)
Under the new coordinate system, it is easy to verify that

P̄ = T−1PT−T, Q̄ = TTQT

Such a similarity transformation is called balancing transformation, since

P̄ =
(
Σ−

1
2 UTR

)
P
(
RTUΣ−

1
2

)

=
(
Σ−

1
2 UT

)
UΣ2UT

(
UΣ−

1
2

)
=
(
Σ−

1
2

)
Σ2
(
Σ−

1
2

)
= Σ

Q̄ =
(
R−1UΣ

1
2

)
T
(
RTR

) (
R−1UΣ

1
2

)
=
(
Σ

1
2 UT

)(
UΣ

1
2

)
= Σ

Geometrically, balancing transformation obtain the observability and controllability

ellipsoids so that they are identical and their principal axes corresponding to the left singular

vectors of the Hankel singular value decomposition.

Approximation by balanced truncation preserves stability, and the H∞- norm (the

maximum of the frequency response) of the error system is bounded by twice the sum of

neglected Hankel singular values

‖G−Gr‖H∞ ≤ 2 (σr+1 + . . .+ σn)
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CHAPTER 4

PROPER ORTHOGONAL DECOMPOSITION

4.1 Karhunen-Loeve Expansion

Let us consider an ensemble of snapshots written as:

Φ = {φ1, φ2, . . . , φn} (4.1)

It was shown that there exists an optimal representation

Ψ = {ψ1, ψ2, . . . , ψM} (4.2)

in the sense that the following average error is minimal.

min
{ψ1,ψ2,...,ψM}

1

n

n∑
i=1

∥∥∥∥∥φi −
M∑
j=1

αjψj

∥∥∥∥∥
2

(4.3)

where‖·‖2 represents the usual L2 norm.

The minimal average value is obtained if the basis elements satisfy the eigenfunctions

problem

∫
K (x, y)ψi (y) dy = λiψi (x) (4.4)

and

〈ψi, ψj〉 =

∫
ψi (x)ψj (x) dx = δij =

{
1 i = j
0 i 6= j

(4.5)

where

K (x, y) =
1

n

n∑
i=1

ψi (x)ψi (y) (4.6)

This is the essence of the Karhunen-Loeve Expansion procedure, Proper Orthogonal

Decomposition (POD) and Principal Component Analysis (PCA).
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4.2 Essence of POD

For a complex temporal-spatial flow y (x, t), an ensemble of snapshots is chosen in the analysis

time interval [0, T ] written as {
y1, y2, . . . , yn

}
(4.7)

where yi (x) = y (x, ti), i = 1, . . . , n, n is the number of snapshots.

Define the ensemble average of the snapshots as

ȳ (x) =
1

n

n∑
i=1

yi (4.8)

Subtracting the mean from each snapshot, we obtain

Y =
[
y1 − ȳ, y2 − ȳ, . . . , yn − ȳ

]
(4.9)

We expand y (t, x)as

yPOD (x, t) = ȳ (x) +
M∑
i=1

αi (t)ψi (x) (4.10)

Where the POD basis vector ψi (x) and M are judiciously chosen to capture the dynamics

of the flow as follows. First, define the spatial correlation matrix Kn×n with entries as follows:

Kij =

∫
Ω

(
yi − ȳ

)T (
yi − ȳ

)
dΩ, 1 ≤ i, j ≤ n (4.11)

Thus, the eigenvalue problem

Kψi = λiψi (4.12)

is solved to obtain the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 of Kn×n with its corresponding

orthonormal eigenvectors ξ1, . . . , ξn.

Hence, the corresponding POD modes are thus obtained by defining

ψi =
1√
λi

Yξi, i = 1, . . . ,M (4.13)

and

〈ψi, ψj〉 = δij =

{
1 i = j
0 i 6= j

(4.14)
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One can define a relative information content to choose a low-dimensional basis of size

M << n by neglecting modes corresponding to the small eigenvalues. We define

I (m) =

∑i=m
i=1 λi∑i=n
i=1 λi

(4.15)

and choose M such that M = arg min {I (m) : I (m) > γ}, where 0 ≤ γ ≤ 1 is the

percentage of total information retained in the reduced space and the tolerance γ must be

chosen to be close unity in order to capture most of the energy of the snapshots basis.

4.3 Method of snapshots

An ensemble of snapshots is chosen in the analysis time interval [0, T ] written as

{y1, y2, . . . , yn} where yi ∈ RN , i = 1, . . . , n, n is the number of snapshots and N is the

dimension of the discrete mesh.

Define ensemble average of the snapshots as

ȳ (x) =
1

n

n∑
i=1

yi (4.16)

Subtracting the mean from each snapshot, we obtain the followingN × n dimensional

matrix

Y =
[
y1 − ȳ, y2 − ȳ, . . . , yn − ȳ

]
(4.17)

The POD modes

Ψ = {ψ1, ψ2, . . . , ψM} (4.18)

of order M ≤ n provide an optimal representation of the ensemble data in a M−dimensional

state subspace by minimizing the averaged projection error

min
{ψ1,ψ2,...,ψM}

1

n

n∑
i=1

∥∥(yi − ȳ)− ΠΨ,M

(
yi − ȳ

)∥∥2

s.t.
〈
ψi, ψj

〉
= δij (4.19)

where ΠΨ,M is the projection operator onto the M−dimensional space

span
{
ψ1, ψ2, . . . , ψM

}
(4.20)

and

ΠΨ,M =
M∑
i=1

〈y, ψi〉ψi (4.21)
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Define the spatial correlation matrix

A = YYT (4.22)

To compute the POD modes ψi ∈ RN , one must solve an N−dimensional eigenvalue

problem

Aψi = λiψi (4.23)

Since in practice the number of snapshots is much less than the the state dimension, n << N ,

an efficient way to compute the reduced basis is to introduce a n−dimensional matrix as

follows:

Kn×n = YTY (4.24)

and compute the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 of Kn×n with its corresponding

eigenvectors ξ1, . . . , ξn

Hence, the corresponding POD modes are thus obtained by defining

ψi =
1√
λi

Yξi, i = 1, . . . ,M (4.25)

where

〈ψi, ψj〉 = δij =

{
1 i = j
0 i 6= j

(4.26)

One can define a relative information content to choose a low-dimensional basis of size

M << n by neglecting modes corresponding to the small eigenvalues. We define

I (m) =

∑i=m
i=1 λi∑i=n
i=1 λi

(4.27)

and choose M such that M = arg min {I (m) : I (m) > γ}, where 0 ≤ γ ≤ 1 is the

percentage of total information retained in the reduced space and the tolerance γ must be

chosen to be close unity in order to capture most of the energy of the snapshots basis.

4.4 POD Galerkin Projection and Error estimation

For an atmospheric or oceanic temporal-spatial flow y (x, t) defined in time interval [0, T ]

dy

dt
= F (y, t)

y (x, 0) = y0 (x) (4.28)
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To obtain a reduced model, we can first solve the PDE to obtain an ensemble of snapshots,

then use a Galerkin projection scheme of the model equations onto the space spanned by

the POD basis elements. We obtain the system of ODE as follows:

dαi
dt

=

〈
F

(
ȳ +

M∑
i=1

αiψi, t

)
, ψi

〉
(4.29)

along with the initial conditions:

αi(0) = 〈y(x, 0)− ȳ, ψi〉 = 〈y0 − ȳ, ψi〉 , i = 1, · · · ,M (4.30)

the error between POD solution obtained by Galerkin projection scheme and the true

solution can be written as

∫ T

0

∥∥y (t)− yPOD (t)
∥∥
L2
dt (4.31)

The difference between the true solution y (t) and the continuous FEM solution yPOD (t)

obtained by Galerkin projection scheme can be decomposed into

y (t)− yPOD (t) = (y (t)− ΠMy (t)) +
(
ΠMy (t)− yPOD (t)

)
= % (t) + υ (t) (4.32)

where % (t) ∈ Ψ⊥ and υ (t) ∈ Ψ. To estimate % (t), we have∫ T

0

‖% (t)‖2
L2
dt =

∫ T

0

‖(y (t)− ΠMy (t))‖2
L2
dt =

i=∞∑
i=M+1

λi (4.33)

To estimate υ (t), we consider

υ̇ (t) = ΠM ẏ (t)− ẏPOD,h (t) =
(
ẏ (t)− ẏPOD,h (t)

)
+ (ΠM ẏ (t)− ẏ (t))

=
(
F (ẏ, t)− F

(
ẏPOD,h, t

))
+ (ΠM ẏ (t)− ẏ (t))

=
(
F (y, t)− F

(
yPOD, t

))
+ o

(∥∥y − yPOD∥∥
L2

)
+ (ΠM ẏ (t)− ẏ (t))

= F
(
y − yPOD

)
+ o

(∥∥y − yPOD∥∥
L2

)
+ (ΠM ẏ (t)− ẏ (t))

= F (% (t) + υ (t)) + o
(
‖% (t) + υ (t)‖L2

)
+ (ΠM ẏ (t)− ẏ (t)) (4.34)

where F is the linearization of the nonlinear model F .

Hence, we obtain that

υ (t)T υ̇ (t) = υ (t)T
(
F (% (t) + υ (t)) + o

(
‖% (t) + υ (t)‖L2

)
+ (ΠM ẏ (t)− ẏ (t))

)
(4.35)
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By the Lax-Milgram lemma and Young’s inequality, we obtain that

d

dt
‖υ (t)‖2

L2
≤ C

(
‖% (t)‖2

L2
+ ‖υ (t)‖2

L2
+ o

(
‖% (t)‖2

L2
+ ‖υ (t)‖2

L2

)
+ ‖ΠM ẏ (t)− ẏ (t)‖2

L2

)
(4.36)

for any t ∈ [0, T ].

Hence we obtain

d

dt
‖υ (t)‖2

L2
≤ C

(
‖% (t)‖2

L2
+ ‖υ (t)‖2

L2
+ ‖ΠM ẏ (t)− ẏ (t)‖2

L2

)
(4.37)

Integrating the ODE above using t he initial conditionυ (0) = 0 and apply the Gronwall

lemma, we obtain

‖υ (t)‖2
L2
≤ C

(
‖% (t)‖2

L2
+ ‖ΠM ẏ (t)− ẏ (t)‖2

L2

)
= C

(
i=∞∑

i=M+1

λi + ‖ΠM ẏ (t)− ẏ (t)‖2
L2

)
(4.38)

Finally, we obtain

∫ T

0

∥∥y (t)− yPOD (t)
∥∥
L2
dt ≤ C

(
i=∞∑

i=M+1

λi + ‖ΠM ẏ (t)− ẏ (t)‖2
L2

)
(4.39)

Hence, the error between POD solution obtained by a Galerkin projection scheme and

the true solution is bounded by the decay of the eigenvalues of POD and the snapshots

approximation quality for ẏ (t).

4.5 Links between POD and balanced truncation

We consider linear state-space systems

ẋ = Ax + u

y = x (4.40)

with state x(t) ∈ Rn, input u(t) ∈ Rm, and output y(t) ∈ Rp. Let φ (u,x, t) denote the

solution of the state equations . In particular, for the continuous-time state equations the

solution can be written as
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φ (u,x, t) = eAtx0 (4.41)

y(t) = φ (u,x, t) = eAtx0, t ≥ 0 (4.42)

Construct an ensemble of solutions Y

Y = {y1 (t) , y2 (t) , . . . , ym (t)} (4.43)

by using different unit impulses

xi0 = ei, i = 1, · · ·m (4.44)

and

u = 0 (4.45)

Hence

yi (t) = eAtx0 = eAtei, i = 1, · · ·m (4.46)

Thus, we obtain that

P =

∫ ∞
0

hr (t) h∗r (t) dt

=

∫ ∞
0

eAteA
∗tdt

=

∫ ∞
0

eAt [e1, · · · , em]

 e1
...
em

 eA∗tdt
=

∫ ∞
0

[y1, · · · , ym]

 y∗1
...
y∗m

 dt
=

∫ ∞
0

[y1, · · · , ym]

 y∗1
...
y∗m

 dt
=

∫ ∞
0

y1y
∗
1 + y2y

∗
2 + · · ·+ ymy

∗
mdt (4.47)
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Note that the similarity of the expression above to the method of snapshots using POD

basis vectors. Indeed, if data from simulations is used to find the impulse responses, then

it is usually given at discrete times t1, · · · , tm, and the integral above becomes a quadrature

sum. We may construct the ensemble of snapshots by

Y = {y (t1) , y (t2) , . . . , y (tm)} (4.48)

Thus, we obtain the controllability Grammian

P = YY∗ (4.49)

Let’s consider the adjoint of linear state-space systems as follows:

ż = A∗z + v (4.50)

If data from simulations is used to find the impulse responses of the adjoint system above,

we may construct the ensemble of so-called adjoint snapshots by

Z = {z (t1) , z (t2) , . . . , z (tp)} (4.51)

Similarly, we obtain the observability Grammian derived as

Q =

∫ ∞
0

ho (t) h∗o (t) dt

= ZZ∗ (4.52)

One of the difficulties with the POD/Galerkin method is that the inner product used

for the computing the POD modes and projecting the dynamics is arbitrarily chosen.

Sometimes, an appropriate inner product is obvious, if POD is constructed in the framework

of finite element space. Sometimes, a suitable inner product is not obvious, and different

choices can give totally different results. From the discussion above, it is clear that the

deepest connection between the POD methodologies and balanced truncated model reduction

methods is that balanced truncation may be viewed as a special case of POD, using impulse

responses from simulations and using the observability Grammian as an inner product defined

as follows.
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〈a, b〉 = a∗Qb (4.53)

Therefore, the POD modes with respect to this inner product are eigenvectors of

R = PQ (4.54)

This eigenvectors are Hankel eigenvectors which will be orthogonal to the above men-

tioned inner product, instead of respect to the standard inner product.

4.6 Variants of POD

4.6.1 Centroidal Voronoi Tessellation

Given an ensemble of snapshots

Y =
{
y1, y2, . . . , yn

}
(4.55)

where yi ∈ RN , i = 1, . . . , n, n is the number of snapshots and N is the dimension of discrete

mesh, the following set {
T 1, T 2, . . . , T n

}
is a tessellation of Y if for i = 1, · · · , r

T i ⊂ Y

T i ∩ T j = φ , i 6= j

∪ri=1T
i = Y (4.56)

Given an ensemble of vectors

Z =
{
z1, z2, . . . , zr

}
(4.57)

where zi ∈ RN (but not necessarily to Y ), i = 1, . . . , r, the Voronoi region corresponding to

the vector zi is defined by

V i =
{
y ∈ Y :

∣∣y − zi∣∣ ≤ ∣∣y − zj∣∣ for j = 1, · · · , r j 6= i
}

(4.58)

The ensemble of vectors

V =
{
V 1, V 2, . . . , V r

}
(4.59)
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is called a Voronoi tessellation or Voronoi diagram of Y corresponding to Z and the vectors

in Z are called the generators of the Voronoi diagram.

Given a density function ρ (u) ≥ 0, defined for u ∈ Y , the mass centroid z∗ of any subset

T ⊂ Y is defined by

∑
u∈T

ρ (u) |u− z∗|2 = inf
z∈RN

∑
u∈T

ρ (u) |u− z|2

In general, z∗i 6= zi, i = 1, . . . , r, i.e., the centers of mass of the Voronoi regions are not the

same as the generators of those regions. However, if z∗i = zi, i = 1, . . . , r we refer to the

Voronoi tessellation as being a Centroidal Voronoi tessellation or CVT for short.

CVT’s are optimal in the following sense.

Given an ensemble of snapshots Y = {y1, y2, . . . , yn} and an ensemble of vectors

Z = {z1, z2, . . . , zr}, where yi, zi ∈ RN , i = 1, . . . , n, n is the number of snapshots and N is

the dimension of the discrete mesh, we define the error of a tessellation V = {V 1, V 2, . . . , V r}
of Y with respect to Z by

F
({
zi, V i

}r
i=1

)
=

r∑
i=1

∑
v∈V i

ρ (v)
∣∣v − zi∣∣2

then, it can be shown that a necessary condition for such kind of error measure F to be

minimized is that the pair {zi, V i}ri=1 forms a CVT of Y.

CVT’s of discrete sets are closely related to optimal k-means clusters so that Voronoi

regions and centroids can be referred to as clusters and cluster centers, respectively. The

error F also often referred to as the variance, cost distortion error, or mean square error.

CVT’s have been successfully used in data compression with one particular application to

image reconstruction.

Fortunately, one does not have to choose between POD and CVT, but can combine the

two methods in several different ways to define a hybrid CVT based POD method CVOD,

such that CVOD offers the possibility of taking advantage of the best features of both POD

and CVT. Also, CVOD is computationally less expensive than POD since it requires the

solution of several smaller eigenvalue problems instead of one large one.
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4.7 Limitations of POD ROM

SVD based methods, in particular POD methods, are used to investigate relationships

between fields because POD modes capture most of the observed covariance with the

fewest pairs of patterns (see DelSole [32]). Majda and Wang [31] showed how measuring

predictability for NWP with a Gaussian distribution can be simplified through the special

use of a linear change of coordinates based on empirical orthogonal functions (EOF) basis.

However, SVD based methods are not ideal in all cases. For instance in predictability

studies, one would like to determine patterns that are the “most predictable” according to

the measure of forecast skill. This is because that truncated POD modes represent only a

tiny amount of variance that can be crucial in the generation of certain types of dynamics (see

Majda [30]). In particular, systems that exhibit sudden transitions between different states

(i.e., bursting behavior) will be susceptible to these type of problems when trying to model

them using POD modes. Low-dimensional truncation of the POD basis inhibits transfers of

energy between the large and small scales (unresolved) of the fluid flow. Therefore, the price

of the low-dimensionality entails a lack of stability especially for transitional and turbulent

flows characterized by high Reynolds numbers (Couplet et al., 2005 [39]; Noack et al., 2010

[27]; Galletti et al., 2004 [37]; Gloerfelt, 2006 [40]). This either restricts reduced order

models to a narrow range of parameters or to a short-time integration span. To improve

the accuracy of POD-Galerkin models, the effect of these unresolved modes, which are taken

from the small scales of the fluid flow, for instance by including eddy viscosity terms, must

be included to provide an insight into the turbulent energy.

A methods named calibration has been proposed in order to improve the accuracy of POD

reduced-order modeling due to solutions of optimization problems. The idea of calibration

is to use information from the temporal dynamics of the POD model known in advance

to correct whole or part of the coefficients from the POD Galerkin projection. Various

calibration methods have been developed to enhance the stability of POD-Galerkin models

(Couplet et al., 2005 [39]; Gloerfelt, 2006 [40]; Galletti et al., 2005 [41]; Pastoor et al., 2008

[42]). These calibration terms are computed by minimizing a cost functional defined as either:

the difference between the amplitude coefficients predicted by the calibrated POD and those

from the POD; or a weak constraint functional, where the constraints are calibrated POD

equations and are enforced by introducing Lagrange multipliers or adjoint variables.
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A modification of POD ROM consists of calibration in flow problems and adding a

shift-mode so that it includes an accurate representation of the unstable steady solution

[26]. Noack et al 2010 pointed out that the challenge of computing high Reynolds number

turbulent flows rests on the fact that the discretization of all dynamically relevant scales

from large to Kolmogorov scales is not possible. This impossibility leads to necessity of

turbulence models for modeling the effect of unresolved scales on the resolved flow. He

proposed a systematic strategy to eliminate dynamic degrees of freedoms in Galerkin systems

of incompressible fluid flows. The proposed system reduction strategy was derived from a

Finite-Time Thermodynamics closure [27].

Also, the POD ROM method heavily relies on the input of DS and the time instances

at which the snapshots are taken. Consequently, singular values and modes obtained

by POD ROM are not invariants of DS. Aubry [28] studied POD ROM for Kuramoto-

Sivashinsky equation and found that a model based on the leading six POD modes could

not reproduce the right dynamics, even though those six POD modes represent 99.9995%

of the variance. Similar problems with models based on POD modes were reported by

Armbruster et al. (1992) [29] in a study of Kolmogorov flow in a regime of bursting

behavior. Majda [30] studied Charney-DeVore model [34] and compared POD methods,

optimal persistence patterns(OPPs) (introduced by DelSole [32] )and principal interaction

patterns(PIPs) (introduced by Hasselmann [33]) It is shown that the PIPs and OPP based

ROM methods are superior to the POD based ROM methods.

4.7.1 Optimal Persistence Patterns

A technique named optimal persistence patterns (OPPs) is described for determining the set

of patterns in a time-varying field whose corresponding time series remain correlated for the

longest times. The basic idea is to obtain patterns that, when projected on a time-varying

field, produce time series that optimize a measure of decorrelation time. The decorrelation

time is measured by one of the integrals

T1 =

∫ ∞
0

ρτdτ (4.60)

or
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T2 = 2

∫ ∞
0

ρ2
τdτ (4.61)

in which ρτ is the correlation function depending on time lag τ . The idea is, given a data

set g (t) in some phase space P , to find a vector e1 ∈ P , which can be solved by eigenvector

methods, such that the time series v (t) = eT1 (t) g (t) attain maximum for T1 or T2, then a

second vector e2,orthogonal in some sense to e1, that again maximizes T1 or T2 and so on.

The ordering of the patterns based on their persistence or correlation time makes the OPPs

an interesting type of optimal basis. If one aims to reproduce the long time-scale behavior

of a system, a set of patterns with maximal correlation times is a natural candidate for the

basis of a reduced model.

4.7.2 Principal Interaction Patterns

The Principal Interaction Patterns (PIPs) was introduced by Hasselmann [33] and improved

by Kwasniok [35]. Consider a high-fidelity dynamic model represented by a system of coupled

ODEs

ẋ = F (x) (4.62)

with state vector functions x(t) ∈ Rn. If we integrate the system above from t = 0 to

t = τ , we start from x0 and we end up with xτ .

Let xp be the projections of x onto a number PIPs basis vectors based on projection P ,

which yields a reduced system of coupled ODEs

ẋp = F (xp) (4.63)

with state vector functions xp(t) ∈ Rr. Similarly, if we integrate the reduced system

above from t = 0 to t = τ , we start from x0
p and we end up with xτp.

Hence, the difference at t = τ between the PIPs ROM and that of the original model is

computed by

dτ = xτp − xτ (4.64)

We can integrate the norm of the difference dτ as follows (see Kwasniok 1996 [35]):
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Q =

∫ τmax

0

‖dτ‖2
L2
dτ (4.65)

Finally, assuming we know the integration time τmax, we compute the ensemble average

of Q over all initial states x0 on the attractor. Thus, we obtain an error function dependent

on the projection P :

E (P ) = Q (x0, P )

Therefore, the PIPs basis vectors can be obtained by minimizing the error functions

E (P ) with respect to the projection P . It should be noted the PIPS ROM is very sensitive

to the choice of time τmax (see Kwasniok 2004 [36]).

4.7.3 Calibrated POD for flows with high Reynolds numbers

High Reynolds number ocean flows exhibit dynamics on a wide range of scales. They

display a combination of organized or coherent structures associated with the phase-

averaged/spatially phase-correlated components that exhibit the most evident structure and

apparently disorganized or incoherent structures associated with the random components.

The energy transfer/interaction between the different coherent/inherent structure flows

plays an important role in high Reynolds number flows. Low-order truncation of the POD

basis, however, inhibits transfers between the large and small (unresolved) scales of the fluid

flow. As a consequence there is a lack of dissipation in POD/ROM and the reduced order

model may diverge. Therefore, at higher Reynolds numbers where more kinetic energy is

constrained within the smaller scales, i.e., more POD snapshots as well as more bases should

be retained for a realistic representation (Galletti et al., 2004 [37]). To improve the accuracy

of POD-Galerkin models, the effect of these unresolved modes must be included to provide

an insight into the turbulent energy.

