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INTRODUCTION 
 
Sensitivity and uncertainty analysis are becoming increasingly widespread in 

many fields of engineering and sciences, encompassing practically all of the 
experimental data processing activities as well as many computational modeling 
and process simulation activities. There are many methods, based either on 
deterministic or statistical concepts, for performing sensitivity and uncertainty 
analysis. Two of the modern deterministic methods, namely the Adjoint 
Sensitivity Analysis Procedure (ASAP) and the Global Adjoint Sensitivity 
Analysis Procedure (GASAP) were presented, in detail, in Volume I of this book. 
However, despite of this variety of methods, or perhaps because of it, a precise, 
unified terminology, across all methods, does not seem to exist yet, even though 
many of the same words are used by the practitioners of the various methods. For 
example, even the word “sensitivity” as used by analysts employing statistical 
methods may not necessarily mean or refer to the same quantity as would be 
described by the same word, “sensitivity,” when used by analysts employing 
deterministic methods. Care must be therefore exercised, since identical words 
may not necessarily describe identical quantities, particularly when comparing 
deterministic to statistical methods. Furthermore, conflicting and contradictory 
claims are often made about the relative strengths and weaknesses of the various 
methods. 

Models of complex physical systems usually involve two distinct sources of 
uncertainties, namely: (i) stochastic uncertainty, which arises because the system 
under investigation can behave in many different ways, and (ii) subjective or 
epistemic uncertainty, which arises from the inability to specify an exact value 
for a parameter that is assumed to have a constant value in the respective 
investigation. Epistemic (or subjective) uncertainties characterize a degree of 
belief regarding the location of the appropriate value of each parameter. In turn, 
these subjective uncertainties lead to subjective uncertainties for the response, 
thus reflecting a corresponding degree of belief regarding the location of the 
appropriate response values as the outcome of analyzing the model under 
consideration. A typical example of a complex system that involves both 
stochastic and epistemic uncertainties is a nuclear reactor power plant: in a 
typical risk analysis of a nuclear power plant, stochastic uncertainty arises due to 
the hypothetical accident scenarios which are considered in the respective risk 
analysis, while epistemic uncertainties arise because of uncertain parameters that 
underlie the estimation of the probabilities and consequences of the respective 
hypothetical accident scenarios. 

Sensitivity and uncertainty analysis procedures can be either local or global in 
scope. The objective of local analysis is to analyze the behavior of the system 
response locally around a chosen point (for static systems) or chosen trajectory 
(for dynamical systems) in the combined phase space of parameters and state 
variables. On the other hand, the objective of global analysis is to determine all 
of the system's critical points (bifurcations, turning points, response maxima, 
minima, and/or saddle points) in the combined phase space formed by the 
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parameters and dependent (state) variables, and subsequently analyze these 
critical points by local sensitivity and uncertainty analysis. The methods for 
sensitivity and uncertainty analysis are based on either statistical or deterministic 
procedures. In principle, both types of procedures can be used for either local or 
for global sensitivity and uncertainty analysis, although, in practice, 
deterministic methods are used mostly for local analysis while statistical 
methods are used for both local and global analysis. 

To assist the reader set the various methods for sensitivity and uncertainty 
analysis in proper perspective, Chapter I of this Volume reviews and summarizes 
the salient features, highlighting relative strengths and weaknesses, of the most 
prominent screening design methods, statistical methods (local and global), and 
deterministic methods (local and global), as they are currently applied in 
practice. The following statistical procedures are discussed: sampling-based 
methods (random sampling, stratified importance sampling, and Latin 
Hypercube sampling), first- and second-order reliability algorithms (FORM and 
SORM, respectively), variance-based methods (correlation ratio-based methods, 
the Fourier amplitude sensitivity test, and Sobol’s method), and screening design 
methods (classical one-at-a-time experiments, global one-at-a-time design 
methods, systematic fractional replicate designs, and sequential bifurcation 
designs). It is important to note that all statistical uncertainty and sensitivity 
analysis methods first commence with the “uncertainty analysis” stage, and only 
subsequently proceed to the “sensitivity analysis” stage; this procedural path is 
the reverse of the procedural (and conceptual) path underlying the deterministic 
methods of sensitivity and uncertainty analysis, where the sensitivities are 
determined prior to using them for uncertainty analysis. 

In practice, sensitivities cannot be computed exactly by using statistical 
methods; this can be done only by using deterministic methods. Among 
deterministic methods, it is noted that the direct method and the Forward 
Sensitivity Analysis Procedure (FSAP) require at least as many model-
evaluations as there are parameters in the model, while the ASAP requires a 
single model-evaluation of an appropriate adjoint model, whose source term is 
related to the response under investigation. The ASAP is the most efficient 
method for computing local sensitivities of large-scale systems, when the 
number of parameters and/or parameter variations exceeds the number of 
responses of interest. It appears that the only genuinely global deterministic 
method for sensitivity analysis, published thus far, is the global adjoint 
sensitivity analysis procedure (GASAP) that was presented in Chapter VI of 
Volume I. The GASAP uses both the forward and the adjoint sensitivity system 
to explore, exhaustively and efficiently, the entire phase-space of system 
parameters and dependent variables, in order to obtain complete information 
about the important global features of the physical system, namely the critical 
points of the response and the bifurcation branches and/or turning points of the 
system’s state variables. Notably, the adjoint sensitivity model can be developed 
using relatively modest additional resources, if it is developed simultaneously 
with the original model. However, if the adjoint sensitivity model is constructed 
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a posteriori, considerable skills may be required for its successful development 
and implementation. 

Chapter II of this Volume presents applications of the ASAP to transient one-
dimensional two-phase flow problems modeled by well-posed quasi-linear 
partial differential equations. The chapter commences with the presentation of a 
self-contained formalism for applying the ASAP to functional-type responses 
associated with two-phase flow models that comprise equations describing 
conservation of mass, momentum, and energy, for practical one-dimensional, 
two-phase flow models. This theoretical presentation is followed by a 
presentation of the main aspects of implementing the ASAP into the 
RELAP5/MOD3.2 code system, which is a large-scale code that simulates the 
thermal-hydraulic characteristics of light water nuclear reactors. The thermal-
hydraulic part of the RELAP5/MOD3.2 code comprises a one-dimensional, non-
equilibrium, non-homogeneous two-phase flow model, including conservation 
equations for boron concentration and non-condensable gases. Chapter II also 
highlights the fundamentally important aspect of consistency between the 
differential and the corresponding discretized equations used for sensitivity 
analysis. In particular, the following consistency correspondences must be 
assured: (i) the Discretized Forward Sensitivity Model must be consistent with 
the Differential Forward Sensitivity Model, if the FSAP is used; (ii) the 
Differential Adjoint Sensitivity Model must be consistent with the Discretized 
Adjoint Sensitivity Model, if the ASAP is used; and (iii) the Discretized 
(representation of the) Response Sensitivity must be consistent with the Integral 
(representation of the) Response Sensitivity for both the FSAP and the ASAP (in 
which the Integral and the Discretized Response Sensitivity are represented in 
terms of the corresponding adjoint functions). 

From a historical perspective, in almost every field of scientific activity, the 
development of large-scale simulation models extended over many years, if not 
decades, and their respective development invariably involved large and 
sometimes changing teams of scientists. Furthermore, such complex models 
consist of many inter-coupled modules, each module simulating a particular 
physical sub-process. Since the ASAP has not been widely known in the past, 
most of the extant large-scale, complex simulation models were developed 
without having simultaneously developed and implemented the corresponding 
adjoint sensitivity model. Implementing a posteriori the ASAP for such large-
scale code systems is not trivial, and the development and implementation of the 
adjoint sensitivity model can seldom be executed all at once, in one fell swoop. 
Actually, an “all-or-nothing” approach for developing and implementing the 
complete, and correspondingly complex, adjoint sensitivity model for large-scale 
problems is at best difficult (and, at worst, impractical), and is therefore not 
recommended. Instead, the recommended strategy is a module-by-module 
implementation of the ASAP. In this approach, the ASAP is applied to each 
module, in turn, to develop a corresponding adjoint sensitivity system for each 
component module. The final step in this “modular” implementation of the ASAP 
is to “augment” (i.e., join together) the adjoint sensitivity systems for each of the 
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respective modules, avoiding redundant effort and/or loss of information, until 
all of the component adjoint sensitivity modules are judiciously connected 
together, accounting for all of the requisite feedbacks and liaisons between them. 
In view of its high importance for practical applications, Chapter III presents the 
theoretical foundation for the modular implementation of the ASAP for complex 
simulations systems, by starting with a selected code module, and then 
augmenting the size of the adjoint sensitivity system, module by module, until 
completing the entire system under consideration. The presentation of the 
general theory (i.e., the ASAP for augmented systems) is followed by an 
illustrative application of this theory to a large-scale system involving the 
augmentation of the adjoint sensitivity model corresponding to the two-fluid 
model in RELAP5/MOD3.2 (which was the subject of Chapter II) with the 
adjoint sensitivity model corresponding to the heat structure models in 
RELAP5/MOD3.2. 

Often, the response functional of a physical system is located at a critical point 
(i.e., a maximum, minimum, saddle point, etc.) of a function that depends on the 
system’s state vector and parameters. In such situations, changes in the system’s 
parameter would affect not only the magnitude of the response, but also its 
location in phase-space, since the perturbed response would not only differ in 
value from the original response, but would also occur in a different spatial 
location, at a different point in time, etc. The general sensitivity theory, including 
the ASAP, for such responses, defined at critical points, is presented in Chapter 
IV. The practical application of the general theory is illustrated by means of a 
simple paradigm example (a simple particle diffusion problem), and also by 
means of a large-scale application to a paradigm transient scenario for a nuclear 
reactor system. The reactor’s transient behavior is simulated by using a large-
scale code system that solves equations describing the following phenomena: (a) 
thermal-hydraulics equations describing the conservation of thermal energy, 
mass, and momentum for the average channel fuel pin and surrounding single-
phase coolant in the reactor’s core; (b) neutron point-kinetics equations 
describing the time-dependent behavior of the core-integrated neutron density; 
and (c) a loop-hydraulic equation that relates the core inlet and outlet coolant 
pressures. 

Chapters V and VI are devoted to applications of the ASAP for performing 
efficient sensitivity analysis of paradigm large-scale models used for numerical 
weather prediction and climatic research. Our understanding of atmospheric 
processes relies on the use of mathematical models to test the consequences of 
various physical assumptions. An essential part of weather prediction and 
climatic research consists of interpreting the results of large-scale simulation 
models. For example, the current concern about the climatic impact of CO2 stems 
from the sensitivity that climatic models exhibit to the atmospheric concentration 
of CO2. A further example is the occurrence of atmospheric blocks, which 
strongly affect the variability in predictive skills of numerical weather prediction 
(NWP) models; it is therefore important to understand the model errors 
associated with blocking situations. As mathematical models increase in 
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sophistication, though, the reasons for the results they give become less clear, 
making the results more difficult to interpret. A quantitative procedure to help 
interpret the results of a mathematical model is to perform a sensitivity analysis, 
i.e., to investigate how the results of the model change when parameters in the 
model are varied. For example, the ice-albedo feedback mechanism corresponds 
to the observed negative sensitivity of surface air temperature to surface albedo. 
Furthermore, sensitivities quantify the extent that uncertainties in parameters 
contribute to uncertainties in results of models. For example, sub-grid processes 
need to be parameterized, but such parameterizations are highly simplified 
approximations of complex processes, so the uncertainties in the parameters 
involved can be large. If the corresponding sensitivities are also large, then the 
results of the model will have large uncertainties. 

Chapter V presents paradigm applications of the ASAP to a radiative-
convective model (RCM) for climate simulation and, respectively, to a two-layer 
isentropic primitive equation model for numerical weather prediction. The RCM 
contains the nonlinear phenomena characteristic of radiatively-coupled 
processes, and includes 312 variable parameters. The ASAP is applied to derive 
the adjoint sensitivity equations, to compute efficiently the response sensitivities 
(in terms of the adjoint functions) to all parameters, and to illustrate the use of 
sensitivities. Notably, the adjoint functions themselves can be interpreted as the 
sensitivity of a response to instantaneous perturbations of the model’s dependent 
variables. Furthermore the adjoint functions can be used to reveal the time scales 
associated with the most important physical processes in the model. In particular, 
the adjoint functions for the RCM reveal the three time scales associated with: (i) 
convective adjustment; (ii) heat transfer between the atmosphere and space; and 
(iii) heat transfer between the ground and atmosphere. Calculating the 
eigenvalues and eigenvectors of the matrix of derivatives occurring in the set of 
adjoint equations reveals similar physical information without actually needing 
to solve the adjoint sensitivity model. An illustrative use of the ASAP for 
evaluating the sensitivity to feedback mechanisms, is also presented. The 
paradigm response considered is the increase in the average surface air 
temperature which occurs after the atmospheric CO2 concentration in the model 
is doubled, while the paradigm feedback is the surface albedo feedback.  

Chapter V continues with a paradigm application of the ASAP to more 
complex, operator-valued, responses, by considering a paradigm two-layer 
isentropic NWP model that simulates the nonlinear life cycles of baroclinic 
waves, including the occurrence of so-called “blocks.” The variability in 
predictive skills of NWP models is strongly related to the occurrence of such 
blocks; this occurrence is indicated by the so-called “blocking indices.” From a 
mathematical point of view, blocking indices are operator-valued responses. The 
ASAP is applied to perform a paradigm sensitivity analysis of a time-dependent 
blocking index to model parameters. This illustrative example underscores the 
fact that the exceptional computational efficiency of the ASAP yields quantitative 
results that could not have been obtained, in practice, by any other sensitivity 
analysis method, because of prohibitive computational costs. 
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Chapter VI sets forth the presentation of paradigm applications of the ASAP to 
large-scale models used for numerical weather prediction, by considering the 
following models: (i) the diagnostic equations underlying the nonlinear radiation 
model used in a version of the National Center for Environmental Prediction 
model for medium-range weather forecasting; (ii) the Florida State University 
Global Spectral Model; and (iii) the Relaxed Arakawa Schubert scheme in the 
NASA Goddard Earth Observing System-1 (GEOS-1) general circulation model, 
developed by the then Data Assimilation Office (now Global Modeling and 
Assimilation Office) at the NASA Goddard Space Flight Center. A particularly 
important implication of the paradigm sensitivity analysis results presented in 
this chapter is that accurate data for temperature, moisture and surface pressure 
are essential for an accurate evaluation of cumulus cloud effects, especially at the 
most influential vertical levels that were identified by sensitivity analysis. Of 
course, this is because small perturbations at such influential locations tend to 
exert a stronger impact on the responses than similar perturbations at other, less 
influential, locations. Therefore, data quality is particularly important at those 
levels and areas with positive feedback between cloud activities and the 
environment, since small errors tend to grow through positive feedback 
mechanisms. Such sensitivity analysis results also underscore the importance of 
the ASAP for variational data assimilation. For example, in variational 
assimilation of precipitation data, in which moist convection is the dominant 
process, the difference between model output rainfall and the observed rainfall is 
taken as input to the adjoint sensitivity model. Such information also indicates 
the regions where additional adaptive observations should be taken. 

To keep this volume to a reasonable size, several important topics (e.g., 
methods of data adjustment and data assimilation in the presence of 
uncertainties; optimal control of fluid flow) have been deferred for presentation 
in subsequent volume(s). Nevertheless, by addressing computational issues and 
highlighting the major challenges that still remain to be resolved, the material 
presented in this Volume is also intended to provide a comprehensive basis for 
further advancements and innovations in the field sensitivity and uncertainty 
analysis. Two outstanding issues, whose solution would greatly advance the state 
of overall knowledge, would be: (i) to develop the adjoint sensitivity analysis 
procedure (ASAP) for problems describing turbulent flows, and (ii) to combine 
the GASAP with global statistical uncertainty analysis methods, striving to 
perform, efficiently and accurately, global sensitivity and uncertainty analyses 
for large-scale systems. 

In closing, the authors would like to acknowledge the essential contributions 
made the editorial staff of Chapman & Hall / CRC. We are particularly grateful 
to Ms. Helena Redshaw for keeping the publication schedule on track with her 
friendly e-mails. Last but not least, our special thanks go to Bob Stern, Executive 
Editor, whose patience and unwavering support made it ultimately possible to 
bring this book to our readers. One of the authors (I. M. Navon) would also like 
to acknowledge support of NSF and NASA grants for his research. 
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1 

CHAPTER I 
 
 

A COMPARATIVE REVIEW OF SENSITIVITY AND 
UNCERTAINTY ANALYSIS METHODS FOR  

LARGE-SCALE SYSTEMS 
 
Sensitivity and uncertainty analysis are becoming increasingly widespread in 

many fields of engineering and sciences, as diverse as nuclear and chemical 
engineering, econometric modeling, electrical engineering, atmospheric and 
geophysical sciences, encompassing practically all of the experimental data 
processing activities as well as many computational modeling and process 
simulation activities. There are many methods, based either on deterministic or 
statistical concepts, for performing sensitivity and uncertainty analysis. 
However, despite this variety of methods, or perhaps because of it, a precise, 
unified terminology, across all methods, does not seem to exist yet, even though 
many of the same words are used by the practitioners of the various methods. 
For example, even the word “sensitivity” as used by analysts employing 
statistical methods may not necessarily mean or refer to the same quantity as 
would be described by the same word, “sensitivity,” when used by analysts 
employing deterministic methods. Care must be therefore exercised, since 
identical words may not necessarily describe identical quantities, particularly 
when comparing deterministic to statistical methods. Furthermore, conflicting 
and contradictory claims are often made about the relative strengths and 
weaknesses of the various methods. 

The purpose of this Chapter is to review the salient features, highlighting 
relative strengths and weaknesses, of the most prominent screening design 
methods, statistical methods (local and global), and deterministic methods (local 
and global), as they are currently applied in practice. In addition, by addressing 
computational issues and highlighting the major challenges that still remain to be 
resolved, the material presented in this Chapter is also intended to provide a 
comprehensive basis for further advancements and innovations in the field 
sensitivity and uncertainty analysis. 

Models of complex physical systems usually involve two distinct sources of 
uncertainties, namely: (i) stochastic uncertainty, which arises because the system 
under investigation can behave in many different ways, and (ii) subjective or 
epistemic uncertainty, which arises from the inability to specify an exact value 
for a parameter that is assumed to have a constant value in the respective 
investigation. Epistemic (or subjective) uncertainties characterize a degree of 
belief regarding the location of the appropriate value of each parameter. In turn, 
these subjective uncertainties lead to subjective uncertainties for the response, 
thus reflecting a corresponding degree of belief regarding the location of the 
appropriate response values as the outcome of analyzing the model under 
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2         Sensitivity and Uncertainty Analysis 

 

consideration. A typical example of a complex system that involves both 
stochastic and epistemic uncertainties is a nuclear reactor power plant: in a 
typical risk analysis of a nuclear power plant, stochastic uncertainty arises due to 
the hypothetical accident scenarios which are considered in the respective risk 
analysis, while epistemic uncertainties arise because of uncertain parameters that 
underlie the estimation of the probabilities and consequences of the respective 
hypothetical accident scenarios. 

Sensitivity and uncertainty analysis procedures can be either local or global in 
scope. The objective of local analysis is to analyze the behavior of the system 
response locally around a chosen point (for static systems) or chosen trajectory 
(for dynamical systems) in the combined phase space of parameters and state 
variables. On the other hand, the objective of global analysis is to determine all 
of the system's critical points (bifurcations, turning points, response maxima, 
minima, and/or saddle points) in the combined phase space formed by the 
parameters and dependent (state) variables, and subsequently analyze these 
critical points by local sensitivity and uncertainty analysis. The methods for 
sensitivity and uncertainty analysis are based on either statistical or deterministic 
procedures. In principle, both types of procedures can be used for either local or 
for global sensitivity and uncertainty analysis, although, in practice, 
deterministic methods are used mostly for local analysis while statistical 
methods are used for both local and global analysis. 

The most commonly used statistical methods are discussed in Section I.A, the 
deterministic procedures are briefly summarized in Section I.B, while the trade-
offs between computational requirements and results produced by the respective 
methods are assessed in Section I.C, respectively. To begin with, Section I.A 
highlights the salient features of the most popular statistical procedures currently 
used for local and global sensitivity and uncertainty analysis. These statistical 
procedures can be classified as follows: sampling-based methods (random 
sampling, stratified importance sampling, and Latin Hypercube sampling), first- 
and second-order reliability algorithms (FORM and SORM, respectively), 
variance-based methods (correlation ratio-based methods, the Fourier amplitude 
sensitivity test, and Sobol’s method), and screening design methods (classical 
one-at-a-time experiments, global one-at-a-time design methods, systematic 
fractional replicate designs, and sequential bifurcation designs). It is important to 
note that all statistical uncertainty and sensitivity analysis methods first 
commence with the “uncertainty analysis” stage, and only subsequently proceed 
to the “sensitivity analysis” stage; this procedural path is the reverse of the 
procedural (and conceptual) path underlying the deterministic methods of 
sensitivity and uncertainty analysis, where the sensitivities are determined prior 
to using them for uncertainty analysis. 

In practice, sensitivities cannot be computed exactly by using statistical 
methods; this can be done only by using deterministic methods, which will be 
reviewed in Section I.B. To begin with, Section I.B.1 reviews briefly the 
deterministic methods most commonly used for computing local sensitivities, 
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namely the “brute-force” method based on recalculations, the direct method 
(including the decoupled direct method), the Green’s function method, the 
forward sensitivity analysis procedure (FSAP), and the adjoint sensitivity 
analysis procedure (ASAP). The FSAP and ASAP have been presented, in detail, 
in Volume I of this book. In particular, it has been noted there that the direct 
method and the FSAP require at least as many model-evaluations as there are 
parameters in the model, while the ASAP requires a single model-evaluation of 
an appropriate adjoint model, whose source term is related to the response under 
investigation. The ASAP is the most efficient method for computing local 
sensitivities of large-scale systems, when the number of parameters and/or 
parameter variations exceeds the number of responses of interest. The adjoint 
model requires relatively modest additional resources to develop and implement 
if this is done simultaneously with the development of the original model. If, 
however, the adjoint model is constructed a posteriori, considerable skills may 
be required for its successful development and implementation. 

Once they become available, the exact local sensitivities can be used for the 
following purposes: (i) understand the system by highlighting important data; (ii) 
eliminate unimportant data; (iii) determine effects of parameter variations on the 
system’s behavior; (iv) design and optimize the system (e.g., maximize 
availability/minimize maintenance); (v) reduce over-design; (vi) prioritize the 
improvements to be effected in the respective system; (vii) prioritize 
introduction of data uncertainties; (viii) perform local uncertainty analysis by 
using the method of “propagation of errors” (also known as the “propagation of 
moments,” or the “Taylor-Series”) as presented in Section III.F of Volume I. 
Note that the “propagation of errors” method is used both for processing 
experimental data obtained from indirect measurements and also for performing 
uncertainty analysis of computational models. In particular, the “propagation of 
errors” method provides a systematic way for obtaining the uncertainties in 
computed results, arising not only from uncertainties in the parameters that enter 
the respective computational model but also from the numerical approximations 
themselves. 