It is shown by Ma et al., 2002 [38] that a low-dimensional Galerkin model used to simulate

three dimensional high Reynolds number system didn’t capture accurately both the limit

circle and the transition of three-dimensionality. The flow they studied exhibits a small

divergence eventually rendering the system unstable. If more modes are included for the

flow they studied, the onset of divergence is delayed but the same picture emerges.
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It is not surprising that the POD reduced model derived using the Galerkin approach

is not sufficiently accurate in reproducing the dynamics of higher Reynolds number flows

since the truncation applied in the POD subspace inhibits transfers between the different

scales of the fluid flow. The neglected POD modes correspond to small scale structures and

introduce dissipative errors in the model. As a consequence, the system may lose its long-

term stability. The stabilization of a reduced order model can be achieved by introducing

an artificial dissipation by using a Sobolev H1 inner product norm.

4.7.4 Balanced POD

The POD/Galerkin method can yield unpredictable results, and is sensitive to details such as

the empirical data used (Rathinam and Petzold, 2003 [43]), and the choice of inner product

(Colonius and Freund, 2002 [44]). Balanced truncation was developed in the control theory

community for stable, linear, input-output systems, and does not suffer the same limitations

as the POD method. Most notably, balanced truncation has error bounds that are close to

the lowest error possible from any reduced-order model.

However it becomes intractable as the number of variables exceeds 10,000, i.e. impractical

for many discrete CFD systems. Balanced proper orthogonal decomposition is a concept

introduced with the aim of combining POD and balanced truncation. The goal is to compute

balanced truncations, or approximations to these, with computational cost similar to POD.

Several previous methods have combined ideas from POD and balanced truncation, including

the original work of Moore ,1981 [2]. The method presented here relies heavily on the work

of Lall et al. 2002 [45], who used empirical Grammians to generalize balanced truncation to

nonlinear systems.

It was shown by Ilak [47] that some important features from the control designers point of

view for the 3-D system, such as impulse response, frequency response, capturing of actuation

and performance at off-design Reynolds number, were captured very well by the balanced

POD reduced-order models. It was also found by Ilak [47] that, while the leading POD

modes capture very well the energy of the perturbation, the corresponding models do not

capture the dynamics well: in particular, POD models fail to reproduce the energy growth

of the perturbation. It was shown that the energy growth of the perturbation is captured

only if modes with very low energy content are included in the POD models, while Balanced

POD models that include only the leading balancing modes performed very well.
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CHAPTER 5

POD 4-D VARIATIONAL DATA ASSIMILATION

5.1 4-D variational data assimilation problem

The model can be written as:

∂X(t)

∂t
= F(X(t)) (5.1)

where F is the model operator and the discretized form of the numerical model can be

written as:

X(tr) = M0→rX0 (5.2)

where initial condition X0 is the control variable for the given numerical model, M0→r is

the predefined discretized nonlinear model forecast operator, mapping the initial condition

X0 into the model solution Xr at time tr

In its general form, the 4D-Var data assimilation (4-D Var), is defined as the minimization

with respect to the initial condition X0 of the following discrete cost functional:

J(X0) =
1

2
(X−Xb) B−1 (X−Xb) +

1

2

n∑
r=0

(Hr(Xr)−Yr)
T O−1r (Hr(Xr)−Yr) (5.3)

subject to the model as a strong constraint, (i.e. assuming the model is perfect) so

that the sequence of model states Xr at time tr must be a solution for the given model

equations, where B is the background covariance matrix, Xr is the model solution at time

tr, Or is the observation error covariance matrix at time tr, Hr is the observation operator

at time tr, representing projection of model variables into the observational variables. Since

the M0→r(X0) is a nonlinear operator, the 4D-Var data assimilation method becomes a
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Figure 5.1: 4 D-Var in a numerical forecasting system

nonlinear constrained optimization problem, with respected to the control variable X0 and

it is very difficult to solve. Fortunately, it can be greatly simplified with two hypotheses.

The first hypothesis is the causality, in which the forecast model can be expressed as

the product of intermediate forecast steps, so that the nonlinear model forecast operator

M0→r can be factorized into M0→r = MrMr−1 . . .M1, where each operator Mr denotes the

discretized nonlinear forecast operator step from time r− 1 to r and we have Xr = MrXr−1.

Hence, by recurrence, we have

Xr = MrMr−1 . . .M1X0 (5.4)

Another hypothesis is that, at each time step from both from r − 1 to r, we obtain that

the linearization of observation operator Hr can be written as Hr, and that forecast operator

Mr can also be linearized so that the predefined discretized nonlinear model forecast operator

can be differentiated(perturbed) to obtain a so-called tangent linear model(TLM) :

X′(tr) = MrX
′

0 (5.5)
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where Mr represents the linearization of the discretized nonlinear model forecast operator.

Under those hypotheses, the quadratic cost functional above can be written as a

summation as:

J = J b + Jo = J b +
n∑
r=0

(Jo)r (5.6)

where J b and Jo are the background and observation terms respectively.

In order to obtain the optimal initial conditions of shallow water equations model that

minimizes J above, the gradient of J needs to be calculated with respect to the control

variable X0 as:

∇J = ∇J b +∇Jo (5.7)

where the first term ∇J b can be easily obtained as:

∇J b = B−1 (X−Xb) (5.8)

and the second term ∇Jo requires the adjoint model integration which shall be briefly

derived as follows:

On the one hand, consider the change in the cost functional J resulting from a small

perturbation X
′
0 in the initial condition, which can be written as:

(Jo (X0))
′
= J0

(
X0 + X

′

0

)
− J0(X0) =

n∑
r=0

HT
r

(
O−1r (Hr(Xr)− yr)

)T
X
′

r (5.9)

On the other hand, to first order we can write the Taylor expansion of J as:

(Jo (X0))
′
= (∇Jo (X0))T X

′

0 + o (‖X0‖2) (5.10)

Furthermore, we can find the gradient of the cost function by using the adjoint of the

Tangent Linear Model of the given nonlinear time-dependent forward model and we obtain

∇J (X0) = B−1 (X−Xb) +
n∑
r=0

MT
r HT

r O−1r (Hr(Xr)−Yr) (5.11)
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where MT
r represents the adjoint of model at the rth time step while the weighted

differences

HT
r O−1r (Hr(Xr)−Yr) (5.12)

are forcing terms which are added to the r.h.s of the adjoint model whenever an observational

time is reached.

5.2 Dual-weighted POD basis

An ensemble of snapshots is chosen in the analysis time interval [0, T ] written as{
y1, y2, . . . , yn

}
where yi ∈ RN , i = 1, . . . , n, n is the number of snapshots and N is the dimension of discrete

mesh.

Define the weighted ensemble average of the finite-element represented data as

ȳ =
i=n∑
i=1

wiy
i (5.13)

where the snapshots weights wi are such that 0 < wi < 1 and
∑n

i=1wi = 1, and they are

used to assign a degree of importance to each member of the ensemble. Time weighting is

usually considered, and in the standard approach wi = 1
n
.

introduce a general form of inner product

〈x,y〉A = xTAy (5.14)

where A is a symmetric positive definite matrix of the dimention N . For the standard

Euclidean norm, A is just the identity matrix.

The POD basis of order M ≤ n provides an optimal representation of the ensemble data

in M - dimensional state subspace by minimizing the averaged projection error

min
{ψ1,ψ2,...,ψM}

n∑
i=1

wi
∥∥(yi − ȳ)− ΠΨ,M

(
yi − ȳ

)∥∥2

A

s.t.
〈
ψi, ψj

〉
A

= δij (5.15)

where ΠΨ,M is the projection operator onto the M−dimensional space

span
{
ψ1, ψ2, . . . , ψM

}
(5.16)
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ΠΨ,M =
M∑
i=1

〈y, ψi〉A ψi

Build the weighted spatial correlation matrix

C = YWYT (5.17)

The POD modes ψi ∈ RN are eigenvectors to the N−dimensional eigenvalue problem

CAψi = λiψi

Since in practice the number of snapshots is much less than the state dimension, n << N ,

an efficient way to compute the reduced basis is to introduce a n−dimensional matrix as

follows,

Kn×n = W
1
2 KW

1
2 = W

1
2 YTAYW

1
2 (5.18)

and compute the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 of Kn×n with its corresponding

eigenvectors ξ1, . . . , ξn.

The POD basis vectors are obtained by defining

ψi =
1√
λi

YW
1
2 ξi, i = 1, . . . ,M (5.19)

where

〈ψi, ψj〉A = δij =

{
1 i = j
0 i 6= j

(5.20)

One can define a relative information content to choose a low-dimensional basis of size

M << n by neglecting modes corresponding to the small eigenvalues. We define

I (m) =

∑i=m
i=1 λi∑i=n
i=1 λi

(5.21)

and choose M such that

M = arg min {I (m) : I (m) > γ} (5.22)

where 0 ≤ γ ≤ 1 is the percentage of total information by the reduced space and the

tolerance γ must be chosen to be close to the value one in order to capture most of the

energy of the snapshots basis.

The aim of 4-D VAR data assimilation is that of fusing observational data and model

predictions to obtain an optimal representation of the state of the atmosphere. In the full
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nonlinear 4-D Var [109], this process is implemented by minimizing the cost functional as

follows.

J (y0) =
1

2

(
y0 − yb

)T
B−1

(
y0 − yb

)
+

1

2

k=n∑
k=0

(Hkyk − yok)
T R−1

k (Hkyk − yok) (5.23)

where yb is the background prior state estimation and B is the background error

covariance covariance matrix, R is the observational error covariance matrix, H is the

observation operator, y0 is a vector containing control variables such as initial conditions, yk

is a vector containing the solution of variables from the model at the time level k, yok is the

observation at time level k, and n is the number of time levels.

The snapshots are essentially a set of instantaneous model solutions, obtained from

experimental data or from a simulation. They are then used to compute the POD basis

vectors to yield an optimal representation of the data so that for any given basis vector size,

the L2 norm of the error between the original and reconstructed snapshot is minimized.

The construction of POD basis vectors depends not only on the features of model

dynamics itself, but it also requires to properly account for the features from the 4-D VAR

data assimilation. Furthermore, these two features may be quite different from each other.

A recent method to avoid this problem is referred to as optimality system proper orthogonal

decomposition [56]. By implementing a dual-weighted proper orthogonal decomposition

(DWPOD) method [102], we can incorporate the information from the 4-D VAR into the

POD reduced-order modeling.

The specification of dual weights wk associated with the snapshots may have a significant

impact on which modes are selected as dominant and thus included into the POD basis.

The dual-weighted approach makes use of the time-varying sensitivities of the 4-D Var cost

functional with respect to perturbations in the state at each time level where the snapshots

are taken.

Assuming the cost functional J (y (t)) is defined explicitly in terms of each state y (t) at

time step t, then for any fixed time step τ < t, the model can be written as

∀τ < t, y (t) = Mτ→t (y (τ)) = Mτ,t (y (τ)) (5.24)

such that implicitly, the cost functional J can be viewed as a function of the previous

state y (τ) , to first-order approximation, the impact of small errors/perturbations δyi in the
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state error at a snapshot time ti ≤ t on J may be estimated using the tangent linear model

M(ti, t) and its adjoint model MT(t, ti):

δJ ≈
〈
∇Jy(t) (y (t)) , δy (t)

〉
=
〈
∇Jy(t) (y (t)) M(ti, t)δy (ti)

〉

=
〈
MT(t, ti)∇Jy(t) (y (t)) , δy (ti)

〉
=
〈
y∗ti , δy (ti)

〉
(5.25)

where y∗ti = MT(t, ti)∇Jy(t) (y (t)) are the adjoint variables at time step ti.

In particular, the model can be written as

∀k, yk = Mk−1→k (yk−1) = Mk (yk−1) (5.26)

where Mk−1→k is defined as the model forecast operator from time k − 1 to k.

In order to derive the algorithm for the computation of dual weighs by using the adjoint

model, we explicitly choose τ = ti = k − 1 and t = k, to the first-order approximation, the

impact of perturbations δyk−1 in state vectors on cost functional Jk may be estimated using

tangent linear model Mk and its adjoint model MT
k :

δJk ≈ 〈∇Jk, δyk〉 = 〈∇Jk,Mkδyk−1〉 =
〈
MT

k∇Jk, δyk−1

〉
=
〈
y∗k−1, δyk−1

〉
(5.27)

where y∗k−1 = MT
k∇Jk are the adjoint variables at time step tk−1.

Hence, it follows (see Equ (23)) that

|δJk| ≈
〈
y∗k−1, δyk−1

〉
=
∣∣〈(A)−1y∗k−1, δyk−1

〉
A

∣∣
≤
∥∥(A)−1y∗k−1

∥∥
A
‖δyk−1‖A (5.28)

where A is a symmetric positive definite matrix of dimension N . For the standard

Euclidean norm, A is just the identity matrix.

Hence, the dual weights wk associated with the snapshots selection are defined as

normalized values in the following:

ck =
∥∥(A)−1y∗k

∥∥
A
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wk = ck/

j=n∑
j=1

cj, k = 1, · · · , n (5.29)

and provide a measure of the relative impact of the perturbations of state variables on

the cost functional. A large value of weight wk indicates that state errors at time step tk

plays an important role in the optimization. In other words, the dual weights are chosen in

order that information from the data assimilation system is incorporated directly into the

optimality criteria that determines the POD basis functions. Hence, the dual-weighted POD

incorporates not only information from the dynamical system, but also information from the

data assimilation system. The traditional POD basis aims at capturing the most energetic

modes of the dynamical system, while the dual-weighted approach may also capture lower

energy modes that can be significant for the successful implementation of 4-D Var.

From an implementation point of view, the evaluation of all dual weights requires only

one adjoint model integration.

1. Initialize the adjoint variables y∗ at final time to zero: y∗n = 0

2. For each step k − 1 the adjoint variables y∗k−1 are obtained by y∗k−1 = MT
k y
∗
k +

HT
k R−1

k (Hkyk − yok)

3. We obtain y∗0 = y∗0 + B−1
(
y0 − yb

)
where yb is the background prior state estimation.

4. Compute ck =
∥∥(A)−1y∗k

∥∥
A

and wk = ck/
∑j=n

j=1 cj, k = 1, · · · , n

where Mk is the tangent linear model and Hk is the linearized observation operator at time

step k.

Hence, the evaluation of the dual weights only requires the integration of the adjoint

model backward in time. Since the adjoint model is available during the implementation of

4-D VAR data assimilation, no additional cost is required for the development of DWPOD

4-D VAR over the classic POD 4-D VAR.

5.3 Reduced-order POD 4-D Var

In order to reduce the computational cost of 4-D Var data assimilation (Vermeulen and

Heemink 2006 [67]), we consider minimization of the cost functional in a space whose
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dimension is much smaller than that of the original one. A way to drastically decrease

the dimension of the control space without significantly compromising the quality of the

final solution but sizably decreasing the cost in memory and CPU time of 4-D Var motivates

us to choose to project the control variable on a basis of characteristic vectors capturing

most of the energy and the main directions of variability of the model, i.e. SVD. One would

then attempt to control the vector of initial conditions in the reduced space model.

The reduced-order cost functional can be expressed as

JPOD
(
yPOD0

)
=

1

2

(
yPOD0 − yb

)T
B−1

(
yPOD0 − yb

)

+
1

2

k=n∑
k=0

(
Hky

POD
k − yok

)T
R−1
k

(
Hky

POD
k − yok

)
(5.30)

where B is the background error covariance matrix, Rk is the observation error covariance

matrix at time level k, Hk is the observation operator at time level k. yb is the background

prior state estimation. yPOD0 is a vector containing the control variables (here, initial

conditions) represented by the POD basis. yPODk is a vector containing the solution of

variables obtained from the reduced-order model at the time level k.

In a POD reduced-order model, the initial value yPOD0 and the reduced-order model

solution yPODk can be expressed as

yPOD0 = ȳ +
∑i=M

i=1 αi (0)ψi = ȳ + Ψα0

yPODk = ȳ +
∑i=M

i=1 αi
(
tk
)
ψi = ȳ + Ψαk

(5.31)

where an ensemble of POD basis is

Ψ =
{
ψ1, ψ2, . . . , ψM

}
(5.32)

Hence, we can rewrite the reduced-order cost functional JPOD
(
yPOD0

)
dependent on yPOD0

as an explicit cost functional JPODα (α0) dependent on α0 that is the coefficient in the POD

basis vectors Ψ. Once we find the minimizer of αmin0 = minα0 J
POD
α (α0), we can express the

retrieved initial condition yPOD0 = ȳ + Ψα0 in the POD reduced-order model cost functional

JPODα (α0) =
1

2

(
ȳ + Ψα0 − yb

)T
B−1

(
ȳ + Ψα0 − yb

)
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+
1

2

k=n∑
k=0

(Hk (ȳ + Ψαk)− yok)
T R−1

k (Hk (ȳ + Ψαk)− yok) (5.33)

The reduced model can be written as:

∀k, αk = MPOD
0→k (α0) (5.34)

By denoting

∀k, αk = MPOD
k−1→k (αk−1) = MPOD

k (αk−1) (5.35)

-

and by recurrence we obtain that

αk = MPOD
k · · ·MPOD

1 α0 (5.36)

The reduced-order cost functional JPODα (α0) that is dependent on α0 can be divided into

two components:

JPODα = JPOD,bα + JPOD,oα (5.37)

where the background cost functional that is dependent on α0 is written as

JPOD,bα =
1

2

(
ȳ + Ψα0 − yb

)T
B−1

(
ȳ + Ψα0 − yb

)
(5.38)

and the observational cost functional that is dependent on α0 is written as

JPOD,oα =
1

2

k=n∑
k=0

(Hk (ȳ + Ψαk)− yok)
T R−1

k (Hk (ȳ + Ψαk)− yok) (5.39)

Denoting “normalized departures “

dk = R−1
k (Hk (ȳ + Ψαk)− yok) (5.40)

the contributions to the observational cost functional that is dependent on α0 can be

written as

JPOD,oα,k = (Hk (ȳ + Ψαk)− yok)
T dk (5.41)

Hence the reduced-order cost functional that is dependent on α0 can be rewritten as

JPODα = JPOD,bα +
n∑
k=0

JPOD,oα,k (5.42)
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Therefore, the gradient of the reduced-order cost functional with respect to the α0 can

be derived as

∇α0J
POD
α = ∇α0J

POD,b
α +

n∑
k=0

∇α0J
POD,o
α,k (5.43)

∇α0J
POD
α = ΨTB−1

(
ȳ + Ψα0 − yb

)
+

n∑
k=0

(
MPOD

1

)T
. . .
(
MPOD

k

)T
ΨTHT

k dk (5.44)

where
(
MPOD

k

)T
is the POD reduced-order adjoint model at time step k.

From an implementation point of view (see Vermeulen and Heemink [67] and Kunisch

[54, 55]), we can compute the gradient ∇α0J
POD
α in the following steps.

1. Initialize the reduced-order adjoint variables α∗ at final time to zero: α∗n = 0

2. For each step k − 1 the adjoint variables α∗k−1 is obtained by adding the reduced-

order adjoint forcing term ΨTHT
k dk to α∗k and by performing the reduced-order

adjoint integration of reduced-order model by multiplying the result by
(
MPOD

k

)T
,

i.e. α∗k−1 =
(
MPOD

k

)T (
α∗k + ΨTHT

k dk
)

3. At the end of recurrence, the value of the adjoint variable α∗0 = Joα0
yields the gradient

of the observational cost functional

4. Compute∇α0J
POD,b
α = ΨTB−1

(
ȳ + Ψα0 − yb

)
and we obtain∇α0J

POD
α = ∇α0J

POD,b
α +

∇α0J
POD,o
α

5.4 Trust-Region based optimal control approach

5.4.1 Classical trust-region method

Historically the trust region method goes back to [72, 73, 74]. See also work of [75] followed

by important work of [76, 77]. Finally the terminology of trust region and Cauchy point was

put forward by [78] and systematized by [79]

The classical trust-region method [80] aims to define a region around the current iterate

within which it trusts the model to be an adequate representation of the objective function

f , and then choose the step to be the approximate minimizer of the model in the trust region,
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i.e/ choosing direction and length of the step simultaneously. The algorithm approximates

only a certain region (the so-called trust region) of the objective function with a model

function (often a quadratic). It is assumed that the first two terms of the quadratic model

function mk at each iterate xk are identical the first two terms of the Taylor-series expansion

of f around xk in the following:

mquad
k (uk + s) = fk +∇fT

k s+
1

2
sTQks (5.45)

where fk = f (uk) and ∇fk = ∇f (uk) and Qk is an approximation to the Hessian and

more generally Qk is some symmetric matrix.

To obtain each step, we seek a solution of the following sub-problem for which we only

need an approximate solution to obtain convergence and good practical behavior [70]

min mquad
k (uk + s) = fk +∇fT

k s+
1

2
sTQks (5.46)

subject to ‖s‖ ≤ δk (5.47)

where δk > 0 is the trust-region radius.

In the strategy for choosing the trust-region radius δk at each iteration, we define the

actual reduction

aredk (sk) = f (uk)− f (uk + sk) (5.48)

and

predk (sk) = mquad
k (uk)−mquad

k (uk + s) (5.49)

Thus, we can define the ratio

ρk =
aredk (sk)

predk (sk)
(5.50)

We measure agreement between quadratic model function mquad
k and the objective

function f(uk) as a criterion for choosing trust-region radius δk > 0. If the ratio ρk is

negative, the new objective value is greater than the current value so that the step must

be rejected. On the other hand, if ρk is close to 1, there is good agreement between the

approximate quadratic model mquad
k and the object function fk over this step, so it is safe to

expand the trust region radius for the next iteration. If ρk is positive but not close to 1, we

do not alter the trust region radius, but if it is close to zero or negative, we shrink the trust

region radius.
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Outline of basic trust-region algorithm:

Let 0 < η1 < η2 < 1 , 0 < γ1 < γ2 < 1≤ γ3, δ0 be given, set k = 0

1. Compute the minimizer sk of

min mquad
k (uk + s)

subject to ‖s‖ ≤ δk

2. Compute the new f (uk + sk)and

ρk =
aredk (sk)

predk (sk)
(5.51)

3. Update the trust-region radius:

• If ρk ≥ η2: implement outer projection uk+1 = uk + sk and increase trust-region radius

δk+1 = γ3δk and GOTO 1

• If η1 < ρk < η2: implement outer iteration uk+1 = uk + sk and decrease trust-region

radius δk+1 = γ2δk and GOTO 1

• If ρk ≤ η1: set y
(k+1)
0 = y

(k)
0 and decrease trust-region radius uk+1 = uk and GOTO 3

The predicted decrease based on a quadratic model function can be analyzed using the

concept of Cauchy decrease. For this reason, we consider the quadratic model approximation

for objective function f expanded in the steepest descent direction.

mquad
k (uk − λ∇fk) = fk − λ ‖∇fk‖2 +

1

2
λ2∇fkTQk∇fk (5.52)

for ∇fk 6= 0 and λ ≥ 0.

Hence, the minimization of 5.52 within the trust-region δk yields the so-called Cauchy

step

sck = −λck∇fk (5.53)

where λck can be computed efficiently [76, 77] as long as simple convexity arguments holds.

Therefore, we define

uck+1 = uck + sck (5.54)

49



We can denote model decrease related to the Cauchy step by

predk (sck) = mquad
k (uk)−mquad

k (uk + sck) (5.55)

Since the sk and sck are both within the trust-region δk, it is reasonable to compare the

predicted decrease predk (sk) to the model decrease predk (sck) related to the Cauchy step.

It can be showed that predk (sk) satisfies a fraction of Cauchy decrease condition

predk (sk) > cfcd (predk (sck)) (5.56)

For the Cauchy decrease, it has been shown in [76, 77] that

predk (sck) ≥
1

2
‖∇fk‖min

{
δk,
‖∇fk‖
‖Qk‖

}
(5.57)

Therefore, we can derive the sufficient decrease condition

aredk (sk) ≥ η1predk ≥ η1cfcd (predk (sck)) >
η1cfcd

2
‖∇fk‖min

{
δk,
‖∇fk‖
‖Qk‖

}
(5.58)

Finally, we obtain that

f (uk + sk) 6 f (uk)−
η1cfcd

2
‖∇fk‖min

{
δk,
‖∇fk‖
‖Qk‖

}
(5.59)

Accordingly, the weak and global convergence theorems can be proved based on the

fraction of Cauchy decrease condition under some assumptions [70].