Section I.B.3 presents deterministic methods that aim towards global 
sensitivity analysis. The earliest attempts at extending the region of validity of 
local sensitivities beyond first-order were focused on computing second- and 
higher-order response derivatives with respect to the system’s parameters. 
However, the number of equations that would need to be solved for obtaining 
the second- (and higher-) order derivatives of the response is very large, and 
depends on the number of parameter variations. For this reason, none of the 
deterministic techniques (proposed in the literature thus far) for computing 
second- and higher-order response derivatives with respect to the system’s 
parameters has proven routinely practicable for large-scale problems. In 
particular, the computation of the second-order derivatives of the response and 
system’s equations is already as difficult as undertaking the complete task of 
computing the exact value of perturbed response. Furthermore, since the Taylor-

Copyright © 2005 Taylor & Francis Group, LLC



4         Sensitivity and Uncertainty Analysis 

 

series is a local concept, valid within some radius of convergence of the 
respective series around the nominal parameter values, it follows that even if the 
response derivatives were available to all orders, they would still merely provide 
local, but not global, information. Thus, they would yield little, if any, 
information about the important global features of the physical system, namely 
the critical points of the response and the bifurcation branches and/or turning 
points of the system’s state variables. It appears that the only genuinely global 
deterministic method for sensitivity analysis, published thus far, is the global 
adjoint sensitivity analysis procedure (GASAP) developed by Cacuci (1990); this 
method was presented in Chapter VI of Volume I. The GASAP uses both the 
forward and the adjoint sensitivity system to explore, exhaustively and 
efficiently, the entire phase-space of system parameters and dependent variables, 
in order to obtain complete information about the important global features of 
the physical system, namely the critical points of the response and the 
bifurcation branches and/or turning points of the system’s state variables. 

Section I.C presents a comparative assessment of the computational effort 
required for implementing statistical and, respectively, deterministic methods for 
sensitivity and uncertainty analysis. Regarding statistical methods, the main 
conclusions are that such methods are conceptually easy to use but have two 
major inherent practical drawbacks, as follows: 

(i) Since many thousands of simulations are needed to obtain reliable 
results, statistical methods are at best expensive (for small systems), 
or, at worst, impracticable (e.g., for large time-dependent systems); 

(ii) Since the response sensitivities and parameter uncertainties are 
inherently and inseparably amalgamated in the results produced by 
statistical methods, improvements in parameter uncertainties cannot 
be directly propagated to improve response uncertainties; rather, the 
entire set of simulations and statistical post-processing must be 
repeated anew. In particular, a “fool-proof” statistical method for 
analyzing correctly models involving highly correlated parameters 
does not seem to exist currently, so that particular care must be used 
when interpreting regression results for such models. 

On the other hand, the commonly used deterministic methods also require a 
substantial computational effort for computing local sensitivities; these methods 
also become impractical for large systems with many parameters, because of 
prohibitively large computational requirements. The only exception is the ASAP, 
which is by far the most efficient deterministic method for computing exactly 
and exhaustively the local sensitivities. However, the ASAP requires 
development of an appropriate adjoint model. If this adjoint model is developed 
simultaneously with the original model, then the ASAP requires very little 
additional resources to develop. If, however, the adjoint model is developed a 
posteriori, considerable skills may be required for its successful implementation 
and use. Finally, the GASAP appears to be the only deterministic method capable 
of genuine global analysis; it is both exhaustive and computationally efficient, 
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but its general utility for large-scale models is still untested at the time of this 
writing. 

 
 

I. A. STATISTICAL METHODS 
 

I.A.1. Introduction 
 
The salient features of the most popular sampling-based methods, namely 

random sampling, stratified importance sampling, and Latin Hypercube 
sampling, are reviewed in Section I.A.2. In particular, it is there noted that Latin 
Hypercube sampling provides a compromise importance sampling when a priori 
knowledge of the relationships between the sampled parameters and predicted 
responses is not available. It is also noted that the very first step in all sampling-
based uncertainty and sensitivity analysis methods is crucial to the final results 
produced by these methods, since this initial step defines, via “expert opinions,” 
the distributions used to characterize the subjective uncertainty. Hence, the 
proper assignment of these distributions is essential for avoiding spurious 
results. 

The salient features of the first- and second-order reliability algorithms 
(FORM and SORM, respectively) are briefly reviewed in Section I.A.3. Next, the 
most prominent variance-based methods for statistical uncertainty and 
sensitivity analysis, namely the correlation ratio-based methods, the Fourier 
Amplitude Sensitivity Test (FAST), and Sobol’s method, are discussed in Section 
I.A.4. In particular, it is noted that the correlation ratio, the FAST, and Sobol’s 
methods do not make the a priori assumption that the input model parameters 
are linearly related to the model’s response; this is in contradistinction to the 
sampling-based methods reviewed in Section I.A.2. 

The salient features of the most representative screening design methods are 
presented in Section I.A.5. Screening design methods refer to preliminary 
numerical experiments designed to identify the parameters that have the largest 
influence on a particular model response. The objective of screening is to arrive 
at a short list of important factors, based on the assumption that the number of 
parameters that are truly important to the model response is small by comparison 
to the total number of parameters underlying the model. This assumption is 
based on the idea that the influence of parameters in models follows Pareto’s law 
of income distribution within nations, i.e., a complex model can be characterized 
by a few, very important parameters and a majority of non-influential ones. 

Falling within the simplest class of screening designs are the so-called one-at-
a-time (OAT) experiments, in which the impact of changing the values of each 
parameter is evaluated in turn. However, the results of a classical OAT 
experiment are meaningful only if the model’s input-output relation can be 
adequately represented by a first-order polynomial in the model’s parameters. If 
the model is affected by nonlinearities, as is often the case in practice, then 

Copyright © 2005 Taylor & Francis Group, LLC



6         Sensitivity and Uncertainty Analysis 

 

parameter changes around the “control” scenario would provide drastically 
different “sensitivities,” depending on the chosen “control” scenario. Several 
alternative designs have been proposed to alleviate this severe limitation of 
classical OAT designs; among the most popular alternatives are the systematic 
fractional replicate design (SFRD), the global OAT design methods, and the 
sequential bifurcation (SB) design. All of these methods are computationally 
very intensive, which severely limits the amount of reliable information that can 
be extracted from a screening design. Most importantly, since the importance of 
parameters is not obvious a priori (and may often be counterintuitive) in large-
scale, complex models, screening design methods may be a priori inadequate to 
identify correctly the truly important parameters. 

 
 

I.A.2. Sampling-Based Methods 
 
If the uncertainty associated with the parameters α  were known 

unambiguously, then the uncertainty in the response ( )α,uR  could also be 
assessed unambiguously. In practice, however, the uncertainty in α  can rarely 
be specified unambiguously; most often, many possible values of α , of varying 
levels of plausibility, could be considered. Such uncertainties can be 
characterized by assigning a distribution of plausible values  

 
,,,, 21 IDDD K     (I.A.1) 

 
to each component ( )xiα  of α . Correlations and other restrictions can also be 
considered to affect the parameters ( )xiα . Uncertainties characterized by 
distributions of the form (I.A.1) are called epistemic or subjective uncertainties, 
and characterize a degree of belief regarding the location of the appropriate 
value of each ( )xiα . In turn, these subjective uncertainties for the parameters 

( )xiα  lead to subjective uncertainties for the response ( )α,uR , which reflect a 
corresponding degree of belief regarding the location of the appropriate response 
values as the outcome of analyzing the model under consideration. 

Sampling-based methods for sensitivity and uncertainty analysis are based on a 
sample 

 
[ ] ( ),,,2,1,,,, 21 SkIkkκ nk KK == αααα    (I.A.2) 

 
of size Sn  taken from the possible values of α  as characterized by the 
distributions in Eq. (I.A.1). The response evaluations corresponding to the 
sample κα  defined in Eq. (I.A.2) can be represented in vector form as 
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( ) ( ) ( ) ( )[ ] ( ),,,2,1,,,, 21 SκJκκκ nkRRR KK == ααααR  (I.A.3) 
 

where the subscript J  denotes the number of components of the response R . 
The pairs  

 
( )[ ] ( ),,,2,1, Sκκ nk K=αα R,     (I.A.4) 

 
represent a mapping of the uncertain “inputs” κα  to the corresponding uncertain 
“outputs” ( )καR , which result from the “sampling-based uncertainty analysis.” 
Subsequent examination and post-processing (e.g., scatter plots, regression 
analysis, partial correlation analysis) of the mapping represented by Eq. (I.A.4) 
constitute procedures for “sampling-based sensitivity analysis,” in that such 
procedures provide means of investigating the effects of the elements of α  on 
the elements of ( )α,uR . Thus, a “sampling-based uncertainty and sensitivity 
analysis” first commences with the “uncertainty analysis” stage, and only 
subsequently proceeds to the “sensitivity-analysis” stage, which is the exact 
reverse of the conceptual path underlying the methods of deterministic 
sensitivity and uncertainty analysis. 

Specifically, a “sampling-based uncertainty and sensitivity analysis” involves 
five steps, as follows: 

(i) Define the subjective distributions iD  described by Eq. (I.A.1) for 
characterizing the uncertain input parameters; 

(ii) Use the distributions described by Eq. (I.A.1) to generate the sample κα  
described by Eq. (I.A.2); 

(iii) Use each of the elements of the sample κα  in order to perform model 
recalculations, which then generate the responses ( )καR  described by Eq. 
(I.A.3); 

(iv) Perform “uncertainty analysis” of the response ( )α,uR , by generating 
displays of the uncertainty in ( )α,uR  using the results for ( )καR  obtained 
above, in step (iii); 

(v) Perform “sensitivity analysis” of the response ( )α,uR  to the parameters 
α , by exploring (using scatter plots, regression analysis, partial correlation 
analysis, etc.) the mappings represented by Eq. (I.A.4), to assess the effects of 
the components of α  on the components of ( )α,uR . 

Step 1: Of all of the above steps, the most important is the very first one, 
namely the definition of the distributions used to characterize subjective 
uncertainty. Because of its fundamental importance, the characterization of 
subjective uncertainty has been widely studied (see, e.g., Berger, 1985, Hora and 
Iman, 1989, Bonano and Apostolakis, 1991). In practice, this step invariably 
involves formal expert review processes. Two of the largest examples of 
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analyses that used formal expert review processes to assign subjective 
uncertainties to input parameters are the US Nuclear Regulatory Commission’s 
reassessment of the risks from commercial nuclear reactor power stations, and 
the assessment of seismic risk in the Eastern USA (1990-1991). Although formal 
statistical procedures can be occasionally used for constructing subjective 
distributions, practical experience has shown that it is more useful to specify 
selected quantile (minimum, median, maximum, etc.) values, rather than attempt 
to specify a particular type of distribution (e.g., normal, beta, etc.) and its 
associated parameters. This is because the respective experts are more likely to 
be able to justify the selection of specific quantile values rather than the 
selection of a particular form of distribution with specific parameters. When 
distributions from several expert opinions are combined, it is practically very 
difficult to assign weights to the respective opinions; these difficulties are 
discussed, for example, by Clement and Winkler (1999). 

Once a subjective distribution iD  has been assigned to each element ( )xiα  of 
α , the collection of distributions (I.A.1) defines a probability space ( )pE,S, , 
which is a formal structure where: (i) S  denotes the sample space (containing 
everything that could occur in the particular universe under consideration; the 
elements of S  are elementary events); (ii) E  denotes an appropriately 
restricted subspace of S , for which probabilities are defined; and (iii) p  
denotes a probability measure. 

Step 2: The next step is to sample the probability space. The widest used 
sampling procedures are: random sampling, importance sampling, and Latin 
Hypercube sampling; the salient features of these procedures will be summarized 
briefly in the following. Thus, random sampling involves selection of the 
observations  

 
[ ] ( ),,,2,1,,,, 21 RSkIkkκ nk KK == αααα   (I.A.5) 

 
where RSn  represents the sample size, according to the joint probability 
distribution for the elements of α  as defined by ( )pE,S, . A point from a 
specific region of S  occurs as dictated by the probability of occurrence of the 
respective region. Moreover, each sample point is selected independently of all 
other sample points. Note, however, that there is no guarantee that points will be 
sampled from any given sub-region of S . Furthermore, if sampled values fall 
closely together, the sampling of S  is quite inefficient. To address and alleviate 
these shortcomings, the so-called importance sampling procedure has been 
developed by dividing S  exhaustively into several nonoverlapping sub-regions, 
referred to as strata iS , ( )Sni ,,2,1 K= . Thus, 

iSn  values for α  are sampled 

randomly from iS , and the resultant vectors  
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form a sample obtained by importance-sampling, since the strata iS  are defined 
on the basis of how important the parameters iS∈α  (i.e., parameters that are 
contained in the strata) are to the final outcome of the analysis. Typically, only 
one value is sampled from each iS , in which case Eq. (I.A.6) reduces to Eq. 
(I.A.2). Importance sampling is used to ensure that specified regions in the 
sample space are fully covered, thereby ensuring, in particular, that parameters 
which have low occurrence probabilities but high consequences are included in 
the analysis. The idea of fully covering the range of each parameter is further 
extended in the Latin Hypercube sampling procedure (see, e.g., McKay et al., 
1979). In this procedure, the range of each parameter iα  is divided into LHn  
intervals of equal probability, and one value is randomly selected from each 
interval. The LHn  values thus obtained for the first parameter, 1α , are then 
randomly paired, without replacement, with the LHn  values obtained for 2α . In 
turn, these pairs are combined randomly, without replacement, with the LHn  
values for 3α  to form LHn  triples. This process is continued until a set of LHn  
I -tuples are obtained, of the form 
 

[ ] ( ),,,2,1,,,, 21 LHkIkkκ nk KK == αααα   (I.A.7) 
 

which is called a Latin Hypercube sample. This method is suited for 
uncorrelated parameters only; if the parameters are correlated, then the 
respective correlation structure must be incorporated into the sample, for 
otherwise the ensuing uncertainty/sensitivity analysis would yield false results. 
To incorporate parameter correlations into the sample, Iman and Conover (1982) 
proposed a restricted pairing technique for generating Latin Hypercubes based 
on rank-correlations (i.e., correlations between rank-transformed parameters) 
rather than sample correlations (i.e., correlations between the original, 
untransformed, parameters). 

Since random sampling is easy to implement and provides unbiased estimates 
for the means, variances, and distribution functions, it is the preferred technique 
in practice, if large samples are available. However, a sufficiently “large 
sample,” for producing meaningful results by random sampling, cannot be 
generated for complex models (with many parameters) and/or for estimating 
extremely high quantiles (e.g., the 0.99999 quantile), since the computation of 
the required sample becomes, computationally, prohibitively expensive and 
impractical. In such cases, the random sampling method of choice becomes the 
stratified sampling method. The main difficulty for implementing stratified 
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sampling lies with defining the strata and for calculating the probabilities for the 
respective strata, unless considerable a priori knowledge is already available for 
this purpose. For example, the fault and event trees used in risk assessment 
studies of nuclear power plants and other complex engineering facilities can be 
used as algorithms for defining stratified sampling procedures. Latin Hypercube 
sampling is used when very high quantiles need not be estimated, but the 
calculations needed for generating the “large sample” required for random 
sampling still remain unpractical. This is often the case in practice when 
assessing the effects of subjective uncertainty in medium-sized problems (e.g., 
ca. 30 parameters), while a 0.9 to 0.95 quantile is adequate for indicating the 
location of a likely outcome. For such problems, random sampling is still 
unfeasible computationally, but the unbiased means and distribution functions 
provided by the full stratification (i.e., each parameter is treated equally) of the 
Latin Hypercube sampling makes it the preferred alternative over the importance 
sampling, where the unequal strata probabilities produce results that are difficult 
to interpret (particularly for subsequent sensitivity analysis). In this sense, Latin 
Hypercube sampling provides a compromise importance sampling when a priori 
knowledge of the relationships between the sampled parameters and predicted 
responses is not available. 

Step 3: Once the sample has been generated, its elements must be used to 
perform model recalculations, which then generate the responses ( )καR  
described by Eq. (I.A.3). These model recalculations can become the most 
expensive computational part of the entire uncertainty and sensitivity analysis 
and, if the model is complex, the model recalculations may severely limit the 
sample size and the other aspects of the overall analysis. 

Step 4: It is customary to display the estimated expected value and the 
estimated variance of the response (as estimated from the sample size). 
However, these quantities may not be the most useful indicators about the 
response because information is always lost in the calculations of means and 
variances. In particular, the mean and variance are less useful for summarizing 
information about the distribution of subjective uncertainties; by comparison, 
quantiles associated with the respective distribution provide a more meaningful 
locator for the quantity under consideration. Distribution functions (e.g., 
cumulative and/or complementary distribution functions, density functions) 
provide the complete information that can be extracted from the sample under 
consideration. 

Step 5: In the context of sampling-based methods, statistical sensitivity 
analysis (as opposed to deterministic sensitivity analysis) involves the 
exploration of the mapping represented by Eq. (I.A.4) to assess the effects of 
some, but not all, of the individual components of α  on the response ( )αR . 
This exploration includes examination of scatter plots, regression and stepwise 
regression analysis, correlation and partial correlation analysis, rank 
transformation, identification of nonmonotonic patterns, and identification of 
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nonrandom patterns. The starting point of statistical sensitivity analysis is the 
generation of scatter plots, which are obtained by plotting the points 

 
( ) ( ),,,1,, Skkj nkR K=α    (I.A.8) 

 
for each element jα  of α  for ( )Ij ,,1K= . The resulting I  scatter plots are 

then examined to find possible relations between the response ( )αR  and the 
elements jα  of α . 

A more formal analysis of the parameter-to-response mapping depicted by Eq. 
(I.A.4) is to perform regression analysis on a linear model between the predicted 
responses, predictedR , and the input parameters jα , of the form 

 

.
1

0 ∑
=

+=
I

j
jjpredicted bbR α    (I.A.9) 

 
The calculated responses, kR , are also formally expressed in terms of the 

actual parameter values, kjα , used in the analysis, by means of a linear 
relationship of the form 

 

( )∑
=

=++=
I

j
kkjjk MkbbR

1
0 ,,1, Kεα   (I.A.10) 

 
where M  denotes the actual number of calculations, and where  

 
predictedk RR −≡ε ,    (I.A.11) 

 
denotes the error between the calculated and predicted value of the 
corresponding element of the response. The regression analysis then commences 
by assuming that the unknown regression coefficients jb  can be determined by 

minimizing the sums ( ) ∑∑ ≡−
kk predictedk RR 22 ε  of the squared errors. The 

regression coefficients jb  can be used, along with other indicators computed 
during the regression analysis, to assess the importance of the individual 
parameters jα  with respect to the uncertainty in the response components. A 
measure of the extent to which the regressions model can match the observed 
data is provided by the so-called coefficient of multiple determination, 2C , 
defined by the following ratio: 
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totreg SSC /2 ≡ ,    (I.A.12) 
 

where the quantities regS  and totS  are defined by means of the sums 
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and where estkR ,  denotes the estimate of kR  obtained from the regression 

model, while aveR  denotes the mean of the kR ’s. A value of 2C  close to unity 
indicates that the regression model accounts well for most of the uncertainties in 
the kR ’s; conversely, a value of 2C  close to zero indicates that the regression 
model accounts poorly for the uncertainties in the kR ’s. In the important 
particular case when the sampling design matrix κα  is orthogonal, then each 
coefficient jb  can be determined by means of the formula 
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which indicates that the addition or deletion of model parameters will not change 
the regression coefficients for the remaining parameters. Furthermore, when the 
sampling design matrix κα  is orthogonal, then Eq. (I.A.12) for the coefficient of 
multiple determinations decomposes into the additive form 

 

∑
=

=
M

k
kCC

1

22 ,    (I.A.15) 

 
where 2

kC  denotes the value of 2C  when regressing R  solely on kα . In other 

words, when the sampling design matrix κα  is orthogonal, then 2
kC  represents 

the contribution of kα  to 2C . 
Other useful concepts in sampling-based uncertainty/sensitivity analysis are 

the correlation and partial correlation coefficients. The sample correlation 
coefficient, ( )RCorr ,α , between α  and R  for a sequence of observations 
( ) ( )MkRkk ,,1,, K=α , is defined as 
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where aveα  and aveR  denote the corresponding sample average values. Thus, the 
correlation coefficient, ( )RCorr ,α , provides a measure of the linear relationship 
between the elements jα  of α , and the response(s) ( )αR . 

The partial correlation coefficient provides a measure of the linear relation 
between jα  and R , when the linear effects of all of the other parameters are 
removed. In other words, the partial correlation coefficient provides a measure 
of the importance of a single parameter, jα , under exclusion of the effects of: 

(i) the other parameters, (ii) the assumed distribution for jα , and (iii) the 
magnitude of the impact of an input parameter on the response. The partial 
correlation coefficient between an individual parameter jα  and a component R  

of the response ( )αR  is obtained by considering a sequence of regression 
models. 

It is important to note that correlated variables introduce unstable regression 
coefficients jb , in that the values of jb  become sensitive to the specific 
variables introduced into the regression model. In such situations, the regression 
coefficients of a regression model that includes all of the parameters are likely to 
give misleading indications of parameter importance. If several input parameters 
are suspected (or known) to be highly correlated, it is usually recommended to 
transform the respective parameters so as to remove the correlations or, if this is 
not possible, to analyze the full model by using a sequence of regression models 
with all but one of the parameters removed, in turn. Furthermore, if the 
regression model is used in an attempt to match the predictions associated with 
individual sample parameters rather than to match the trend displayed by the 
collective sample, then over-fitting of data may arise if parameters are arbitrarily 
forced into the regression model. 

Stepwise regression analysis, which involves the use of a sequence of 
regression models, is often used when the model under investigation contains 
many parameters and a regression analysis involving all the variables 
simultaneously is impractical. The first step in a stepwise regression analysis is 
to use a regression model that includes the single specific parameter that has the 
largest correlation with the response. The second step is to use a regression 
model that involves two parameters, namely: (a) the single parameter from step 
1, and (b) a second parameter, chosen to be that parameter, among the remaining 
ones, that has the largest impact on the uncertainty that has remained 
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unaccounted for in step 1 (i.e., the parameter that has the largest correlation with 
the residual uncertainty in the response R). The third step is to use a regression 
model involving three parameters, namely (a) the two parameters from step 2, 
and (b) a third parameter, chosen to be that parameter, among the remaining 
ones, that has the largest impact on the uncertainty that has remained 
unaccounted for in step 2 (i.e., the parameter that has the largest correlation with 
the residual uncertainty in the response R, after the impact of the most important 
two parameters has been accounted for). This stepwise process of constructing 
successively more comprehensive regression models by adding additional 
parameters, in the order of their importance in contributing to the uncertainty in 
the response, is continued until the addition of further parameters can no longer 
account meaningfully for the residual uncertainty in the response. Note that 
correlations among parameters may cause an already selected parameter to be 
dropped out from the next-level regression model, if the respective parameter 
fails to have a significant impact on the residual uncertainty in the response.  

In a stepwise regression analysis, it is important to guard against over-fitting 
the data; this danger occurs if the individual observations rather than the overall 
trend are fitted. For example, it is possible to fit the data apparently “better” by 
using a higher-order polynomial than the order indicated by the overall trend, in 
which case a spurious regression model would be constructed, leading to poor 
subsequent predictions. To protect against over-fitting, the predicted error sum 
of squares (Allen, 1971) is usually used as a measure of the adequacy of the 
regression model, and also as a criterion for stopping the step-wise construction 
of the hierarchical regression models. Furthermore, F-tests or t-tests are used to 
determine when a variable is no longer needed and can therefore be dropped 
from the regression model. 

Since the regression relationships discussed so far are based on linear 
representations of the impact of parameters on the response, these regression 
models will perform poorly when the relationships between the parameters and 
the response are nonlinear. In such cases, the rank transformation may be used 
to improve the construction of the respective regression model. The conceptual 
framework underlying rank transformation involves simply replacing the 
parameters by their respective ranks, and then performing the customary 
regression analysis on the ranks rather than the corresponding parameters (see, 
e.g., Iman and Conover, 1982, Saltelli and Sobol’, 1995, Sanchez and Blower, 
1997). Thus, if the number of observations is M , then the smallest value of each 
parameter is assigned rank 1, the next largest value is assigned rank 2, etc., until 
the largest value, which is assigned rank M ; if several parameters have the 
same values, then they are assigned an averaged rank. The regression analysis is 
then performed by using the ranks as input/output parameters, as replacements 
for the actual parameter/response values. This replacement has the effect of 
replacing the linearized parameter/response relationships by rank-transformed 
monotonic input/output relationships in an otherwise conventional regression 
analysis. In practice, a regression analysis using the rank-transformed (instead of 
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raw) data may yield better results, but only as long as the relationships between 
parameters and responses are monotonically nonlinear. Otherwise, the rank-
transformation does not improve significantly the quality of the results produced 
by regression analysis. 

Departures from monotonic trends can be sometimes identified by using F-
tests for detecting common means, 2χ -tests for detecting common medians, and 
the Kruskal-Wallis test for common locations (see, e.g., Conover, 1980, Kleijnen 
and Helton, 1999); all of these tests are performed using scatter plots. Scatter 
plots can also be used to identify nonrandom patterns, by using 2χ -tests for 
detecting statistical independence between parameters. However, if the 
parameters are not independent but are statistically correlated, then the 
magnitudes and even the signs of the regression coefficients jb  associated with 
the respective parameters may be erroneous, and therefore indicate incorrectly 
the effects of such parameters on the response. 

As has been mentioned in the introductory paragraphs to this Chapter, large-
scale models of complex physical systems usually involve two distinct sources 
of uncertainties, namely: (i) stochastic uncertainty, which arises because the 
system under investigation can behave in many different ways, and (ii) 
subjective or epistemic uncertainty, which arises from the inability to specify an 
exact value for a parameter that is assumed to have a constant value in the 
respective investigation. A typical example of such a complex system is a 
nuclear power reactor plant; in a typical risk analysis of a nuclear power plant, 
stochastic uncertainty arises due to the many hypothetical accident scenarios 
which are considered in the respective risk analysis, while epistemic 
uncertainties arise because of the many uncertain parameters that underlie the 
estimation of the probabilities and consequences of the respective hypothetical 
accident scenarios. When performing a statistical uncertainty and sensitivity 
analysis of a complex system such as a nuclear power plant, the effects of 
stochastic uncertainties are usually propagated by using importance sampling, 
while the effects of subjective uncertainties are propagated by using Latin 
Hypercube sampling. In particular, event trees, if available, are used in 
conjunction with importance-sampling to propagate stochastic uncertainties. 
This concept has been amply illustrated in two large risk assessment studies, 
namely: (i) the reassessment of risk associated with US commercial nuclear 
power plants, carried out under the auspices of the US Nuclear Regulatory 
Commission (1990-1991), and (ii) the Compliance Certification Application for 
the Waste Isolation Power Plant (1996). 
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I.A.3. Reliability Algorithms: FORM and SORM 
 
In many practical problems, the primary interest of the analyst may be focused 

on a particular mode of failure of the system under consideration, while the 
detailed spectrum of probabilistic outcomes may be of secondary concern. For 
such problems, the so-called reliability algorithms provide much faster and more 
economical answers (by comparison to the sampling-based methods discussed in 
the previous section) regarding the particular mode of failure of the system under 
consideration. The typical problems that can be analyzed by using reliability 
algorithms must be characterized by a mathematical model (whose solution can 
be obtained analytically or numerically), by input parameters that can be treated 
as being affected by subjective (epistemic) uncertainties, and by a threshold level 
that specifies mathematically the concept of “failure.” The reliability algorithms 
most often used are known as the first-order reliability methods (FORM) and 
second-order reliability methods (SORM), respectively. Both of these methods 
use optimization algorithms to seek “the most likely failure point” in the space of 
uncertain parameters, using the mathematical model and the response functional 
that defines failure. Once this most likely failure point (referred to as the “design 
point”) has been determined, the probability of failure is approximately 
evaluated by fitting a first (or second-) order surface at that point. Reliability 
algorithms have been applied to a variety of problems, including structural safety 
(see, e.g., Madsen et al., 1986), offshore oil field design and operation (see, e.g., 
Bysveen et al., 1990), multiphase flow and transport in subsurface hydrology 
(see, e.g., Xiang and Mishra, 1997). 

As with many optimization algorithms, the FORM and SORM algorithms are 
also susceptible to nonconvergence or to convergence to an erroneous design 
point, particularly when the failure probability approaches the extreme values of 
0.0 or 1.0; therefore, the numerical optimization algorithm and convergence 
tolerances should be tailored, whenever possible, to the specific problem under 
investigation. 

 
 

I.A.4. Variance-Based Methods 
 
As has been discussed in Section I.A.2, above, the sampling-based methods 

use variance, among other indicators, as a measure of the importance of a 
parameter in contributing to the overall uncertainty in the response. The concept 
of variance as a measure of the importance of a parameter also underlies the 
conceptual foundation of three further methods for statistical uncertainty and 
sensitivity analysis, namely the Fourier Amplitude Sensitivity Test (FAST), 
Sobol’s method, and the correlation-ratio method (including variants thereof). It 
is important to note that, in contrast to the sampling-based methods discussed in 
Section I.A.2, the correlation-ratio, the FAST, and Sobol’s methods do not make 
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the a priori assumption that the input model parameters are linearly related to the 
model’s response. 

The importance of a parameter α  (input) in contributing to the predictive 
uncertainty in a response R  (output) can be assessed by considering the 
marginal probability distribution, ( )RpR , of R , which can be written in terms 
of the conditional probability distribution, ( )αα || RpR , of R  conditioned on α , 
as follows: 

 
( ) ( ) ( ) ααα αα dpRpRp RR ∫= || .   (I.A.17) 

 
The above relation can be intuitively interpreted that α  is important if the fixing 
of its value substantially reduces the conditional prediction variance relative to 
the marginal prediction variance. This interpretation indicates that various 
conditional variance ratios may be used as indicators of importance. Specifically, 
the methods based on correlation-ratios assume that the model simulating the 
system under investigation is of the form 

 
( ) εα += |RER ,    (I.A.18) 

 
where α  represents, as before, the set of I  model parameters, and ε  represents 
a vector of errors with the properties that ( ) 0=εE  and 

( )[ ] knownREVar =εα ,| . In numerical experiments, ε  is not taken into 
consideration. 

Recall that in standard regression analysis (discussed in Sec. I.A.2), the 
expectation ( )α|RE  is a priori assumed to have the linear form ∑ =

M
k kkb

1
α , 

where the quantities kb  are the regression coefficients, determined by least-
square fitting. By contrast, there are no assumptions in Eq. (I.A.18) regarding the 
specific mathematical form of the conditional expectation ( )α|RE . 

Based on the model defined by Eq. (I.A.18), the prediction variance, ( )RVar , 
of R  can be written in the form 

 
( ) ( )[ ] [ ]( )αα αα || RVarEREVarRVar += ,   (I.A.19) 

 
where 

( ) ( ) ,| | RdRRpRE R∫≡ αα     (I.A.20) 

( )[ ] ( ) ( )[ ] ( ) ,|| 2 αααα αα dpREREREVar ∫ −≡   (I.A.21) 

[ ]( ) ( )[ ] ( )[ ] ( ) .|| |
2 αααα ααα dpdRRpRERRVarE R∫ −≡  (I.A.22) 
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The quantity ( )[ ]αα |REVar  is the variance of the conditional expectation 

(VCE) of R  conditioned on α ; this quantity measures the importance of α  
since it indicates how the constituent parts of ( )RVar , given by Eq. (I.A.19), 
relate to α . More specifically, ( )[ ]αα |REVar  measures the total variation in R  
in the sense that, as α  varies, the variation in R  would match the variation in 

( )α|RE , if the second term in Eq. (I.A.19), namely [ ]( )αα |RVarE , were small. 
In fact, the term [ ]( )αα |RVarE  is a residual term that measures the remaining 
variability in R  due to other unobserved inputs or other unknown sources of 
variation when α  is fixed. 

The additive decomposition shown in Eq. (I.A.19) can be used to define the 
correlation ratio, 2η , by means of the ratio 

 
( )[ ]
( )RVar
REVar αα |2 =η ,    (I.A.23) 

 
which represents a measure of the magnitude of the VCE relative to the 
prediction variance ( )RVar  (see, e.g., McKay, 1995). The method devised by 

McKay for evaluating 2η  is based on a Latin Hypercube sampling of size m  
with r  replicates, and is computationally very expensive, requiring ( )1+× Irm  
model evaluations, where I  represents the number of parameters in α . A 
somewhat more economical method for evaluating 2η  is the resampling-based 
method of Saltelli et al. (1993), requiring ( )1+In  model evaluations, where n  
represents the sample size for evaluating ( )iRE α|  for a specified value of iα , 
and where I  represents the number of parameters in α . 

The FAST procedure was originally proposed by Cukier et al. (1973), and was 
subsequently extended by Cukier’s group and other authors. This procedure uses 
the following Fourier transformation of the parameters iα : 

 
( ) IizF iii ,,1,sin K== ωα ,   (I.A.24) 

 
where { }iω  is a set of integer frequencies, while ( )ππ ,−∈z  is a scalar variable. 
The expectation ( )RE  and variance of the response R  can be approximated, 
respectively, as follows 

 

( ) ( ) ,
2
1

∫
−

=
π

π
π

dzzfRE  ( ) ( ),2
1

22∑
∞

=

+≅
j

jj BARVar   (I.A.25) 
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where  

 
( ) ( ) ( ) ( )[ ],sin,,sin,sin 2211 zFzFzFfzf II ωωω K≡   (I.A.26) 

 
while 

 

( ) ( )∫
−

≡
π

π
π

dzjzzfAj cos
2
1    (I.A.27) 

( ) ( ) .sin
2
1

∫
−

≡
π

π
π

dzjzzfB j    (I.A.28) 

 
The transformation given by Eq. (I.A.24) should provide, for each parameter 
iα , a uniformly distributed sample in the unit I -dimensional cube. As 

( )ππ ,−∈z  varies for a given transformation, all parameters change 
simultaneously; however, their respective ranges of uncertainty is systematically 
and exhaustively explored (i.e., the search curve is space-filling) if and only if 
the set of frequencies { }iω  is incommensurate (i.e., if none of the frequencies 

iω  may be obtained as a linear combination, with integer coefficients, of the 
remaining frequencies). 

The first-order sensitivity indices are computed by evaluating the coefficients 
jA  and jB  for the fundamental frequencies { }iω  and their higher harmonics 

( )K,2,1=pp iω . If the frequencies { }iω  are integers, the contribution to the 
total variance ( )RVar  coming from the variance iD  corresponding to parameter 

iα  is approximately obtained as  
 

( )∑
=

+≅
M

p
ppi ii

BAD
1

222 ωω ,    (I.A.29) 

 
where M  is the maximum harmonic taken into consideration (usually 6≤M ). 
The ratio of the partial variance iD  to the total variance ( )RVar  provides the so-
called first-order sensitivity index. The minimum sample size required to 
compute iD  is ( )12 max +ωM , where maxω  is the maximum frequency in the set 
{ }iω  (see, e.g., Saltelli et al., 1999). Furthermore, the frequencies that do not 
belong to the set { }IIppp ωωω ,,, 2211 K  for ( )∞= ,,2,1 Kip , and for any 
( )Ii ,,2,1 K= , contain information about the residual variance ( )[ ]iDRVar −  that 
is not accounted for by the first-order indices. Saltelli et al. have proposed a 

Copyright © 2005 Taylor & Francis Group, LLC



20         Sensitivity and Uncertainty Analysis 

 

method that extracts information regarding this residual variance in ( )SNI ×  
computations, where SN  is the respective sample size. 

A related class of variance-based methods has its roots in a theorem by 
Kolmogorov that states that any multivariate function, ( )nxxxf ,,, 21 K , defined 

in the unit n -dimensional cube [ ]n1,0 , can be written as a linear superposition of 
univariate functions, ( )ij xh , of the form 

 

( ) ( ) ( ) ( ) ( )[ ]∑
+

=

+++=≡
12

1
221121 ,,,

n

j
njnjjn xhaxhaxhagxxxff LKx , (I.A.30) 

 
where the functions ( )ij xh  are continuous (but highly nonsmooth). Although 
Kolmogorov’s expansion shown in Eq. (I.A.30) is seldom used in practice for 
interpolation and/or approximation of multivariate functions, it has inspired the 
development of several (somewhat) more practical algorithms for representing 
multivariate functions, such as the projection pursuit algorithms (see, e.g., Stone, 
1982, 1985), multilayer perceptrons (Parker, 1985), Sobol’s method (1993), and 
ANOVA-like decompositions (see, e.g., Archer et al., 1997), which can also be 
used for uncertainty and sensitivity analysis. 

Perhaps the most practical of the methods mentioned above is a method due to 
Sobol’, in which the multivariate function ( )nxxxf ,,, 21 K  is decomposed into 
summands of increasing dimensionality of the form 

 

( ) ( ) ( ) ( )nn

n

i nji
iiijiin xxxfxxfxffxxxf ,,,,,,, 2112

1 1
021 KLK K++++= ∑ ∑

= ≤<≤

. 

(I.A.31) 
 
The decomposition in Eq. (I.A.31) is unique, and has the following properties: 
(i) the integrals of any summand over any of its own variables is zero, i.e.,  
 

( ) ,1  if,0,,,
1

0
2121

nmdxxxxf
mnn iiiiiii ≤≤=∫ KK   (I.A.32) 

 
(ii) the summands are orthogonal, i.e.,  
 

[ ]
( ) ( ),,,,,,,  if,0 2121

1,0
2121 mnjjjiii jjjiiidff

n
mn

KKKK ≠=∫ x   (I.A.33) 

 
(iii) 0f  is a constant, i.e., 
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( )

[ ]
.

1,0
0 ∫=

n

dff xx     (I.A.34) 

 
By squaring Eq. (I.A.31) and integrating the resulting expression over the unit 

cube [ ]n1,0 , the following relation is obtained for the total variance D  of ( )xf : 
 

( )
[ ]

n

n

i nji
iji DDDfdfD

n
KL 12

1 1

2
0

1,0

2 +++=−≡ ∑ ∑∫
= ≤<≤

xx ,  (I.A.35) 

 
where the partial variances of ( )xf  are defined as 

 

( )
.,,1,1for   

,,,,

1

1

0

1

0
1212121

nmnii

dxdxxxxfD

m

iiiiiiiiiii mmmm

KK

KKK KK

=≤<<≤

= ∫∫   (I.A.36) 

 
The sensitivity indices are defined as  
 

.,,1,1for  ,/ 12121
nmniiDDS miiiiii mm

KKKK =≤<<≤≡   (I.A.37) 
 
The first-order sensitivity index, iS , for the parameter ix  indicates the 

fractional contribution of ix  to the variance D  of ( )xf ; the second-order 
sensitivity index, ( )jiSij ≠, , measures the part of the variation in ( )xf  due to 

ix  and jx  that cannot be explained by the sum of the individual effects of ix  

and jx ; and so on. Note also that Eqs. (I.A.36) and (I.A.37) imply that 

 .112
1 1

=+++∑ ∑
= ≤<≤

n

n

i nji
iji SSS KL     (I.A.38) 

 
 

I.A.5. Design of Experiments and Screening Design Methods  
 
Design of Experiments (DOE) was first introduced by Fischer (1935), and can 

be defined as the process of selecting those combinations of parameter values, 
called design points, which will provide the most information on the input-
output relationship embodied by a model in the presence of parameter variations. 
However, the basic question underlying DOE is often a circular one: if the 
response function were known, then it would be easy to select the optimal design 
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points, but the response is actually the object of the investigation, to begin with! 
Often used in practice is the so-called Factorial Design (FD), which aims at 
measuring the additive and interactive effects of input parameters on the 
response. A FD simulates all possible combinations of assigned values, il , 
called levels, to each (uncertain) system parameter iα . Thus, even though a FD 
can account for interactions among parameters, the computational cost required 
by a FD is Illl K21 , where I  denotes the total number of parameters in the 
model; such a computational effort is prohibitively high for large-scale systems. 
A useful alternative is the Fractional Factorial Design (FFD) introduced by Box 
(1987), which assumes a priori that higher-order interactions between 
parameters are unimportant.  

Screening design methods refer to preliminary numerical experiments designed 
to identify the parameters that have the largest influence on a particular model 
response. The objective of screening is to arrive at a short list of important 
factors. In turn, this objective can only be achieved if the underlying numerical 
experiments are judiciously designed. An assumption often used as a working 
hypothesis in screening design is the assumption that the number of parameters 
that are truly important to the model response is small by comparison to the total 
number of parameters underlying the model. This assumption is based on the 
idea that the influence of parameters in models follows Pareto’s law of income 
distribution within nations, characterized by a few, very important parameters 
and a majority on noninfluential ones. Since screening designs are organized to 
deal with models containing very many parameters, they should be 
computationally economical. There is an inevitable tradeoff, however, between 
computational costs and information extracted from a screening design. Thus, 
computationally economical methods often provide only qualitative, rather than 
quantitative information, in that they provide a parameter importance ranking 
rather than a quantification of how much a given parameter is more important 
than another. 

Falling within the simplest class of screening designs are the so-called one-at-
a-time (OAT) experiments, in which the impact of changing the values of each 
parameter is evaluated in turn (Daniel, 1973). The standard OAT experiment is 
defined as the experiment that uses standard or nominal values for each of the 
I  parameters underlying the model. The combination of nominal values for the 
I  parameters is called the control experiment (or scenario). Two extreme 
values are then selected to represent the range of each of the I  parameters. The 
nominal values are customarily selected at the midway between the two 
extremes. The magnitudes of the residuals, defined as the difference between the 
perturbed and nominal response (output) values, are then compared to assess 
which factors are most significant in affecting the response. 

Although the strategy described above is often used in practice, it is not the 
only one; according to Daniel, OAT designs can be classified into five 
categories, as follows: (i) standard OAT designs, which vary one factor from a 
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standard condition; (ii) strict OAT designs, which vary one factor from the 
condition of the last preceding experimental run; (iii) paired OAT designs, which 
produce two observations and, therefore, one simple comparison at a time; (iv) 
free OAT designs, which make each new computation under new conditions; and 
(v) curved OAT designs, which produce a subset of results by varying only one 
parameter that is easy to vary. In general, the number of model evaluation 
required for an OAT design is of the order of (2I+1) model computations. 
Refinements such as proposed by Kleijnen (1998) require only half (roughly) as 
many computations, while providing arguably more accurate estimators of the 
main effects. 

Since classical OAT cannot provide information about interactions between 
parameters, the model’s behavior can only be assessed in a small interval around 
the “control” scenario. In other words, the classical OAT experiments yield 
information only about the system’s response local behavior. Therefore, the 
results of a classical OAT experiment are meaningful only if the model’s input-
output relation can be adequately represented by a first order polynomial in the 
model’s parameters. If the model is affected by nonlinearities (as is often the 
case in practice), then parameter changes around the “control” scenario would 
provide drastically different “sensitivities,” depending on the chosen “control” 
scenario.  

To address this severe limitation of the classical OAT designs, Morris (1991) 
has proposed a global OAT design method, by covering the entire space in which 
the parameters may vary, independently of the specific initial “control” scenario 
one may commence the experiment with. A global OAT design assumes that the 
model is characterized by a large number of parameters and/or is 
computationally expensive (regarding computational time and computational 
resources) to run. The range of variation of each component of the vector α  of 
parameters is standardized to the unit interval, and each component is then 
considered to take on p  values in the set ( ) ( ){ }1,,12,10 11 K−− −− pp , , so that 
the region of experimentation becomes an I -dimensional p -level grid. An 

elementary effect of the thi -parameter at a point α  is then defined as 
( ) ( ) ( )[ ] ∆∆+≡ +− /,,,,,, 111 αα RR -d Iiiii ααααα KK , where ∆  is a predetermined 

multiple of ( )p−1/1 , such that ∆+iα  is still within the region of 

experimentation. A finite distribution iF  of elementary effects for the thi -
parameter is obtained by sampling α  from within the region of experimentation. 
The number of elements for each iF  is ( )[ ]11 −∆−− pppk . The distribution iF  
is then characterized by its mean and standard deviation. A high mean indicates 
a parameter with an important overall influence on the response; a high standard 
deviation indicates either a parameter interacting with other parameters or a 
parameter whose effect is nonlinear.  
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In its simplest form, the total computational effort required for a random 
sample of r  values from each distribution iF  is rIn 2= ; each elementary effect 
requires the evaluation of the response ( )αR  twice. For large-scale models, 
therefore, the OAT design of Morris requires a relatively high computational 
effort. Furthermore, a global OAT design can only provide a qualitative (but not 
quantitative) indication of the interactions of a parameter with the rest of the 
model; it cannot provide specific information about the identity of the 
interactions, and individual interactions among parameters cannot be estimated. 

The alternative systematic fractional replicate design (SFRD), proposed by 
Cotter (1979), does not require any prior assumptions about interactions. For a 
model with I  parameters, a SFRD involves the following steps: (i) one model-
computation with all parameters at their low levels; (ii) I  model computations 
with each parameter, in turn, at its upper level, while the remaining ( )1−I  
parameters remain at their low levels; (iii) I  model computations with each 
parameter, in turn, at its low level, while the remaining ( )1−I  parameters 
remain at their upper levels; (iv) one model-computation with all parameters at 
their upper levels. Thus, a SFRD requires ( )12 +I  computations. Denoting by 
( )122110 ,,,,,,, ++ IIII RRRRRR KK  the values of the responses computed in steps 

(i)-(iv) within a SFRD, the measures ( ) ( ) ( )jCjCjM oe +≡ , where the 

quantities ( )jCe  and ( )jCo  are defined as 
 

( ) ( ) ( )[ ] 4/012 RRRRjC jjIIe −−−≡ ++  and 

( ) ( ) ( )[ ] 4/012 RRRRjC jjIIo −+−≡ ++  
 

respectively, are used to estimate the order of importance of the I  parameters 
iα . 
It is apparent from the above definitions that the measures ( )jM  may fail 

when a parameter induces cancellation effects on the response; such a parameter 
would remain undetected by a SFRD. Worse yet, it is not possible to protect 
oneself a priori against such occurrences. Furthermore, a SFRD is not 
sufficiently precise, since the above definitions imply that, for one replicate, the 
variances are ( )[ ] ( )[ ] 4/varvar 2σ== jCjC eo , whereas a fractional replicate 
with n -computations would allow the estimations of parameter effects (on the 
response) with variances n/2σ . 

In addition to screening designs that consider each parameter individually, the 
(originally) individual parameters can be clustered into groups that are 
subsequently treated by group screening designs. Perhaps the most efficient 
modern group screening designs techniques are the iterated fractional factorial 
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design (IFFD) proposed by Andres and Hajas (1993), and the sequential 
bifurcation (SB) technique proposed by Bettonvil (1990). In principle, the IFFD 
requires fewer model computations, n , than there are parameters, I . To identify 
an influential parameter, an IFFD investigates the groups through a fractional 
factorial design; the procedure is then repeated with different random groupings. 
Influential parameters are then sought at the intersection of influential groups. 
The IFFD samples three levels per parameter, designated low, middle, and high, 
while ensuring that the sampling is balanced: different combinations of values 
for two or three parameters appear with equal frequency. Hence, IFFD can be 
considered as a composite design consisting of multiple iterations of a basic 
FFD. 