In practice, the quadratic model functions is provided with inexact gradient information,

since the ∇fk can only be approximated numerically, for instance, by its corresponding

adjoint model. Also, it is clear that Qk denotes the approximation to true Hessian matrix

∇2fk. This leads to trust-region method with quadratic model functions as follows.

miquad
k (uk + s) = fk + gTk s+

1

2
sTQks (5.60)

where gk denotes an approximation to the true gradient ∇fk and Qkdenotes an approxima-

tion to the true Hessian matrix, i.e., miquad
k (uk + s) is a quadratic model based on inexact

gradient information.

Similar to the quadratic model based on exact gradient information, the modified

sufficient decrease condition for the quadratic model based on inexact gradient information

can be derived as follows:
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f (uk + sk) 6 f (uk)−
η1cfcd

2
‖gk‖min

{
δk,
‖gk‖
‖Qk‖

}
(5.61)

Finally, it is noted that the convergence results for gk can be carried over from ∇fk (see

Carter [84])

In this situation, the Cauchy step is simply replaced with

sck = −λckgk (5.62)

Having introduced the basic ideas of trust-region methods with quadratic model func-

tions, we now turn to the more general trust-region method dealing with nonlinearity of the

model function as follows:

min mnonlin
k (uk + s)

subject to ‖s‖ ≤ δk

As pointed out in the previous sections, we have dealt with the trust-region method

applied to quadratic model functions with exact or inexact gradient information, The con-

vergence behavior of those trust-region methods relied on the sufficient decrease conditions

5.59 and 5.61. Furthermore, those sufficient decrease conditions are based on the fraction of

the Cauchy decrease condition 5.56 and 5.57, where Cauchy step can be computed efficiently.

However, since we are dealing with nonlinear model functions we are dealing with now, the

Cauchy step and Cauchy decrese condition are no longer available in terms of the classical

definition.

Toint [83] has proposed a so-called step determination algorithm generalizing the Cauchy

step snonlink and Cauchy decrease condition to the case of general nonlinear model functions.

In that sense, one can expect to get the desired sufficient decrease condition for the nonlinear

mode functions based on the fraction of the generalized Cauchy decrease conditions.

predk (sk) > cnonlin
(
predk

(
snonlink

))
(5.63)

Furthermore, in 5.61, ‖Qk‖ denotes the induced norm (see Chapter 1) of the Hessian

of the model function. In that sense, it represents a measure of the model’s curvature at

current iteration. In general, Toint [83] defined a concept to compute the curvature wk for

the nonlinear model functions.
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predk
(
snonlink

)
≥ 1

2
‖∇fk‖min

{
δk,
‖gk‖

1 + wk

}
(5.64)

Consequently, we can obtain a similar sufficient decrease condition for nonlinear model

functions in general as follows:

f (uk + sk) 6 f (uk)−
η1cnonlin

2
‖gk‖min

{
δk,
‖gk‖

1 + wk

}
(5.65)

5.4.2 Trust-region POD method

Figure 5.2: Trust-region based POD reduced-order optimization method

In the previous cases, we have introduced inportant results for the trust-region method-

ologies, which can be applied to the POD reduced order modeling as follows. In this work, the

POD reduced order model is based on the solution of the original model for specified control

variables (e.g. initial and boundary conditions). It is therefore necessary to reconstruct the

POD reduced order model when the resulting control variables from the latest optimization

iteration are significantly different from the ones upon which the POD model is based. Hence,

it is natural to improve the POD reduced order control model successively by updating the
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snapshots which are used to generate the POD basis in the process of reduced-order 4-D

Var.

For the reduced-order cost functional [110, 111]

JPOD
(
yPOD0

)
=

1

2

(
yPOD0 − yb

)T
B−1

(
yPOD0 − yb

)
+

1

2

k=n∑
k=0

(
Hky

POD
k − yok

)T
R−1
k

(
Hky

POD
k − yok

)
(5.66)

or its explicit version

JPODα (α0) =
1

2

(
ȳ + Ψα0 − yb

)T
B−1

(
ȳ + Ψα0 − yb

)
+

1

2

k=n∑
k=0

(Hk (ȳ + Ψαk)− yok)
T R−1

k (Hk (ȳ + Ψαk)− yok) (5.67)

defined above, we first start with a random perturbation of given initial condition y
(0)
0

and compute the snapshots that correspond to the flow behavior forced by y
(0)
0 . We then

use these snapshots to compute the first POD basis Ψ(0) and build up the corresponding

POD based control model forced by applying inner projection α
(0)
0 =

〈
y

(0)
0 − ȳ,Ψ(0)

〉
. We

now implement the inner minimization iteration based on Ψ(0) to obtain the new control

variable α
(1)
0 in the reduced-order space. When we carry out an outer iteration, we obtain

y
(1)
0 = ȳ+Ψ(0)α

(1)
0 . If we use y

(1)
0 for the computation of new snapshots and a new POD basis

Ψ(1), we can improve the initial condition of the PDE and thus improve the POD based

model. However, the outer projection computing new snapshots and corresponding new

POD basis is computationally expensive and should only occur at rare instances controlled

by appropriate criteria. One criterion for adaptivity consists of an ad-hoc rule that an outer

projection should occur whenever the value of the objective function cannot be decreased

beyond a prescribed tolerance between two consecutive inner minimization iterations . Also,

this criterion will abort the outer iteration cycle when the value of the objective function is

less than a given tolerance. The trust-region POD approach for adaptivity is both efficient

and mathematically correct, being based on the trust-region globalization properties derived

from optimization theory [83].

Therefore, to find a new step sk, we minimize with respect to s
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min mk

(
α

(k)
0 + s

)
:= JPODα

(
α

(k)
0 + s

)
(5.68)

subject to ‖s‖ ≤ δk (5.69)

Based on trust-region strategy from optimization [82, 111] , we can decide to increase or

decrease the trust-region radius by comparing the actual(for the full order model)

J
(
ȳ + Ψ(k−1)α

(k)
0

)
− J

(
ȳ + Ψ(k−1)

(
α

(k)
0 + sk

))
(5.70)

with the predicted decrease(for the reduced-order model)

mk

(
α

(k)
0

)
−mk

(
α

(k)
0 + sk

)
(5.71)

Outline of trust-region POD algorithm:

Let 0 < η1 < η2 < 1 , 0 < γ1 < γ2 < 1≤ γ3 and y
(0)
0 , δ0 be given, set k = 0

1. Compute snapshot set YSNAPk based on initial condition y
(k)
0

2. Compute the POD basis Ψ(k) and build up the corresponding POD based control model

based on the initial condition α
(0)
0 =

〈
y

(0)
0 − ȳ,Ψ(0)

〉
3. Compute the minimizer sk of

min mk

(
α

(k)
0 + s

)
subject to ‖s‖ ≤ δk

4. Compute the new J
(
ȳ + Ψ(k−1)

(
α

(k)
0 + sk

))
of the full model and

ρk =
J
(
ȳ + Ψ(k−1)α

(k)
0

)
− J

(
ȳ + Ψ(k−1)

(
α

(k)
0 + sk

))
mk

(
α

(k)
0

)
−mk

(
α

(k)
0 + sk

) (5.72)

5. Update the trust-region radius:

• If ρk ≥ η2: implement outer projection y
(k+1)
0 = ȳ + Ψ(k−1)

(
α

(k)
0 + sk

)
and increase

trust-region radius δk+1 = γ3δk and GOTO 1
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• If η1 < ρk < η2: implement outer iteration y
(k+1)
0 = ȳ+Ψ(k−1)

(
α

(k)
0 + sk

)
and decrease

trust-region radius δk+1 = γ2δk and GOTO 1

• If ρk ≤ η1: set y
(k+1)
0 = y

(k)
0 and decrease trust-region radius δk+1 = γ1δk and GOTO 3

In the trust-region POD optimal control algorithm above, the gradient of mk

(
α

(k)
0 + s

)
with

respect to s plays an important role in the constrained minimization sub-problem

min mk

(
α

(k)
0 + s

)
subject to ‖s‖ ≤ δk

On the one hand, if δk is large enough, the norm constraint is not active then sk is just

in the vicinity of the unconstrained minimum. On the other hand, if δk is small, then the

higher order terms in s play a less important role than the linear term, i.e. for some constant

βk it holds sk ≈ −βk∇JPODα

(
α

(k)
0

)
. As δk is increasing we obtain a continuous change from

the direction of steepest descent to the direction of the minimum of JPODα

(
α

(k)
0

)
. Therefore

good gradient information is required, which can be obtained by performing the reduced-

order adjoint backward in time integration .

Following the trust-region philosophy, it is not necessary to determine the exact step

solution of the constrained problem above. It is sufficient to compute a trial step sk that

achieves only a certain amount of decrease for the full model. We can use a backtracking

approach to find the sufficient decrease. For recent work on stable Galerkin reduced order

models see Barone [112].

5.4.3 Dual weighted TRPOD approach

A new methodology combining the dual weighted snapshots and trust region POD adaptivity

is put forward, allowing us to enhance the benefits already derived from by using DWPOD.

The combined algorithm proceeds as follows illustrated in the algorithm flowchart.

5.5 Incremental balanced truncated POD 4-D Var

The model can be written as:

∂X(t)

∂t
= F(X(t)) (5.73)
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Initial conditions

Dual weighted snapshots

POD reduced-order modelling

YES

Trust region POD 4-D VAR

NO

Trust region ratio  ≤ η1

Full adjoint to generate dual weights

Cost functional  ≤ tolerance

YES

DW TRPOD 4-D VAR is completed

NO

Figure 5.3: Dual weighted TRPOD approach flowchart

and the discretized form of the numerical model can be written as:

X(ti) = M0→iX0 (5.74)

where initial condition X0 is the control variable for the given numerical model, M0→i is

the predefined discretized nonlinear model forecast operator, mapping the initial condition

X0 into the model solution Xi at time ti
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In its general form, the 4D-Var data assimilation (4-D Var), is defined as the minimization

with respect to the initial condition X0 of the following discrete cost functional:

J(X0) =
1

2
(X−Xb) B−1 (X−Xb) +

1

2

n∑
i=0

(Hi(Xi)−Yi)
T O−1i (Hi(Xi)−Yi)(5.75)

subject to the strong nonlinear constraint

Xi = MiX0 (5.76)

Assuming that the model is perfect, so that the sequence of model states Xi at time ti must

be a solution for the given model equations, where B is the background covariance matrix,

Xi is the model solution at time ti, Oi is the observation error covariance matrix at time ti,

Hi is the observation operator at time ti, representing projection of model variables into the

observational variables.

For the incremental 4-D Var, in the outer loop we set the initial guess X
(0)
0 to be equal

to the background.

Therefore, for k = 1, · · · , K we compute

X
(k)
i = MiX

(k)
0 (5.77)

In the inner loop, we solve the linear minimization problem

J(δX
(k)
0 ) =

1

2

(
δX

(k)
0 − δX

(k)
b

)
B−1

(
δX

(k)
0 − δX

(k)
b

)
+

1

2

n∑
i=0

(
Hi(δX

(k)
i )− do

i

)T
O−1i

(
Hi(δX

(k)
i )− do

i

)
(5.78)

where

do
i = Hi(X

(k)
i )−Yi

subject to the strong linear constraint

δX
(k)
i+1 = MiδX

(k)
i (5.79)

In the end of each outer loop, we update

X
(k+1)
0 = X

(k)
0 + δX

(k)
0 (5.80)
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Inside of each inner iteration, let’s remove the upper index k and assume

Hi = In×n (5.81)

and

Mi = M (5.82)

Hence, we obtain that

δXi+1 = MδXi

di = δXi (5.83)

where

δXi ∈Rn (5.84)

is the a perturbation about the current state variable and

M ∈ Rn×n

is the the linearization of the nonlinear model operator about the current state variable.

In order to do the balanced truncation, for i = −1, · · · , n we can setup a input-output

system as follows

δXi+1 = MδXi + ui

di = δXi (5.85)

where

δXi, ui di ∈ Rn (5.86)

Let

δX−1 = 0 (5.87)

and

u−1 ∼ N (0, D0) , ui = 0, i = 1, · · ·n (5.88)
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Integrate this input-output system and we construct an ensemble of tangent linear model

solutions as follows.

δX = {δX1, δX2, . . . , δXn} (5.89)

And we construct the POD modes based on the snapshots of δX

Ψ = {ψ1, ψ2, . . . , ψr} (5.90)

where

r � n

Afterwards, we can integrate the adjoint of this input-ouput system

δX∗i+1 = M∗δX∗i (5.91)

with initial conditions

δX∗0 = ψj, j = 1, · · · r

Now, we can construct a series of so-called adjoint snapshots as follows for j = 1, · · · r
repectively

δX∗j =
{
δX∗j 1, δX

∗
j 2, . . . , δX

∗
j n

}
, j = 1, · · · r (5.92)

Put all them together, we have contructed a large ensemble of adjoint snaphots

δX∗ =
{
δX∗1, δX

j
2, . . . , δX

j
r

}
, j = 1, · · · r (5.93)

It is noted that

δX ∈ Rn×n (5.94)

and

δX∗ ∈ Rn×rn (5.95)

Hence, we can define the controllability matrix as

P = δX (δX)T ∈ Rn×n (5.96)

and the observability matrix as
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Q = δX∗ (δX∗)T ∈ Rn×n (5.97)

Hence, we define the Hankel singular values as

σi = (λi (PQ))
1
2 (5.98)

and find the eigenvectors such that

T−1PQT = Σ2 (5.99)

where

Σ = diag (σ1, · · · , σn) (5.100)

Those eigenvalues of the product of the controllability and observability Grammians

are invariant under coordinate transformations. Approximation by balanced truncation

preserves stability, and the H∞- norm (the maximum of the frequency response) of the error

system is bounded by twice the sum of neglected Hankel singular values 2 (σr+1 + . . .+ σn).

Define balanced optimal projections as

UT =
(

Ir 0r×(n−r)
)
T−1, :Rn → Rr

V = T

(
Ir

0r×(n−r)

)
, :Rr → Rn

Finally, we obtain the reduced order inner loop problem by balanced optimal projections

as follows:

J(δX̂
(k)
0 ) =

1

2

(
δX̂

(k)
0 −UTδX

(k)
b

) (
UTB0U

)−1 (
δX̂

(k)
0 −UTδX

(k)
b

)
+

1

2

n∑
i=0

(
HV(δX̂

(k)
i )− d̂o

i

)T
O−1i

(
HV(δX̂

(k)
i )− d̂o

i

)
(5.101)

where

d̂o
i = HVdo

i
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subject to the strong linear constraint

δX̂
(k)
i+1 = UTMiδX̂

(k)
i (5.102)

and set

δX
(k)
0 = VδX̂

(k)
0 (5.103)
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CHAPTER 6

4-D VAR OF FINITE-ELEMENT LIMITED-AREA

SHALLOW-WATER EQUATIONS MODEL

The shallow-water equations are frequently used to simulate the earth’s atmosphere, which

can be thought of as a thin (practically zero in height), semi-incompressible fluid that is

flowing over the surface of a rotating globe (the earth). The shallow-water equations are the

simplest form of the equations of motion that show how the fluid flow will evolve in response

to rotational and gravitational accelerations of the earth, forming waves.

This chapter explores the feasibility of carrying out a modular structured variational data

assimilation (VDA) using a finite-element method of the nonlinear shallow water equations

model on a limited area domain, in which we improve the methodology (Courtier and

Talagrand 1987; Zhu et al. 1994) and addresses issues in the development of the adjoint

of a basic finite-element model. Specific numerical difficulties in the adjoint derivation, for

example, the treatment of the adjoint of the iterative process required for solving the systems

of linear algebraic equations resulting from the finite-element discretizations using Crank-

Nicholson time differencing scheme (see Wang et al. 1972; Douglas and Dupont 1970) are

explicitly addressed. The systems of algebraic linear equations resulting from the finite-

element discretizations of the shallow-water equations model were solved by a Gauss-Seidel

iterative method. To save computer memory, a compact storage scheme for the banded and

sparse global matrices was used (see Hinsman, 1975). We emphasize the development of the

tangent linear (TLM) and the adjoint models of the finite-element shallow-water equations

model and illustrate its use on various retrieval cases when the initial conditions are as

control variables.

The plan of this chapter is as follows. The finite-element Galerkin method for the shallow-

water equations model on an f plane, the derivation of its tangent linear model and its adjoint
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are briefly described in Section 6.1. The full finite element discretizations of the model of the

nonlinear shallow-water equations model is described in Section 6.2. Section 6.3 introduces

the optimal control methodology including the development of the tangent linear model and

its adjoint as well as formulation of the cost functional aimed at allowing the derivation of

optimal initial conditions reconciling model forecast and observations in a window of data

assimilation by minimizing the cost functional measuring lack of fit between model forecast

and observations. Particular attention is paid to the development of adjoint of iterative

Gauss-Seidel solver. Verification of the correctness of the adjoint is carried out in a detailed

manner for all stages of the calculations (i.e. TLM, adjoint and gradient test). A detailed

description of the entire optimal control set-up code organization is provided and illustrated.

Set-up of numerical experiments and the experimental design are detailed in Section 6.4.

Basic assimilation experiments using a random perturbation of the initial conditions as

observations and their results are presented. Particular attention is paid to the effectiveness

of limited memory Quasi-Newton method L-BFGS for minimizing the cost functional in

retrieving optimal initial conditions. Various scenarios involving mesh resolution, different

time steps as well as various lengths of the assimilation windows are tested and numerical

conclusions are drawn (See Zhu, Navon and Zou 1994 [118]).

6.1 Shallow-Water equations model on an f plane

The shallow-water equations model is one of the simplest forms of the equations of motion

for incompressible fluid for which the depth is relatively small compared to the horizontal

dimensions, which can be applied to describe the horizontal structure of an atmosphere. They

describe the evolution of an incompressible fluid in response to gravitational and rotational

accelerations (See Tan 1992 and Vreugdenhil 1994 Galewsky 2004).

The shallow-water equations can be written as:

∂~v

∂t
+−→v · ∇−→v +∇φ+ f

−→
k ×−→v = 0 (6.1)

∂φ

∂t
+∇ · (φ−→v ) = 0 (6.2)

(x, y) ∈ [0, L]× [0, D], t > 0
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where L and D are the dimensions of a rectangular domain of integration, −→v is a vector

function:

−→v = (u(x, y, t), v(x, y, t)) (6.3)

where u and v are the velocity components in the x and y axis respectively, φ = gh is

the geopotential height, h is the depth of the fluid and g is the acceleration of gravity. The

vector
−→
k is the vertical unit vector pointing away from the center of the planet. The scalar

function f is the Coriolis parameter defined by the β-plane approximation:

f = f̂ + β

(
y − D

2

)
(6.4)

The Coriolis parameter

f̂ = 2Ω sin θ (6.5)

is defined at a mean latitude θ0, where Ω is the angular velocity of the earth’s rotation and

θ is latitude.

6.1.1 Initial and boundary conditions

The shallow-water equations require specifying appropriate initial and boundary conditions.

An initial condition is imposed as:

w(x, y, 0) = ϕ(x, y) (6.6)

where state variables are w = w(x, y, t) = (~v(x, y, t), φ(x, y, t))

with periodic boundary conditions in the x-direction:

w(0, L, t) = w(0, D, t) (6.7)

and a solid wall boundary condition in the y-direction is:

~v(x, 0, t) = ~v(x,D, t) = 0 (6.8)

The geopotential ϕ(x, y) will be specified later in the numerical experiments.
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6.1.2 Linearization of the Shallow-Water equations model

The linearization of the shallow-water equations model (1) - (2) can be written as:

∂−→v ′

∂t
+−→v ′ · ∇−→v +−→v · ∇−→v ′ +∇φ′ + f

−→
k ×−→v ′ = 0 (6.9)

∂φ′

∂t
+∇ · (φ′−→v ) +∇ · (φ−→v ′) = 0 (6.10)

where the prime denotes a perturbation around the basic state variables.

The form above can also be written explicitly (Jacques Blum, Franois-Xavier Le Dimet,

I. Michael Navon 2008) as continuous tangent linear model (TLM):

∂u′

∂t
+ u′

∂u

∂x
+ v′

∂u

∂y
+
∂φ′

∂x
+ u

∂u′

∂x
+ v

∂u′

∂y
− fv′ = 0

∂v′

∂t
+ u′

∂v

∂x
+ v′

∂v

∂y
+
∂φ′

∂y
+ u

∂v′

∂x
+ v

∂v′

∂y
+ fu′ = 0

∂φ′

∂t
+
∂ (φ′u)

∂x
+
∂ (φ′v)

∂y
+
∂ (φu′)

∂x
+
∂ (φv′)

∂y
= 0

and its first order continuous adjoint model with weighting forcing terms may be written

as:

−∂u
?

∂t
= −

(
−u∂u

?

∂x
− ∂ (vu?)

∂y
+ v?

∂v

∂x
+ fv? − φ∂φ

?

∂x

)
+Wu(u− uo)

−∂v
?

∂t
= −

(
u?
∂u

∂y
− fu? − v∂v

?

∂y
− ∂ (uv?)

∂x
− φ∂φ

?

∂y

)
+Wv(v − vo)

−∂φ
?

∂t
= −

(
−∂u

?

∂x
− ∂v?

∂y
− u∂φ

?

∂x
− v∂φ

?

∂y

)
+Wφ(φ− φo)

with final conditions equal to zeros:

u(T ) = v(T ) = φ(T ) = 0

By integrating the first order continuous adjoint model reversely in time, the gradient of

a given cost functional J is obtained by the adjoint model solutions as follows:
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∇J(w0) = ∇J(u0, v0, φ0) = w?(0) =

 u?(0)
v?(0)
φ?(0)


where w? = (u?, v?, φ?) is the first order adjoint variable vector, Wu, Wv, Wφ are weighting

factors which are chosen to be the inverse of estimates of the statistical root-mean-square

observational errors on geopotential and wind components respectively. In our test problem,

values of Wφ = 10−4m−4s4 and Wu = Wv = 10−2m−2s2 are used.

The operator form of the discretized (9) - (10) can be written as(see Navon et al. 1992)

w′(x, y, t) = P (w(x, y, t))w′(x, y, 0) (6.11)

where the control variable w′(x, y, 0) is the random perturbation variable of the initial

state variable w(x, y, 0), while P (w(x, y, t)) represents the tangent linear operator, so that

we can obtain the control variable w′(x, y, t) that contains the values of wind fields and

geopotential field at the final time step.

Generally speaking, there are two approaches which could be employed for calculating

the gradient of the cost functional with respect to the initial conditions of shallow water

equations. The first approach is called continuous adjoint, in which we need to differentiate

the nonlinear shallow water equations model with respect to its initial conditions first and

then discretize its adjoint PDE to compute the approximate gradient of the given cost

functional. Another approach is called discrete approach, in which we need to approximate

the nonlinear PDE by a discretized nonlinear system of equations first and then differentiate

the discretized nonlinear system with respect to the parameters. The discrete adjoint

approach is easy to implement with the help of automatic differentiation tools, such as

ADIFOR and TAMC. In the following sections, we demonstrate the methodology of discrete

adjoint to carry on the VDA.

6.2 Discretization of the SWE model

6.2.1 Formulation of Galerkin Finite-Element model

We employ linear piecewise polynomials on triangular elements in the formulation of Galerkin

Finite-Element model (1) - (2) for the sake of of simplicity. Over each given element, a

variable ξ can be written as(see Zienkiewicz 2005)
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ξel =
3∑
j=1

ξj(t)Vj(x, y)

where ξj(t) represents the scalar node value of variable ξ at the node of the triangular

element, and Vj represents a basis function(interpolation function) defined by the coordinates

of the nodes.