The sequential bifurcation (SB) design combines two design techniques, 
namely: (i) the sequential design, in which the parameter combinations are 
selected based on the results of preceding computations, and (ii) bifurcation, in 
which each group that seems to include one or more important parameters is split 
into two subgroups of the same size. However, the SB design must a priori 
assume that the analyst knows the signs of the effects of the individual 
parameter, in order to ensure that effects of parameters assigned to the same 
group do not cancel out. Furthermore, the sequential nature of SB implies a more 
cumbersome data handling and analysis process than other screening design 
methods. To assess the effects of interactions between parameters, the number 
of SB computations becomes the double of the number of computations required 
to estimate solely the “main effects;” quadratic effects cannot be currently 
analyzed with the SB design technique. 

The screening designs surveyed in the foregoing are the most representative 
and the widest used methods aimed at identifying at the outset, in the initial 
phase of sensitivity and uncertainty analysis, the (hopefully not too many!) 
important parameters in a model. Each type of design has its own advantages 
and disadvantages, which can be summarized as follows: the advantages of OAT 
designs are: (i) no assumption of a monotonic input-output relation; (ii) no 
assumption that the model contains only “a few” important parameters; and (iii) 
the computational cost increases linearly with the number of parameters. The 
major disadvantage of OAT designs is the neglect of parameter interactions. 
Although such an assumption drastically simplifies the analysis of the model, it 
can rarely be accepted in practice. This simplifying assumption is absent in the 
global OAT design of Morris, which aims at determining the parameters that 
have (i) negligible effects, (ii) linear and additive effects, and (iii) nonlinear or 
interaction effects. Although the global OAT is easy to implement, it requires a 
high computational effort for large-scale models, and provides only a qualitative 
(but not quantitative) indication of the interactions of a parameter with the rest of 
the model; the global OAT cannot provide specific information about the identity 
of individual parameter interactions. 

The SFRD does not require a priori assumptions about parameter interactions 
and/or about which few parameters are important. Although the SFRD is 
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relatively efficient computationally, it lacks precision and cannot detect 
parameters whose effects cancel each other out. The IFFD estimates the main 
and quadratic effects, and two-parameter interactions between the most 
influential parameters. Although the IFFD requires fewer computations than the 
total number of model parameters, the IFFD gives good results only if the 
model’s response is actually influenced by only a few truly important 
parameters. The SB design is simple and relatively cost effective 
(computationally), but assumes that (i) the signs of the main effects are a priori 
known, and (ii) the model under consideration is adequately described by two-
parameter interactions. 

 
 

I. B. DETERMINISTIC METHODS 
 

I.B.1. Deterministic Methods for Local Sensitivity Analysis 
 
In large-scale, complex models, the importance of parameters is not a priori 

obvious, and may often be counterintuitive. To analyze such complex models, 
information about the slopes of the model’s response at a given set of nominal 
parameter values in parameter space is of paramount importance. The exact 
slopes are provided by the local partial functional derivatives iR α∂∂ /  of the 
response R  with respect to the model parameters iα ; these local partial 
functional derivatives are called the local sensitivities of the model’s response to 
parameter variations. 

The simplest way of estimating local sensitivities is by recalculations of the 
model’s response, using parameter values that deviate by small amounts, iδα , of 

the order of 1%, from their nominal values 0
iα . The sensitivities are then 

estimated by using a finite difference approximation to iR α∂∂ /  of the form 
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This procedure, occasionally called the “brute-force method,” requires ( )1+I  

model computations; if central differences are used, the number of model 
computations could increase up to a total of I2 . Although this method is 
conceptually simple to use and requires no additional model development, it is 
slow, relatively expensive computationally, and involves a trial-and-error 
process when selecting the parameter perturbations iδα . Note that erroneous 
sensitivities will be obtained if: (i) iδα  is chosen to be too small, in which case 
the computational round-off errors will overwhelm the correct values, and (ii) 
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the parameter dependence is nonlinear and iδα  is chosen too large, in which 
case the assumption of local linearity is violated. 

Local sensitivities can be computed exactly only by using deterministic 
methods that involve some form of differentiation of the system under 
investigation. The (comparatively few) deterministic methods for calculating 
sensitivities exactly are as follows: the direct method (including its decoupled 
direct method variant), the Green’s Function method, the Forward Sensitivity 
Analysis Procedure (FSAP), and the Adjoint Sensitivity Analysis Procedure 
(ASAP). The so-called direct method has been applied predominantly to systems 
involving differential and/or algebraic equations describing chemical kinetics 
(including combustion kinetics) and molecular dynamics. This method involves 
differentiation of the system of equations underlying the model with respect to 
each parameter in the model. The sensitivity to each parameter is then computed 
by solving the respective differentiated system. The most advanced and 
computationally economical version of the direct method is the decoupled direct 
method (DDM), originally introduced by Dunker (1981, 1984), in which the 
Jacobian matrix needed to solve the original system at a given time-step is also 
used to solve the sensitivity equations at the respective time-step, before 
proceeding to solve both the original and sensitivity systems at the next time-
step. Note that the computational effort increases linearly with the number of 
parameters.  

Another method occasionally used for computing sensitivities for models 
governed by first-order derivatives in time is the Green function method (GFM). 
This method commences by differentiating the underlying model with respect to 
its initial conditions to obtain a Green’s function, which is subsequently 
convoluted with the matrix of parameter derivatives, and is finally integrated in 
time to obtain the respective time-dependent sensitivities. There are several 
variants of the GFM; the integrated Magnus version (GFM/AIM) proposed by 
Kramer et al. (1981) appears to be, computationally, the most efficient GFM. In 
practice, though, the GFM is seldom used, since it is computationally more 
expensive and considerably more difficult to implement than the DDM. 

As shown by Cacuci (1981), the most general and comprehensive way of 
defining local sensitivities for general operators (in the sense of nonlinear 
functional analysis) is in terms of the first Gâteaux-differential of the system’s 
response, at the nominal value of the system’s dependent variables and 
parameters. Based on the concept of Gâteaux-differentials, Cacuci has developed 
two procedures for calculating the local sensitivities for any type of large-scale 
nonlinear systems, namely: the Forward Sensitivity Analysis Procedure (FSAP) 
and the Adjoint Sensitivity Analysis Procedure (ASAP). As discussed in Volume 
I of this book, the scope of both the FSAP and the ASAP is to calculate exactly 
and efficiently the local sensitivities of the system’s response to variations in the 
system’s parameters, around their nominal values.  

The FSAP constitutes a generalization of the decoupled direct method (DDM), 
since the concept of Gâteaux-differential (which underlies the FSAP) constitutes 
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the generalization of the concept of total-differential in the calculus sense, which 
underlies the DDM. Notably, the Gâteaux-differential exists for operators and 
generalized functions (e.g., distributions) that are not continuous in the ordinary 
calculus-sense, and therefore do not admit the “nice” derivatives required for 
using the DDM. As expected, the FSAP reduces to the DDM, whenever the 
continuity assumptions required by the DDM are satisfied. Finally, even though 
the FSAP represents a generalization of the DDM, the FSAP requires the same 
computational and programming effort to develop and implement as the DDM. 
Hence, just as the DDM, the FSAP is advantageous to employ only if the number 
of different responses of interest for the problem under consideration exceeds the 
number of system parameters and/or parameter variations to be considered. 
Otherwise, the use of either the FSAP or the DDM becomes impractical for large 
systems with many parameters, because of the very large demand on 
computational resources.  

For large-scale systems, in which the number of system parameters and/or 
parameter variations to be considered exceeds the number of responses of 
interest, the ASAP is, by far, the most advantageous method to employ, even 
though it can only be implemented after an appropriately constructed adjoint 
sensitivity system is already available. The remarkable efficiency of the ASAP 
stems from the fact that the adjoint sensitivity system is linear in the adjoint 
function, and is independent of any parameter variations. Hence, the adjoint 
sensitivity equation needs to be solved only once, for each response, in order to 
obtain the adjoint function. In particular, if the original model is linear in the 
state (i.e., dependent) variables, then the adjoint sensitivity equation can be 
solved independently of the original model. In turn, once the adjoint function has 
been calculated, it is used to obtain the sensitivities to all system parameters, by 
simple quadratures, without needing to solve repeatedly differential and/or 
integral equations. Thus, for the large-scale systems, with many parameters, as 
usually encountered in practice, the ASAP is the most efficient method to use for 
sensitivity analysis. 

The exact local sensitivities obtained by using deterministic methods can be 
used for the following purposes: (i) understand the system by highlighting 
important data; (ii) eliminate unimportant data; (iii) determine effects of 
parameter variations on system behavior; (iv) design and optimize the system 
(e.g., maximize availability/minimize maintenance); (v) reduce over-design; (vi) 
prioritize the improvements effected in the respective system; (vii) prioritize 
introduction of data uncertainties; (viii) perform local uncertainty analysis by 
using the “propagation of errors” method, as mentioned in Volume I of this 
book, and as will be described briefly in the next section. 

The uses of deterministically computed sensitivities for highlighting data 
importance, determining effects of parameter variations, and design optimization 
have been illustrated in the literature on systems engineering (see, e.g., the books 
by: Kokotovic, 1972, Tomovic and Vucobratovic, 1972, Cruz, 1973, Frank, 
1978, Fiacco, 1984, Deif, 1986, Eslami, 1994, Rosenwasser and Yusupov, 
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2000), chemical kinetics (see, e.g., the review article by Turanyi, 1990), core 
reactor physics (see, e.g., Greenspan, 1982, Gandini, 1987, Lillie et al., 1988, 
Ronen, 1988, and references therein), reactor thermal-hydraulics and neutron 
dynamics (Cacuci and Wacholder, 1982, Cacuci, Maudlin and Parks, 1983), 
two-phase flows with phase transition (Cacuci and Ionescu-Bujor, 2000, 
Ionescu-Bujor and Cacuci, 2000), geophysical fluid dynamics (see, e.g., Cacuci 
and Hall, 1984, Navon et al., 1992, Zhou et al., 1993, Navon, 1998), and, more 
recently, reliability and risk analysis (Cacuci and Ionescu-Bujor, 2002, and 
Ionescu-Bujor and Cacuci, 2003).  

 
 

I.B.2. Deterministic Methods for Local Uncertainty Analysis 
 
For large-scale systems, it is not possible to find an explicit, analytical solution 

for the probability distribution function, ( )RPDF , of the response R . 
Therefore, the “Moment Matching” method is customarily employed to 
approximate ( )RPDF , as follows: (i) given the PDF ’s or the (central) moments 

( )ijm α , ( )Ii ,,1K= , of the system parameters iα , calculate the first four 
(central) moments ( ) ( )RERm =1 , ( )Rm2 , ( )Rm3 , ( )Rm4  of the response R ; 
and (ii) approximate the unknown ( )RPDF  by ( )γβ ;;RP , a two-parameter 
PDF  that has the same four moments, ( ) 4,,1, K=iRmi , as calculated above. 
Note that ( ) ( )RERm =1  and ( )Rm2  determine the two parameters ( )γβ ;  of 

( )γβ ;;RP , while ( )Rm3  and ( )Rm4  determine the shape (skewness and 
kurtosis) of ( )γβ ;;RP . 

The current state-of-the-art methods for obtaining the moments, 
( ) 4,,1, K=iRmi , of the ( )RPDF  are Statistical Methods and the “Propagation 

of Errors” (also known as the Propagation of Moments or the Taylor-Series 
Method, as pesented in Volume I, Section III.F). As has been detailed in Section 
I.A. in this Volume, all statistical methods employ simulations to: (i) generate 
randomly a sample of N  m -tuples { },ijz  ( )Njmi ,,1;,,1 KK == , where ijz  

denotes the thj  random value of the thi  input variable, ix ; (ii) solve the model 
N -times for each m-tuple ijz  to obtain a sample of N  values of the system 
response R ; and (iii) from this sample, estimate the moments 

( ) ( )4,,1, K=iRmi , confidence limits, and the approximate PDF, ( )γβ ;;RP , of 
R . In principle, statistical methods are conceptually easy to use and require little 
additional modeling. However, as discussed in Section I.A, above, the statistical 
methods have two major inherent drawbacks, as follows: (i) since many 
thousands of simulations are needed, statistical methods are at best expensive 
(for small systems), or, at worst, impracticable (e.g., for large-scale time-
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dependent systems); and (ii) since the response sensitivities and parameter 
uncertainties are amalgamated, improvements in parameter uncertainties cannot 
be directly propagated to improve response uncertainties; rather, the entire set of 
simulations must be repeated anew in order to obtain improved response 
uncertainties. 

The deterministic alternative to statistical methods is the “propagation of 
errors” method for uncertainty analysis, which has been described in detail in 
Section III.F. of Volume I. From the considerations presented there, we recall 
that the major advantages of using the “propagation of moments” method are: (i) 
if all sensitivities are available, then all of the objectives of sensitivity analysis 
(enumerated above) can be pursued efficiently and exhaustively; and (ii) since 
the response sensitivities and parameter uncertainties are obtained separately 
from each other, improvements in parameter uncertainties can immediately be 
propagated to improve the uncertainty in the response, without the need for 
expensive model recalculations. On the other hand, the major disadvantage of 
the “propagation of moments” method is that the sensitivities need to be 
calculated a priori; such calculations are extremely expensive, particularly for 
large (and/or time-dependent) systems, unless they are performed by using the 
adjoint sensitivity analysis procedure (ASAP), for nonlinear systems. It is 
important to emphasize that the “propagation of moments” equations are used 
both for processing experimental data obtained from indirect measurements and 
also for performing statistical analysis of computational models. The 
“propagation of moments” equations provide a systematic way of obtaining the 
uncertainties in computed results, arising not only from uncertainties in the 
parameters that enter the respective computational model but also from the 
numerical approximations themselves. 

The “propagation of moments” method has been used extensively for 
evaluation of experimental data obtained from indirect experiments (see, e.g., 
Shapiro and Gross, 1981, Smith, 1991, Cowan, 1998, Rabinovich, 2000). 
However, there are comparatively few works that use the “propagation of 
moments” method in conjunction with deterministically obtained sensitivities for 
performing local uncertainty analysis of large-scale systems. The most notable 
applications of using the “propagation of moments” together with sensitivities 
obtained a priori by means of the ASAP were in the fields of dosimetry (see, 
e.g., Lillie et al., 1988), and core reactor physics (see, e.g., Ronen, 1988, and 
references therein); more recently, Cacuci (2003) has provided an illustrative 
example of using the “propagation of moments” together with sensitivities 
obtained a priori by means of the ASAP for reliability and risk analysis.  
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I.B.3. Deterministic Methods for Extending the Use of Local 
Sensitivities; Global Deterministic Sensitivity Analysis 

 
Several techniques have been proposed (see, e.g., the reviews by Greenspan, 

1982, Ronen, 1988, and references therein) for calculating the higher-order 
response derivatives with respect to the system’s parameters. However, none of 
these techniques has proven routinely practicable for large-scale problems. This 
is because the systems of equations that need to be solved for obtaining the 
second (and higher) order Gâteaux-differentials of the response and system’s 
operator equations are very large and depend on the perturbation αδ . Thus, 
even the calculation of the second-order Gâteaux-differentials of the response 
and system’s operator equations is just as difficult as undertaking the complete 
task of computing the exact value of perturbed response 

( )kkR δααδαα ++ 0
1

0
1 ,,K . 

Instead of computing higher order response derivatives, Kramer et al. (1984) 
have proposed the so-called feature sensitivity analysis for nonlinear probing of 
a larger region in the parameter-space. This method considers that the response 

( )α;,trR can be written in the equivalent form ( ) ≡∆+ αα;, trR 
( )[ ]αα ∆+β;, trP , where ( ) ( )K,, 21 βββ ≡α  is a vector whose components are 

the “feature” parameters, and where the form of ( )[ ]αα ∆+β;,trP  is assumed to 
be explicitly known. In such a case, it is possible to consider the linear 
expansion ( ) ( ) αβααββ ∂∂∆+≅∆+ αα , which can be substituted in the 
expression of ( )αα ∆+;, trR  to obtain a nonlinear scaling expression with 
respect to the parameters α∆ . This way, it is possible to enlarge (somewhat) the 
investigation of the response to a larger neighborhood of the nominal parameter 
values 0

kα . So far, feature sensitivity analysis method has been used only for 
applications presented by its authors. 

It appears that the only genuinely global deterministic method for sensitivity 
analysis is the Global Adjoint Sensitivity Analysis Procedure (GASAP) proposed 
by Cacuci (1990), which was presented in Chapter VI of Volume I. Instead of 
attempting to extend the validity of local Taylor series, Cacuci has formulated 
the GASAP by introducing a global homotopy-based concept for exploring the 
entire phase-space spanned by the parameters and state-variables. As shown in 
Volume I, the GASAP yields information about the important global features of 
the physical system, namely the critical points of ( )αR  and the bifurcation 
branches and/or turning points of the system’s state variables. 
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I. C. COMPUTATIONAL CONSIDERATIONS 
 
Statistical uncertainty and sensitivity analysis methods aim at assessing the 

contributions of parameters’ uncertainties in contributing to the overall 
uncertainty of the model response (output). The relative magnitude of this 
uncertainty contribution is assigned a measure of the statistical sensitivity of the 
response uncertainty to the respective parameter, and this measure is also used to 
rank the importance of the respective parameter. The simplest conceptual 
attempt at “sensitivity analysis” is to use screening design methods to identify a 
short list of parameters that have the largest influence on a particular model 
response. The fundamental assumption underlying all screening design methods 
is that the influence of parameters in models follows Pareto’s law of income 
distribution within nations, i.e., the number of parameters that are truly important 
to the model response is small by comparison to the total number of parameters 
in the model. There is an inevitable tradeoff between the computational costs 
and the information extracted from a screening design. Thus, computationally 
economical methods provide only qualitative, rather than quantitative 
information, in that they provide a parameter importance ranking rather than a 
quantification of how much a given parameter is more important than another. 
Furthermore, the importance of parameters in large-scale, complex models is 
seldom a priori obvious (and may even be counterintuitive). Hence, screening 
design methods should be used cautiously, since they may be a priori inadequate 
to identify the truly important parameters. 

On the other hand, “sampling-based uncertainty and sensitivity analysis” is 
performed in order to ascertain if model predictions fall within some region of 
concern (“uncertainty in model responses due to uncertainties in model 
parameters”) and to identify the dominant parameters in contributing to the 
response uncertainty (“statistical sensitivity analysis”). It is particularly 
important to recall from Section I.A that the very first step (of the five specific 
steps) of “sampling-based uncertainty and sensitivity analysis,” in which 
subjective uncertainties are assigned through expert review processes, is crucial 
to the results produced by the subsequent steps in the analysis. This is because 
the results of sampling-based uncertainty and sensitivity analysis depend 
entirely on the distributions assigned to the sampled parameters; hence, the 
proper assignment of these distributions is essential to avoid producing spurious 
results. Furthermore, the statistical “sensitivity analysis” of the response to the 
parameters is performed in the fifth (and last) step of these procedures (by using 
scatter plots, regression analysis, partial correlation analysis, etc.). Therefore, it 
is also important to note that correlated variables introduce unstable regression 
coefficients when performing the “statistical sensitivity analysis” part, because 
these coefficients become sensitive to the specific variables introduced into the 
regression model. In such situations, the regression coefficients of a regression 
model that includes all of the parameters are likely to give misleading 
indications of parameter “sensitivities.” If several input parameters are suspected 
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(or known) to be highly correlated, it is usually recommended to transform the 
respective parameters so as to remove the correlations or, if this is not possible, 
to analyze the full model by using a sequence of regression models with all but 
one of the parameters removed, in turn. 

From the material presented in the preceding Sections, it has also become 
apparent that all statistical uncertainty and sensitivity analysis procedures 
commence with the “uncertainty analysis” stage, and only subsequently proceed 
to the “sensitivity analysis” stage; this path is the exact reverse of the conceptual 
path underlying the methods of deterministic sensitivity and uncertainty analysis 
where the sensitivities are determined prior to using them for uncertainty 
analysis. Without any a priori assumption regarding the relationship between the 
parameters and the response, the construction of a full-space statistical 
uncertainty analysis requires ( )IsO  computations, where s  denotes the number 
of sample values for each parameter and I  denotes the number of parameters. If 
a local polynomial regression is used, Stone has shown that the rate of 
convergence is ( )Ipp

N Ns +−= 2/ , where N  denotes the number of sample 
points, p  denotes the degree of smoothness of the function representing the 
response in terms of the parameters, and I  denotes the number of parameters. 
This relation indicates that the parameters-to-response mapping (function) can 
be approximated to a resolution of 1−s  with ( )pIsO /  sample points. The FAST 
method appears to be the most efficient of the global statistical methods, needing 

( ) ri NI 18 +ω  computations for each frequency, where rN  denotes the number 
of replicates. For example, if the response is a function of 8 parameters, and if 
the sample size is 64, then Sobol’s method requires 1088 model evaluations, 
while the FAST method requires 520 model evaluations; when the sample size 
increases to 1024, then Sobol’s method requires 17 408 model evaluations, while 
the FAST method requires 8200 model evaluations. It becomes clear that even 
for the most efficient statistical methods (e.g., the FAST method) the number of 
required model evaluations becomes rapidly impractical for realistic, large-scale 
models involving many parameters. Thus, since many thousands of simulations 
are needed, statistical methods are at best expensive (for small systems), or, at 
worst, impracticable (e.g., for large time-dependent systems). Furthermore, since 
the response sensitivities and parameter uncertainties are inherently 
amalgamated, improvements in parameter uncertainties cannot be directly 
propagated to improve response uncertainties; rather, the entire set of 
simulations must be repeated anew. Currently, a general-purpose “fool-proof” 
statistical method for analyzing correctly mathematical models of physical 
processes involving highly correlated parameters does not seem to exist, so that 
particular care must be used when interpreting regression results for such 
models. 

Summarizing the computational effort required by the various deterministic 
methods for computing local sensitivities, we recall that the “brute-force 
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method” is conceptually simple to use and requires no additional model 
development, but it is slow, relatively expensive computationally, and involves a 
trial-and-error process when selecting the parameter perturbations iδα , in order 
to avoid erroneous results for the computed sensitivities. The “brute-force 
method” requires ( )1+I  model computations; if central differences are used, the 
number of model computations could increase up to a total of I2 . Of the 
deterministic methods for obtaining the local first-order sensitivities exactly, the 
Green’s function method is the most expensive computationally. The DDM 
requires at least as many model evaluations as there are parameters, and that the 
computational effort increases linearly with the number of parameters. Since it 
uses Gateaux-differentials, the FSAP represents a generalization of the DDM; 
nevertheless, the FSAP requires the same computational and programming effort 
to develop and implement as the DDM. Hence, just as the DDM, the FSAP is 
advantageous to employ only if the number of different responses of interest for 
the problem under consideration exceeds the number of system parameters 
and/or parameter variations to be considered. Otherwise, the use of either the 
FSAP or the DDM becomes impractical for large systems with many parameters, 
because the computational requirements become unaffordable. 

By far the most efficient local sensitivity analysis method is the ASAP, but the 
ASAP requires development of an appropriate Adjoint Sensitivity System (or 
Adjoint Tangent Model). If this adjoint model is developed simultaneously with 
the original model, then the Adjoint Sensitivity System requires very little 
additional resources to develop. If, however, the Adjoint Sensitivity System is 
developed a posteriori, considerable skills may be required for its successful 
implementation and use. Note that the Adjoint Sensitivity System is independent 
of parameter variations, but depends on the response, which contributes the 
source-term for this system. Hence, the Adjoint Sensitivity System needs to be 
solved only once per response in order to obtain the adjoint function. 
Furthermore, the Adjoint Sensitivity System is linear in the adjoint function. In 
particular, for linear problems, the Adjoint Sensitivity System is independent of 
the original state-variables, which means that it can be solved independently of 
the original system. In summary, the ASAP is the most efficient method to use 
for sensitivity analysis of systems in which the number of parameters exceeds 
the number of responses under consideration.  

It is important to emphasize that the “propagation of moments” equations are 
used both for processing experimental data obtained from indirect measurements 
and also for performing statistical analysis of computational models. The 
“propagation of moments” equations provide a systematic way of obtaining the 
uncertainties in computed results, arising not only from uncertainties in the 
parameters that enter the respective computational model but also from the 
numerical approximations themselves. The major advantages of using the 
“propagation of moments” method are: (i) if all sensitivities are available, then 
all of the objectives of sensitivity analysis (enumerated above) can be pursued 
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efficiently and exhaustively; and (ii) since the response sensitivities and 
parameter uncertainties are obtained separately from each other, improvements 
in parameter uncertainties can immediately be propagated to improve the 
uncertainty in the response, without the need for expensive model recalculations. 
On the other hand, the major disadvantage of the “propagation of moments” 
method is that the local sensitivities need to be calculated a priori; as we have 
already emphasized, such calculations are very expensive computationally, 
particularly for large (and/or time-dependent) systems. It hence follows that the 
ideal, most efficient overall methodology for performing local sensitivity and 
uncertainty analysis is to combine the ASAP (which would provide the local 
response sensitivities) with the “propagation of moments” method, to obtain the 
local response uncertainties. 

Among the deterministic methods published thus far, the GASAP appears to be 
the only one capable of genuine global analysis; it is both exhaustive and 
computationally efficient, but its general utility for large-scale models is still 
untested at the time of this writing; in particular, it has not been tested on 
turbulent flows. Regarding future developments in sensitivity and uncertainty 
analysis, two of the outstanding issues, whose solution would greatly advance 
the state of overall knowledge, would be to: (i) develop the adjoint sensitivity 
analysis procedure (ASAP) for problems describing turbulent flows, and (ii) 
combine the GASAP with global statistical uncertainty analysis methods, striving 
to perform, efficiently and accurately, global sensitivity and uncertainty analyses 
for large-scale systems. 
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CHAPTER II 
 
 

APPLICATIONS OF THE ADJOINT SENSITIVITY 
ANALYSIS PROCEDURE (ASAP) TO TWO-PHASE FLOW 

SYSTEMS 
 
This Chapter presents applications of the adjoint sensitivity analysis procedure 

(ASAP) to transient one-dimensional two-phase flow problems modeled by well-
posed quasi-linear partial differential equations (PDE’s). The material in this 
chapter is structured in two main sections. Thus, Section II.A presents a self-
contained formalism for sensitivity analysis of functional-type responses 
associated with two-phase flow models that comprise equations describing 
conservation of mass, momentum, and energy for practical one-dimensional, 
two-phase flow models. In particular, the characteristics of applying the ASAP to 
the so-called homogeneous equilibrium model (HEM) are analyzed in detail.  

Section II.B presents the main aspects of implementing the ASAP for the 
RELAP5/MOD3.2 code, which are essentially the same as those generally 
described in Section II.A. The RELAP5/MOD3.2 code simulates the thermal-
hydraulic characteristics of light water nuclear reactors (LWR) by using a one-
dimensional, nonequilibrium, nonhomogeneous two-phase flow model, together 
with conservation equations for boron concentration and noncondensable gases. 
The RELAP5/MOD3.2 code actually solves the so-called “Numerically 
Convenient Set of Differential Equations” (REL/CDE), which is obtained from 
the basic differential equations that underlie the nonhomogeneous, 
nonequilibrium, one-dimensional two-fluid model. The REL/CDE are 
discretized by using a staggered-mesh in the spatial direction, and either a one-
step (“nearly-implicit”) or a two-step (“semi-implicit”) discretization procedure 
in time. These discretization procedures yield a system of thirteen coupled 
nonlinear algebraic equations. Both the differential and the discretized forms of 
the REL/CDE are presented in Section II.B.1. Section II.B.2 highlights the 
application of the ASAP to both the REL/CDE and to the Discretized REL/CDE. 
Applying the ASAP yields the Differential Adjoint Sensitivity Model (ASM-
REL/TF), which comprises nine coupled differential equations that are linear in 
the respective adjoint functions, and its discrete counterpart, the Discrete ASM-
REL/TF, which comprises thirteen algebraic equations that are also linear in the 
respective discrete adjoint functions. 

Section II.B.3 highlights the fundamentally important aspect of consistency 
between the differential and the corresponding discretized equations used for 
sensitivity analysis. In particular, the following consistency correspondences 
must be assured: (i) the Discretized Forward Sensitivity Model (FSM) must be 
consistent with the Differential FSM, if the FSAP is used; (ii) the Discretized 
Adjoint Sensitivity Model (ASM) must be consistent with the Differential ASM, 
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if the ASAP is used; and (iii) the Discretized (representation of the) Response 
Sensitivity must be consistent with the Integral (representation of the) Response 
Sensitivity both for the FSAP and for the ASAP, in which the Integral and the 
Discretized Response Sensitivity are represented in terms of the corresponding 
adjoint functions. 

Section II.B.4 presents typical results that illustrate the verification of the 
numerical solution of the ASM-REL/TF corresponding to the two-fluid model 
with noncondensable(s) used in RELAP5/MOD3.2. This validation has been 
carried out by using sample problems involving: (i) liquid-phase only; (ii) gas-
phase only; and (iii) two-phase mixture (of water and steam). Thus, the “Two-
Loops with Pumps” sample problem supplied with RELAP5/MOD3.2 is used to 
verify the accuracy and stability of the numerical solution of the ASM-REL/TF 
when only the liquid-phase is present. By replacing the liquid (water) by gas 
(pure steam) but keeping the respective geometry, a modified “Two-Loops with 
Pumps” sample problem is obtained and used to verify the accuracy and stability 
of the numerical solution of the ASM-REL/TF when only the gas-phase is 
present. For the same verification purpose, a modified “Edwards Pipe” sample 
problem, in which only the gas-phase is present (thus describing the transient 
depressurization of a pipe filled with pure steam), is also used. Furthermore, the 
actual “Edwards Pipe” sample problem, also supplied with RELAP5/MOD3.2, is 
used to verify the accuracy and stability of the numerical solution of the ASM-
REL/TF when both (i.e., liquid and gas) phases are present. The results obtained 
for these sample problems depict typical sensitivities of junction velocities and 
volume-averaged pressures to perturbations in initial conditions, and indicate 
that the numerical solution of the ASM-REL/TF is as robust, stable, and accurate 
as the original RELAP5/MOD3.2 computations. Finally, Section II.B.5 
illustrates the role that sensitivities of the thermodynamic properties of water 
play for sensitivity analysis of thermal-hydraulic codes for light-water reactors. 

 
 

II. A. ASAP FOR GENERIC TWO-PHASE FLOW PROBLEMS 
 
This section presents a self-contained formalism for sensitivity analysis of 

functional-type responses associated with a well posed system of quasi-linear 
partial differential equations (PDE’s) that describe transient one-dimensional, 
two-phase flow. The basic two-phase flow equations and their characteristics are 
presented in Sec. II.A.1. The sensitivity analysis formalism is developed in Sec. 
II.A.2 by applying the ASAP to the system of PDE’s considered in Sec. II.A.1. 
The sensitivities are expressed in terms of adjoint functions, and the adjoint 
sensitivity system satisfied by these adjoint functions is explicitly constructed. 
The characteristics of the adjoint sensitivity system, which determine the 
solvability of this system, are investigated in Sec. II.A.3. This investigation 
shows that for a well-posed, two-phase flow problem modeled by a system of 
first-order quasi-linear PDE’s of hyperbolic type, the corresponding adjoint 
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sensitivity system consists of a system of first-order linear PDE’s of hyperbolic 
type that can always be formulated as a well-posed initial-value problem (IVP). 
Furthermore, the linear PDE’s that constitute the adjoint sensitivity system have 
the same characteristics as the quasi-linear PDE’s modeling the two-phase flow 
problem. This implies that whenever the original two-phase flow problem is 
solvable, the adjoint sensitivity system is also solvable, and, in principle, the 
same numerical methods can be used to solve both the original and the adjoint 
sensitivity system of PDE’s. 

 
 

II.A.1. Basic One-Dimensional Two-Phase Flow Equations 
 
The basic principles of applying the ASAP to two-phase flow models can be 

illustrated by considering the governing equations that describe conservation of 
mass, momentum, and energy for practical one-dimensional, two-phase flow 
models. These conservation equations constitute a system of N  (where 6≤N ) 
coupled quasi-linear first-order PDE’s, which can be represented in matrix form 
as 

 

.0,, >Ω∈=
∂
∂

+
∂
∂ tx

xt
CUBUA    (II.A.1) 

 
The quantities appearing in Eq. (II.A.1) are defined as follows: x  and t  denote 
the spatial and the time coordinates, respectively; R⊂Ω  is an open subset of 
R , with boundary Ω∂ . The components of the column vector 

( ) ( )[ ]txutxu N ,,,,1 K=U  are the dependent (i.e., the state) variables. The NN ×  
matrices A  and B  and the column vector C  depend only on ( )α,,, txU , where 

[ ]Iαα ,,1 K=α  is the (column) vector of I  system parameters. 
Along with Eq. (II.A.1), initial conditions 
 

( ) ( )α00, UU =x     (II.A.2) 
 

and boundary conditions, represented here in operator form as 
 

( ) ( ) ,0,,,,,,, >Ω∂∈= txtxtx αα YUW    (II.A.3) 
 

must also be specified (for U  or its derivatives) for completing the formulation 
of the initial value problem (IVP). For greater generality, 0U  is considered here 
to be a function of α  although, in many cases, the components of 0U  can 
simply be considered as a subset of the set of I  components iα  of α . This IVP 
is well posed if Eq. (II.A.1) has real characteristics, i.e., if Eq. (II.A.1) is of 
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hyperbolic type. The characteristics of Eq. (II.A.1) are the N  families of curves 
defined by the N  ordinary differential equations 

 

( ) ( ),,,1,,,, Nitx
dt
dx

i K== αUλ    (II.A.4) 

 
where the quantities iλ  are the roots (i.e., the eigenvalues) of the characteristic 
equation 

 
( ) .0det =− BAλ     (II.A.5) 

 
 

II.A.2. The Adjoint Sensitivity Analysis Procedure (ASAP) 
 
For the purposes of sensitivity analysis, α , U , and C  are considered to be 

elements of the Hilbert spaces αH , UH , and CH , respectively. (For example, 

if all components of α  are real numbers, then αH  is IR ; UH  can be taken as 
the space of all square integrable vector functions U , etc.). Thus, Eq. (II.A.1) 
represents the mapping 

 

,: CHHS
xt

→⊂







∂
∂

+
∂
∂ UBUA   (II.A.6) 

 
where αHHH U ×= , and S  is an open domain in H  (i.e., αSSS U ×= , 

UU HS ⊂ , αα HS ⊂ ). Note that an arbitrary element H∈e  is of the form 
( )α,Ue = . 

The system response R  associated with the problem modeled by Eq. (II.A.1) 
is considered to be a nonlinear functional of e  

 

( ) ( ) ,,,,
0
∫ ∫
Ω

=
ft

dtdxtxFR αUe    (II.A.7) 

 
where ft  is some final time value, and F  is a nonlinear function of x , t , and 

e . 
Recall from Volume I that the most general and fundamental concept for the 

definition of the sensitivity of a response to variations in the system parameters 
is the Gâteaux- (G) differential. The G-differential ( )he ;0Nδ  of a nonlinear 

operator ( )eN  at ( )000 ,αUe =  with “increment” h  is defined as 
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( ) ( )[ ] ( )[ ] ( ),lim 0
0

000

0
heheehe ;NN

d
dNN δε
ε

εε εε
=+≡−+ =→

 (II.A.8) 

 
for ε  a real scalar, and all (i.e., arbitrary) vectors H∈h ; here ( )αhhh ,U=  
with ( )

NuuU hh ,,
1
K=h  and ( )

I
hh ααα ,,

1
K=h , since αHHH U ×= . In view of 

Eq. (II.A.8), the sensitivity ( )he ;0Rδ  of ( )eR  at 0e  is 
 

( ) ,;
0 10 1

0

00
∫ ∫ ∑∫ ∫ ∑
Ω =Ω = 



















∂
∂

+























∂
∂

=
f

i

f

j

t I

i i

t N

j
u

j
dtdxhFdtdxh

u
FR αα

δ
ee

he  (II.A.9) 

 
where the partial derivatives juF ∂∂  and iF α∂∂  of F  at the “base-case 

configuration point” ( )000 ,αUe =  are assumed to exist. The first and the 
second terms on the right side of Eq. (II.A.9) are customarily called the “indirect 
effect term” and the “direct effect term,” respectively. 

It is observed from Eq. (II.A.9) that, given a vector of “changes” αh  around 

the base-case point 0α , the sensitivity ( )he ;0Rδ  can be evaluated only after 
determining the vector Uh , since Uh  and αh  are not independent. The 
relationship between Uh  and αh  is obtained, to first order, by taking the G-
differentials of Eq. (II.A.1) and of the initial and boundary conditions 
represented by Eqs. (II.A.2) and (II.A.3), respectively. 

The G-differential of Eq. (II.A.1) is obtained by applying the definition given 
in Eq. (II.A.8) to each row in Eq. (II.A.1). For example, the G-differential of the 

thi  row of Eq. (II.A.1) is 
 
 

( ) ( )

( ) ( ) ( )] .0,,

,

0

00
0

00

1

0
00

=






++−
∂

+∂
+++














∂

+∂
++

=

=
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ε

αα

α

εε
ε

εε

ε
εε

ε

hhUhhU

hhU

αα

α

Ui
uj

Uij

N

j

uj
Uij

c
x

hu
b

t

hu
a

d
d

j

j

 

(II.A.10) 
 

Performing the above operations (i.e., differentiating with respect to ε  and 
setting ε  to zero in the resulting expression) gives 
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( ) ( ) ,,;0

1

0 Ω∈=∑
=

xShL i

N

j
uij j αhee   (II.A.11) 

 
where 

 

( ) ( ) [ ] ( ) [ ]

[ ] ( ) ( ) [ ] ( )
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1

0
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 (II.A.12) 

 
and 

 

( ) ( ) ( ) ( )
.;

1 1

0

0

00

0

0

0

0
0 ∑ ∑

= = 
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∂
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∂
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S αα ααα

eee
he  (II.A.13) 

 
In view of Eq. (II.A.11), the G-differential of Eq. (II.A.1) can be written as 

 
( ) ( ) ,,;00 Ω∈= xU αheSheL    (II.A.14) 

 
where 

 

( ) ( )[ ]
NNijL

×
= 00 eeL     (II.A.15) 

 
is the NN ×  matrix whose components are defined by Eq. (II.A.12), and 

 
( ) ( )NSS ,,; 1

0 K=αheS     (II.A.16) 
 

is the column vector whose components are defined by Eq. (II.A.13). The initial 
and boundary conditions associated with Eq. (II.A.14) are obtained by applying 
the definition given in Eq. (II.A.8) to Eqs. (II.A.2) and (II.A.3). This yields 

 

( ) ,,0,
1

0

0

Ω∈







∂
∂

= ∑
=

xhUx
I

i i
U iαα α

h   (II.A.17) 

 
and 

 
( ) ( ) ,0,,;; 00 >Ω∂∈= txαδδ hYheW α   (II.A.18) 
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respectively. Equations (II.A.14), (II.A.17), and (II.A.18) are called the “forward 
sensitivity equations (FSE),” or the “forward sensitivity model (FSM),” or the 
“forward variational model (FVM),” or the “tangent linear model (TLM).” For a 
given vector of changes αh , Eqs. (II.A.14), (II.A.17), and (II.A.18) could be 
solved to determine Uh ; Uh  could then be used to evaluate the sensitivity 

( )he ;0Rδ . However, for two-phase flow problems involving a large data base 
and comparatively few responses of the type given in Eq. (II.A.7), it becomes 
prohibitively expensive to solve Eqs. (II.A.14), (II.A.17), and (II.A.18) 
repeatedly, for all vectors αh  of possible interest to sensitivity analysis. 

The alternative procedure, which avoids the need to solve Eqs. (II.A.14), 
(II.A.17), and (II.A.18) repeatedly, is the ASAP; this procedure can be developed 
to evaluate the sensitivities if it is possible to eliminate the explicit appearance of 

Uh  in Eq. (II.A.9).The elimination process relies on appropriately constructed 
adjoint operators. The necessary and sufficient conditions for constructing these 
adjoint operators have been generally discussed in Volume I. Particularizing 
those necessary and sufficient conditions to the present two-phase flow problem 
indicates that appropriate adjoint operators can be constructed if Eqs. (II.A.9), 
(II.A.14), (II.A.17), and (II.A.18) are linear in Uh , and if the Hilbert space UH  
is equipped with the inner product 

 

( ) .,,,
0 1

UU

t N

i
ii HHdtdxvu

f

∈∈= ∫ ∫∑
Ω =

VUVU   (II.A.19) 

 
To simplify subsequent developments, the inner product in the space CH  is 
henceforth considered to be of the same form as shown in Eq. (II.A.19). 

An examination of Eqs. (II.A.9), (II.A.14), and (II.A.17) reveals that these 
equations are indeed linear in Uh . Equation (II.A.18) is linear in Uh  if and only 

if ( )eW  admits a Gâteaux- (G) derivative at 0e . The necessary and sufficient 

conditions for ( )eW  to admit a G-derivative at 0e  are generally discussed in 
Volume I, and are henceforth assumed to be satisfied. In this case, Eq. (II.A.18) 
can be written as 

 
( ) ( ) ( ) ,0,,; 000 >Ω∂∈′−=′ txUU αααδ heWhYheW α  (II.A.20) 

 
where ( )0eWU′  is the partial G-derivative at 0e  of ( )eW  with respect to U , and 

( )0eWα′  is the partial G-derivative at 0e  of ( )eW  with respect to α . 
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Since ( )0eL  [see Eq. (II.A.14)] is a linear operator with domain in UH  and 
range in CH , the relationship 

 
( ) ( ) ( )ΦΦΦ ,,, 0*0

UUU P heLhheL +=   (II.A.21) 

 
holds for an arbitrary vector ( )Nφφ ,,1 K=Φ , where CΗ∈Φ . In Eq. (II.A.21), 

( )0* eL  is the operator formally adjoint to ( )0eL , and ( )Φ,UP h  is the associated 

bilinear form. The explicit representation of ( )0* eL  is the NN ×  matrix whose 

elements ( )0eijl  are obtained by transposing the formal adjoints of ( )0eijL  given 
in Eq. (II.A.12), i.e., 

 

( ) [ ] ( ){ } [ ] ( ){ }

[ ] ( ) ( ) ( ) ( ).,,1,,
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1

0

0

00

0

0
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Nji
u
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u
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∂
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∂
∂

∂

∂
+

∂
∂

∂

∂
+

∂
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−
∂
∂

−=

∑
=

eee

eee

(II.A.22) 

 
An examination of Eqs. (II.A.12), (II.A.21), and (II.A.22) indicates that 
( )Φ,UP h  contains terms involving the quantity ( ) f

j

tt
tjuijha =

=0
φ . To eliminate the 

appearance of the unknown values of Uh  at ftt = , the adjoint function ( )tx,Φ  
is required to satisfy the final time condition 

 
( ) .,, Ω∈= xtx f 0Φ      (II.A.23) 

 
Appropriate adjoint boundary conditions must also be selected, following the 

criteria described in Volume I. These adjoint boundary conditions are 
represented here in operator form as 

 
( ) ( ) ,,,; 0*0*

fttx <Ω∂∈= αYeW Φ    (II.A.24) 
 

and are obtained by requiring that 
(i) they be independent of Uh , αh , and G-derivatives with respect to α  
(ii) the substitution of Eq. (II.A.24) into the expression of ( )Φ,UP h  must 

cause all terms containing unknown values of Uh  to vanish. 
This selection of the adjoint boundary and initial conditions reduces ( )Φ,UP h  

to a quantity designated here by ( )0;,ˆ eh ΦαP , which contains terms involving 

Copyright © 2005 Taylor & Francis Group, LLC



Applications of ASAP to Two-Phase Flow Systems                          45 

only known values of αh , Φ , and 0e . (In some problems, P̂  may vanish.) 
Hence, Eq. (II.A.21) can be written as 

 
( ) ( ) ( ) ,;,ˆ;,, 000* ehheSeLh ΦΦΦ αα PU −=   (II.A.25) 

 
where Eq. (II.A.14) was used to replace ( ) UheL 0  by ( )αheS ;0 . Equations 
(II.A.23), (II.A.24), and (II.A.25) hold for all (i.e., arbitrary) vectors CΗ∈Φ . 

A unique vector Φ  is now selected by using the Riesz representation theorem, 
so as to eliminate the explicit appearance of Uh  in Eq. (II.A.9) and to derive an 

alternative expression for the sensitivity ( )he ;0Rδ . For this purpose, note that 
Eq. (II.A.9) is linear in Uh . Hence, Eq. (II.A.19) can be used to write the first 
term on the right side of Eq. (II.A.9) as the inner product 

 

( ) ,,
0 1 0

Uh
e

∂∂=























∂
∂

∫ ∫ ∑
Ω =

Fdtdxh
u
F

U

t N

j
u

j

f

j
 (II.A.26) 

 
where ( )TNuFuFF ∂∂∂∂=∂∂ ,,1 KU . (The superscript T  denotes 
“transposition.”) A comparison between Eq. (II.A.26) and the left side of Eq. 
(II.A.25) shows that the relationship 

 
( ) UeL ∂∂= FΦ0*     (II.A.27) 

 
holds uniquely in view of the Riesz representation theorem.  

Equation (II.A.27) together with the final time conditions given by Eq. 
(II.A.23) and the boundary conditions represented by Eq. (II.A.24) are called the 
“adjoint sensitivity equations (ASE),” or the “adjoint sensitivity model (ASM),” 
or the “adjoint variational model (AVM),” or the “adjoint tangent model 
(ATM).” 

Equations (II.A.9), (II.A.25), (II.A.26), and (II.A.27) can now be used to 
obtain 

 

( ).;,ˆ, 0

0 1 0

ehS
e

ΦΦ ααα
δ PdtdxhFR

f

i

t I

i i
−+




















∂
∂

= ∫ ∫ ∑
Ω =

 (II.A.28) 

 
Thus, the desired elimination of the unknown values of Uh  from the 

expression of the sensitivity VR  has been accomplished. Once the single 
calculation to determine Φ  has been performed [by solving Eqs. (II.A.27), 
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(II.A.23), and (II.A.24)], Eq. (II.A.28) provides the most efficient means to 
obtain the sensitivities of ( )eR  to changes αh  around 0α . 

 
 

II.A.3. Characteristic of the Adjoint Sensitivity System 
 
After explicitly performing the differentiation ( ){ }t∂∂  and ( ){ }x∂∂  in Eq. 