The advection terms in the continuity equation (2) are usually integrated by parts using

Green’s theorem to shift the derivative from the variable to the basis function, which yields:

〈
dφ

dt
, Vi

〉
+ 〈∇ · (φ−→v ) , Vi〉 = 0 (6.12)

⇒
〈
dφ

dt
, Vi

〉
+

∫
∇ · (φVi−→v )− 〈φ−→v ,∇Vi〉 = 0 (6.13)

where the notation:

〈−→
f , Vi

〉
=

M∑
elements

∫∫ −→
f (x, y) · Vidxdy (6.14)

defines the inner product when a function is multiplied by the trial function Vi. where ·
represents the inner product between two real vectors. In Galerkin FEM method, we choose

the trial function to coincide with the test function. Taking into account the boundary

conditions (see Navon 1979), the second term of equation (13) vanishes so that we obtain

the final expression for the continuity equation:

〈
dφ

dt
, Vi

〉
− 〈φ−→v ,∇Vi〉 = 0 (6.15)

Following the Galerkin FEM, the momentum equation (1) becomes:

〈
d~v

dt
, Vi

〉
+ 〈−→v · ∇−→v , Vi〉+ 〈∇φ, Vi〉+

〈
f
−→
k ×−→v , Vi

〉
= 0 (6.16)

Over each element, we denote wind fields and geopotential fields

~v =
3∑
j=1

~vj(t)Vj(x, y), φ =
3∑
j=1

φj(t)Vj(x, y) (6.17)

where ~vj(t) and φj(t) are the time-dependent nodal values of wind fields and geopotential

fields respectively.
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Upon substituting (17) into (15) - (16), one obtains:

〈
dφj
dt
Vj, Vi

〉
− 〈φj~vkVjVk,∇Vi〉 = 0 (6.18)

〈
d~v

dt
Vj, Vi

〉
+ 〈~vk · ∇~vk, Vi〉+ 〈∇φk, Vi〉+

〈
f
−→
k × ~vk, Vi

〉
= 0 (6.19)

According to the definition (14), we may write (18) explicitly as:

〈
∂φj
∂t

Vj, Vi

〉
−
〈
φjukVjVk,

∂Vi
∂x

〉
−
〈
φjvkVjVk,

∂Vi
∂y

〉
= 0 (6.20)

We may also write (19) explicitly as:

〈(
∂uj
∂t
Vj

∂vj
∂t
Vj

)
, Vi

〉
+

〈
Vk(uk, vk)

(
uj

∂Vj
∂x

uj
∂Vj
∂y

v
∂Vj
∂x

vj
∂Vj
∂y

)
, Vi

〉

+

〈(
φk

∂Vi
∂x

φk
∂Vi
∂y

)
, Vi

〉
+

〈(
−fvkVk
fukVk

)
, Vi

〉
= 0

⇒
〈
∂uj
∂t

Vj, Vi

〉
+

〈
ukVkuj

∂Vj
∂x

, Vi

〉

+

〈
vkVkuj

∂Vj
∂y

, Vi

〉
+

〈
φk
∂Vi
∂x

, Vi

〉
+ 〈−fvkVk, Vi〉 = 0 (6.21)

and

⇒
〈
∂vj
∂t
Vj, Vi

〉
+

〈
ukVkvj

∂Vj
∂x

, Vi

〉

+

〈
vkVkvj

∂Vj
∂y

, Vi

〉
+

〈
φk
∂Vi
∂y

, Vi

〉
+ 〈fukVk, Vi〉 = 0 (6.22)

6.2.2 Time integration

A time-extrapolated Crank-Nicholson time differencing scheme was applied for integrating

in time the system of ordinary differential equations resulting from the application of the

Galerkin FEM (see Navon 1979,1987). The shallow-water equations system were then

coupled at every time step so that the equations become quasi-linearized(see Wang et al.
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1972; Douglas and Dupont 1970), since an average is taken at time level n−1 and time level

n of expressions, while the nonlinear advective terms are linearized by estimating them at

time level n+ 1
2

using the following second-order approximation in time:

w? = 3
2
wn − 1

2
wn−1 + o(∆t2) (6.23)

where the state variables w = w(x, y, t) = (~v(x, y, t), φ(x, y, t)).

At each time step the shallow-water equations system was coupled, i.e. the solution

of each equation after one iteration at a given time step was used to solve the other two

equations for the same iteration for the same time step.

Upon introducing a finite difference discretization in time into the continuity equation

(20), which is the first to be solved at a given time step, one obtains

M
(
φn+1
j − φnj

)
− 4t

2
K1

(
φn+1
j + φnj

)
= 0 (6.24)

where

M =

∫∫
ele

ViVjdA (6.25)

and

K1 =

∫∫
ele

VjVku
?
k

∂Vi
∂x

dA+

∫∫
ele

VjVkv
?
k

∂Vi
∂y

dA (6.26)

In this continuity equation, we need to use Crank-Nicholson to extrapolate u? and v?

at the current time step so that we can proceed to solve φn+1 at the next time step from

(u?, v?, φn) .

By introducing the same finite difference scheme into the u-momentum equations (21),

one obtains:

M
(
un+1
j − unj

)
+
4t
2

K2

(
un+1
j + unj

)
+
4t
2

(
Kn+1

21 + Kn
21

)
+4tP2 = 0 (6.27)

where

K2 =

∫∫
ele

unkViVk
∂Vj
∂x

dA+

∫∫
ele

v∗kViVk
∂Vj
∂y

dA (6.28)
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K21 =

∫∫
ele

φn+1
k Vi

∂Vk
∂x

dA (6.29)

P2 = −
∫∫
ele

fv?kVkVidA (6.30)

In this u-momentum equation, since we already know the most recent solution φn+1 from

solving the continuity equation above, we only need to extrapolate v? at the current time

step so that we can proceed to solve un+1 at the next time step from (un, v?, φn+1).

Finally, from the v-momentum equation (22), one obtains:

M
(
vn+1
j − vnj

)
+
4t
2

K3

(
vn+1
j + vnj

)
+
4t
2

(
Kn+1

31 + Kn
31

)
+4tP3 = 0 (6.31)

where

K3 =

∫∫
ele

un+1
k ViVk

∂Vj
∂x

dA+

∫∫
ele

vnkViVk
∂Vj
∂y

dA (6.32)

K31 =

∫∫
ele

φn+1
k Vi

∂Vk
∂y

dA (6.33)

P3 =

∫∫
ele

fun+1
k VkVidA (6.34)

In this v-momentum equation, since we already know the most recent solution for both

φn+1 and un+1 at the current time step , we don’t need any extrapolations at the current

time step and we can proceed to solve vn+1 at the next time step from (un+1, vn, φn+1).

6.2.3 Gauss-Seidel iterative method for the compact matrix of the
Galerkin finite-element model.

In this Galerkin finite-element model, a compact matrix form was adopted due to the local

support property over the triangle mesh. In particular, the N ×N global matrix, assembled

from each small element matrix, has at most seven nonzero elements in each row of the

matrix. Hence, we can store the global matrix into a compact matrix of size N × 7. (see

Zhu, Navon and Zou 1994).
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In order to implement boundary conditions in the Galerkin finite-element model, we

have adopted the approach suggested by Payne and Irons(see Payne 1963) and mentioned

by Huebner(see Huebner1975). This approach consists in modifying the diagonal terms of the

global matrix associated with the nodal variables by multiplying them by a large number, say

1016 (chosen with a view to the significant number of digits possible with the given computer

and the size of the field variables), while the corresponding term in the right-hand vector is

replaced by the specified boundary nodal variable multiplied by the same large factor times

the corresponding diagonal term. This procedure is repeated until all prescribed boundary

nodal variables have been treated(see Navon 1979).

6.3 Optimal Control of FE-SWE Model

6.3.1 Code organization

The nonlinear Galerkin FEM Model, TLM test, transpose test(Input/Output test), Gradient

Test, and L-BFGS optimization were all written by a modularized FORTRAN90 language.

In the graphs as follows, we only show the modularized Galerkin FEM code as well as the

modularized L-BFGS optimization code flowchart.

In nonlinear Galerkin FEM model (Figure 6.1), four different modules are written as

Mesh, Assemble Matrix, Nonlinear Forward Model, and solver. For example, in Module Mesh,

we encapsulated a large amount of information such as the mesh size, the local and global

element, compact local support, the area of each element, the coordinate and derivative of

each node, and special geometries of the boundary structure.

In the graph of modularized L-BFGS optimization flowchart (Figure 6.2), we encapsulated

the nonlinear Galerkin FEM model as well as its corresponding adjoint model. In the

calls graph of L-BFGS implementation (Figure 6.3), we briefly list the function calls and

subroutine calls to each other within each of the relevant modules.

6.3.2 Techniques in coding the adjoint of FE-SWE model

• Reset some temporary variables to zeros when using them in different statements ;

• Saving and loading the state variables calculated in the forward model ;

• Identifying the reused adjoint control variables in all the subroutines;
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Figure 6.1: Modularized Galerkin FEM code organization

Figure 6.2: Modularized L-BFGS code organization

– Reset the accumulations of reused adjoint variables to zeros when one period of

accumulation is finished;

– Finish the accumulations of reused adjoint variables only when calculating back-

wards into its first use ;

• Handle the adjoint of iterative solver such as Gauss-Seidel ;

• Handle the adjoint of boundary conditions ;
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Figure 6.3: Calls graph of L-BFGS implementation
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• Identifying the inputs and outputs of each subroutine and the whole program ;

• Make adjoint subroutines and parameters generic so that they can be reused for

different adjoint variables without rewriting them over and over again.

6.3.3 Adjoint of iterative solver

The challenging part in the development of adjoint for nonlinear time-dependent discrete

Galerkin Finite-Element model consists in the treatment of the Gauss-Seidel iterative

procedure to solve the continuity equation systems and u-momentum equation systems as

well as v-momentum linear systems, because some of the control variables to be solved at

the current iteration level are reused while some are not(see Zhu, Navon and Zou 1994).

The key issues related to developing the adjoint of Gauss-Seidel iterative procedure are

as follows:

We need to record the maximum number of the iterations when we integrate the nonlinear

model forward in time, then, in order to obtain the adjoint of the Gauss-Seidel iterative

procedure, the relationship of being reused among all the control variables must be analyzed.

Finally, since the piecewise linear triangular Galerkin Finite-Element model has a local

support of at most six nodes, while the minimum number of nodes is four when the node is

on the boundary. Hence, the variable value at any given node inner or boundary is related to

no more than six neighboring nodes surrounding it, and sometimes they are input variables

and sometimes they are output variables. We are only concerned with the input variables

when we speak about the reused variables, in other words, some of input variables in the

iterative procedure are reused while other input variables are not, depending on the position

in the grid as well as level of the iterations itself.

In addition, some control variables are firstly used in the setup of the continuity system

and it will be used later twice in the setup of the u-momentum system. When dealing with

situation to reuse adjoint variables in the adjoint code, we need to save the accumulated

reused adjoint variables when calculating backwards into its first use. In other words, when

we write the adjoint code, we need restore all the following accumulations into its first use

when we finish the accumulation of reused adjoint variables.
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6.3.4 TLM test

Prior to checking the correctness of the adjoint model, we need to check the correctness of

the discrete TLM (Figure 6.4). One idea is to consider a state vector X and a perturbation

X′ so that we can use Taylor expansion to verify the correlation between nonlinear Galerkin

FEM and its corresponding TLM:

ψ(α) =
G (X + αX′)−G(X)

αP(X′)
= 1 +O(α) (6.35)

where G denotes the nonlinear Galerkin FEM and P represents its TLM operator,

αdefines the perturbation factor . Both the nonlinear Galerkin FEM and its TLM are

integrated for a 5-hours period with various α values decreasing, and the results show that

the correlationship between Nonlinear Galerkin FEM model and its TLM is almost equal to

one as α tends to zero (Figure 6.5).

Therefore, if the TLM test can be correct, we only need to code the adjoint model

directly from the discrete TLM by rewriting the code of TLM statement by statement in

the opposite direction. This simplifies not only the complexity of constructing the adjoint

model but also avoids the inconsistency generally arising from the derivation of the adjoint

equations in analytic form followed by the discrete approximation(due to non-commutativity

of discretization and adjoint operators)

In addition, we also use an alternative idea to test the TLM (and thus the adjoint).

It’s called the complex-step derivative approximation. It is reasonably straightforward to

implement, and it requires only slight modifications in the forward model code. The feature

of this method is that it can avoid some cancellations in the finite difference calculation that

will result in the loss of digit accuracy(see Martins 2003).

6.3.5 Transpose test

The correctness of the adjoint model checked by following the algebraic expression :

(PX)T (PX) = XT
(
PT (PX)

)
(6.36)

where X represents the perturbation of input of the Galerkin FEM model, while the

TLM denoted by P represents either a single DO loop or a subroutine. Each of them has

its adjoint image DO loop or a subroutine, respectively. The left hand side involves only
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Figure 6.4: Flowchart of the Test of Tangent Linear Galerkin Finite-Element Model
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Figure 6.5: Correlation between Nonlinear Galerkin FEM model and its TLM, where α
defines the perturbation factor.

the tangent linear code, while the right hand side involves also the adjoint code. When we

implement it, we first run the TLM code and use the output vector as the input vector of the

adjoint calculation. There are some issues where we need to be careful, when running the

test. First, we need to make sure all the state variables have been saved when we integrate

TLM forward and restored or loaded when we integrate its adjoint backward. Second, we

may need to run the different inputs to make sure we go thorough a rigorous check of the

adjoint code into each single part of it. Finally, the results obtained illustrated that a 13

digits accuracy can be achieved in the input/output tests by using DOUBLE PRECISION.

6.3.6 Gradient test

We also tested the accuracy of the gradient of the cost function by using the so-called α test

as follows (Figure 6.6 and Figure 6.7):
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F (α) =
J(X + αX′)−J(X)

α (∇J)T (∇J)
= 1 +O(α) (6.37)

and the results show that the vector we obtained from the adjoint model is almost equal to

the gradient as α decreasingly tends to zero, if α is not too close to the machine accuracy(see

Navon 1992).
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Gradient Test: Mesh = 30 * 30, window = 24h, dt = 1800s, pert = 0.1%

Figure 6.6: Gradient Test:Variation of F (α) with respect to logα.

6.4 Numerical Experiments

6.4.1 Description of Problem

The test problem used here adopts the initial conditions (Figure 6.8 and Figure 6.9) from

the initial height field condition No.1 of Grammeltvedt (see Grammeltvedt 1969):

h(x, y) = H0 +H1 tanh

(
9(D/2− y)

2D

)
+H2

(
1/ cosh2

(
9(D/2− y)

D

))
sin

(
2πx

L

)
(6.38)
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Figure 6.7: Gradient Test:Variation of log (F (α)− 1) with respect to logα, where α defines
the perturbation factor.

where this initial condition has energy in wave number one in the x-direction.

The initial velocity fields were derived from the initial height field using the geostrophic

relationship:

u = −
(
g

f

)
∂h

∂y
v =

(
g

f

)
∂h

∂x
(6.39)

The dimensional constants used here are:

L = 4400km, D = 6000km, f̄ = 10−4s−1, β = 1.5× 10−11s−1m−1,
g = 10ms−1, H0 = 2000m, H1 = 220m, H2 = 133m.

(6.40)

and the space increments used here are

∆x = ∆y = 400km (6.41)
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Figure 6.8: Initial geopotential
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Figure 6.9: Initial wind fields
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Figure 6.10: 5% random perturbation of the initial geopotential

6.4.2 Perturbation of initial conditions

We applied a 5% uniform random perturbations (Figure 6.10 and Figure 6.11) on the initial

conditions in order to provide twin-experiment “observations” and we also computed the

errors between the retrieved initial conditions related to the perturbed data and the reference

state variables.

6.4.3 Retrieving the optimal initial conditions by applying L-
BFGS

The accuracy of a short-range numerical weather prediction greatly depends on the initial

and boundary conditions. The following experiments illustrate the technology to retrieve

the optimal initial condition from a noisy initial conditions. First, we randomly perturb

the initial conditions to generate the so-called observations at each time step. Second, we

generate another rondom perturbations of the initial conditions to obtain a initial guess of the

initial conditions in the optimization. In this paper, we tried limited quasi-Newton method of
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Figure 6.11: 5% random perturbation of the initial wind-field

Liu and Nocedal(1980,1989) and Richard and Nocedal(1995) to minimize the misfit between

model solutions and artificial observations. The code is written in FORTRAN90 modularized

with the control variables allocatable, so that any different mesh size can be tested in this

code with a high accuracy. We also tested the different time steps as well as different data

assimilation windows. The control variables are all defined as DOUBLE PRECISION so that

a very high accuracy of approximation of the gradient of the cost functional with respect

to the initial conditions can be achieved. In L-BFGS, we setup the number seven as the

number of corrections(M = 7)(See Liu and Nocedal 1989).

Testing different observations

The first experiment (Figure 6.12, Figure 6.13 and Figure 6.14) is performed on a short

assimilation window for 12 hours with a small mesh size consisting of 15×15 grid points and

we use a unconstrained minimization algorithm L-BFGS to minimize the cost functional. The

adjoint model is integrated backward in time, with a forcing term being added, consisting
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Table 6.1: L-BFGS: Data assimilation window = 12h, ∆x = ∆y = 400km, 4t = 1800s, and
minimization convergence tolerance ε = 10−11

Random perturbations Iterations Function evaluations

5% 31 108
1% 28 99

of the difference between forecast and observation, interpolated at the same time and space

location every time when an observation is encountered. We found out (Table 6.1) if we

use 5% perturbation for both observations and initial guess, the L-BFGS converges in

31 iterations with 108 function evaluations to converge to prescribed tolerance ε = 10−11

(Figure 6.15 and Figure 6.16), but if we use 1% random perturbations, it will only take 28

iterations with 99 function evaluations to converge, which means both good observations

and good initial guess will reduce the assimilation time required.

Furthermore, if we extend the assimilation window from 12 hours to 48 hours, the L-

BFGS minimization fails to achieve the prescribed tolerance no matter how accurate the

observations and initial guess we choose for the optimization algorithms. If the mesh size is

too coarse, say 5 × 5 grid points, even if we use 12 hours assimilation window, we will still

fail to converge by using L-BFGS, which means either a too large assimilation window or a

too small mesh size will affect the ability of the L-BFGS algorithm to converge to achieve

the prescribed tolerance.

Testing different mesh resolutions

By increasing the mesh resolution from 15 × 15 to 30 × 30 (Figure 6.17 and Figure 6.18)

and still using L-BFGS, we found out that we can achieve a stricter tolerance ε = 10−16,

although it requires more iterations and function evaluations to converge (Table 6.2). Hence,

it can be observed that the rate of the convergence of the cost functional associated with

the coarse mesh is faster than the rate of convergence corresponding to the fine-resolution

models, however, the value of the cost functional associated with the fine mesh can be

reduced to achieve a higher level of tolerance that is by five orders of magnitude better than

minimization of the cost functional achieved for the coarse mesh.
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Figure 6.12: Data assimilation window = 12h, ∆x = ∆y = 400km, random perturbation
= 5%. The contours of difference between retrieved initial geopotential and true initial
geopotential are plotted.

Testing different time steps

By decreasing the time length from 1800s to 900s while keeping an identical data assimilation

window of 12 hours, which requires more time steps, we can achieve a convergence of

minimization with tolerance ε = 10−15 by using a coarse mesh size= 15 × 15, which is

beneficial especially when there are not enough observations of a fine mesh in space available

everywhere but we could have the ability to measure them for every short time step length,

we may still retrieve a very high accuracy of optimal initial conditions by shrinking each

time step length and expanding number of data assimilation steps (Table 6.3).

This can also be explained by noting that the results from the fine mesh integrated contain
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Figure 6.13: Data assimilation window = 12h, ∆x = ∆y = 400km, random perturbation
= 5%. The contours of difference between retrieved initial u-momentum and true initial
u-momentum from -0.5 to 0.5 by 0.2 are displayed.

Table 6.2: Results of using L-BFGS: data assimilation window = 12h, ∆x = ∆y = 200km,
mesh resolution= 30× 30, 4t= 1800s, and minimization convergence tolerance ε = 10−16

Random perturbations Iterations Function evaluations

5% 42 162
1% 38 149

more small-scale features than the corresponding ones from the coarse mesh integrated, and

the dimension of the control variables also impacts upon the convergence rate so that the

retrieval with fine-mesh model data becomes more difficult. The presence of small-scale

results in an increase in the condition number of the Hessian of the cost function of the

fine-mesh resolution model due to the introduction of small eigenvalues in the spectrum of

the Hessian(see Axellson and Barker 1984). This situation becomes more apparent when

the data assimilation is carried after a long time window of assimilation allowing reflections

from limited boundaries thus causing short wave number noisy contaminations.
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Figure 6.14: Data assimilation window = 12h, ∆x = ∆y = 400km, random perturbation
= 5%. The contours of difference between retrieved initial v-momentum and true initial
v-momentum from -0.3 to 0.3 by 0.05 are also displayed.

Table 6.3: Results of using L-BFGS: data assimilation window = 12h, ∆x = ∆y = 400km,
random perturbations = 5%, 4t= 900s, and tolerance of convergence of minimization is
ε = 10−15

mesh size Iterations Function evaluations

15× 15 28 97
30× 30 35 140

In this Chapter, we developed a modularized code written in FORTRAN90 to present a

VDA scheme using Galerkin FEM and its adjoint to generate minimization algorithms used

to minimize cost functional so as to yield optimal initial conditions using model forecast

with observations. The challenging part in this paper is how to handle the reused variables

especially in constructing the adjoint of Gauss-Seidel iterative procedure for the Finite-

Element Shallow-Water equations model over a limited area domain.

The large-scale unconstrained minimization limited-memory quasi-Newton method writ-
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Figure 6.15: L-BFGS minimization: Normalized cost function scaled by initial cost function
versus the number of minimization iterations
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Figure 6.16: L-BFGS minimization: The norm of gradient scaled by initial norm of the
gradient versus the number of minimization iterations
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Figure 6.17: L-BFGS minimization: Normalized cost function scaled by initial cost function
versus the number of minimization iterations
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Figure 6.18: L-BFGS minimization: The norm of gradient scaled by initial norm of the
gradient versus the number of minimization iterations
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ten by Liu and Nocedal(1989) was used to minimize the cost functional consisting of

difference between model solutions and observations over the large assimilation window.

We used the full random perturbation of the No.1 of Grammeltvedt initial conditions(1969)

to generate the observations and initial guess of the true initial conditions. We then carried

the VDA numerical experiments using the adjoint model to assimilate the noisy observations.

The minimization of the cost functional was able to retrieve the true initial conditions

when a coarse mesh size was employed. We also found out that the more accurate the

observations as well as the initial guess of the initial conditions, the faster the rate of

convergence of the minimization of the cost functional and the more accurate was the retrieval

of the true initial conditions.

However, when carrying the L-BFGS to implement the VDA, it took a very long time to

converge when applied to a very fine mesh and it failed to converge when a coarse mesh was

employed. When we employed a coarse mesh in the model while using L-BFGS minimization

and when observations were inserted frequently while shorter time steps were employed, we

obtained similar accuracy results as in the case of fine mesh retrieval of the optimal initial

conditions.

As we extended the length of the time window of the data assimilation of the forecast

model, we impacted on the validity of the TLM model assumption and it became more

and more difficult to employ the VDA scheme, since both effects of nonlinearity as well as

limited area boundary conditions reflections impacted on the data assimilation procedure.

To retrieve a high accuracy of optimal initial conditions, a fine mesh size is therefore required.
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CHAPTER 7

ADAPTIVE POD 4-D VAR APPLIED TO FE-SWE

MODEL

In this chapter, we address the POD model reduction along with inverse solution of a two-

dimensional finite-element shallow-water equations model on a limited area domain. While

there is a body of experience using POD model reduction for the shallow-water equations as

well as for POD applied to 4-D VAR data assimilation of the shallow-water equations our

intention is to draw on state of the art methodologies for efficient POD implementation, i.e.

combining efficient snapshot selection in the presence of data assimilation system namely

merging dual weighting of snapshots with trust region POD techniques.

The trust-region proper orthogonal decomposition (TRPOD) was recently proposed in

[81, 82] as a way to overcome difficulties related POD ROM use in solving the Partial

Differential Equation (PDE) constrained optimization problem. Combining POD technique

with the concept of trust-region with general model functions (see Toint and Conn [71, 83]

for a comprehensive survey or Nocedal and Wright [70] for an introduction to trust region

methods) presents a framework for decision as to when an update of the POD ROM is

necessary during the optimization process. Moreover, from a theoretical point of view for

TRPOD, we have a global convergence result [81] proving that the iterates produced by

the optimization algorithm, started at an arbitrary initial iterate, will converge to a local

optimizer for the original mode.

The novelty of this contribution consists in assessing the combined effect of use of TRPOD

in conjunction with dual weighting Data Assimilation System (DAS) snapshot selection

in the framework of a relatively affordable, yet relevant model. One expects a beneficial

cumulative effect from the combination of these two techniques. Comparisons to ad-hoc

update adaptivity of the POD 4-D VAR and full 4-D VAR (high fidelity model) are carried
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out for a variety of metrics to validate theoretical results in the light of numerical experiments.

Indeed the combination of TRPOD and dual-weighted snapshots yields the best results in

all metrics (see [100, 102]). For recent work on POD 4-D VAR, see [57, 58, 62, 63, 64, 65, 69].

The plan of the chapter is as follows: Section 7.1 provides the description of the generation

of POD using a finite-element formulation. Section 7.2 details the POD Galerkin projection

of FE-SWE model. Section 7.3 provides the framework of POD for reduced-order 4-D Var

data assimilation of FE-SWE model. Section 7.4 details the numerical experiments carried

out in order to validate accuracy of the POD reduced order model and the POD 4-D VAR

approach for the various numerical methods enumerated above. For recent work on POD

4-D VAR, see [57, 58, 62, 63, 64, 65, 69]. In particular we compare ad-hoc adaptivity for

POD 4-D VAR with trust-region adaptivity in combination with dual weighted snapshots.

Finally, we provide error analysis of dual weighted trust-region POD 4-D Var compared to

the high fidelity model. A discussion of numerical results thus obtained ensues. Finally we

conclude with a conclusion section.

7.1 Generation of POD using Finite-Element
formulation

The proper orthogonal decomposition identifies basis functions or modes which optimally

capture the average energy content from numerical or experimental data. POD was

introduced in the context of analysis of turbulent flow by Lumley [19], Berkooz et al. [20].

Sirovich[21] introduced the idea of snapshots. See also the book of Holmes [22].

Let Ω be a bounded domain in Rn, the L2 (Ω) is defined as

L2 (Ω) =

{
f (x) , x ∈ Ω :

∫
Ω

f 2dΩ <∞
}

(7.1)

with inner product

〈f, g〉 =

∫
Ω

fgdΩ ∀f, g ∈ L2 (Ω) (7.2)

Given a set of sampled data

Yh =
{
yh,1, yh,2, . . . , yh,n

}
(7.3)

where yh,i ∈ L2 (Ω) and V = span
(
Yh
)
⊆ Rn.
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Let K be the correlation matrix of the data defined by

K = Yh
(
Yh
)T

(7.4)

where K = (kij)n×n, kij =
〈
yh,i, yh,j

〉
,i, j = 1, . . . n.

Then from all the subspaces VM ⊂ V with a fixed dimension M =dim(VM) <dim(V ),

min
VM
‖Y − ΠMY‖ =

n∑
i=M+1

λi (7.5)

where {λi}ni=1 are the non-negative ordered eigenvalues of symmetric matrix K and

Ψh = {ψhi }ni=1 are the corresponding eigenvectors.

such that 〈
ψh,i, ψh,j

〉
= δij =


1 i = j

0 i 6= j
(7.6)

Thus, the optimal subspace is given by

VM = span
{
ψh1 , ψh2 , . . . , ψhM

}
(7.7)

in the sense that such type of POD bases describes more energy on average of the ensemble

than any other linear basis of the same dimension,

with optimal orthogonal projection ΠM : V → VM , where Π2
M = ΠM given by

ΠM =
M∑
i=1

ψhi
(
ψhi
)T

(7.8)

Historically, in other disciplines, the same procedure goes by the names of Karhunen-

Loeve decomposition (KLD)(see [14], [15]) or principal components analysis (PCA) and

before them it was discovered by Kosambi [16].

The POD bases are applied with the Galerkin weak-form finite element method to create

a reduced-order numerical model with reduced computational cost. It is well known that

under some circumstances, Galerkin projections can produce unstable equilibrium points

and limit cycles where the full system possesses stable equilibrium points and limit cycles.

If energy-based inner product is used, then Galerkin projection preserves the stability of

an equilibrium point at the origin [112, 113]. Snapshots bases consist of the flow solution

for several flow solutions corresponding to different sets of parameter values evaluated at
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different time instants of the model evolution. This involves solving the fully discretized

model and saving states at various time instants in the time interval under consideration

[22].

An ensemble of nodal-value represented snapshots chosen in the analysis time interval

[0, T ] can be written as {
y1, y2, . . . , yn

}
(7.9)

where yi ∈ RN , i = 1, . . . , n, n is the number of snapshots and N is the number of nodes

in the mesh.

Define the weighted ensemble average of the finite-element represented data as

ȳ =
i=n∑
i=1

wiy
i (7.10)

where the snapshots weights wi are such that 0 < wi < 1 and
∑n

i=1wi = 1, and they are

used to assign a degree of importance to each member of the ensemble. Time weighting is

usually considered, and in the standard approach wi = 1
n
.

Hence,the finite-element represented POD solution can be expressed as

yPOD = ȳ +
i=M∑
i=1

αi (t)ψi (7.11)

where

Ψ =
{
ψ1, ψ2, . . . , ψM

}
(7.12)

The nodal-value represented POD bases vectors Ψ and number of POD basis M are

judiciously chosen to capture the dynamics of the flow as follows in the procedure described

below:

1. The first step in creating a POD basis is to obtain a set of possible solution fields

over the domain of the given problem. These fields will be generated through Finite

Element (FE) analysis as described above, and are referred to as snapshots. The

snapshot selection is crucial to the generalization capabilities of the POD basis, and a

strategy to create the set of snapshots is vital.

2. Compute mean value of snapshots

ȳ =
i=n∑
i=1

wiy
i (7.13)
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3. Subtract the mean from each snapshot and we obtain

Y =
{
y1 − ȳ, y2 − ȳ, . . . , yn − ȳ

}
(7.14)

4. Denote the finite-element basis [114] by

[V] = [V1, . . . , Vn] (7.15)

Compute the symmetric positive definite matrix

A = VTV (7.16)

and introduce a general form of inner product

〈x,y〉A = xTAy (7.17)

The POD basis of order M ≤ n provides an optimal representation of the ensemble

data in M - dimensional state subspace by minimizing the averaged projection error

min
{ψ1,ψ2,...,ψM}

n∑
i=1

wi
∥∥(yi − ȳ)− ΠΨ,M

(
yi − ȳ

)∥∥2

A

s.t.
〈
ψi, ψj

〉
A

= δij (7.18)

where ΠΨ,M is the projection operator onto the M−dimensional space

span
{
ψ1, ψ2, . . . , ψM

}
(7.19)

and

ΠΨ,M =
M∑
i=1

〈y, ψi〉A ψi (7.20)

5. Build the weighted spatial correlation matrix

C = YWYT (7.21)

The POD modes ψi ∈ RN are eigenvectors to the N−dimensional eigenvalue problem

CAψi = λiψi
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Since in practice the number of snapshots is much less than the the state dimension,

n << N , an efficient way to compute the reduced basis is to introduce a n−dimensional

matrix as follows:

Kn×n = W
1
2 KW

1
2 = W

1
2 YTAYW

1
2 (7.22)

and compute the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 of Kn×n with its corresponding

eigenvectors ξ1, . . . , ξn

6. The nodal-value represented POD basis vectors are obtained by defining

ψi =
1√
λi

YW
1
2 ξi, i = 1, . . . ,M (7.23)

and corresponding finite-element represented continuous POD basis can be expressed

as {
ψh,1, ψh,2, . . . , ψh,M

}
=
{
Vψ1,Vψ2, . . . ,VψM

}
(7.24)

where 〈
ψh,i, ψh,j

〉
=
〈
ψi, ψj

〉
A

= δij =


1 i = j

0 i 6= j
(7.25)

One can define a relative information content to choose a low-dimensional basis of size

M << n by neglecting modes corresponding to the small eigenvalues.

7.2 POD Galerkin Projection of FE-SWE model

For an atmospheric or oceanic flow defined in time interval [0, T ]

dy

dt
= F (y, t)

y (x, 0) = y0 (x) (7.26)

To obtain a reduced model, we can first solve the PDE to obtain an ensemble of snapshots,

then use a Galerkin projection scheme of the model equations onto the space spanned by

the POD basis elements. We obtain the system of ODE as follows:

dαi
dt

=

〈
F

(
ȳh +

i=M∑
i=1

αiψ
h
i , t

)
, ψhi

〉
(7.27)
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along with the initial conditions:

αi(0) =
〈
yh(x, 0)− ȳh, ψhi

〉
= 〈y0 − ȳ, ψi〉A , i = 1, · · · ,M (7.28)

To obtain a POD reduced FE-SWE model, we reconstruct FE-SWE solutions based on

POD basis as follows:

u = ū+
i=nu∑
i=1

αui ψ
u
i

v = v̄ +
i=nv∑
i=1

αviψ
v
i

φ = φ̄+

i=nφ∑
i=1

αφi ψ
φ
i

In the derivations below, we use the notaion 〈 , 〉 to represent inner product, and (f � g)

to represent the pointwise product.

The system of ODE for α̇uk after galerkin projection is as follows:

α̇uk =
〈(
f � v̄ − ū � (ū)x − v̄ � (ū)y −

(
φ̄
)
x

)
, ψuk

〉

−
i=nu∑
i=1

αui

〈(
ψui � (ū)x + ū � (ψui )x + v̄ � (ψui )y

)
, ψuk

〉

+
i=nv∑
i=1

αvi

〈(
f � ψvi − ψvi � (ū)y

)
, ψuk

〉
−

i=nφ∑
i=1

αφi

〈(
ψφi

)
x
, ψuk

〉

−
i=nu∑
i=1

j=nu∑
j=1

αui α
u
j

〈(
ψui �

(
ψuj
)
x

)
, ψuk

〉
−

i=nu∑
i=1

j=nv∑
j=1

αui α
v
j

〈(
(ψui )y � ψ

v
j

)
, ψuk

〉
(7.29)

By introducing the following notations,

b1
k =

〈(
f � v̄ − ū � (ū)x − v̄ � (ū)y −

(
φ̄
)
x

)
, ψuk

〉

l11
ki = −

〈(
ψui � (ū)x + ū � (ψui )x + v̄ � (ψui )y

)
, ψuk

〉
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l12
ki =

〈(
f � ψvi − ψvi � (ū)y

)
, ψuk

〉

l13
ki = −

〈(
ψφi

)
x
, ψuk

〉

Q11
ijk = −

〈(
ψui �

(
ψuj
)
x

)
, ψuk

〉

Q12
ijk = −

〈(
(ψui )y � ψ

v
j

)
, ψuk

〉
we rewrite the system of ODE for α̇uk as follows:

α̇uk = b1
k +

i=nu∑
i=1

l11
kiα

u
i +

i=nv∑
i=1

l12
kiα

v
i +

i=nφ∑
i=1

l13
kiα

φ
i (7.30)

+
i=nu∑
i=1

j=nu∑
j=1

Q11
ijkα

u
i α

u
j +

i=nu∑
i=1

j=nv∑
j=1

Q12
ijkα

u
i α

v
j k = 1, · · · , nu

Using the matrix notation as follows:

−→
αu = (αu1(t), αu2(t), . . . , αunu(t))T

−→
αv = (αv1(t), αv2(t), . . . , αvnv(t))

T

−→
αφ = (αφ1 (t), αφ2 (t), . . . , αφnφ(t))T

b1 =
(
b1
k

)
nu×1

L11 =
(
L11
ki

)
nu×nu

L12 =
(
L12
ki

)
nu×nv
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L13 =
(
L13
ki

)
nu×nφ

Q11 =
(
Q11
ijk

)
nu×nu×nu

Q12 =
(
Q12
ijk

)
nu×nu×nv

Therefore, we could write the system of ODE for α̇uk into a matrix as follows:

Au

−̇→
αu = b1 + L11−→αu + L12−→αv + L13

−→
αφ+

(−→
αu
)T

Q11
(−→
αu
)

+
(−→
αu
)T

Q12
(−→
αv
)

(7.31)

Similarly, the system of ODE for α̇vk after galerkin projection is as follows:

α̇vk = −
〈
f � ū+ ū � (v̄)x + v̄ � (v̄)y +

(
φ̄
)
y
, ψvk

〉
−

i=nu∑
i=1

αui 〈f � ψui + (ψui � (v̄)x) , ψ
v
k〉

−
i=nv∑
i=1

αvi

〈(
ψvi � (v̄)y + ū � (ψvi )x + v̄ � (ψvi )y

)
, ψvk

〉
−

i=nφ∑
i=1

αφi

〈(
ψφi

)
y
, ψvk

〉

−
i=nv∑
i=1

αvi

〈(
ψvi � (v̄)y + ū � (ψvi )x + v̄ � (ψvi )y

)
, ψvk

〉
−

i=nφ∑
i=1

αφi

〈(
ψφi

)
y
, ψvk

〉

−
i=nu∑
i=1

j=nv∑
j=1

αui α
v
j

〈(
ψui �

(
ψvj
)
x

)
, ψvk

〉
−

i=nv∑
i=1

j=nv∑
j=1

αviα
v
j

〈(
ψvi �

(
ψvj
)
y

)
, ψvk

〉
(7.32)

Using the notations as follows:

b2
k = −

〈
f � ū+ ū � (v̄)x + v̄ � (v̄)y +

(
φ̄
)
y
, ψvk

〉
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l21
ki = −〈f � ψui + (ψui � (v̄)x) , ψ

v
k〉

l22
ki = −

〈(
ψvi � (v̄)y + ū � (ψvi )x + v̄ � (ψvi )y

)
, ψvk

〉

l23
ki = −

〈(
ψφi

)
y
, ψvk

〉

Q21
ijk = −

〈(
ψui �

(
ψvj
)
x

)
, ψvk

〉
Q22
ijk = −

〈(
ψvi �

(
ψvj
)
y

)
, ψvk

〉
Hence, we could rewrite the system of ODE for α̇vk as follows:

α̇vk = b2
k +

i=nu∑
i=1

l21
kiα

u
i +

i=nv∑
i=1

l22
kiα

v
i +

i=nφ∑
i=1

l23
kiα

φ
i (7.33)

+
i=nu∑
i=1

j=nv∑
j=1

Q21
ijkα

u
i α

v
j +

i=nv∑
i=1

j=nv∑
j=1

Q22
ijkα

v
iα

v
j k = 1, · · · , nv

Using the matrix notation as follows:

b2 =
(
b2
k

)
nv×1

L21 =
(
L21
ki

)
nv×nu

L22 =
(
L22
ki

)
nv×nv

L23 =
(
L23
ki

)
nv×nφ

Q21 =
(
Q22
ijk

)
nu×nv×nv

Q22 =
(
Q21
ijk

)
nv×nv×nv
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Therefore, we could write the system of ODE for α̇vk into a matrix as follows:

Av

−̇→
αv = b2 + L21−→αu + L22−→αv + L23

−→
αφ+

(−→
αu
)T

Q21
(−→
αv
)

+
(−→
αv
)T

Q22
(−→
αv
)

(7.34)

Finally, the system of ODE for α̇φk after galerkin projection is as follows:

α̇φk = −
〈
ū �
(
φ̄
)
x

+ v̄ �
(
φ̄
)
y

+ φ̄ � (ū)x + φ̄ � (v̄)y , ψ
φ
k

〉

−
i=nu∑
i=1

αui

〈((
φ̄
)
x
� ψui + φ̄ � (ψui )x

)
, ψφk

〉

−
i=nv∑
i=1

αvi

〈(
ψvi �

(
φ̄
)
y

+ φ̄ � (ψvi )y

)
, ψφk

〉

−
i=nφ∑
i=1

αφi

〈(
ψφi � (ū)x + ψφi � (v̄)y + ū �

(
ψφi

)
x

+ v̄ �
(
ψφi

)
y

)
, ψφk

〉

−
i=nu∑
i=1

j=nφ∑
j=1

αui α
φ
j

〈(
ψui �

(
ψφj

)
x

+ (ψui )x � ψ
φ
j

)
, ψφk

〉

−
i=nv∑
i=1

j=nφ∑
j=1

αviα
φ
j

〈(
ψvi �

(
ψφj

)
y

+ (ψvi )y � ψ
φ
j

)
, ψφk

〉
(7.35)

Using the notations as follows:

b3
k = −

〈
ū �
(
φ̄
)
x

+ v̄ �
(
φ̄
)
y

+ φ̄ � (ū)x + φ̄ � (v̄)y , ψ
φ
k

〉

l31
ki = −

〈((
φ̄
)
x
� ψui + φ̄ � (ψui )x

)
, ψφk

〉

l32
ki = −

〈(
ψvi �

(
φ̄
)
y

+ φ̄ � (ψvi )y

)
, ψφk

〉

l33
ki = −

〈(
ψφi � (ū)x + ψφi � (v̄)y + ū �

(
ψφi

)
x

+ v̄ �
(
ψφi

)
y

)
, ψφk

〉

Q31
ijk = −

〈(
ψui �

(
ψφj

)
x

+ (ψui )x � ψ
φ
j

)
, ψφk

〉
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Q32
ijk = −

〈(
ψvi �

(
ψφj

)
y

+ (ψvi )y � ψ
φ
j

)
, ψφk

〉
Using the matrix notation as follows:

b3 =
(
b3
k

)
nφ×1

L31 =
(
L31
ki

)
nφ×nu

L32 =
(
L32
ki

)
nφ×nv

L33 =
(
L33
ki

)
nφ×nφ

Q31 =
(
Q31
ijk

)
nu×nφ×nφ

Q32 =
(
Q32
ijk

)
nv×nφ×nφ

Therefore, we could write the system of ODE for α̇φk into a matrix as follows:

Aφ

−̇→
αφ = b3 + L31−→αu + L32−→αv + L33

−→
αφ+

(−→
αu
)T

Q31
(−→
αφ
)

+
(−→
αv
)T

Q32
(−→
αφ
)

(7.36)

To sum up, we have the system of ODE as follows:


Au
−̇→
αu = b1 + L11−→αu + L12−→αv + L13

−→
αφ+

(−→
αu
)T

Q11
(−→
αu
)

+
(−→
αu
)T

Q12
(−→
αv
)

Av
−̇→
αv = b2 + L21−→αu + L22−→αv + L23

−→
αφ+

(−→
αu
)T

Q21
(−→
αv
)

+
(−→
αv
)T

Q22
(−→
αv
)

Aφ

−̇→
αφ = b3 + L31−→αu + L32−→αv + L33

−→
αφ+

(−→
αu
)T

Q31
(−→
αφ
)

+
(−→
αv
)T

Q32
(−→
αφ
) (7.37)

along with the initial conditions:
αuk(0) = (u(~x, 0)− ū, ψuk ) , k = 1, · · · , nu
αvk(0) = (v(~x, 0)− v̄, ψvk) , k = 1, · · · , nv
αφk(0) =

(
φ(~x, 0)− φ̄, ψφk

)
, k = 1, · · · , nφ

(7.38)
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where

−→
αu = (αu1(t), αu2(t), . . . , αunu(t))T

−→
αv = (αv1(t), αv2(t), . . . , αvnv(t))

T

−→
αφ = (αφ1 (t), αφ2 (t), . . . , αφnφ(t))T

In the following sections, we consider a total energy norm defined as

‖y‖2
AFEM =

1

2

(
‖u‖2

L2(Ω) + ‖v‖2
L2(Ω) +

g

h
‖u‖2

L2(Ω)

)

=
1

2

(
uTAu+ vTAv +

g

h
hTAh

)
= yTA

FEM
y (7.39)

where A = VTV is a symmetric positive definite matrix and [V] = [V1, . . . , VN ] is the finite-

element basis, h is the mean height of the reference data at the initial time. Hence AFEM

can be viewed as a symmetric positive definite block-wise diagonal matrix:

AFEM = diag
(

1
2
A 1

2
A g

2h
A
)

(7.40)

7.3 Optimal Control of POD reduced FE-SWE model

Let us define

−→α =
(−→
αu,
−→
αv,
−→
αφ
)T

(7.41)

F =

 F1

F2

F3

 =


b1 + L11−→αu + L12−→αv + L13

−→
αφ+

(−→
αu
)T

Q11
(−→
αu
)

+
(−→
αu
)T

Q12
(−→
αv
)

b2 + L21−→αu + L22−→αv + L23
−→
αφ+

(−→
αu
)T

Q21
(−→
αv
)

+
(−→
αv
)T

Q22
(−→
αv
)

b3 + L31−→αu + L32−→αv + L33
−→
αφ+

(−→
αu
)T

Q31
(−→
αφ
)

+
(−→
αv
)T

Q32
(−→
αφ
)
 (7.42)

It is easy to verify that
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∂F1

∂
−→
αu

= L11
(
δ
−→
αu
)

+ (7.43)
(−→
αu
)T (

Q11
1 + (Q11

1 )
T
)
δ
−→
αu

...(−→
αu
)T (

Q11
nu

+
(
Q11

nu

)T)
δ
−→
αu

+


(−→
αv
)T

(Q12
1 )

T
δ
−→
αu

...(−→
αv
)T (

Q12
nu

)T
δ
−→
αu

 (7.44)

∂F1

∂
−→
αv

= L12
(
δ
−→
αv
)

+


(−→
αu
)T

Q12
1 δ
−→
αv

...(−→
αu
)T

Q12
nuδ
−→
αv

 (7.45)

∂F1

∂
−→
αφ

= L13
(
δ
−→
αφ
)

(7.46)

∂F2

∂
−→
αu

= L21
(
δ
−→
αu
)

+


(−→
αv
)T

(Q21
1 )

T
δ
−→
αu

...(−→
αv
)T (

Q21
nv

)T
δ
−→
αu

 (7.47)

∂F2

∂
−→
αv

= L22
(
δ
−→
αv
)

+ (7.48)
(−→
αu
)T

Q21
1 δ
−→
αv

...(−→
αu
)T

Q21
nv
δ
−→
αv

+


(−→
αv
)T (

Q22
1 + (Q22

1 )
T
)
δ
−→
αv

...(−→
αv
)T (

Q22
nv

+
(
Q22

nv

)T)
δ
−→
αv

 (7.49)

∂F2

∂
−→
αφ

= L23
(
δ
−→
αφ
)

(7.50)

∂F3

∂
−→
αu

= L31
(
δ
−→
αu
)

+


(−→
αφ
)T

(Q31
1 )

T
δ
−→
αu

...(−→
αφ
)T (

Q31
nφ

)T
δ
−→
αu

 (7.51)

∂F3

∂
−→
αv

= L32
(
δ
−→
αv
)

+


(−→
αφ
)T

(Q32
1 )

T
δ
−→
αv

...(−→
αφ
)T (

Q32
nφ

)T
δ
−→
αv

 (7.52)
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∂F3

∂
−→
αφ

= L33
(
δ
−→
αφ
)

+


(−→
αu
)T

Q31
1 δ
−→
αφ

...(−→
αu
)T

Q31
nφ
δ
−→
αφ

+


(−→
αv
)T

Q32
1 δ
−→
αφ

...(−→
αv
)T

Q32
nφ
δ
−→
αφ

 (7.53)

Let us define

Q11(u) =
nu∑
i=1

ei

(−→
αu
)T (

Q11
i +

(
Q11

i

)T)

Qu12(u) =
nu∑
i=1

ei

(−→
αu
)T (

Q12
i

)