(II.A.22), Eq. (II.A.27) can be written as 
 

,DBA =
∂
∂

−
∂
∂

−
xt

TT ΦΦ    (II.A.29) 

 
where ( )TNdd ,,1 K=D  is a (column) vector with components 
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Fd φ  (II.A.30) 

 
The final time value problem represented by Eqs. (II.A.29), (II.A.23), and 
(II.A.24) can be transformed into an initial value problem (IVP) by introducing 
the new independent variable 

 
tt f −=ζ      (II.A.31) 

 
in Eqs. (II.A.23), (II.A.24), and (II.A.29). The resulting IVP for ( )ζ,xΦ  is 

 

,0,, >Ω∈=
∂
∂

−
∂
∂ ζ
ζ

x
x

TT DBA ΦΦ   (II.A.32) 

( ) ,0,,0, =Ω∈= ζxx 0Φ    (II.A.33) 

( ) ( ) ,0,,; 0*0* >Ω∂∈= ζxαYeW Φ   (II.A.34) 
 

where TA , TB , and D  depend only on x , ζ−ft , ( )ζ−ftx,0U , and 

( )ζ−ftx,0α . The characteristics of Eq. (II.A.32) are the N  families of curves 
defined by the N  ordinary differential equations 

 

( ),,,1, Ni
d
dx

i K== γ
ζ

    (II.A.35) 

 
where the eigenvalues iγ  are the roots of the characteristic equation 
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( ) .0det =+ TT BA γ     (II.A.36) 

 
Since ( ) ( )[ ] ( )BABABA +=+=+ γγγ detdetdet TTT , Eq. (II.A.36) can also be 
written as 

 
( ) .0det =+ BAγ     (II.A.37) 

 
In view of the functional dependence of A  and B , it then follows from Eq. 
(II.A.37) that 

 

( ) ( )[ ] ,,,,,, 00 ζζζγγ −−= ffii txtxx αU   (II.A.38) 
 

i.e., iγ  is independent of ( )ζ,xΦ . 
Comparing Eq. (II.A.37) to (II.A.5) shows that 
 

( ) ( )[ ] ( ) ( )[ ].,,,,,,,,,, 0000 ζζζλζζζγ −−−−=−− fffiffi txtxtxtxtxx αα UU
(II.A.39) 

 
Furthermore, since dtdxddx −=ζ , it follows from Eqs. (II.A.39) and 
(II.A.31) that Eqs. (II.A.35) and (II.A.4) define the same N  families of curves. 
Thus, the characteristics of the adjoint system consisting of the linear PDE’s 
given by Eq. (II.A.32) are the same as the characteristics of the original system 
of quasi-linear equations given by Eq. (II.A.1). Consequently, for a transient 
one-dimensional, two-phase flow problem modeled as a well-posed IVP, the 
adjoint sensitivity system [i.e., Eqs. (II.A.32), (II.A.33), and (II.A.34)] 
appropriate for performing efficient sensitivity analysis can always be solved as 
a well-posed IVP. 

 
 

II.A.4. Illustrative Example: The Homogeneous Equilibrium Model 
(HEM) for Two-Phase Flow 

 
One of the simplest, yet often used, model for simulating two-phase, single-

component flow is the so-called homogeneous equilibrium model (HEM). 
Assuming no friction or external heat input, and considering that both phases 
move at the same velocity, v , the conservation equations underlying the HEM 
are 

 
Conservation of mass (continuity): 
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( )
,0=

∂
∂

+
∂
∂

x
v

t
mm ρρ

    (II.A.40) 

 
Conservation of momentum: 

 
( ) ( )

,0=
∂
∂

+
∂

∂
+

∂
∂

x
P

x
vv

t
v mm ρρ

   (II.A.41) 

 
Conservation of energy: 

 
( ) ( )

.0=
∂

∂
+

∂
∂

x
vS

t
S mmmm ρρ

   (II.A.42) 

 
In Eqs. (II.A.40), (II.A.41), and (II.A.42), the mixture density mρ  is defined 

as 
 

;ggllm ραραρ +≡     (II.A.43) 
 

the mean mixture entropy mS  is defined by 
 

( ) ;mggglllm SSS ρραρα +≡    (II.A.44) 
 

and P  and α  denote pressure and void fractions, respectively. In Eqs. (II.A.43) 
and (II.A.44), the subscript l  and g  refer to the liquid and the vapor phases, 
respectively. 

It is known that along the two-phase envelope, the density of the liquid and of 
the gas is a function of pressure only. Thus, mρ  in Eq. (II.A.43) is a function of 
pressure and the void fraction gα . Therefore, 

 
( ),, mmm SPρρ =     (II.A.45) 

 
or, if the inverse function is assumed to exist, 

 
( )., mm SPP ρ=     (II.A.46) 

 
Therefore, in Eq. (II.A.41), the pressure gradient can be written as 
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   (II.A.47) 
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Thermodynamic evaluations show that 
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where 
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where Θ  denotes the mixture’s temperature, vC  denotes the heat capacity of the 
mixture at constant volume, gh  and lh  denote the enthalpies of the gas and the 

liquid, respectively, while gV  and lV  denote the specific volumes of the gas and 
the liquid. 

Equations (II.A.40) through (II.A.42) can be written in matrix-vector form as 
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xt
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where 
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mm Svρ≡U     (II.A.51) 
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Note that the symbol T  in Eq. (III.E.51) denotes “transposition,” indicating that 
U  is a column (rather than a row) vector; the symbol T  will be used for this 
purpose throughout this Section. 

The eigenvalues iλ , ( )3,2,1=i , of Eq. (III.E.50) are readily obtained as: 
 

,1 v=λ      (II.A.54a) 
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,2 cv +=λ      (II.A.54b) 
,3 cv −=λ      (II.A.54c) 

 
where c  is the equilibrium sound speed defined as 
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21
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mSm
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    (II.A.55) 

 
Since the eigenvalues iλ , ( )3,2,1=i , are all real and distinct, the system given 
by Eq. (II.A.50) is hyperbolic. The characteristics of Eq. (II.A.50) are the three 
families of curves defined by the three ordinary differential equations 

 

( ).3,2,1, == i
dt
dx

iλ     (II.A.56) 

 
A set of initial and boundary conditions must also be supplied along with Eq. 

(II.A.50). For illustrative purposes, it suffices to consider that 
1. the initial conditions for mρ , v , and mS  are known, specified 

functions of x  at 0=t , i.e., 
 

( ) ( )xxm 00, ρρ =     (II.A.57a) 
( ) ( )xvxv 00, =     (II.A.57b) 
( ) ( )xSxSm 00, =     (II.A.57c) 

 
2. the domain Ω  is the segment bxa << , with boundary Ω∂  

consisting of the endpoints ax =  and bx =  
3. boundary conditions are that mρ , v , and mS  are specified functions 

of t  at the “inlet” ax = , i.e., 
 

( ) ( )tta inm ρρ =,     (II.A.58a) 
( ) ( )tvtav in=,     (II.A.58b) 
( ) ( )., tStaS inm =     (II.A.58c) 

 
For illustrative purposes, the response is considered to have the form 
 

( ) .,,,,,
0
∫ ∫≡
ft b

a
mm dtdxSvtxFR αρ   (II.A.59) 
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Examining Eqs. (II.A.48), (II.A.49), (II.A.57), (II.A.58), and (II.A.59), it 
follows that the vector α  of system parameters for this illustrative example is 
the (column) vector 

 
( ) ( ) ( ) ( ) ( ) ( )[ ] ,,,,,,,,, 7000

T
Iininin tStvtxSxvx ααρρ K≡α  (II.A.60) 

 
where the components 7α  through Iα  denote the parameters ( gh , lh , etc.) 
which appear explicitly in Eqs. (II.A.48) and (II.A.49), and also denote any 
additional parameters that may appear in the definition of the response [i.e., in 
Eq. (II.A.59)].  

The sensitivities of the response R  to arbitrary variations ( 0ρ∆ , 0v∆ , etc.) in 

the system parameters α , around their base-case values 0α , can be obtained by 
applying the ASAP, as shown in the previous sections of this Volume. Defining 
the vector αh  of changes around 0α  as 

 
( ) ( ) ( ) ( ) ( ) ( )[ ] ,,,,,,,,, 7000

T
Iininin tStvtxSxvx ααρρα ∆∆∆∆∆∆∆∆≡ Kh  (II.A.61) 

 
defining the corresponding vector of changes in U  around 0U  as 

 
( ) ,,, T

SvU hhhρ≡h     (II.A.62) 
 

and taking the corresponding G-derivatives of Eqs. (II.A.50), (II.A.57), and 
(II.A.58) leads to the following Forward Sensitivity System (or “variational 
tangent model”): 

 
( ) ( ),;00

αheSheL =U     (II.A.63) 
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and where the function Uh  is subject to the following initial and boundary 
conditions:  

( ) ( ),0, 0 xxh ρρ ∆=     (II.A.66a) 

( ) ( ),0, 0 xvxhv ∆=     (II.A.66b) 
( ) ( ),0, 0 xSxhS ∆=     (II.A.66c) 

 
and 

 
( ) ( ),, ttah inρρ ∆=     (II.A.67a) 

( ) ( ),, tvtah inv ∆=     (II.A.67b) 
( ) ( )., tStah inS ∆=     (II.A.67c) 

 
The Adjoint Sensitivity System (or “adjoint variational model”) is readily 
obtained by applying the procedure shown in the previous section (and, 
generally, in Volume I); the respective derivations lead to the following system 
of linear partial differential equations: 

 

,DBA =
∂
∂

−
∂
∂

−
xt

TT ΦΦ    (II.A.68) 

 
where 

 
( )TSv φφφρ ,,≡Φ     (II.A.69) 

 
denotes the adjoint function, where the (column) vector D  is defined as, 
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and where the adjoint function Φ  is subject to the following “final-time” 
conditions 

 
( ) ,,at ,, bxatttx f ≤≤== 0Φ    (II.A.71) 

 
and following “outlet”-boundary conditions 

 
( ) .,bat ,, fttxtx <== 0Φ    (II.A.72) 
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Using the transformation tt f −=ζ , the “final-time value problem” represented 
by Eqs. (II.A.68), (II.A.71), and (II.A.72) is transformed into the following 
initial-value problem (IVP) for the transformed adjoint function ( )ζ,xΦ : 

 

,DBA =
∂
∂

−
∂
∂

x
TT ΦΦ

ζ
    (II.A.73) 

( ) ,0at   ,, == ζζ 0xΦ     (II.A.74) 
( ) .at  ,, bxx == 0ζΦ     (II.A.75) 

 
The eigenvalues iγ , ( )3,2,1=i , are obtained by calculating the roots of 
 

( ) ,0
00
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m
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γ
γρ

ργ
γ BA  

 
which yields the expressions 

 
,1

0
1 λγ −=−= v     (II.A.76a) 

,2
0

2 λγ −=−−= cv     (II.A.76b) 

.3
0

3 λγ −=+−= cv     (II.A.76c) 
 

The characteristics of Eq. (II.A.73) are the three families of curves defined by 
the three ordinary differential equations 

 

( ).3,2,1, == i
d
dx

iγζ
    (II.A.77) 

 
Note that Eq. (II.A.77) defines the same families of curves as Eq. (II.A.56), 
since dtdxddx −=ζ  and ii λγ −= . Thus, the adjoint system is hyperbolic and 
has the same characteristics as the original system, i.e., Eq. (II.A.50). 

The adjoint system can be solved by using the method of characteristics as 
outlined in the Section II.A.3. For this purpose, the eigenvectors corresponding 
to the eigenvalues iγ  are used to construct the matrix 
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Introducing the new dependent variable ( )TSv ψψψ ρ ,,≡ψ  defined as Φψ Q≡ , 
and performing the operations indicated in Section II.A.3, transforms Eq. 
(II.A.73) into the following (equivalent) canonical form: 
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   (II.A.79) 
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 (II.A.81) 

 
The above equations involve the derivatives of F  with respect to the 

components ρ , v , and S  of U . For any given specific form of F , Eqs. 
(II.A.79), (II.A.80), and (II.A.81) can be integrated, as outlined in Section 
II.A.3, along the corresponding characteristic [see Eqs. (II.A.76) and (II.A.77)]. 
Once ρψ , vψ , and Sψ  have been obtained by solving the above system of 
equations, the adjoint function Φ  can be readily determined by performing the 
matrix-vector multiplication ψΦ 1−= Q . 

In terms of the adjoint function Φ , the explicit expression for the sensitivity 
Rδ  of R  is obtained as 
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 (II.A.82) 

 
Once the adjoint function Φ  has been determined, the sensitivity VR  can be 
efficiently obtained by carrying out the integrations in Eq. (II.A.82), for any 
specific αh  (i.e., for any specific variations 0ρ∆ , 0v∆ , etc.). 

 
 

II. B. ASAP FOR THE RELAP5/MOD3.2 TWO-FLUID MODEL (REL/TF) 
 
This Section presents the main aspects of implementing the ASAP for the 

RELAP5/MOD3.2 code. Conceptually, these steps are the same as described in 
the foregoing Section II.A, when applying the ASAP to a well-posed system of 
quasi-linear partial differential equations that describe transient one-dimensional, 
two-phase flow. The RELAP5/MOD3.2 code simulates the thermal-hydraulic 
characteristics of light water nuclear reactors (LWR) by using a one-
dimensional, nonequilibrium, nonhomogeneous two-phase flow model, together 
with conservation equations for boron concentration and noncondensable gases. 
The RELAP5/MOD3.2 code actually solves the so-called “Numerically 
Convenient Set of Differential Equations” (REL/CDE), which is obtained from 
the basic differential equations that underlie the nonhomogeneous, 
nonequilibrium, one-dimensional two-fluid model. The REL/CDE are 
discretized by using a staggered-mesh in the spatial direction, and either a one-
step (“nearly-implicit”) or a two-step (“semi-implicit”) discretization procedure 
in time. These discretization procedures yield a system of thirteen coupled 
nonlinear algebraic equations. Both the differential and the discretized forms of 
the REL/CDE are presented in Section II.B.1. Section II.B.2 highlights the 
application of the ASAP to the REL/CDE (in Sub-section II.B.2.a), and to the 
Discretized REL/CDE (in Sub-section II.B.2.b), respectively. Applying the 
ASAP yields the Differential Adjoint Sensitivity Model (ASM-REL/TF), which 
comprises nine coupled differential equations that are linear in the respective 
adjoint functions, and its discrete counterpart, the Discrete ASM-REL/TF, which 
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comprises thirteen algebraic equations that are also linear in the respective 
discrete adjoint functions. 

Section II.B.3 highlights the fundamentally important aspect of consistency 
between the differential and the corresponding discretized equations used for 
sensitivity analysis. The indispensable a priori assumption must be that the 
original system of differential equations (in this case, the REL/CDE) is 
discretized consistently (in RELAP5/MOD3.2); otherwise, the base-case 
solution could not be calculated correctly. Starting from this indispensable 
assumption, the following consistency correspondences must be assured: (i) the 
Discretized Forward Sensitivity Model (FSM) must be consistent with the 
Differential FSM, if the FSAP is used; (ii) the Discretized Adjoint Sensitivity 
Model (ASM) must be consistent with the Differential ASM, if the ASAP is 
used; and (iii) the Discretized (representation of the) Response Sensitivity must 
be consistent with the Integral (representation of the) Response Sensitivity both 
for the FSAP and for the ASAP, in which the Integral and the Discretized 
Response Sensitivity are represented in terms of the corresponding adjoint 
functions. 

Section II.B.4 presents typical results that illustrate the verification of the 
numerical solution of the ASM-REL/TF corresponding to the two-fluid model 
with noncondensable(s) used in RELAP5/MOD3.2. This validation has been 
carried out by using sample problems involving: (i) liquid-phase only, (ii) gas-
phase only, and (iii) two-phase mixture (of water and steam). Thus, the “Two-
Loops with Pumps” sample problem supplied with RELAP5/MOD3.2 is used to 
verify the accuracy and stability of the numerical solution of the ASM-REL/TF 
when only the liquid-phase is present. By replacing the liquid (water) by gas 
(pure steam) but keeping the respective geometry, a modified “Two-Loops with 
Pumps” sample problem is obtained and used to verify the accuracy and stability 
of the numerical solution of the ASM-REL/TF when only the gas-phase is 
present. For the same verification purpose, a modified “Edwards Pipe” sample 
problem, in which only the gas-phase is present (thus describing the transient 
depressurization of a pipe filled with pure steam), is also used. Furthermore, the 
“Edwards Pipe” sample problem, also supplied with RELAP5/MOD3.2, is used 
to verify the accuracy and stability of the numerical solution of the ASM-
REL/TF when both (i.e., liquid and gas) phases are present. The results obtained 
for these sample problems depict typical sensitivities of junction velocities and 
volume-averaged pressures to perturbations in initial conditions, and indicate 
that the numerical solution of the ASM-REL/TF is as robust, stable, and accurate 
as the original RELAP5/MOD3.2 calculations.  

Section II.B.5 illustrates the role that sensitivities of the thermodynamic 
properties of water play for sensitivity analysis of thermal-hydraulic codes for 
light-water reactors. Using the well-known ASME Steam Tables (1993), we 
present typical analytical and numerical results for sensitivities of the 
thermodynamic properties of water to the numerical parameters that appear in 
the mathematical formulation of these properties. Note that the explicit, exact 
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expressions of all of these sensitivities have been obtained by using the symbolic 
computer language MAPLE V9. In particular, we highlight the very large 
sensitivities displayed by the specific isobaric fluid and gas heat capacities, pfC , 

and pgC , the specific fluid enthalpy, fh , the specific gas volume, gV , the 

volumetric expansion coefficient for gas, gβ , and the isothermal coefficient for 

gas, gk . The dependence of gβ , and gk , on the most sensitive parameters turns 

out to be nonlinear, while the dependence of pfC , pgC , fh , and gV , on the 
most sensitive parameters, turns out to be linear, so the respective sensitivities 
predict exactly the effects of variations in the respective parameters. On the 
other hand, the sensitivities of the specific fluid volume, fV , the volumetric 

expansion coefficient for fluid, fβ , the specific gas enthalpy, gh , and the 

isothermal coefficient of compressibility for fluid, fk , to the parameters that 
appear in their respective mathematical formulae are quite small. Finally, we 
note that such deterministically calculated sensitivities can be used to rank the 
respective parameters according to their importance, to assess the effects of 
nonlinearities and, more generally, to perform comprehensive 
sensitivity/uncertainty analyses of thermal-hydraulic codes that use water 
substance as the working fluid.  

 
 

II.B.1. The Relap5/Mod3.2 Two-Fluid Model 
 
The RELAP5/MOD3.2 code simulates the thermal-hydraulic characteristics of 

light-water reactors (LWR) by using a nonhomogeneous, nonequilibrium, one-
dimensional two-fluid model, which consists of a system of nine coupled 
nonlinear partial differential equations describing the conservation of mass, 
momentum, and energy for the liquid and gaseous phases, including 
noncondensable materials in the gaseous phase and boron concentration in the 
liquid field. These conservation equations are not solved directly in 
RELAP5/MOD 3.2; instead they are transformed into the so-called “Numerically 
Convenient Set of Differential Equations,” abbreviated henceforth as REL/CDE, 
which comprises the following nine coupled nonlinear partial differential 
equations: 

 
(i) the “noncondensable density equation” 
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(ii) the “vapor energy equation” 

Copyright © 2005 Taylor & Francis Group, LLC



58         Sensitivity and Uncertainty Analysis 

 

( )

( ) ( )

( ) ( )

( ) .
2

1
2

1

1

gwgwfgfggf
s

f
s

if
fg

gs
g

s
ig

fg

f

gggggg

g
gg

g
gg

g
gg

DISSQhhTTH
P

PP

TTH
hh

h
P
PTTH

hh
h

Av
x

PAvU
xA

t
U

t
U

t
PU

++Γ






 ′





 −

+′





 +

+−
−

−

−














−
−−















−
−

=







++

+++

∗∗

∗

∗∗

∗

εε

α
∂
∂ρα

∂
∂

∂
∂

ρα
∂
∂ρ

α
∂
∂α

ρ

(II.B.2) 

 
(iii) the “liquid energy equation” 
 

( )

( ) ( )

( ) ( ) ( )

.
2

1
2

1

1

fwfwfg

fggf
s

f
s

if
fg

gs
g

s
ig

fg

f

ffffff

f
ff

f
ff

g
ff

DISSQhh

TTH
P

PPTTH
hh

h
P
PTTH

hh
h

Av
x

PAvU
xA

t
U

t
U

t
PU

++Γ






 ′





 −

+′





 +

−

−
−

+−














−
+−















−
=









++

+++−

∗∗

∗

∗∗

∗

εε

α
∂
∂ρα

∂
∂

∂
∂

ρα
∂
∂ρ

α
∂
∂α

ρ

 

(II.B.3) 
 
(iv) the “difference density equation” 
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(v) the “sum density equation” 
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(vi) the “sum momentum equation” 
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(vii) the “difference momentum equation” 
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(viii) the “mass conservation equation” for each noncondensable component 
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and where niM  represents the mass of the thi  noncondensable component in the 
gaseous phase, while nM  represents the total mass of noncondensable gas in the 
gaseous phase; and, finally, 

 
(ix)  the “boron conservation equation” 
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where the concentration parameter is defined as 

 
( )[ ] ( ).1 ffbmbb XC ραρρρ =−=  
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Equations (II.B.1) through (II.B.9) can be represented mathematically as the 
matrix-valued operator equation 

 
( ) ( ) ,, 0GSGN =−χ     (II.B.10) 

 
where ( )91 ,, χχ K≡χ  denotes a vector whose components are the nine 
dependent (i.e., state) variables in the REL/CDE system, as follows: the gas 
specific internal energy, 1χ≡gU , the fluid specific internal energy, 2χ≡fU , 

the pressure, 3χ≡P , the void fraction, 4χα ≡g , the total noncondensable mass 

fraction, 5χ≡nX , the noncondensable mass fraction for the thi  noncondensable 
species, 6χ≡niX , the boron density, 7χρ ≡b , the gas velocity, 8χ≡gv , and 

the fluid velocity, 9χ≡fv . The two-fluid model equations depend on a large 
number of parameters, such as those entering in various correlations, initial 
and/or boundary conditions, formulae expressing the thermodynamic properties 
of water (the 1993 ASME Steam Tables), and those describing the geometry of 
the problem under consideration, etc.  These parameters are denoted in Eq. 
(II.B.10) by the J -component vector ( )Jgg ,,1 K≡G , where J  denotes the 
total number of parameters in RELAP5/MOD3.2. 

Note that Eq. (II.B.10) contains first-order derivatives in time and space; 
therefore, it must be supplemented with appropriate initial and boundary 
conditions, which are hereby denoted as 

 
( ) ( ) xttxtx oinito allandfor,, == χχ    (II.B.11) 
( ) ( ) .0allandfor,, >== txxttx oboundo χχ    (II.B.12) 

 
At this stage, it is important to note that since Eq. (II.B.10) is nonlinear, it can, 

in principle, admit multiple solutions as well as discontinuous solutions (e.g., 
phase-changes). All of the considerations in this Section, however, are restricted 
to those domains in phase ( )tx,  and parameter-space in which the solution of 
Eq. (II.B.10) through Eq. (II.B.12) is unique; all physical phenomena that might 
lead to non-unique solutions are beyond the scope of this Section. 

In RELAP5/MOD 3.2, the REL/CDE are discretized spatially using a 
staggered spatial mesh that defines the RELAP “volumes;” furthermore, two 
adjacent volumes are connected to each other by RELAP “junctions.” The 
velocities are defined at junctions, while all other state variables are defined as 
volume-averaged variables. This spatial discretization procedure is illustrated in 
Figure II.B.1, below. 
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Figure II.B.1. Spatial discretization procedure (staggered mesh) for 
discretizing the REL/CDE. 

 
The Discretized REL/CDE equations for each cell are obtained by (i) 

integrating the mass and energy equations with respect to the spatial variable x , 
from a junction at jx  to the next junction at 1+jx , and (ii) integrating the 
momentum equations with respect to the spatial variable x , from a cell center 

Kx  to the adjoining cell center Lx . Two time-discretization procedures are 
implemented in RELAP5/MOD3.2; they are referred to as the nearly-implicit 
scheme, and the semi-implicit scheme, respectively. The nearly-implicit scheme 
is essentially a one-step integration procedure, while the semi-implicit scheme is 
a two-step integration procedure. Since the mathematical formalism of a one-
step procedure can be formally considered to be a particular case of a two-step 
procedure, only the two-step procedure, i.e., the semi-implicit scheme, will be 
analyzed in this work. 

In the semi-implicit scheme, the time advancement depends on the state of the 
fluid, in a control volume, for two successive time steps. The following four 
cases can occur in a control volume: 
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(a) “two-phase to two-phase,” where two-phase flow conditions exist at both 
the old ( )n  time-step, and the new ( )1+n  time step, respectively; 

(b) “one-phase to one-phase,” where one-phase flow conditions (either pure 
gas or pure liquid) exist at both the old ( )n  time-step, and the new ( )1+n  time 
step, respectively; 

(c) “two-phase to one-phase” (also referred to as “disappearance”), where two-
phase flow conditions exist at the old ( )n  time-step, and one-phase flow 
conditions exist at the new ( )1+n  time-step, respectively; 

(d) “one-phase to two-phase” (also referred to as “appearance”), where one-
phase flow conditions exist at the old ( )n  time-step, and two-phase flow 
conditions exist at the new ( )1+n  time step, respectively. 

After integration over x , from a junction at jx  to the next junction at 1+jx , 
the mass and energy equations yield a set of algebraic equations that can be 
written in matrix form as 
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for each time-step ( )n , volume k  and/or junction j ; the symbols with tilde 
indicate quantities that are evaluated at an intermediate (provisional) time-step. 
All of the variables appearing in the components of the matrix A  and the 
vectors 2121 ,,,, ffggb  are evaluated at old-time step, ( )n . The expressions of 
these components are listed in Appendix A. 

The sum momentum equation is integrated over x , from a cell center Kx  to 
the adjoining cell center Lx , to obtain 
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Similarly, the difference momentum equation is also integrated over x  from a 

cell center Kx  to the adjoining cell center Lx  to obtain 
 

( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( ) ( ) ( )[ ]

( ) ( )[ ] ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ] ( )( )}
( ) ( )[ ] ( ){
( ) ( )[ ] ( ) } .

1111

11

1
2
1

2
1

2
1

2
1

1

1

1

1
0

1
1

111

111

11

22

22

112

tvHLOSSF

vHLOSSG

txvCfvCfFI

vvv

vfvffvFWF

vFWGtPP

tVISFtvv

tVISGtvv

xvvvvC

n
jf

n
j

n
jffff

n
jg

n
j

n
jgggg

j
n
jf

n
jx

n
jg

n
jx

n
jm

j
n

ffgg
n
f

n
g

n
g

n
g

n
f

n
f

n
I

n
m

n
g

n
jf

n
jwf

n
jg

n
jwg

n

jffgg

n
jx

n
jf

n
j

n
jg

n
j

n
KL

n
jfgfg

n
j

n
jffff

n

Kf
n

Lf
n
jffff

n
j

n
jgggg

n

Kg
n

Lg
n
jgggg

jj
n
f

n
f

n
g

n
g

n

jfgm

∆−

−

∆∆−+−−++

−−Γ−

−









+−−

−∆−−−−=

∆+∆



 −−

∆−∆



 −+

∆−−−+

+

+

++

+++

+++

++

++

ραρα

ραρα

ρ

ραραραραρ

ραρα

ρρρρη

ραραραρα

ραραραρα

ρρρ

&&

&&

&&&&

&&&&

 

(II.B.15) 
 
Equations (II.B.13) through (II.B.15) constitute a system of 13 coupled 

algebraic equations that can be represented in matrix form as 
 

( ) ( ) 0GSGN =−+ ,1n
dχ ,   (II.B.16) 
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where we have highlighted explicitly the functional dependence on the following 
quantities: 

(A) ( ) ( ) ( ) ( ) ( ) ( )



≡ +++++++ ,,,,,, 1111111 n

kni
n
kn

n
kg

n
k

n
kf

n
kg

n
d XXPUU αχ

( ) ( ) ( ) ( ) ( ) ( ) ( ) 
+++++++ 1111111 ~,~,~,~,,, 

n
kn

n
kg

n

kf
n

kg
n
jf

n
jg

n
kb XUUvv αρ , which 

represents the vector of discretized state variables for volume k 
and/or junction j . The first nine components of 1+n

dχ are state 
variables at time-step ( )1+n , while the last four components (with 
tilde) represent state variables evaluated at an intermediate 
(provisional) time-step, between time-steps ( )n  and ( )1+n , 
respectively; 

(B) ( )Jgg ,,1 K≡G , which represents a J -component column vector 
whose components comprise all numerical parameters in 
RELAP5/MOD3.2 that are subject to variations; and 

(C) ( )131 ,, ss K≡S , which represents a 13-component column vector 
whose components comprise all of the inhomogeneous source terms 
appearing in Eqs.(II.B.13) through (II.B.15). 

The system of algebraic equations represented by Eq.(II.B.16) is solved to 
obtain (i) the pressure, the fluid, and gas velocities at the new time step ( )1+n , 

and (ii) the intermediate time-step variables ( ) ( ) ( ) ( ) 1111 ~,~,~,~ ++++ n
kn

n
kg

n
kf

n
kg XUU α . 

For the cases (b) and (d) defined above, when one-phase conditions exist at the 
old time step ( )n , the intermediate time-step is actually skipped by setting 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 11111111 ~,~,~,~ ++++++++
≡≡≡≡ 

n
kn

n
kn

n
kg

n
kg

n
kf

n
kf

n
kg

n
kg XXUUUU αα , so 

that the intermediate time-step variables are used directly at time-step ( )1+n . 
For the cases (a) and (c) defined above, when two-phase conditions exist at the 
old time-step ( )n , the nonexpanded forms of the mass and energy equations are 

used to obtain ( ) ( ) ( ) ( ) 1111 ,,, ++++ n
kn

n
kg

n
kf

n
kg XUU α . As an illustrative example, we 

present here the calculation of ( ) 1+n
LgU , for a volume L  and time-step ( )1+n , 

and we present the calculation of the other three state variables in Appendix A. 
Thus, to calculate ( ) 1+n

LgU , we first calculate the quantity ( ) 1+n
Lggg Uρα  from the 

nonexpanded form of the vapor energy equation  
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We then calculate ( ) 1+n

Lggρα  from the nonexpanded form of the vapor density 
equation shown below: 
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Finally, we calculate the ratio of the results from the previous two operations 

to obtain ( ) ( ) ( ) 111 +++ = n
Lgg

n
Lggg

n
Lg UU ραρα . 

 
 

II.B.2. ASAP of the Two-Fluid Model in RELAP5/MOD3.2 
 
This Section presents the application of the ASAP to the REL/CDE (in Sub-

section II.B.2.a), and to the Discretized REL/CDE (in Sub-section II.B.2.b), 
respectively.  

 
 

II.B.2.a ASAP for the REL/CDE 
 
Many results, customarily referred to as “responses,” ( )G,χR , calculated by 

RELAP5/MOD3.2 can be generally represented in the integral form 
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( ) ( ) ( )[ ].,,,,
0 0

∫ ∫≡
f ft

t

x

x

txtxFdxdtR GG χχ   (II.B.17) 

 
In particular, this integral form can be used to represent either instantaneous or 

averaged (in space and/or time) values of the dependent variables; for example, 
setting ( ) ( ) ( ) ( )txttxxF ij ,, 11 χχ ⋅−−= δδδG  in Eq.(II.B.17), where ijδ  

represents the Kronecker-delta functional while ( )1xx −δ  and ( )1tt −δ  denote 

Dirac-delta functionals, yields the instantaneous value of the thi  dependent 
variable at the point (x1,t1) in space-time, namely ( ) ( )11,, txR iχ=Gχ . On the 
other hand, setting ( ) ( )txF ij ,, χχ ⋅= δG  in Eq.(II.B.17), yields the space-time 

averaged value of the thi  dependent variable, namely 

( ) ( )∫ ∫= f ft

t

x

x i txdxdtR
0 0

,, χGχ . 

Conceptually, the REL/CDE are solved using base-case (or nominal) 
parameter values, denoted here by oG , to obtain the base-case (or nominal) 
solution oχ . In turn, the base-case (nominal) solution and parameter values are 

used to obtain the base-case (nominal) response value ( )oooR G,χ . The base-

case (nominal) parameter values ( )o
J

oo gg ,,1 K≡G  are customarily determined 
from experimental data; consequently, their numerical values are not known 
exactly but are known only within some bounds (e.g., tolerances, variations); 
these bounds can be represented by the vector 

( ) ( )JJ ggg δδδγγγ ,,,,,, 2121 KK ≡≡Γ , whose components are the respective 
parameter variations jgδ . 

When we introduce parameter variations ( ) ≡≡ Jγγγ ,,, 21 KΓ  
( )Jggg δδδ ,,, 21 K  in Eqs. (II.B.10) and (II.B.17), the corresponding “perturbed” 

solution becomes Φ+oχ , satisfying the perturbed system 
 

( ) ( ) ,, 0GSGN =+−++ ΓΓΦ oooχ    (II.B.18) 
 

while the perturbed response would become ( )ΓΦ ++ ooR G,χ , where 
( ) ( )fg vU δδ ,...,,, 91 ≡ΦΦ≡ KΦ  denotes the nine-component vector of 

variations in the respective components of χ . We note here that, in principle, 
the above equation could be solved repeatedly, for each vector of variations 

( ) ( )JJ ggg δδδγγγ ,,,,,, 2121 KK ≡≡Γ  of interest, to obtain exactly the 

perturbed solution ( )Φ+oχ . 
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Recall that the most general and fundamental concept for the definition of the 
local sensitivity of a response to parameter variations is the Gateaux (G-) 
differential. By definition, the G-differential ( )he ;oDP  of an operator ( )eP  at 

oe  with increment h  is 
 

( ) ( ) ( )[ ] ( ){ } ,lim; 0
1

0 =
−

→
+=−+≡ εε
ε

ε
εε heehehe oooo P

d
dPPDP  (II.B.19) 

 
for all (i.e., arbitrary) vectors h , and scalar ε . The G-differential ( )he ;oDP  is 

related to the total variation ( ) ( )[ ]oo PP ehe −+  through the relationship 
 

( ) ( ) ( ) ( ),; hheehe WDPPP ooo +=−+  with  ( )[ ] .0lim
0

=
→

εε
ε

hW  (II.B.20) 

 
Applying Eq.(II.B.19) to Eq. (II.B.17), while noting that ( )Ge ,χ= , 

( )ooo Ge ,χ= , and ( )ΓΦ,=h , yields the sensitivity ( )ΓΦ,;, ooDR Gχ  of the 
response defined in Eq. (II.B.17) as 
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 (II.B.21) 

 
For the response ( )G,χR  defined in Eq.(II.B.17), Eq.(II.B.20) takes on the 

form 
 

( ) ( ) ( ) ( ),,;,,, 22 ΓΦΓΦΓΦ +Ο++=++ oooooo DRRR GGG χχχ (II.B.22) 
 

indicating that the exact value of the perturbed response, ( )ΓΦ ++ ooR G,χ , 
namely the response-value that would be obtained by (exact) recalculations 
using perturbed values, is predicted by the sensitivity ( )ΓΦ,;, ooDR Gχ  to first-

order accuracy in Φ  and Γ . As Eq. (II.B.21) indicates, the sensitivity 

( )ΓΦ,;, ooDR Gχ  can be calculated once the function Φ  is determined.  

To first-order accuracy in Γ , Φ  is the solution of the “forward sensitivity 
model (FSM)” [or the “forward sensitivity equations (FSE),” or the “forward 
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variational model (FVM),” or the “tangent linear model (TLM)”], which are 
obtained, as usual, by taking the G-differentials of the Differential REL/CDE. 
The derivation of the FSM will be illustrated now by presenting the calculations 
of the respective G-differentials for a typical “momentum-like”-conservation 
equation, a typical “density-like”-conservation equation, and a typical “energy-
like”-conservation equation. For example, the G-differential of the “sum 
momentum equation” is obtained by calculating the expression  
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where ( )G,6 χE  is defined as 

 
( ) ( ) ,,6 fggfffgggxm vvvFWFvFWGBE −Γ−−−≡ ραραρGχ  

 
and where FWG , FWF , and gΓ  are nonlinear algebraic functions of the 
dependent variables χ  and parameters G . 

Performing the differentiation operations in the above equation yields  
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As a further example, the G-differential of the “sum density equation” is 

calculated by performing the differentiation shown in the following equation: 
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Similarly, the G-differential of the “liquid energy equation” is obtained by 

calculating the expression 
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where  

 

Copyright © 2005 Taylor & Francis Group, LLC



Applications of ASAP to Two-Phase Flow Systems                          71 

( ) ( ) ( )

,
2

1
2

1

,3

fwfw
s
f

s
g

f
s

if
fg

g
g

s
ig

fg

f

DISSQhh

TTH
hh

h
TTH

hh
h

E

++Γ













 −

+





 +

−

−










′−′

′
+−











′−′

′
≡

εε

Gχ
 

 
and where ifH , wΓ , wfQ , and fDISS are nonlinear algebraic functions of the 
dependent variables χ  and parameters G . 

The G-differentials of the remaining equations comprising the REL/CDE are 
calculated similarly. Collecting all of the G-differentiated REL/CDE yields the 
FSM for the two-fluid model, which can be represented in the form 
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j
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o
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∂
∂

∂
∂

(II.B.23) 
 

where the vector-valued function ( ) ( )fg vU δδ ,...,,, 91 ≡ΦΦ≡ KΦ  is subject to 

the known initial-time condition ( ) ( )oo txtx ,, χ∆=Φ , for all x, and the known 
boundary condition ( ) ( )txtx oo ,, χ∆=Φ  at ox  for all t, respectively. The 
expressions for the quantities ( )txSmn , , ( )txTmn , , ( )txUmn , , and ( )txQmj ,  
introduced in the above equation have been obtained by symbolic computer 
calculus using MAPLE V9; their explicit formulae are presented in Appendix B.  

The solution of Eq. (II.B.23) could, in principle, be used in Eq.(II.B.21) to 
calculate the sensitivity ( )ΓΦ,;, ooDR Gχ , since the error in obtaining 

( )91 ,, ΦΦ≡ KΦ  from Eq. (II.B.23) is of second-order in Γ . Note, however, 

that Eq. (II.B.23) would need to be solved anew (i.e., repeatedly) for each iΓ , 

which is impractical if there are many iΓ . Thus, applying the Forward 
Sensitivity Analysis Procedure (FSAP) would be just as expensive, 
computationally, as performing repeatedly the exact recalculations by solving 
Eq. (II.B.18) with the RELAP5/MOD3.2 code system, and then recalculating the 
exact perturbed response ( )ΓΦ ++ ooR G,χ . 

Examining Eqs. (II.B.21) and (II.B.23) reveals that both are linear in Φ . 
Therefore, the Adjoint Sensitivity Analysis Procedure (ASAP) can be applied by 
following the general theory presented in Chapter V of Volume I, along the same 
lines as in Section I.A of this Chapter. To begin with, the vector 
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( ) ( ) ( )( )txtxtx ,,,,, *
9

*
1

* ΦΦ≡ KΦ  of adjoint functions is introduced by taking the 

inner product of *Φ  with Eq. (II.B.23) to obtain  
 

[ ]{ },,,, *** ΦΦΦΦΦΦ P+= ML   (II.B.24) 

 
where: (i)  the angular brackets denote the inner product 

( ) ( ),,,, ∫ ∫ ⋅≡ f

o

f

o

t

t

x

x
txtxdxdt baba  (ii) M  is the formal adjoint of L , and 

(iii) [ ]{ },, *ΦΦP  denotes the bilinear concomitant evaluated on the surface, in 
space-time, of the computational domain ( )tx, . In practice, the right-side of Eq. 

(II.B.24) is obtained by first performing the vector-multiplication between *Φ  
and ΦL , and then by integrating the resulting differential equations by parts 
over x  and t  such as to transfer all of the differentiation operations from the 
components of Φ  to the components of *Φ . Following the steps shown in 
Section I.A, the following sequence of operations is now effected in Eq. 
(II.B.24): (i) set ( )oF χ∂∂=*ΦM ; (ii) eliminate the unknown values ( ) , ftxΦ  

and ( )tx f , Φ  by imposing ( ) 0=ftx,*Φ  and ( ) 0=tx f ,*Φ  as “final-time” and, 

respectively, “outlet-boundary” conditions for *Φ ; and (iii) use the known 
initial and boundary conditions for Φ . This sequence of operations transforms 
Eq. (II.B.24) to 
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 (II.B.25) 

 
where the vector-valued adjoint function *Φ  satisfies the following system of 
adjoint equations: 
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 (II.B.26) 

 
and where *Φ  is subject to the final-time conditions 
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( ) 0=ftx,*Φ , for all x ,  (II.B.27) 
 

and the outlet-boundary conditions  
 

( ) 0=tx f ,*Φ , for all t .   (II.B.28) 
 
Equation (II.B.26) together with the final-time conditions given by Eq. 

(II.B.27) and the boundary conditions represented by Eq. (II.B.28) constitute the 
“adjoint sensitivity model (ASM)” [or the “adjoint sensitivity equations (ASE),” 
or the “adjoint variational model (AVM),” or the “adjoint linear model 
(ALM)”]. 

Comparing Eqs. (II.B.21) and (II.B.25) reveals that the sensitivity 
( )ΓΦ,;, ooDR Gχ  can now be expressed in terms of the adjoint function *Φ  as 
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(II.B.29) 

 
Equation (II.B.26) reveals the following important characteristics regarding the 

ASM:  
(a) The ASM does not depend on the parameter variations jΓ ; hence, the 

adjoint function *Φ  is independent of parameter variations, too. 
(b) The source for (i.e., the right-side of) the ASM depends on the response 

R ; hence, *Φ  must be calculated anew for every R . 
(c) The ASM is linear in *Φ ; hence, the numerical methods for calculating 
*Φ  need not be the same as originally used for calculating the base-case 

solution oχ  of the nonlinear original system described by Eq. (II.B.10); in other 
words, the numerical methods for solving the ASM need not be the same as the 
original numerical methods used in RELAP5/MOD3.2. In many cases, it is even 
easier to calculate the adjoint function (which results from the solution of a 
linear system) than the original calculation of oχ  (which results from the 
solution of a nonlinear system). 

(d) The ASM depends (in general, nonlinearly) on the base-case (nominal) 
solution oχ  through the quantities ( )txSmn , , ( )txTmn , , and ( )txUmn , ; hence, 

the adjoint function *Φ  depends, in general nonlinearly, on the base-case 
solution oχ , too. Thus, the base-case solution oχ  must be available prior to 
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solving the ASM. Furthermore, the programming strategy for solving the ASM 
must be intertwined efficiently with the programming in the original code (i. e., 
RELAP5/MOD3.2) in order to optimize the calculation of *Φ  by minimizing 
memory requirements and CPU-time for its calculation. 

From the characteristics described in items (a) through (d) above, it follows 
that the ASAP should be used whenever the number of parameter variations jΓ  
exceeds the number of responses R  of interest; this is generally the case in 
practice. The reverse case, when the number of responses R  exceeds the 
number of parameter variations jΓ , occurs rather seldom in practice. Should 
such a case occur, however, the FSAP might be used for sensitivity analysis, if it 
already exists in the respective code; otherwise, direct recalculations should be 
performed, since they would require no additional programming.  

 
 

II.B.2.b   Implementation of the ASAP for the Discretized REL/CDE 
 
A result (response) calculated by RELAP5/MOD3.2 can be generally 

represented in discretized form as 
 

( ) ( )∑∑∑
= = =

=
NF

n

NJ

j

NV

k
d

n
jkd FR

0 1 1
,, GG χχ ,  (II.B.30) 

 
where NF , NJ , and NV  denote, respectively, the total number of time steps, 
the total number of junctions, and the total number of volumes in the problem 
under consideration. 

When the parameter variations ( ) ( )JJ ggg δδδγγγ ,,,,,, 2121 KK ≡≡Γ  are 
considered in Eqs. (II.B.16) and (II.B.30), the corresponding “perturbed” 
solution would become Ψ+o

dχ , satisfying the perturbed system 
 

( ) ( ) ,, 0GSG =+−++ ΓΓΨ ooo
dN χ   (II.B.31) 

 
while the perturbed response would become ( )ΓΨ ++ oo

dR G,χ , where 

( ) ( ) 



≡

++ 11 ~,,
n
kn

n
kg XU δδ KΨ  denotes the corresponding variations in the 

vector of dependent variables dχ . 
Applying the definition of the G-differential given in Eq. (II.B.19) to (II.B.30) 

yields the following expression for the sensitivity DR  of R  to variations Γ  (in 
G  around oG ) and Ψ  (in dχ around o

dχ ) : 
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where ( )ΓDR  represents the “direct effect” term while ( )ΨDR  represents the 
“indirect effect” term. 

To compute the indirect effect term ( )ΨDR , we need to compute Ψ ; to first 

order in Γ , Ψ is obtained by taking the G-differential of Eq.(II.B.16) to derive 
the Discrete FSM, and subsequently solving this system. To derive the Discrete 
FSM, we introduce the following notations: 

(i) For variations in the volume-averaged dependent variables, over a volume 
k , ( )NVk ,,1K= , at time-step n , ( )NFn ,,1K= , we introduce the notations: 
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(ii) For variations in the dependent variables defined at junctions j , 
( )NJj ,,1K= , at time-step n , we introduce the notations 

( ) ( ) ( ) ( ) ;, 21 n
jf

n
k

n
jg

n
k vYvY δδ ≡≡  

(iii) For variations in the volume-averaged, intermediate-time-step variables, 
for a volume k , ( )NVk ,,1K= , at time-step n , we introduce the notations: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .~,~,~,~ 4321 n
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k

n
kg

n
k

n

kf
n

k
n

kg
n
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We also define M1 and M2 to denote the total number of volume-averaged 
dependent variables and, respectively, the total number of intermediate-time-step 
variables, at time step n ; note that 74 1 ≤≤ M  and 40 2 ≤≤ M . Note that the 

quantities ( ) ( )n
k

n
k XX 71 ,,K , ( ) ( )n

k
n

k YY 21 , , ( ) ( )n
k

n
k ZZ 41 ,,K are actually 

components of Ψ ; they were introduced in order to simplify the notation in the 
derivations to follow below, aimed at eliminating the intermediate-time 
variables. 

Applying the definition of the G-differential to Eq. (II.B.16) and using the 
above notations yields the following matrix representation of the Discrete FSM: 
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for ( )1,,1 MK=µ ; ( )NFn ,,1K= ; 
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(II.B.33) 
 
The various matrices and vectors appearing in the above Discrete FSM are 

defined as follows: 
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The vectors on the right-side of Eqs. (II.B.33) represent the Γ -dependent 
terms that result from the application of the definition of the G-differential to Eq. 
(II.B.16). All of the components entering the definitions of the matrices 
appearing on the left-side of Eqs. (II.B.33) and vectors appearing on the right-
side of Eqs. (II.B.33) have been obtained explicitly using the symbolic computer 
language MAPLE V9, and have been programmed accordingly, but will not be 
reproduced here because of their lengthy and cumbersome expressions. 