Qv12(v) =
nu∑
i=1

ei

(−→
αv
)T (

Q12
i

)T
Qu21(u) =

nv∑
i=1

ei

(−→
αu
)T (

Q21
i

)

Qv21(v) =
nv∑
i=1

ei

(−→
αv
)T (

Q21
i

)T
Q22(v) =

nv∑
i=1

ei

(−→
αv
)T (

Q22
i +

(
Q22

i

)T)

Qu31(u) =
nv∑
i=1

ei

(−→
αu
)T (

Q31
i

)

Qφ31(φ) =

nφ∑
i=1

ei

(−→
αφ
)T (

Q31
i

)T
Qv32(v) =

nφ∑
i=1

ei

(−→
αv
)T (

Q32
i

)T
Qφ32(φ) =

nφ∑
i=1

ei

(−→
αφ
)T

Q32
i

Therefore,
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Au

(
δ
−−→
αun+1 − δ

−→
αun

)
dt

=
(
L11 +Q11(u) +Qv12(v)

) (
δ
−→
αun

)
+
(
L12 +Qu12(u)

) (
δ
−→
αvn

)
+ L13

(
δ
−→
αφn

)
(7.54)

Av

(
δ
−−→
αvn+1 − δ

−→
αvn

)
dt

=
(
L21 +Qv

21(v)
) (
δ
−→
αun

)
+
(
L22 +Qu21(u) +Q22(v)

) (
δ
−→
αvn

)
+ L23

(
δ
−→
αφn

)
(7.55)

Aφ

(
δ
−−→
αφn+1 − δ

−→
αφn

)
dt

=
(
L31 +Qφ

31(φ)
)(

δ
−→
αun

)
+
(
L32 +Qφ

32(φ)
)(

δ
−→
αvn

)
+(

L33 +Qu
31(u) +Qv

32(v)
) (
δ
−→
αφn

)
(7.56)

Let’s define

F11 (u, v) =
(
L11 +Q11(u) +Qv12(v)

)

F12 (u) =
(
L12 +Qu12(u)

)

F21 (v) =
(
L21 +Qv

21(v)
)

F22 (u, v) =
(
L22 +Qu21(u) +Q22(v)

)

F31 (φ) =
(
L31 +Qφ

31(φ)
)

F32 (φ) =
(
L32 +Qφ

32(φ)
)

F33 (u, v) =
(
L33 +Qu

31(u) +Qv
32(v)

)
Hence, we obtain
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Au

(
δ
−−→
αun+1 − δ

−→
αun

)
dt

= F11 (u, v)
(
δ
−→
αun

)
+ F12 (u)

(
δ
−→
αvn

)
+ L13

(
δ
−→
αφn

)
(7.57)

Av

(
δ
−−→
αvn+1 − δ

−→
αvn

)
dt

= F21 (v)
(
δ
−→
αun

)
+ F22 (u, v)

(
δ
−→
αvn

)
+ L23

(
δ
−→
αφn

)
(7.58)

Aφ

(
δ
−−→
αφn+1 − δ

−→
αφn

)
dt

= F31 (φ)
(
δ
−→
αun

)
+ F32 (φ)

(
δ
−→
αvn

)
+ F33 (u, v)

(
δ
−→
αφn

)
(7.59)

Thus, we obtain

Auδ
−−→
αun+1 = (Au + dtF11 (u, v))

(
δ
−→
αun

)
+ dtF12 (u)

(
δ
−→
αvn

)
+ dtL13

(
δ
−→
αφn

)
(7.60)

Avδ
−−→
αvn+1 = dtF21 (v)

(
δ
−→
αun

)
+ (Av + dtF22 (u, v))

(
δ
−→
αvn

)
+ dtL23

(
δ
−→
αφn

)
(7.61)

Aφδ
−−→
αφn+1 = dtF31 (φ)

(
δ
−→
αun

)
+ dtF32 (φ)

(
δ
−→
αvn

)
+ (Aφ + dtF33 (u, v))

(
δ
−→
αφn

)
(7.62)

We can rewrite them into matrix and we obtain the TLM as follows:

 Auδ
−−→
αun+1

Avδ
−−→
αvn+1

Aφδ
−−→
αφn+1

 =

 (Au + dtF11 (u, v)) dtF12 (u) dtL13

dtF21 (v)
(
δ
−→
αun

)
(Av + dtF22 (u, v)) dtL23

dtF31 (φ) dtF32 (φ) (Aφ + dtF33 (u, v))


 δ
−→
αun
δ
−→
αvn

δ
−→
αφn

 (7.63)

Hence the the adjoint model can be written as


Au

(−→
αun

)∗
Av

(−→
αvn

)∗
Aφ

(−→
αφn

)∗
 =
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 (Au + dtF11 (u, v))T
(
dtF21 (v)

(
δ
−→
αun

))T
(dtF31 (φ))T

(dtF12 (u))T (Av + dtF22 (u, v))T (dtF32 (φ))T

(dtL13)
T

(dtL23)
T

(Aφ + dtF33 (u, v))T



(−−→
αun+1

)∗(−−→
αvn+1

)∗(−−→
αφn+1

)∗


(7.64)

The reduced model can be written as:

MPOD : Rd → Rm, α 7→ X = MPOD(α) (7.65)

Denoting the POD basis by φPOD and the observations by D, the reduced cost functional

can be expressed as:

J : Rd → R, α 7→ 1

2

(
(φMPOD(α) + X̄ −D,φPODMPOD(α) + X̄ −D

)
(7.66)

The TLM of reduced model is denoted as MPOD,then the differentiation of cost fucntional

w.r.t the control variable α in the reduced space can derived as follows:

δJ(α) =
(
φPODMPOD(α) + X̄ −D,φPODMPODδα

)
=
((

MPOD
)∗ (

φPOD
)T (

φPODMPOD(α) + X̄ −D
)
, δα
)

(7.67)

One the other hand,

δJ(α) = (∇J (α) , δα)

Hence,

∇J (α) =
(
MPOD

)∗ (
φPOD

)T (
φPODMPOD(α) + X̄ −D

)
(7.68)

in which the gradient of the reduced cost functional w.r.t the control variables in the

reduced space is the adjoint of the projection of forcing term from the full spacel., therefore

the first order adjoint model with the forcing terms may be written as
Au

(−→
αun

)∗
Av

(−→
αvn

)∗
Aφ

(−→
αφn

)∗
 =
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 (Au + dtF11 (u, v))T
(
dtF21 (v)

(
δ
−→
αun

))T
(dtF31 (φ))T

(dtF12 (u))T (Av + dtF22 (u, v))T (dtF32 (φ))T

(dtL13)
T

(dtL23)
T

(Aφ + dtF33 (u, v))T



(−−→
αun+1

)∗(−−→
αvn+1

)∗(−−→
αφn+1

)∗


with the forcing terms in each time step integrating backward whenever encountered

Wu (ψu)T
(
ψuMPOD(

−→
αun) + ū− uobs

)
(7.69)

Wv (ψv)T
(
ψvMPOD(

−→
αvn) + v̄ − vobs

)
(7.70)

Wφ

(
ψφ
)T (

ψφMPOD(
−→
αφn) + φ̄− φobs

)
(7.71)

with final conditions

(−→
αu
)∗
t=tf

= 0

(−→
αv
)∗
t=tf

= 0

(−→
αφ
)∗
t=tf

= 0

By integrating the first order continuous adjoint model reversely in time, the the gradient

of the reduced cost functional w.r.t the control variables in the reduced space is thus obtained

as

∇J(−→α0) = (−→α )
∗

(0) =


(−→
αu
)∗

(0)(−→
αv
)∗

(0)(−→
αφ
)∗

(0)

 (7.72)

where (−→α )
∗

= (
(−→
αu
)∗
,
(−→
αv
)∗
,
(−→
αφ
)∗

) is the first order adjoint variable vector, Wu, Wv,

Wφ are weighting factors which are chosen to be the inverse of estimates of the statistical

root-mean-square observational errors on geopotential and wind components respectively. In

our test problem, values of Wφ = 10−4m−4s4 and Wu = Wv = 10−2m−2s2 are used.
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7.4 Discussion of numerical results obtained by
trust-region POD 4-D Var combined with

dual-weighted snapshots selection

The model test problem used here adopts the following initial conditions (Figure 6.8 and

Figure 6.9) from the initial height field condition No.1 of Grammeltvedt [115]:

h(x, y) = H0 +H1 tanh

(
9(D/2− y)

2D

)
+H2

(
1/ cosh2

(
9(D/2− y)

D

))
sin

(
2πx

L

)
(7.73)

where this initial condition has energy in wave number one in the x-direction.

The initial velocity fields were derived from the initial height field using the geostrophic

relationship:

u = −
(
g

f

)
∂h

∂y
v =

(
g

f

)
∂h

∂x
(7.74)

The dimensional constants used here are:

L = 4400km, D = 6000km, f̄ = 10−4s−1, β = 1.5× 10−11s−1m−1,
g = 10ms−1, H0 = 2000m, H1 = 220m, H2 = 133m.

(7.75)

and the space increments used here are

∆x = ∆y = 200km, ∆t = 1800s (7.76)

We employed linear piecewise polynomials on triangular elements in the formulation

of Galerkin finite-element shallow-water equations model [116], in which the global matrix

was stored into a compact matrix (see [118]). A time-extrapolated Crank-Nicholson time

differencing scheme was applied for integrating in time the system of ordinary differential

equations resulting from the application of the Galerkin finite-element method and the

Courant-Friedrichs-Levy (CFL) criterion was
√
gH0

(
∆t
∆x

)
<
√

2
2

(see [121, 122]), based on

which the shallow-water equations system was then coupled at every time step so that the

equations are quasi-linearized (see [117]).

In order to implement boundary conditions in the Galerkin finite-element model, we have

adopted the approach suggested by Payne and Irons [119] and mentioned by Huebner [120].

This approach consists in modifying the diagonal terms of the global matrix associated with
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the nodal variables by multiplying them by a large number, say 1016, while the corresponding

term in the right-hand vector is replaced by the specified boundary nodal variable multiplied

by the same large factor times the corresponding diagonal term. This procedure is repeated

until all prescribed boundary nodal variables have been treated (see [121]).

In the numerical experiment, we applied a 1% uniform random perturbations on the

initial conditions in order to provide twin-experiment “observations”. We also computed the

errors between the retrieved initial conditions related to 5% uniform random perturbations of

the true initial conditions as the initial guess of the reduced-order 4-D Var (Figure 6.10 and

Figure 6.11). The data assimilation was carried on a 48 hours window using the ∆t = 1800s in

time and a mesh of 30×24 grid points in space, thus we generated 96 snapshots by integrating

the full finite-element shallow-water equations model forward in time, from which we choose

10 POD bases for each of the (u(x, y), v(x, y), φ(x, y)) to capture over 99.9% of the energy.

The dimension of control variables vector for the reduced-order 4-D Var thus is 10× 3 = 30.

In the process of POD 4-D Var, the resulting control variables from the latest optimization

iteration are projected to the full model to generate new POD bases. The new POD bases

then replace the previous ones resulting in a new POD reduced-order model. We found

that both the root mean square error and correlation error metrics between the full model

solutions and reduced-order solutions were improved after each outer projection was carried

out.

The Polak Ribiere nonlinear conjugate gradient (CG) technique [123] was employed for

high-fidelity full model 4-D VAR and all variants of ad-hoc POD 4-D Var, while the steepest-

descent strategy was employed for the trust-region POD 4-D Var within the trust-region

radius and provides a sufficient reduction of the high-fidelity model quantified in terms of

the Cauchy point [70]. In the ad-hoc POD 4-D Var, the POD bases are re-calculated when

the value of the cost function cannot be decreased by more than 10−1 for ad-hoc POD 4-D

Var and 10−2 for ad-hoc DWPOD 4-D Var between the consecutive minimization iterations.

In the trust-region 4-D Var, the POD bases are re-calculated when the ratio ρk is larger than

the trust-region parameter η1 in the process of updating the trust-region radius.

The unweighted ad-hoc POD 4-D Var as a reduced order approach required a smaller

computation cost but could not achieve the same cost functional reduction as the high-fidelity

model 4-D Var. The dual weighted ad-hoc POD 4-D Var (Figure 5.3 and Figure 7.1) achieves

a better reduction of the cost functional. However, neither of the above-mentioned methods
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can attain the minimum of the high fidelity 4-D VAR model cost functional. Furthermore,

the unweighted snapshots trust-region POD 4-D Var yield an additional cost functional

reduction compared to the ad-hoc approach, albeit at a higher computational cost. Finally,

the dual weighted trust-region POD 4-D Var achieves almost exactly the same cost functional

reduction as the full high fidelity 4-D Var model, resulting in an additional decrease of

four orders of magnitude compared to the minimization of the cost functional obtained by

applying the unweighted ad-hoc POD 4-D Var (see Table 7.1), showing that the combination

of the dual-weighted approach and trust-region method to model reduction is significantly

beneficial in the achievement of a local minimum of optimization almost identical to one

obtained by the high fidelity full 4-D VAR.

Initial conditions

Snapshots from full FEM SWE

POD reduced-order FEM SWE

POD reduced-order adjoint and gradient

Sub-optimal initial conditions

Optimal initial conditions

Full adjoint to generate dual weights

Outer iteration cycle POD iteration

Figure 7.1: Flowchart of the methodology using adaptive POD reduced-order model for
dual-weighted snapshots of the full model
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Table 7.1: Comparison of iterations, outer projections, error and CPU time for ad-hoc POD
4-D Var, ad-hoc dual weighed POD 4-D Var, trust-region POD 4-D Var, trust-region dual
weighed POD 4-D Var and the full model 4-D Var.

POD 4-D Var ADPOD DWAHPOD TRPOD DWTRPOD Full

Iterations 22 42 46 57 80
Outer projections 2 6 10 12 N/A

Error 10−1 10−2 10−5 10−8 10−10

CPU time (s) 15.2 38.7 121.2 142.8 222.6

In Figure 7.2, it is noticed that the dual-weighed 4-D Var absorbs the information from

the full 4-D Var model and mimics the behavior of the full model 4-D Var thus being

able to achieve better reduction of the cost functional. It is also noticed that in the

dual weighted approach, the reduced basis is adjusted to according to the norm of the full

adjoint variable. The dual weights are decreasing in time for the snapshots without sharp

transients (Figure 7.3) due to the fact that observations are available in each time step in

our experiments. Furthermore, the dual weights on the snapshot data are distinct from one

outer projection to the next. The importance of snapshots for longer windows of assimilation

may assume a preponderant importance after each outer iteration. However, it should be

emphasized that the benefit obtained for POD 4-D Var using the dual-weighted procedure

diminishes as the dimension of the reduced space increases.

Once the retrieved initial condition is obtained by implementing the dual weighted trust-

region 4-D Var, we can compare the results from the POD reduced-model with those from

the full model. To quantify the performance the dual weighted trust-region 4-D Var, we use

two metrics namely the root mean square error (RMSE) and correlation of the difference

between the POD reduced-order simulation and high-fidelity model.

In particular, the RMSE (Figure 7.4a and Figure 7.4b) between variants of the POD

reduced-model solution and the true one at the time level i is used to estimate the error of

the POD model.

RMSEi =

√∑j=N
j=1

(
Ui,j − UPOD

i,j

)2

n
, i = 1, . . . , n (7.77)

where Ui,j and UPOD
i,j are the state variables obtained by the full model and ones obtained

by optimal POD reduced-order model of time level i at node j, respectively, and N is the total
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Figure 7.2: Comparison of the performance of minimization of cost functional in terms of
number of iterations for ad-hoc POD 4-D Var, ad-hoc dual weighed POD 4-D Var, trust-
region POD 4-D Var, trust-region dual weighed POD 4-D Var and the full model 4-D Var.

number of nodes over the domain. U and UPOD are used to either denote the geopotential

or the velocity of the full model and the POD reduced-order model, respectively.

In (Figure 7.5a and Figure 7.5b), the correlation r defined below is used as an additional

metric to evaluate quality of the inversion simulation

ri =
covi12

σi1σ
i
2

(7.78)

where

σi1 =

j=N∑
j=1

(
Ui,j − U j

)2
, σ2 =

j=N∑
j=1

(
UPOD
i,j − UPOD

j

)2

, , i = 1, . . . , n (7.79)
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Figure 7.3: The dual weights of the snapshots data determined by the full adjoint variable
for the trust-region POD 4-D Var

4

cov12 =

j=N∑
j=1

(
Ui,j − U j

) (
UPOD
i,j − UPOD

j

)
, , i = 1, . . . , n (7.80)

where U j and UPOD
j are the means over the simulation period [0, T ] obtained by the full

model and ones obtained by optimal POD reduced-order model at node j, respectively.

Even though it turned out to be advantageous to combine the dual-weighed approach with

the trust-region POD 4-D Var, it should be emphasized that this advantage diminishes when

we increase the number of POD bases for each component of the (u(x, y), v(x, y), φ(x, y)) from

10 to 20 by applying both metrics mentioned above. However, increasing the dimension of the

POD reduced-order space from 30 to 60 can increase the computational cost of POD reduced-

order 4-D Var .This agrees with results obtained in [102] that for practical applications, the
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dual-weighted procedure may be of particular benefit for use only with small dimensional

bases in the context of adaptive order reduction as the minimization approaches the optimal

solution. For other beneficial effects of POD 4-D Var related to its use in the framework of

second order adjoint of a global shallow water equations model see Daescu and Navon (2007)

[101]
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Figure 7.4: Comparison of the RMSE of between ad-hoc POD 4-D Var, ad-hoc dual weighed
POD 4-D Var, trust-region POD 4-D Var, trust-region dual weighed POD 4-D Var and the
full model 4-D Var.

In this Chapter, we solved an inverse problem for the POD reduced-order shallow-

water equations model using a finite-element formulation, controlling its initial conditions

in presence of observations being assimilated in a time window. In this POD 4-D Var,

we developed the full adjoint of the finite-element shallow-water equations model and the

reduced-order adjoint for POD reduced-order model. We integrated the full adjoint model

backward in time to compute the time-varying sensitivities of the full 4-D Var cost functional

with respect to time-varying model states, from which we derived the dual weights of the

ensemble of snapshots. Also, we integrated the reduced-order adjoint model backward in

time to compute gradient of reduced-order cost functional.

In the numerical experiments, we compared several variants of POD 4-D Var, namely

unweighted ad-hoc POD 4-D Var, dual-weighed ad-hoc POD 4-D Var, unweighted trust-

region POD 4-D Var and dual-weighed trust-region POD 4-D Var, respectively. We found
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Figure 7.5: Comparison of correlation between ad-hoc POD 4-D Var, ad-hoc dual weighed
POD 4-D Var, trust-region POD 4-D Var, trust-region dual weighed POD 4-D Var and the
full model 4-D Var.

that the ad-hoc POD 4-D Var version yielded the least reduction of the cost functional

compared with the trust-region 4-D VAR . We assume that this result may be attributed

to lack of feedbacks from the high-fidelity model . On the other hand, the trust-region

POD 4-D Var version yielded a sizably better reduction of the cost functional, due to

inherent properties of TRPOD allowing local minimizer of the full problem to be attained

by minimizing the TRPOD sub-problem. Thus trust-region 4-D Var resulted in global

convergence to the high fidelity local minimum starting from any initial iterates.

The dual-weighted proper orthogonal decomposition selection of snapshots allows prop-

agation of information from the data assimilation system onto the reduced order model,

possibly capturing lower energy modes that may play significant role in successful imple-

mentation of 4-D Var data assimilation. Combining the dual-weighted approach with the

trust-region POD approach to model reduction results in a significant enhanced benefit

achieving a local minimum of reduced cost function optimization almost identical to the

one obtained by the high fidelity full 4-D VAR model. Hence we achieve a double benefit

while running a reduced-order inversion at an acceptable computational cost, at least for the

shallow-water equations model in a two-dimensional spatial domain.
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Figure 7.6: Errors between the retrieved initial geopotential and true initial geopotential
applying dual weighted trust-region POD 4-D Var to the 5% uniform random perturbations
of the true initial conditions taken as initial guess. (a) shows the contour of 5% perturbation
of true initial geopotential; (b) shows the contour of difference between 5% perturbation of
true initial geopotential; (c) shows the contour of retrieved initial geopotential after 2days
with dt = 1800s; (d) shows the contour of difference between retrieved initial geopotential
and true initial geopotentials.

117



−950

−9
50

−9
50

−9
50

−
95

0

−950 −606

−606

−606

−606

−6
06

−
60

6

−606
−606

−
60

6

−263

−
26

3 −263−263
−263

−263

−263

−2
63

−263

−263

−263

−2
63

−263

−2
63

−263

−
26

3
−263

81

81
81

81

8181

81

81

81

81

81

81

81

81

81

81

81

81

81

8181

81

81

81

81

81

81

81

81

81

81
81

81

81

81

81

81

81

81

81

81

81

81

81
81

81

81

81

81

81

81

81

81

81

81

424 424424 424

424

424

424
424

424

42
4

424

424

424

424

42
4

424

424

424

424 424

424

768

76
8

768

768

768
768

768

768

1112

1112
1112

1112

11
12

1455

1455

x−axis

y−
ax

is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

−326

−3
26

−216

−216

−216

−2
16

−2
16

−2
16

−216
−106

−10
6 −1

06

−106

−1
06

−
106

−1
06

−106

−106 −1
06

−1
06

−106

−106

−
10

6

4

4 4

4

4

4

4

4

4

4

44

4

4
4

4

4

4

4

4

4
4

4

4

4

4

4

4

4

4

4

4

4

44

4

4

4

4

4

4

4

44

4

4

4

4
4

4

4

4

4
114

11
4

11
4

114

114

114114

11
4

114
114

114

11
4

11422
4

224

224

22
4

224

224

334

33
4

x−axis

y−
ax

is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

−9

−7

−7

−7

−5

−5

−5

−5

−5

−5 −5

−5

−5

−5

−4

−4

−4

−4

−4−4

−4

−4

−4

−4

−4

−4

−4

−4

−4

−4

−4

−4 −4

−4 −4

−4

−2−2−2

−2 −2 −2

−2

−2
−2

−2

−2

−2 −
2

−2

−2

−
2

−2

−2
−2

−2

−2

−2

−2

−2

−2

0

0

0

0 0

0 0

0

0

0 0

0

0

0

0 0 0 0

0

0

0

0

0

0

0

0

00

0

0
0

0

00

0

0

0

0 0

0

0

0

0

0

0

0

0

0
2 2

2

2

2

2
2

2

2

2

22

2
2

2
2

2

22

2

2

2

2

2

22

2

2

2
2

2

2
2

2

4

4

4

4

4

4

4

4

4

4

4 44

4 4

4
6

6

6
6

66

6

x−axis

y−
ax

is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

−5−5

−4

−4

−3 −3

−3

−3

−3
−3 −3

−3

−2

−2

−2

−2

−2

−2

−2

−2

−2

−2−2 −2 −2

−2
−2

−2

−2 −2

−2

−2

−2
−2

−1−1 −1

−
1−1−1−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1
−1

−1
−1

−1

0 0

0 0

0 0 0
0

0

0
0

0
0

0
0

0

0

0
0

0

0 0 0 0

0

0

0

22

2 2

2
22

2

22

2
2

2
2

2

2

2

2 2

2

2

2

22 2

3

3

33

3
3

3

33

4

4 4
4

4

4 5

x−axis

y−
ax

is

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 7.7: Errors scaled by 100 between the retrieved initial wind field and true initial
wind field applying dual weighted trust-region POD 4-D Var to the 5% uniform random
perturbations of the true initial conditions taken as the initial guess. (a) shows the contour
of difference between true initial u-velocity and perturbed initial u-velocity; (b) shows the
contour of difference between true initial v-velocity and perturbed initial v-velocity; (c) shows
the contour of difference between retrieved initial u-velocity and true initial u-velocity; (d)
shows the contour of difference between retrieved initial v-velocity and true initial v-velocity.
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Figure 7.8: Comparison of the RMSE between the full model and the ROM before and after
the data assimilation applying dual weighted trust-region POD 4-D Var to the 5% uniform
random perturbations of the true initial conditions taken as the initial guess.
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Figure 7.9: Comparison of the correlation between the full model and the ROM before and
after data assimilation applying dual weighted trust-region POD 4-D Var to the 5% uniform
random perturbations of the true initial conditions serving as initial guess.
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CHAPTER 8

GENERALIZATION TO A REAL-LIFE MODEL IN

TWO SPACE DIMENSIONS PLUS TIME

In this chapter, we address a POD model reduction along with inverse solution of a two-

dimensional global shallow water equations model. Solutions of SWE([86, 87, 88]) exhibit

some of the important properties of large scale atmospheric flow and the equations have

certain important features (such as horizontal dynamical aspects) in common with more

complicated NWP models. Therefore, derivation and testing of various algorithms for solving

SWE has often been a first step towards developing new atmosphere and ocean general

circulation models. The explicit flux-form semi-Lagrangian finite volume scheme has been

used to solve the SWE henceforth referred to as FV-SWE[89, 90, 91, 92, 96] in the forward

model integration. This is used for NASA GEOS-5 and also at NCAR in the dynamics core

Our intention here is to generalize the efficient state-of-the-art POD implementation from

our previous work on finite element SWE on the limited area [97, 98](FE-SWE) to global

FV-SWE model with realistic initial conditions, i.e., combining efficient snapshot selection

in the presence of data assimilation system by merging dual weighting of snapshots with

trust region POD techniques [99].

In previous chapter (Chen et al.[98]), we studied the effect of combining TRPOD in

conjunction with dual weighting Data Assimilation System (DAS) snapshot selection in

the framework of Galerkin-projection based POD-ROM for FE-SWE on the limited area

without a background error covariance term, in which the observations were available at all

the time steps and distributed at all the grid points during the entire window of assimilation.

As in the previous paper, one of the goals of this article is to confirm that dual weighted

TRPOD 4-D Var can also be applied to the global FV-SWE model even when a Galerkin

projection scheme is unavailable from full space to POD reduced-order space in the case of
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complete observations distributed in space and time and with an unbalanced background

error covariance term being provided as well. Furthermore, we study the performance of

TRPOD 4-D Var in the case of incomplete observations in both time and space with or

without a balanced background error covariance term being included in the cost functional.

In the framework of TRPOD 4-D Var with background error covariance term inclusion,

an ideal preconditioning of the POD 4-D Var is derived so that the Hessian matrix of the

POD reduced-order background error covariance matrix becomes the identity matrix. In

this paper we show that TRPOD 4-D Var performs satisfactorily in presence of incomplete

observations, just as in the case of full 4-D Var, if a geostrophically balanced background

error covariance matrix is available during the implementation of data assimilation.

In the numerical experiments, we compare the ad-hoc update adaptivity of the POD 4-D

VAR, the trust-region update adaptivity with or without dual weighting and full 4-D Var

(high fidelity model) in the case of full observations with or without the background error

covariance term being included in the cost functional. We confirm that the combination

of TRPOD and dual-weighted snapshots yields the best results in all error metrics (see

[98, 100, 101, 102]). The advantage of TRPOD adaptivity over ad-hoc POD adaptivity is

due to the fact that TRPOD can appropriately determine a trust region within which the

step stays and step size is not too small, so that it is guaranteed to compute a sufficient

decrease for the cost functional of the full model by projecting the Quasi-Newton direction

of POD reduced order cost functional into the trust region box as a substitute for the Cauchy

point in the standard trust region methods using quadratic approximation. Hence, TRPOD

by comparing the actual reduction and predicted reduction[83, 85] can successively refresh

the POD basis, based on updated control values, allowing it to keep the full 4-D Var and

the POD reduced-order 4-D synchronized so as to ensure that the POD reduced order 4-D

Var takes updated information from the full model to evolve the POD reduced model to the

local optimizer of the high fidelity model.

Also, we notice that there are almost twice as many outer projections (refreshing the

snapshots) related to TRPOD adaptivity compared to the number of projections in ad-

hoc adaptivity in the framework of Galerkin projection in our previous work ([98]). In

this work there are almost thrice as many outer projections related to TRPOD adaptivity

as compared to ad-hoc adaptivity without a Galerkin projection scheme in presence of

incomplete observations in time and space. The CPU time required by TRPOD 4-D Var is
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still a fraction of the CPU required by the full 4-D Var, due to the fact that most of the

functional evaluations are carried out in the lower dimensional POD 4-D Var while the full

model will be evaluated only when a appropriate descent direction in the TRPOD reduced-

order space is obtained. Therefore, TRPOD avoids unnecessary full model evaluations and

also reduces the cost of minimization inside the inner TRPOD loop.

8.1 Global finite-volume shallow-water equations
model

In spherical coordinates the vorticity divergence form of the SWE can be written as the mass

conservation law for a shallow layer of water

∂h

∂t
+∇ · (Vh) = 0 (8.1)

and the vector invariant form of momentum equations

∂u

∂t
=Ωv − 1

A cos θ

∂ (κ+ Φ)

∂λ
(8.2)

∂v

∂t
=− Ωu− 1

A

∂ (κ+ Φ)

∂θ
(8.3)

(λ, θ) ∈ [−π
2
,
π

2
]× [−π, π], t > 0

where h represents the fluid height (above the surface height hs), V = (u, v), u and v

represent the zonal and meridional wind velocity components respectively, θ and λ are the

latitudinal and longitudinal directions respectively, ω is the angular speed of rotation of the

earth, a is radius of the earth. The free surface geopotential is given by Φ = Φs + gh, where

φs = ghs, κ = 1
2
V ·V is the kinetic energy, and Ω = 2ωsinθ + ∇ × V is the absolute

vorticity.

In this paper we have used a descretized (finite volume, semi-Lagrangian) version of the

above SWE model, which serves as the dynamical core in the community atmosphere model

(CAM), version 3.0, and its operational version implemented at NCAR and NASA is known

as finite volume-general circulation model (FV-GCM). In brief, a two grid combination based

on C-grid and D-grids is used for advancing from time step tn to tn + ∆t. In the first half
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of the time step, advective winds (time centered winds on the C-grid: (u∗, v∗)) are updated

on the C-grid, and in the other half of the time step, the prognostic variables (h, u, v) are

updated on the D-grid.

Using the finite volume method, within each cell of the discrete grid, if we consider

a piecewise linear approximation to the solution, whose slope is limited in a certain way

depending on the values of the solution at the neighboring grid cells, one can consistently

derive a family of van Leer schemes. We will follow the suggestion in [92] and always use

unconstrained van Leer[93, 94, 95] scheme to advect winds on the C-grid. The same advection

scheme will be used on D-grid as well. This strategy provides solutions whose accuracy is

comparable to those obtained by using more CPU demanding advection schemes, for e.g.,

constrained van Leer schemes.

8.2 Generation of dual weighted POD reduced model
applied to FV-SWE

An ensemble of snapshots is chosen in the analysis time interval [0, T ] written as

{y1, y2, . . . , yn} where yi = (hi, ui, vi)T ∈ RN , i = 1, . . . , n, n is the number of snapshots

and N = 3NxNy is triple the dimension of discrete mesh, Nx and Ny are the mesh points

of the latitudinal and longitudinal directions respectively. Our choice of snapshots number

was to take a snapshot at every time step (∆t = 450 sec) of the window of assimilation

whose length was taken in our case to be 15 hours. We could have chosen another snapshot

distribution, however, we elected to implement this choice as the most intuitive one (15

hours = 120 time steps of 450 sec, each). Define the dual weighted ensemble average of

the snapshots as ȳ =
∑i=n

i=1 wiy
i where the snapshots weights wi are such that 0 < wi < 1

and
∑n

i=1wi = 1, and they are used to assign a degree of importance to each member of

the ensemble. Time weighting is usually considered, and in the standard approach wi = 1
n
.

Subtracting the mean from each snapshot, we obtain the following N×n dimensional matrix

Y = [y1 − ȳ, y2 − ȳ, . . . , yn − ȳ] .

The POD modes Ψ =
{
ψ1, ψ2, . . . , ψM

}
of order M ≤ n provide an optimal representa-

tion of the ensemble data in a M−dimensional state subspace by minimizing the averaged

projection error

min
{ψ1,ψ2,...,ψM}

n∑
i=1

wi
∥∥(yi − ȳ)− ΠΨ,M

(
yi − ȳ

)∥∥2
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s.t.
〈
ψi, ψj

〉
l2

= δij (8.4)

where ΠΨ,M is the projection operator onto the M−dimensional space Span
{
ψ1, ψ2, . . . , ψM

}
ΠΨ,M =

M∑
i=1

〈y, ψi〉l2 ψi

We define the dual weighted spatial correlation matrix, A = YWYT, where W =

diag {w1, w2, . . . , wn} is the diagonal matrix of weights.

To compute the dual weighted POD modes ψi ∈ RN , one must solve an N−dimensional

eigenvalue problem, Aψi = λiψi.

In practice the number of snapshots is much less than the the state dimension, n << N ,

an efficient way to compute the reduced basis is to introduce an n−dimensional matrix as

follows:

Kn×n = W
1
2 YTYW

1
2 (8.5)

and compute the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 of Kn×n with its corresponding

eigenvectors ξ1, . . . , ξn

Hence, the corresponding POD modes are thus obtained by defining

ψi =
1√
λi

YW
1
2 ξi, i = 1, . . . ,M (8.6)

where 〈
ψi, ψj

〉
l2

= δij =


1 i = j

0 i 6= j
(8.7)

Define the following vectors

hk =
(
hk1 hk2 · · · hkN

)T
uk =

(
uk1 uk2 · · · ukN

)T
vk =

(
vk1 vk2 · · · vkN

)T
h∗ =

(
h∗1 h∗2 · · · h∗N

)T
u∗ =

(
u∗1 u∗2 · · · u∗N

)T
v∗ =

(
v∗1 v∗2 · · · v∗N

)T
thus h∗, u∗and v∗ are obtained on C-grid [91, 92], in the following way,

h∗ =hk + Fc
h

(
hk,uk,vk

)
u∗ =uk +

∆t

2
Fc
u

(
hk,uk,vk

)
(8.8)

v∗ =vk +
∆t

2
Fc
v

(
hk,uk,vk

)
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Define the following vectors

Ψ =
(

Ψh Ψu Ψv

)T
, ȳ =

(
h u v

)T
(8.9)

and we obtain the POD reduced-order model on C-grid by projection as follows, where

the α coefficients are the modal coefficients of the flow field with respect to the POD basis;

α∗h =αkh + ΨT
h

(
Fc
h

(
Ψhα

k
h + h,Ψuα

k
u + u,Ψvα

k
v + v

)
− h

)
α∗u =αku +

∆t

2
ΨT
u

(
Fc
u

(
Ψhα

k
h + h,Ψuα

k
u + u,Ψvα

k
v + v

)
− u

)
(8.10)

α∗v =αkv +
∆t

2
ΨT
v

(
Fc
v

(
Ψhα

k
h + h,Ψuα

k
u + u,Ψvα

k
v + v

)
− v

)
.

Similarly, we can rewrite the D-grid [91, 92] time integration as the following vector

formulation,

hk+1 =hk + Fd
h (h∗,u∗,v∗)

uk+1 =uk +
∆t

2
Fd
u (h∗,u∗,v∗) (8.11)

vk+1 =vk +
∆t

2
Fd
v (h∗,u∗,v∗)

and the POD reduced-order model on D-grid by projection as below,

αk+1
h =αkh + ΨT

h

(
Fd
h

(
Ψhα

∗
h + h,Ψuα

∗
u + u,Ψvα

∗
v + v

)
− h

)
αk+1
u =αku +

∆t

2
ΨT
u

(
Fd
u

(
Ψhα

∗
h + h,Ψuα

∗
u + u,Ψvα

∗
v + v

)
− u

)
(8.12)

αk+1
v =αkv +

∆t

2
ΨT
v

(
Fd
v

(
Ψhα

∗
h + h,Ψuα

∗
u + u,Ψvα

∗
v + v

)
− v

)
,

where αkh ∈ RMh , αku ∈ RMu and αkv ∈ RMv , k = 0, 1, 2, · · · , n and initial values are

α0
h = ΨT

h

(
h0 − h

)
α0
u = ΨT

u

(
u0 − u

)
α0
v = ΨT

v

(
v0 − v

)
(8.13)

Formulas (8.10) and (8.12) are the POD reduced-order model for the FV-SWE model

(8.1) (8.2) and (8.3), and it only includes (Mh +Mu +Mv) × n degrees of freedom, where

Mh, Mu ,Mv << N compared to the numerical FV-SWE model which contains 3N × n

degrees of freedom (see Akella and Navon (2006) [124]).
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8.3 Preconditioning of the POD 4-D Var applied to
FV-SWE

The 4-D Var cost functional

J (y0) =
1

2

(
y0 − yb

)T
B−1

(
y0 − yb

)︸ ︷︷ ︸
Jb

+
1

2

k=n∑
k=0

(Hkyk − yok)
T R−1

k (Hkyk − yok)︸ ︷︷ ︸
Jo

(8.14)

can be separated into J = Jb + Jo, where Jb = 1
2

(
y0 − yb

)T
B−1

(
y0 − yb

)
is the background

cost functional and

Jo =
1

2

k=n∑
k=0

(Hkyk − yok)
T R−1

k (Hkyk − yok) (8.15)

is the observational cost functional. Let δy = y0−yb, so that the background cost functional

can be rewritten as, Jb = 1
2

(δy)T B−1 (δy) .

Define an approximation to the control variable, y0 ≈ Ψα0 + ȳ, where the POD modes

are given by Ψ =
{
ψ1, ψ2, . . . , ψM

}
and the dual weighted ensemble average of the snapshots

is given as before, in which α0 is the corresponding control variable in the M−dimensional

POD reduced-order space. Define the coefficient, αb = ΨT (yb − ȳ) , and we obtain the

background term yb in terms of POD modes, yb = Ψαb + ȳ. From the above equations we

obtain, δy = y0 − yb ≈ (Ψα0 + ȳ) − (Ψαb + ȳ) = Ψ (α0 − αb) . Let δα = α0 − αb so that

δy = Ψδα.

Hence, the 4-D Var cost functional in (8.14) can be approximated by

J (y0) ≈ Ĵ (δα) = Ĵb (δα) + Ĵo (δα) (8.16)

where

Ĵb (δα) =
1

2
(δα)T

(
ΨTB−1Ψ

)
(δα) (8.17)

Ĵo (δα) =
1

2

k=n∑
k=0

(HkMk (yb + Ψδα)− yok)
T R−1

k (HkMk (yb + Ψδα)− yok) (8.18)

Since the inverse of the background error covariance matrix B−1 is a symmetric positive

definite matrix (S.P.D), it is easy to verify that ΨTB−1Ψ is S.P.D from the fact that ΨTΨ = I.

Define

B̂−1 = ΨTB−1Ψ. (8.19)
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Therefore B̂−1 is S.P.D and (8.17) can be written as,

Ĵb (δα) =
1

2
(δα)T B̂−1 (δα) (8.20)

Since B̂−1 is S.P.D, we can find the square-root matrix

B̂ = B̂
1
2 B̂

T
2 (8.21)

using the inverse Cholesky decomposition methodology without finding B̂ itself. Define a

transformation δα = B̂
1
2vα. Hence, we obtain that

J̃b (vα) = Ĵb (δα) = Ĵb

(
B̂

1
2vα
)

=
1

2
(δα)T B̂−1 (δα) =

1

2

(
B̂

1
2vα
)T

B̂−1
(
B̂

1
2vα
)

=
1

2

(
B̂

1
2vα
)T (

B̂
1
2 B̂

T
2

)−1 (
B̂

1
2vα
)

=
1

2
(vα)T B̂

T
2 B̂−

T
2 B̂

1
2 B̂

1
2vα

=
1

2
(vα)T vα. (8.22)

The methodology of construction of B1/2 and BT/2 using univariate correlation and multi-

variate geostrophic balancing operators is detailed as follows. (see also Akella, 2006[124]).

The model variables (h,u,v) are partitioned into balanced and unbalanced components.

The so-called balancing operator, Kb acts on the unbalanced components of the model

variables and in-turn, Kb = K’b + I. Following [129], K’b is formulated using the linear

balance equations, based on geostrophic balance (written in spherical coordinates) and

hydrostatic hypothesis.

Geostrophic balance:

u = − 1

ρ f
[
1

a

∂p

∂θ
],

v =
1

ρ f
[

1

a cos θ

∂p

∂λ
].

Hydrostatic hypothesis: p = ρ g h.

Which implies,

u = − g
f

[
1

a

∂h

∂θ
],

v =
g

f
[

1

a cos θ

∂h

∂λ
].
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Therefore

Kb = K’b + I =

 I 0 0
− g
a f

∂
∂θ

I 0
g

a f cos θ
∂
∂λ

0 I


which is a lower triangular matrix, since our control vector is of the form (h, u, v)T .

Remark: At the North and South poles, one sided differences have been used for

computing the above derivative with respect to the latitude and at the equator, where

θ = π/2, we have used the average values of the derivative (with respect to the longitude)

from the two neighboring latitude circles, above and below the equator.

Using the balance operator, we can write B = Kb Bu KT
b , where Bu is a block diagonal

error covariance matrix for the unbalanced component of the variables (see [130]), which

implies that the cross-covariances between the unbalanced variables is taken to be negligible.

Thus Bu = Σb C Σb, where Σb is a block-diagonal matrix of the background-error variances

in the grid point space, such that the diagonal entries represent error variances at every grid

point (in this work, we prescribed Σb = [2000 I, 100 I, 100 I]).

C is a symmetric matrix of background-error correlations for the unbalanced component

of the variables. Assuming that C is block-diagonal, which is a valid assumption, since

Bu has already been assumed to be block-diagonal, we obtain the square-root factorization

C = C1/2 CT/2.

Thus the square-root factorization of the background error covariance can be written as,

B = Kb Bu KT
b = Kb (Σb C Σb) KT

b = Kb (Σb C1/2 CT/2Σb) KT
b (8.23)

= (Kb Σb C1/2) (CT/2Σb KT
b )

= B1/2 BT/2.

Notice that the above formulation ensures that B is symmetric and positive definite,

both of these properties are usually required to be satisfied by any preconditioning matrix.

The analysis increment is given by δx = B1/2v = Kb Σb C1/2v. Since C is block-diagonal,

the operation C1/2 v can be split into individual operators C1/2
α vα, that act independently

on different components of the variable v, such as vα. For each variable, the univariate

operator can be factorized into Cα = C1/2
α CT/2

α . The procedure suggested by [130] has

been implemented to model the univariate correlation operator, has been implemented to

model the univariate correlation operator, Cα as an isotropic diffusion operator, assuming

Gaussianity with a decorrelation length equal to 500 km.
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We considered height field which was comprised of a single Dirac delta pulse located at

equator and longitude 180o, and prescribed no wind field, the action of B on such a field is

shown in Figure 8.1. We see the effect of the correlation operator on the Dirac pulse and also

on the wind field obtained under geostrophic balance assumption Figure 8.2, which is parallel

to the isobars of the pressure. Since there is a high pressure at the center, the direction of the

wind is clockwise in the Northern hemisphere and anti-clockwise in the Southern hemisphere;

at the equator due to the balancing of the pressure gradient and Coriolis forces, the wind

blows straight.

Therefore the gradient of the background cost functional, J̃b (vα) with respect to vα is

given by,

∇vα J̃b = vα (8.24)

and the Hessian of the background cost functional, J̃b (vα) , with respect to vα is given by,

∇2
vα J̃b = IM . (8.25)

To summarize, we obtain that the cost functional can be approximated by,

J (y0) ≈ J̃ (vα) = J̃b (vα) + J̃o (vα) =
1

2
(vα)T vα + J̃o (vα) , (8.26)

and the gradient of the cost functional with respect to vα is given by chain rule,

∇vα J̃ = vα +
(
∇vαα

0
)T ((∇α0y0

)T∇y0Jo

)
= vα + B̂

T
2 ΨT∇y0Jo. (8.27)

8.4 POD 4-D Var using full ERA-40 observations

8.4.1 ERA-40 observations

Reanalyzed data on a 2.5o×2.5o grid (500 hPa pressure level- geopotential height and velocity

fields) from the ERA-40, 40-year reanalysis system (http://www.ecmwf.int/research/era/),

valid at 0000 UTC 2 February 2001 was used to specify the initial conditions for forward

model integration. These initial conditions were unchanged in all the following test cases.

As for boundary conditions, since the domain being considered is spherical, it is obvious

that the boundary conditions remain unchanged. The unconstrained van Leer scheme with

a 2.5o × 2.5o (144 × 72 cells) grid resolution and time step of ∆t = 450 seconds, has been
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Figure 8.1: Result obtained by operating with B on a single Dirac delta pulse in the height
field: isolines of the height field

used in this article, to generate a reference trajectory. Synthetic observations are obtained

by randomly perturbing the reference trajectory, in which the observational error covariance

matrix has been taken to be a block diagonal matrix R =
[

104I 102I 102I
]
, where I is

a identity matrix. For the entries in R, the values of the variances are specified based

on typical values of the variables. The zonal and meridional winds vary on a scale of

10m/sec − 100m/sec. Hence, a value of 100 was specified for their variances. For the

geopotential height field, Φ = gh varies on a scale of 104m2/sec2.
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Figure 8.2: Result obtained by operating with B on a single Dirac delta pulse in the height
field: geostrophic wind plotted along with the isolines of the height field

In the numerical experiment, we carried out a 1% normally distributed random pertur-

bation on the true initial conditions over the entire vector X = [u, v, h] field in Figure(8.3a)

specified from ERA-40 in order to provide twin-experiment “observations”. Also, the 18-

h forecast of the FV-SWE model was taken to be forecast verification time displayed

in Figure(8.3b). The 4-D Var optimization loop was stopped when the l2 norm of the

gradient was less than a tolerance of 10−3. Since we didn’t change the tolerance, the results

we obtained are not affected. It is obvious that if we were to make the tolerance more

stringent, the optimization would have required more iterations. The reduction of the cost

functional is measured by the value of the current cost functional normalized by the initial

one with or without the logarithmic scale. We computed the errors between the true initial

conditions and the retrieved initial conditions related to a 1% normally distributed random
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perturbations of the true initial conditions as the initial guess of the reduced-order 4-D Var.

The data assimilation was carried on a 15 hours window using the ∆t = 450s in time and

a mesh of 144× 72 grid points in space and the observations are available every 3 hours in

time including the initial time. Thus we have 144 × 72 × 3 × 6 observations distributed in

time and space.

Now we generated 120 snapshots by integrating the full FV-SWE model forward in

time, from which we choose 15 POD modes or 15 DWPOD modes for each of the

(u(x, y), v(x, y), φ(x, y)) to capture over 99.9% of the energy. The singular value decom-

position for both POD modes and DWPOD modes from the snapshots is displayed in

Figure(8.4a). The energy captured by the leading POD modes or DWPOD modes from

the snapshots as a function of the dimension of the POD reduced space is displayed in

Figure(8.4b). Also, the isopleths of the POD modes of dimension 1, 5 and 10 are displayed

in Figure(8.5). The other POD modes, though not plotted show a gradual shift in where

most energy is localized; that is, the leading POD modes display most energy uniformly

distributed almost on the entire globe, whereas the latter POD modes show a shift towards

the north and south poles, we attribute this observation to our particular FV-SWE model.

Similar observation was made by Akella and Navon (2006) [124] in terms of where the largest

errors in the retrieved initial conditions were obtained in their 4-D Var twin experiments using

the FV-SWE model. Furthermore, the dimension of control variables vector for the POD

reduced-order 4-D Var thus is 15× 3 = 45 compared to 144× 72× 3 = 31104 for the full 4-D

Var

8.4.2 POD reduced-order 4-D Var experiments

Two POD reduced-order 4-D Var experiments are set up, in which the first experiment,

hereafter refereed as DAS-I, had no background term included in the POD reduced-order

cost functional and the second one, hereafter referred as DAS-II, had the background error

covariance term included in the POD reduced-order cost functional. The background state

was generated using a 1% normal random perturbations on the initial conditions, in which

the background error covariance matrix has been taken to be a block diagonal matrix

B =
[

2× 104I 102I 102I
]
. In practice, by applying random number generator using

CPU clock cycle, we made sure that the seeds used to generate pseudo normal random

perturbations for twin-experiment “observations” are nearly uncorrelated with the seeds
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(a) The configuration at the initial time specified from ERA-40 data sets

(b) The 18-h forecast of the FV-SWE model using unconstrained Van-Leer advection scheme.

Figure 8.3: Isopleths of the geopotential height for the reference trajectory

133



0 5 10 15 20 25 30 35
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

Singular Value Number

S
in

gu
la

r 
V

al
ue

 

 
POD
DWPOD

(a) Unweighted SVD and dual weighted SVD

0 5 10 15 20 25 30 35
−16

−14

−12

−10

−8

−6

−4

−2

0

Dimension of POD reduced−order space

Lo
g(

1−
pe

rc
en

ta
ge

s 
of

 e
ne

rg
y 

ca
pt

ur
ed

 b
y 

P
O

D
 m

od
es

)

 

 
POD
DWPOD

(b) The percentage of energy captured by POD

Figure 8.4: Singular value decomposition

used to generate normal random perturbations for background terms in the reduced-order

cost functional.

In the process of POD 4-D Var, the resulting control variables from the latest optimization

iteration are projected to the full model to generate new POD bases. The new POD bases

then replace the previous ones resulting in a new POD reduced-order model. We found

that the root mean square error metrics between the full model solutions and reduced-order

solutions were consistently improved after each outer projection was carried out.

The limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) update algorithm for

quasi-Newton minimization ([125]) was employed for high-fidelity full model 4-D Var and all

variants of ad-hoc POD 4-D Var, while a variant of the LBFGS, called LBFGS-B[126, 127]

which can handle box-constraints on the variables was employed for the trust-region POD

4-D Var within the trust-region radius and provides a sufficient reduction of the high-fidelity

model quantified in terms of the Cauchy point [70]. In the ad-hoc POD 4-D Var[58, 65],

the POD bases are re-calculated when the value of the cost function cannot be decreased

by more than a factor of 0.5 for ad-hoc POD 4-D Var and 0.1 for ad-hoc DWPOD 4-D Var

between consecutive minimization iterations. The reason for the particular choice of these

values is based on numerical experience and relative rate of convergence of the ad-hoc and
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(a) 1st POD mode (b) 5th POD mode (c) 10th POD mode

Figure 8.5: Isopleths of the POD modes of dimension 1, 5 and 10 respectively

dual weighted POD methods, respectively. In the trust-region 4-D Var, the POD bases are

re-calculated when the ratio ρk is larger than the trust-region parameter η1 in the process of

updating the trust-region radius.

The unweighted ad-hoc POD 4-D Var as a reduced order approach required a smaller

computational cost but could not achieve the same cost functional reduction as the high-

fidelity model 4-D Var. The dual weighted ad-hoc POD 4-D Var achieves a better reduction

of the cost functional. However, neither of the above mentioned methods can attain the

minimum of the high fidelity 4-D Var model cost functional. Furthermore, the unweighted

snapshots trust-region POD 4-D Var yields an additional cost functional reduction compared

to the ad-hoc approach, albeit at a higher computational cost. Finally, the dual weighted

trust-region POD 4-D Var achieves almost exactly the same cost functional reduction as

the full high fidelity 4-D Var model, resulting in an additional decrease of four orders

of magnitude compared to the minimization of the cost functional obtained by applying

the unweighted ad-hoc POD 4-D Var (see Figure 8.6a and Figure 8.6b), showing that the

combination of the dual-weighted approach and trust-region method to model reduction is

significantly beneficial in attaining a local minimum of the cost functional almost identical

to one obtained by the high fidelity full 4-D Var, while the computation of effort for dual

weighted trust-region POD 4-D Var is much less than the one required for full 4-D Var(see

Table 8.1a and Table 8.1b).
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Table 8.1: Comparison of iterations, outer projections, error, and CPU time for ad-hoc POD
4-D Var, trust-region POD 4-D Var, trust-region dual-weighted POD 4-D Var and full 4-D
Var

(a) DAS-I

DAS I UWAHPOD DWAHPOD UWTRPOD DWTRPOD Full

Iterations 23 24 16 23 42
Outer projections 2 2 14 14 NA

log
(
Jf
J0

)
10−0.37 10−0.69 10−1.78 10−2.32 10−2.50

CPU time (s) 117.1 149.2 143.2 181.7 601.7

(b) DAS-II

DAS II UWAHPOD DWAHPOD UWTRPOD DWTRPOD Full

Iterations 14 59 50 62 100
Outer projections 2 2 15 16 NA

Jf
J0

0.72 0.54 0.17 0.13 0.10

CPU time (s) 100.3 207.7 280.1 352.5 966.7

In Figure(8.7a) and Figure(8.7b), we found that the minimization of the cost functional

using full 4-D Var will be terminated if the scaled norm of the gradient of the cost functional

can decrease by 2 orders of magnitude, while the one using DWTRPOD 4-D Var will

be terminated if the corresponding scaled norm of the gradient can decrease by 3 orders

of magnitude, which can be explained by the fact that the POD reduced-order space is

dimensionally lower than the full space.

Once the retrieved initial condition is obtained by implementing the dual weighted trust-

region 4-D Var, we can compare the results from the POD reduced-model with those from

the full model. To quantify the performance of the dual weighted trust-region 4-D Var, we

used the metric namely the root mean square error (RMSE) of the difference between the

POD reduced-order simulation and high-fidelity model.

In particular, the RMSE between variants of the POD reduced-model solution and the

true one at the time level i is used to estimate the error of the POD model.

RMSEi =

√∑j=N
j=1

(
Ui,j − UPOD

i,j

)2

N
, i = 1, . . . , n (8.28)

where Ui,j and UPOD
i,j are the state variables obtained by the full model and ones obtained
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Figure 8.6: Comparison of the performance of the iterative minimization process of the scaled
cost functional for unweighted ad-hoc POD 4-D Var, dual weighted ad-hoc POD 4-D Var,
unweighted trust-region POD 4-D Var, dual weighted trust-region 4-D Var, and full model
4-D Var respectively.

by optimal POD reduced-order model of time level i at node j, respectively, and N is the total

number of nodes over the domain. U and UPOD are used to either denote the geopotential

or the velocity of the full model and those corresponding to the POD reduced-order model,

respectively.

Even though it turned out to be advantageous to combine the dual-weighed approach with

the trust-region POD 4-D Var, it should be emphasized that this advantage diminishes when

we increase the number of POD bases for each component of the (u(x, y), v(x, y), φ(x, y))

from 15 to 25. This remark is based on RMSE and also the difference between the 18h-

forecast using true initial conditions and the one using retrieved initial condition after data

assimilation. However, increasing the dimension of the POD reduced-order space from 45

to 75 can increase the computational cost of POD reduced-order 4-D Var. This agrees with

results obtained in [102] that for practical applications, the dual-weighted procedure may

be of particular benefit for use only with small dimensional bases in the context of adaptive

order reduction as the minimization approaches the optimal solution. For other beneficial

effects of POD 4-D Var related to its use in the framework of second order adjoint of a global
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Figure 8.7: Comparison of the performance of the iterative minimization process of the scaled
norm of the gradient of the cost functional for dual weighted trust-region 4-D Var and full
model 4-D Var.

shallow water equations model see Daescu and Navon (2007) [101].

Finally in Figure(8.9a) and Figure(8.9b) we compared the errors in retrieved initial

conditions without and with background error covariance terms (i.e., DAS-I and DAS-II

experiments). Notice that in both cases the largest errors occur in the polar regions (see

note in Section 5.1). With the background term, we obtained an improved estimation of the

true initial condition in DAS-II, compared to DAS-I, as evident through the RMSE plots

(Figure(8.8a) and Figure(8.8b)) as well. Such advantages of the background term in ‘full’ 4

-D Var are well documented in [105].

8.4.3 Nonlinearity in the projection

Due to the complexity of the Lin-Rood finite volume code, the numerical fluxes had to be

computed at the element boundaries. This required us to go back to the full model in order

to evaluate the numerical fluxes, in order to deal with the nonlinearity in the projection. The

numerical problem of reducing the complexity of evaluating the nonlinear terms of the POD

reduced model in the context of finite volume (FV) requires for this quadratic nonlinearity a

pre-computing of a special POD-Galerkin projection. However, the pre-computing technique
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Figure 8.8: Comparison of the RMSE in DAS-II experiments among unweighted ad-hoc POD
4-D Var, dual weighted ad-hoc POD 4-D Var, unweighted trust-region POD 4-D Var, dual
weighted trust-region 4-D Var, and full model 4-D Var respectively.

proved to be very difficult to implement due to the algorithmic features of the Lin Rood FV

scheme. This explains why we obtained only a speed up of a factor of order 3 as shown in

Table 8.1a and Table 8.1b.

An elegant solution to this problem was put forward by Chaturantabut (2008) [106],

Chaturantabut and Sorensen (2010a, b) [107, 108] where they proposed a method referred

as a Discrete Empirical Interpolation Method (DEIM). DEIM achieves a complexity reduc-

tion of the nonlinearities which is proportional to the number of reduced variables while

POD retains a complexity proportional to the original number of variables. The DEIM

approach approximates a nonlinear function by combining projection with interpolation.

DEIM constructs specially selected interpolation indices that specify an interpolation-based

projection so as to provide a nearly l2 optimal subspace approximation to the nonlinear term,

without the expense of orthogonal projection.
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(a) DAS-I

(b) DAS-II

Figure 8.9: Isopleths(scaled by multiplying 1000) of the geopotential height for the difference
between the 18h-forecast using true initial conditions and the one using retrieved initial
condition after DWTRPOD 4-D Var.
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8.5 Results with incomplete observations

8.5.1 The observations of height field only

In DAS-II, meteorological observations are temporally available every 3 hours but spatially

distributed at all the grid points. So the question arises as to what will happen if we decrease

the number of observations in space [128], i.e, observational operator in the cost functional

becomes a sparse matrix.

Suppose that only the geopotential field is observed but the observations for the wind

field are unavailable (i.e., the number of observations is decreased from 144× 72× 3× 6 to

144× 72× 6). We refer to this case by DAS-III(a), in which the initial perturbed field is the

same as the one used to start DAS-I. In DAS-III(a), the numerical results in Figure(8.10a)

show that it takes more iterations for the the cost functional of full 4-D Var with only

incomplete observations to converge than the one with full observations. Furthermore,

the POD reduced cost functional in DAS-III(a) using the UWTRPOD 4-D Var can be

reduced to almost the same degree of magnitude as full 4-D Var in DAS-III(a) displayed in

Figure(8.10a). Also, in DAS-III(a) the norm of the gradient of POD reduced cost functional

using UWTRPOD 4-D Var and the cost functional using full 4-D Var both decrease by

only 2 orders of magnitude, displayed in Figure(8.10b). In Figure(8.11a), an additional

experiment was carried out comparing results for UWTRPOD 4-D Var, DWTRPOD 4-

D Var as well as full 4-D Var in the case of observations being available only for the

geopotential field. It was also found out that the results for DWTRPOD 4-D Var produced

similar results as those obtained in the case of DAS III (b) (c) (d) (not shown) experiments

with incomplete observations. In Figure(8.11b), corresponding results were displayed for

the scaled norm of the gradient for DWTRPOD 4-D Var and full 4-D Var. Again, the

other experiments (not shown) exhibited similar results of incomplete observations. In

Figure(8.12), we obtained the errors in retrieved initial conditions using UWTRPOD 4-

D Var with incomplete observations.(i.e., only the geopotential observations are available)

Notice that in this case the largest errors are still dominant in the polar regions, while the

overall RMSE becomes larger than the results obtained in DAS-II.
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(b) Scaled norm of the gradient

Figure 8.10: DAS-III(a)(Observations of height field only): Comparison of the performance
of the iterative minimization process of the scaled cost functional and the scaled norm of the
gradient of the cost functional for unweighted trust-region POD 4-D Var and full 4-D Var.

8.5.2 Incomplete observations in space

Next we consider fewer observations along the longitudinal direction. From the earlier

number of 144 observations, we specified only 72. Hence the observational resolution is

72×72. But we have observations for [h,u,v] at every three hours as in DAS-II. The reduction

in cost functional and scaled gradient norm are plotted in Figure(8.13a) and Figure(8.13b)

respectively. Notice that the performance of both the full 4-D Var and UWTRPOD is

affected due the alternating observations in one direction.

We follow on the above approach and test what happens when instead of having

fewer observations along the longitudinal direction , we have lesser observations along

the latitudinal direction, i.e., instead of 72, have only 36 observations, which implies

an observational resolution of 144 × 36. Notice that the performance is not as severely

impacted (see Figure(8.14a) and Figure(8.14b)) as in earlier results with 5×2.5 observational

resolution. Based on the above two experiments, with observations at 5 × 2.5 and 2.5 × 5

grid resolutions, though the cost functional and gradient norm could minimized, as remarked

for e.g., Zou et al.[128], such alternating sparsity of the observations affects the condition
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(b) Scaled norm of the gradient

Figure 8.11: DAS-III(a)(Observations of height field only): Comparison of the performance
of the iterative minimization process of the scaled cost functional and the scaled norm of
the gradient of the cost functional for unweighted trust-region POD 4-D Var, dual weighted
trust-region POD 4-D Var and full 4-D Var.

number of the Hessian of cost functional, resulting in a poorly conditioned minimization

problem. Based on our results, we remark that the POD 4-D Var also suffers from the

ill-conditioning as the full 4-D Var for such an observational grid resolution.

In addition, we conducted another experiment where we retained observations of height

field at all grid points, whereas the wind components, u and v were observed as following.

The observations for the winds fields were not available from 20 degrees North/ South to

the North/ South poles, that is, we masked the observations for u and v fields near the

poles. The decrease in scaled cost and gradient norm are plotted in Figure 8.15a and Figure

8.15b, respectively. We note a comparable performance of the TRPOD 4D-Var and the

full 4D-Var. This example illustrates that the background error covariance, which was

implemented using geostrophic balance assumptions is beneficial in POD 4-D Var case, just

like it is for the full 4-D Var.

In this chapter, we solved an inverse problem for the POD reduced-order global shallow

water equations model using a finite-volume formulation, controlling its initial conditions

in presence of observations being assimilated in a time window. In this POD 4-D Var, we
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Figure 8.12: DAS-III: Isopleths(scaled by multiplying 1000) of the geopotential height for the
difference between the 18h-forecast using true initial conditions and the one using retrieved
initial condition after UWTRPOD 4-D Var.

developed the full adjoint of the FV-SWE and by projection we obtained the reduced-order

adjoint for POD reduced-order model. We integrated the full adjoint model backward in time

to compute the time-varying sensitivities of the full 4-D Var cost functional with respect

to time-varying model states, from which we derived the dual weights of the ensemble of

snapshots. Also, we projected the gradient of the full cost functional onto the gradient of

the POD reduced-order cost functional. Furthermore, after the projection of full background

error covariance matrix to low dimensional reduced space, an ideal preconditioning of the

POD 4-D Var was obtained so that the Hessian matrix of the POD reduced-order background

error covariance matrix became the identity matrix.

In the numerical experiments, we setup two types of 4-D Var experiments, namely, DAS-I

without background terms and DAS-II with background term. For both DAS-I and DAS-

II, we compared several variants of POD 4-D Var, namely unweighted ad-hoc POD 4-D

Var, dual-weighted ad-hoc POD 4-D Var, unweighted trust-region POD 4-D Var and dual-

weighted trust-region POD 4-D Var, respectively. We found that the ad-hoc POD 4-D
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Figure 8.13: DAS-III(b)(5×2.5 Resolution): Comparison of the performance of the iterative
minimization process of the scaled cost functional and the scaled norm of the gradient of the
cost functional for unweighted trust-region POD 4-D Var and full 4-D Var.

Var version yielded the least reduction of the cost functional compared with the trust-

region 4-D Var. We assume that this result may be attributed to lack of feedbacks from

the high-fidelity model. On the other hand, the trust-region POD 4-D Var version yielded a

sizably better reduction of the cost functional, due to inherent properties of TRPOD allowing

local minimizer of the full problem to be attained by minimizing the TRPOD sub-problem.

Thus trust-region 4-D Var resulted in global convergence to the high fidelity local minimum

starting from any initial iterates. The experiments carried out in DAS-III with incomplete

observational data indicate that in the case of insufficient data, the minimization is slower.

Nevertheless many experiments with incomplete observations show satisfactory performance

of the POD reduced 4-D Var, indicating its robustness to lack of observations.

The TRPOD approach for the optimal flow control problem can be viewed as a

modification of classical trust region method with a non-quadratic POD model function.

In our context, TRPOD was thus implemented for FV-SWE model in order to obtain the

robust global convergence based on only a small number of POD basis function. The

dual-weighted proper orthogonal decomposition selection of snapshots allows propagation

of information from the data assimilation system onto the reduced order model, possibly
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Figure 8.14: DAS-III(c)(2.5×5 Resolution): Comparison of the performance of the iterative
minimization process of the scaled cost functional and the scaled norm of the gradient of the
cost functional for unweighted trust-region POD 4-D Var and full 4-D Var.

capturing lower energy modes that may play significant role in successful implementation

of 4-D Var data assimilation. Combining the dual-weighted approach with the trust-region

POD approach to model reduction results in a significant enhanced benefit achieving a local

minimum of reduced cost function optimization almost identical to the one obtained by

the high fidelity full 4-D Var model. Hence we achieve a double benefit while running a

reduced-order inversion at an acceptable computational cost, at least for the shallow-water

equations model in a two-dimensional spatial domain. Therefore, the advantage of the dual

weighted TRPOD can be viewed as either the economization of the full 4-D Var without

sacrificing the global convergence or the feasibility of implementation of optimal control of

a large dynamical models based on a relatively lower dimensional POD control space.

In particular we observed that a similar reduction in cost functional and RMSE could be

obtained using POD 4-D Var method, such as the dual weighted TRPOD compared to the

full 4-D Var, but at a significantly less computational effort and reduced storage requirements

(about 1/3 CPU-time less compared to full 4-D Var). These results indicate a potential for

huge benefits within operational 4-D Var data assimilation systems with state of the art

numerical weather prediction models. In order to obtain a drastic speed up of CPU-time by
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Figure 8.15: DAS-III(d): 2.5×2.5 Resolution with incomplete observations for u and v wind
fields from 20o north to north pole and 20o south to south pole and complete observations
for geopotential field, over entire globe. Comparison of the performance of the iterative
minimization process of the scaled cost functional and the scaled norm of the gradient of the
cost functional for unweighted trust-region POD 4-D Var and full 4-D Var.

at least an order of magnitude, we plan to explore implementation of DEIM to exploit the

full potential of the POD reduced order model in the framework of dual weighted TRPOD

in our future research work.
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CHAPTER 9

SUMMARY AND FUTURE WORK

The ad-hoc POD 4-D Var lacks the ability to incorporate the information from the data

assimilation system except for small intervals of time surrounding the initial window where

the original snapshots were taken. Frequent projections from the reduced order POD model

to the high fidelity model are required in order to retain the validity of the control. This is

the motivation for applying the dual weighted POD basis to absorb the information from the

optimality system of the 4-D Var. We also exploit the property of the global convergence of

state-of-the-art trust-region POD adaptivity based on the ratio between predicted reduction

of the POD reduced-order model and actual reduction of the high-fidelity model. Finally,

we proposed a new methodology combining the dual weighted snapshots and trust region

POD adaptivity, allowing us to enhance the benefits already provided by using dual weighted

POD 4-D Var.

All of the above POD bases are generated by taking into account the controllability of

DS and ignoring the observability of DS, however, some state variables that require little

energy to control may require more energy to observe. On the other hand, the method

of Balanced truncation (BMT) truncates the least controllable/observable states that have

little effect on the input/output behavior. The central concept of the BMT is to find a ROM

of high-fidelity linear DS such that the degree of reachability and the degree of observability

of each state are the same.

In order to extend the classical linear BMT to the nonlinear DS, one can either compute

the empirical observability grammian of the original system or the controllability grammian

of the adjoint system. We have proposed a way to apply the method of snapshots to

adjoint system and generate so-called adjoint POD modes, with which we can approximate

the controllability grammian of the adjoint system instead of solving the computationally
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expensive coupled Lyapunov equations explicitly.

We also discussed the possibility to extend the snapshots based POD methodology to

the nonlinear system. Furthermore, we modify the classical algorithms in order to save the

CPU time even more significantly. We proposed a novel idea to construct an ensemble of

snapshots by integrating the tangent linear model (TLM) only once, based on which we can

obtain its TLM POD modes. Then each TLM POD mode will be used as an initial condition

to generate a small ensemble of adjoint snapshots and their adjoint POD modes. Finally,

we can construct a large ensemble of adjoint POD modes by putting together each small

ensemble of adjoint POD modes. In the incremental POD 4-D Var, we can approximate

the controllability Grammian by integrating TLM only once and approximate observability

Gramian by integrating adjoint model only a reduced number of times.

There have been several trends of the development in research recently on ROM by

coupling POD with balanced truncated ROM, Krylov ROM, statistical inverse problems,

and some control oriented method.

A dimension reduction method called Discrete Empirical Interpolation (DEIM) [106,

107, 108] was proposed and shown to dramatically reduce the computational complexity

of the popular POD method for constructing reduced-order models for unsteady and/or

parametrized nonlinear partial differential equations (PDEs). Michael Hinze and Martin

Kunkel 2010 [132] investigated POD-based model order reduction for semiconductors in

electrical networks using DEIM to treat the reduction of nonlinear components. In the

context of structural problems involving plasticity or damage, strong topological changes in

the structure might occur, and the initial snapshots might be too poor to represent accurately

the solution of the damaged structure. John R. Singler and Belinda A. Batten 2010

[131] presented a Balanced POD algorithm for robust control design for linear distributed

parameter systems to compute the nonstandard features of this robust control law.

Carlberg and Farhat 2009 [133] presented an adaptive POD-Krylov reduced-order mod-

eling technique. They computed approximations to the structural state and sensitivities

that are contained in the sum of POD and Krylov subspaces. Kerfriden et al., 2010 [134]

developed a bridge between POD-based model order reduction techniques and the classical

Newton-Krylov solvers to derive the POD-Krylov projection strategy and obtain an efficient

solution procedure for highly nonlinear problems undergoing strong topological changes.

Imran Akhtar and Jeff Borggaard et al. 2010 [135] presented a approach called ”control-
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then-reduce” to control the von Karman vortex street. This approach ensures the feedback

functional gains are well represented in the reduced basis functions.

Lieberman, Willcox and Ghattas [136] proposed a greedy algorithm for the construction of

a reduced model with reduction in both parameter and state is developed for efficient solution

of costly large-scale statistical inverse problems governed by partial differential equations

with distributed parameters.

In future research work, I would like to consider the combination of the balanced

truncation technique with the dual weighted trust-region POD reduced-oder 4-D Var and its

generalization to nonlinear DS with real observations. Another research direction consists

in exploring Discrete Empirical Interpolation Method (DEIM) proposed by [106, 107, 108]

and application of DEIM to our FVSW model with realistic initial conditions. DEIM

achieves a complexity reduction of the nonlinearities which is proportional to the number

of reduced variables while POD retains a complexity proportional to the original number of

variables. The DEIM approach approximates a nonlinear function by combining projection

with interpolation. DEIM constructs specially selected interpolation indices that specify an

interpolation-based projection so as to provide a nearly l2 optimal subspace approximation to

the nonlinear term, without the expense of orthogonal projection. Finally, it is also possible

to expand the coefficient in the generalized polynomial chaos expansion (GPCE) in terms of

POD basis based on GPCE POD stochastic Galerkin projection.
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