We now define the partitioned matrices: 
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and introduce them in Eq. (II.B.33) to obtain the following system of matrix 
equations representing the Discrete FSM: 
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As shown in Appendix C, the matrix ( )1

2
−nT in Eq. (II.B.34) is always 

nonsingular, and therefore admits an inverse ( )[ ] 11
2

−−nT ; the procedure to 

calculate ( )[ ] 11
2

−−nT  is also presented in Appendix C.  The matrix ( )[ ] 11
2

−−nT  is 
used in Eq. (II.B.34) above to eliminate the vector of “intermediate-time” 
unknowns, ( )n

IX . The result of this elimination is the following system of matrix 
equations: 
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where initK  is a vector that contains the (known) perturbations in the initial 
conditions, and where the matrices ( ) ( ),, 11 −− nn HG  and ( )1−nK  are defined as 
follows: 
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The (Discrete) ASM corresponding to the (Discrete) FSM represented by 

Eq.(II.B.35) is obtained by introducing the respective adjoint, vector-valued, 
function via the scalar (inner) product of two vectors in a finite-dimensional 
Euclidean space. This inner product is formed by writing Eq.(II.B.35) as a single 
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(partitioned) matrix equation, and by multiplying this matrix equation on the left 
by a yet undefined partitioned column-vector ( ) ( )( )NFΞΞ≡Ξ ,,0 K , with 

components ( )nΞ of the same size and structure as ( )nX , to obtain an expression 
of the form ( ) ( )∑ =

Ξ≡Ξ
NF
n

nnnT XAAX
0

)( , where A  represents a matrix 

composed of the corresponding matrices ( )nG  and ( )nH . The (Discrete) ASM 

is then obtained by transposing the inner product AXTΞ  to obtain ΞTT AX , 
and by setting this expression to be equal to the indirect effect term, as follows: 

 

( ) ( ) ( ) ( ) ( ).
00
∑∑
==

Ξ=Ξ=Ξ===Ξ≡
NF

n

nnTT
NF

n

nnTTT KKAXQXQXAXDR Ψ  

(II.B.36) 
 
The source ( )nQ  appearing in Eq.(II.B.36) is determined by the quadrature 

scheme chosen to calculate numerically the system response R  in Eq.(II.B.30). 
From the identification ( ) ( )∑ =

==Ξ
NF
n

nnTTT QXQXAX
0

, it follows that the 
(Discrete) ASM , henceforth abbreviated as ASM-REL/TF, is given by the 
system of matrix equations 

 
( )[ ] ( ) ( )

( )[ ] ( ) ( )[ ] ( ) ( ) ( )
( ) ( )[ ] ( ) ( )












==Ξ+Φ

−==Ξ+Ξ

==Ξ
+−

−

.0,

1,,1,

,

0100

11

1

nQH

NFnQHG

NFnQG

T

nnTnnTn

NFNFTNF

K  (II.B.37) 

 
In view of Eqs.(II.B.32) and (II.B.36), it follows that the sensitivity DR  of the 

response R  is given in terms of the adjoint function ( ) ( )( )NFΞΞ≡Ξ ,,0 K  by the 
following expression  

 

( ) ( ) ( ) ( ) ( ).
0
∑
=

Ξ+=+≡
NF

n

nn KDRDRDRDR ΓΨΓ   (II.B.38) 

 
Note that the (Discrete) ASM represented by Eq. (II.B.37) must be solved 

backwards in time, starting, in principle, from the final time-step NF . In 
practice, however, the calculation of the vector-valued adjoint function 

( ) ( )( )NFΞΞ≡Ξ ,,0 K  commences backwards in time only from the time-step, n , 

at which the source terms ( )nQ  are nonzero. Furthermore, just as for the 
Differential ASM represented by Eqs. (II.B.26) through (II.B.28), Eq.(II.B.37) 
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reveals that: (a) the discrete adjoint function Ξ  is independent of parameter 
variations; (b) Ξ  must be calculated anew for every R ; (c) the ASM is linear in 
Ξ , and (d) the adjoint function Ξ  depends (eliminate space nonlinearly, in 
general) on the base-case solution o

dχ , which must therefore be available prior 
to solving the ASM. 

Note that the ASM-REL/TF, represented by Eq. (II.B.37), is solved by using 
different procedures than used for solving Eq. (II.B.16), i.e., for solving the 
discrete equations underlying RELAP5/MOD3.2. In particular, the ASM-
REL/TF is solved by calling, at each time-step, the subroutine DSLUGM7, 
which is a generalized minimum residual (GMRES) iterative sparse-matrix 
solver that uses incomplete LU factorization for preconditioning nonsymmetric 
linear systems. 

 
 
II.B.3. Consistency between the Differential/Integral and the Discretized 

Equations/Models for Sensitivity Analysis 
 
This Section highlights the fundamentally important aspect of consistency 

between the differential and the corresponding discretized equations used for 
sensitivity analysis. In this context, consistency means that the discretized 
representation converges to the corresponding differential and/or integral 
representation in the limit as 0→∆ jx  and 0→∆t . A priori, it must be 
assumed that the original systems of differential equations (in this case, the 
REL/CDE) has been discretized consistently; in this case, it is assumed that Eq. 
(II.B.16) represents a consistent discretization of Eq. (II.B.10). This is an 
indispensable assumption, of course, since if it were false, then one could not 
calculate the base-case solution correctly. Similarly, it must also be assumed that 
Eq.(II.B.30) represents a consistent discretization of the response represented by 
Eq.(II.B.17). Starting from these essential assumptions, the following 
consistency correspondences must be assured:  

(a) The Discretized FSM represented by Eq. (II.B.35) must be consistent with 
the Differential FSM represented by Eq. (II.B.23);  

(b) The Discretized ASM represented by Eq. (II.B.37) must be consistent with 
the Differential ASM represented by Eqs. (II.B.26) - (II.B.28); 

(c) The Discretized Response Sensitivity represented by Eq. (II.B.32), the 
Integral Response Sensitivity represented by Eq. (II.B.21), the Integral Response 
Sensitivity represented by Eq. (II.B.29) in terms of adjoint functions, and the 
Discretized Response Sensitivity represented by Eq. (II.B.38) in terms of adjoint 
functions must all be consistent with each other.  

If item (a) above turns out to be false, i.e., if the Discretized FSM represented 
by Eq. (II.B.35) turns out to be inconsistent with the Differential FSM 
represented by Eq. (II.B.23), then the a priori assumption that the original 
nonlinear differential equations (in this case, the REL/CDE) have been 
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discretized consistently must be carefully re-examined. If this a priori 
assumption is still confirmed to be correct, then the Discretized FSM represented 
by Eq. (II.B.35) must be discarded from further consideration. Two possibilities 
arise at this juncture:  

(a.1) If the implementation of the FSAP is necessary, then the Differential 
FSM represented by Eq. (II.B.23) must be discretized in a consistent manner, to 
enable its subsequent numerical solution; note that the Differential FSM 
represented by Eq. (II.B.23) can be discretized, in principle, independently of the 
original discretization procedures used to discretize the original nonlinear 
differential equations (in this case, the REL/CDE). 

(a.2) Alternatively, if the implementation of the FSAP is not necessary, then 
we proceed to examine item (b) described above. 

If item (b) above turns out to be false, i.e., if the Discretized ASM represented 
by Eq. (II.B.37) turns out to be inconsistent with the Differential ASM 
represented by Eqs. (II.B.26) - (II.B.28), then the Discretized ASM represented 
by Eq. (II.B.37) must be discarded; instead, the Differential ASM represented by 
Eqs. (II.B.26) - (II.B.28) must be discretized consistently, and subsequently 
solved numerically.  

The considerations of consistency outlined so far are depicted in the flow-chart 
shown in Figure II.B.2. 

Finally, if item (c) above turns out to be false, then the “integral” response 
sensitivity, represented in terms of adjoint functions, cf. Eq. (II.B.29), must be 
discretized in a consistent manner to enable its correct numerical computation. In 
closing, it is important to note that the fundamental hypothesis underlying all of 
the consistency considerations in this section is that the differential and/or 
integral forms (i.e., the Differential FSM, ASM, and Integral-Response-
representation) are the forms that contain/model physical reality; thus, it is the 
discretized forms that must conform to, and represent consistently, the 
differential/integral forms, rather than the other way around. 
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Figure II.B.2. Required consistencies between the differential and discretized 

formulations of FSM and ASM. 
 
 

II.B.4. Validation of the Adjoint Sensitivity Model (ASM-REL/TF) 
 
A very important use of Eq. (II.B.29) is for validating the computation of the 

adjoint function *Φ . For example, by choosing the response iR  to denote the 
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thi  REL/CDE dependent variable at some discrete point ( )ftx ,1  in space-time, 

by setting 0=Γ , ( ) 0=∆ txo ,χ , and ( ) ( ) ( )[ ]0,...,,...,0, 1 oio txxxtx χδ ∆−=∆χ  in 
Eq. (II.B.29), i.e., by effecting solely a variation in the initial conditions of the 

thi  dependent variable in the REL/CDE, we obtain  
 

( ) ( ) ( ) ( ) .,,,;,;, 111
**

oioiioi
oo

i txtxStxDR χ∆Φ=ΦΓΦGχ   (II.B.39) 
 
The above expression reveals that the sensitivity iDR  can be used to validate 

the thi  component of the adjoint function *Φ , as follows: (i) on the one hand, 
we solve Eq. (II.B.26) to obtain the adjoint function *Φ , and then perform the 
multiplications indicated on the right-side of Eq. (II.B.39) to obtain iDR ; the 

sensitivity iDR  would then be added to the nominal response value ( )ooo
iR G,χ  

to obtain the predicted perturbed response, predR , as indicated by Eq. (II.B.22); 
(ii) on the other hand, we recalculate the exact perturbed response, 

( )ΓΦ ++≡ oo
irecal RR G,χ , for the perturbation ( )oi tx ,1χ∆ . Recall that, 

according to Eq. (II.B.22), the values of recalR  and predR  agree with each other 
up to second order perturbations in the system parameters. Therefore, by 
deliberately selecting the perturbation ( )oi tx ,1χ∆  to be sufficiently small, to be 
able to neglect the effects of higher-order terms in Eq. (II.B.22), the value of 

predR  should agree closely with the value of recalR  if the adjoint function *
iΦ  

had been accurately computed. On the contrary, if the computation of the 
respective adjoint function were inaccurate, then the value of predR  would differ 

from the value of recalR , no matter how small one selected the variation 
( )oi tx ,1χ∆ . 

 
 
II.B.4.a Validation of the ASM-REL/TF for Liquid-Phase Using the “Two-

Loops with Pumps” RELAP5/MOD3.2 Sample Problem  
 
Using the concepts outlined above, the accuracy and stability of the numerical 

solution of the ASM-REL/TF for the liquid-phase was verified by using the 
“Two Loops with Pumps” sample problem supplied with the RELAP5/MOD3.2 
code. This problem models two, mostly identical, closed loops containing 19 
pipe-volumes and a pump-volume. For the first loop, the pipe-volumes are 
numbered consecutively from 101 to 119, while the pump-volume has number 
201 and connects pipe-volumes 101 and 119; similarly, the second loop consists 
of pipe-volume numbers 301 to 319, with pump-volume 401 connecting pipe-
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volumes 301 and 319. Each loop is filled with fluid, and has friction and an 
orifice. 

At the start of the transient, the water in the first loop is at zero (initial) 
velocity, but the pump is rotating in the positive direction. Thus, the pump trip is 
initially false, and the pump angular velocity is constant at the initial value until 
the pump trip becomes true. With the pump rotating at a constant angular 
velocity but the water at rest, the head is high and the water is accelerated. As 
the velocity of the water increases, wall friction and area change losses increase 
because these losses depend on the velocity of water. At the same time, the 
pump head obtained from the homologous pump data will decrease as the 
volumetric flow increases. A steady state is reached when the pump head and the 
loss effects balance. This steady state is reached after about 14.5 seconds from 
initiating the transient; at this time, the fluid velocity attains a value that remains 
constant for the next 5.5 seconds. At about 20 sec., the pump is tripped and 
therefore the pump speed and fluid velocities begin to decrease. 

For the second loop, the initial angular rotational velocity for the (second) 
pump is zero; a pump motor torque curve, corresponding to an induction motor, 
is used. From the curve, the torque is positive at zero angular velocity; the torque 
increases slowly as the velocity increases, up to a value which is slightly below 
the synchronous speed. Then, the torque decreases sharply to zero at the 
synchronous speed, where the developed torque matches the frictional torque 
and the torque imposed by the water. As long as the net torque is positive, the 
water is accelerated. Once the second pump approaches synchronous speed, the 
transient behavior of the second loop becomes similar to that of the first loop. 

The stability and accuracy of the numerical solution of the ASM-REL/TF was 
verified by considering various variations in the initial conditions for the 
pressures in the volumes and, respectively, velocities at the junctions comprising 
the respective loops. Note that such perturbations do not correspond to actual 
physical processes, but are introduced numerically, in order to verify the 
accuracy and stability of the numerical solution of the ASM-REL/TF. To 
facilitate the comparisons between the results (sensitivities) predicted by the 
ASM-REL/TF and the corresponding exact recalculations, the numerical values 
presented in the various tables below were deliberately not rounded off, but were 
displayed with all the decimals printed by RELAP5.  

For the results reported in this section, the fluid used in the “Two-Loops with 
Pumps” sample problem described above is single-phase water. To ensure that 
the fluid remains in the liquid-phase throughout the transient, the initial 
conditions were taken as: PaPinit

71056.1 ×=  and KT initf 555, = . The solution 
of the ASM-REL/TF was verified by: (i) effecting various perturbations in the 
initial pressures, velocities, and pump head; (ii) computing the respective 
predicted responses; and (iii) comparing the predicted response values with exact 
recalculations.  

The behavior of the volume-averaged pressure in volume 301 (adjacent to the 
pump) to various perturbations of the initial values of the pressure in the same 
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volume is presented in Table II.B.1. These results are typical for the pressure 
sensitivities to variations in the initial pressures for all of the other loop-
volumes, as well. The values presented for recalP  are obtained by re-running the 
entire transient using the respective perturbed initial condition. As noted from 
the results in Table II.B.1, the solution of the ASM-REL/TF, which is used to 
compute predP , is very accurate and stable, practically coinciding with the exact 
recalculations for the entire duration of the transient (294 time steps).  

The influence of perturbations of 0.1ft/s and 3ft/s, respectively, in the initial 
velocity (0.0 ft/s) in junction 301 on the subsequent time-dependent behavior of 
the velocity in the same junction (301) is depicted Table II.B.2. The effects of 
the perturbations in the initial velocity are noticeable during the early stages of 
the transient only, but then diminish quickly in time. Note that the results 
obtained using the ASM-REL/TF for the 0.1ft/s perturbation are practically 
indistinguishable from the exact recalculations, thus confirming the robustness, 
stability, and accuracy of the respective numerical solution of the ASM-REL/TF. 
The nonlinear effects are more prominent for the 0.9144m/s (3 ft/s) perturbation, 
particularly at early time values, but these effects also diminish in time and 
converge to the respective steady state values, as would be expected.  

 
Table II.B.1 

“Two-Loops with Pumps” - liquid-phase: influence of perturbations in the initial 
pressure in volume 301 (adjacent to the pump) on the pressure in same volume. 

 
Perturbation 

Transient  
Duration / 
No. of time steps 

Nominal  
Value 
(N/m2) 

 
0PPpred −

 

 
0PPrecal −

 
0.05 sec. / 5 t.s. 1.56259E+7 7391.4 7400 
0.2 sec. / 20 t.s. 1.56259E+7 7391.5 7400 
0.5. sec / 52 t.s. 1.56263E+7 7391.5 7300 
5. sec / 144 t.s. 1.56549E+7 7392.0 7400 

 
1% of the 

initial pressure 

20. sec /294 t.s. 1.73607E+7 7440.8 7500 
0.05 sec. / 5 t.s. 1.56259E+7 36957 36600 
0.2 sec. / 20 t.s. 1.56259E+7 36958 36600 
0.5. sec / 52 t.s. 1.56263E+7 36958 36600 
5. sec / 144 t.s. 1.56549E+7 36960 36600 

 
5% of the 

initial pressure 

20. sec/ 294 t.s. 1.73607E+7 37204 36900 
0.05 sec / 5 t.s. 1.56259E+7 73914 72400 
0.2 sec. / 20 t.s. 1.56259E+7 73915 72500 
0.5. sec / 52 t.s. 1.56263E+7 73915 72400 
5. sec / 144 t.s. 1.56549E+7 73920 72300 

 
10% of the 

initial pressure 

20. sec/ 294 t.s. 1.73607E+7 74408 73000 
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Table II.B.2 
“Two-Loops with Pumps” - liquid-phase: influence of perturbations in the initial 
velocity in junction 301 (adjacent to the pump) on the velocity in same junction. 

Perturb. 
in initial 

velocity 
(j301) 

Transient 
duration / 

nr. of time steps 

Nominal 
value o

fjv 

(j301) (m/s) 

 
o
fjpredfj vv −,

 

 
o
fjrecalfj vv −, 

0.05 sec./5 t.s. 1.20631E-5 1.50766E-3 1.50840E-3 
0.1 sec./10 t.s. 1.13544E-4 1.60894E-3 1.60889E-3 
0.2 sec./20 t.s. 9.80435E-4 2.46784E-3 2.47489E-3 
0.5 sec./50 t.s. 1.60002E-2 1.74949E-2 1.74856E-2 

 
0.3048 
m/s 

(0.1 ft/s) 
at t = 0 1.0 sec./100 t.s. .12428 .12559 .12550 

0.05 sec./5 t.s. 1.20631E-5 .44879E-1 .44507E-1 
0.1 sec./10 t.s. 1.13544E-4 .44975E-1 .44186E-1 
0.2 sec./20 t.s. 9.80435E-4 .45822E-1 .44432E-1 
0.5 sec./50 t.s. 1.60002E-2 .60609E-1 .57258E-1 

 
.9144 m/s 

(3 ft/s) 
at t = 0 

1.0 sec./100 t.s. .12428 .16369 .15583 
 
The results presented in Tables II.B.1 and II.B.2, respectively, are typical for 

perturbations in all of the volume-averaged pressures and junction-velocities of 
the “Two-Loops with Pumps” problem, as we have concluded after having 
preformed the respective calculations (see Ionescu-Bujor and Cacuci, 2000, for 
additional results). As already mentioned, the perturbations introduced 
numerically in the volume-averaged pressures and junction velocities are 
irrelevant to actual physical processes, but serve only as mathematical means to 
verify the accuracy and stability of the numerical solution of the ASM-REL/TF. 
The results of these verifications indicate that the numerical methods employed 
for solving the ASM-REL/TF are as accurate, robust, and stable as the original 
numerical methods used in RELAP5/MOD3.2 for solving liquid-phase 
problems. 

As examples of perturbations that do have physical meaning within the liquid-
filled “Two-Loops with Pumps” problem, the ASM-REL/TF has been used to 
obtain sensitivities of the pressure in the loops to variations in the pump head. 
Typical results for such sensitivities are presented in Table II.B.3, which, in 
particular, shows the time-dependent (100 time-steps) sensitivities of the 
pressure in Vol. 101 (adjacent to the pump in Loop 1) to a small (1%) and, 
respectively, large (10%) variation in the pump head. These results show that the 
pressure variations predicted by the ASM-REL/TF for the 1%-perturbations in 
the pump head are very close to, albeit somewhat larger than, the exactly 
recalculated pressures. For the larger (10%) pump head variations, the nonlinear 
effects become stronger, leading to a more marked over-prediction of the exactly 
recalculated results by the ASM-REL/TF-calculated sensitivities. 
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Table II.B.3 
“Two-Loops with Pumps” - liquid-phase: influence of pump head perturbations 

on pressure. 
Perturbation Transient  

Duration / 
No. of time steps 

Nominal  
Value 
(N/m2) 

 
0PPpred −

 
 

0PPrecal −
 

0.01 sec 1.57426E+7 1165.3 1100 
0.05 sec 1.57372E+7 1032.9 900 
0.1 sec 1.57238E+7 829.68 700 
0.5 sec 1.57058E+7 253.37 100 

 
1% of the initial 

pump head 

1 sec (100 t.s.) 1.57319E+7 256.37 100 
0.01 sec 1.57426E+7 11653 11600 
0.05 sec 1.57372E+7 10329 8700 
0.1 sec 1.57238E+7 8296.8 4300 
0.5 sec 1.57058E+7 2533.7 1200 

 
10% of the initial 

pump head 

1 sec (100 t.s.) 1.57319E+7 2563.7 600 
 
 

II.B.4.b Validation of the ASM-REL/TF for Gas-Phase Using a Modified 
“Two-Loops with Pumps” and the “Edward’s Pipe” RELAP5/MOD3.2 Sample 

Problems  
 
To validate the solution of the ASM-REL/TF for the gas-phase, the “Two-

Loops with Pumps” problem described above in Sec. II.B.4.a has been modified 
by replacing the water (liquid) by steam (gas). This modification was effected by 
using the following initial conditions: PaPinit

6100.7 ×= and KT initg 620, = . 
Otherwise, the geometry of the problem was kept unchanged. 

The influence of perturbations in the initial pressure in volume 103, which is 
located three volumes away from pump, on the pressure in same volume is 
illustrated by the results presented in Table II.B.4. Just as has been noted for the 
liquid-phase problem analyzed in Sec. II.B.4.a, these perturbations are 
introduced numerically, and do not correspond to actual physical processes; they 
are used only as mathematical means to verify the accuracy and stability of the 
numerical solution of the ASM-REL/TF. The results in Table II.B.4 show that 
the solution of the ASM-REL/TF, which is used to obtain predP , is very accurate 
and stable, practically coinciding with the exact recalculations for the entire 
duration of the transient (292 time steps), for all the perturbations (0.1%; 1%; 
10%) effected in the initial pressure.  

Typical examples of the sensitivities of the volume-averaged pressures to 
variations in the pump-head are presented below in Table II.B.5, for volume 
103, and Table II.B.6, for volume 101, respectively. Once again, the results 
presented in these tables are reproduced with all the digits printed by the RELAP 
code, in order to emphasize the respective differences; these results indicate that 
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the pressures predicted by using the ASM-REL/T are quite close to the exactly 
recomputed values. 

 
Table II.B.4 

“Two-Loops with Pumps” - gas-phase: influence of perturbations in the initial 
pressure in volume 103 (3 volumes away from pump) on the pressure in same 

volume. 
Perturbation Transient  

Duration / 
No. of time steps 

Nominal  
Value 
(N/m2) 

 
0PPpred −

 

 
0PPrecal −  

 

0.1 sec. / 10 t.s. 7.00433E+6 331.48 320 
0.5 sec / 50 t.s. 7.00627E+6 331.47 320 
1 sec / 100 t.s. 7.00984E+6 331.48 330 
5. sec / 142 t.s. 7.03846E+6 331.27 330 

 
0.1% 

of the initial 
pressure 

20. sec / 292 t.s. 7.14594E+6 330.82 320 
0.1 sec. / 10 t.s. 7.00433E+6 3314.8 3320 
0.5 sec / 50 t.s. 7.00627E+6 3314.7 3320 
1 sec / 100 t.s. 7.00984E+6 3314.8 3330 
5. sec / 142 t.s. 7.03846E+6 3312.7 3330 

 
1% 

of the initial 
pressure 

20. sec / 292 t.s. 7.14594E+6 3308.2 3320 
0.1 sec. / 10 t.s. 7.00433E+6 33148 32590 
0.5 sec / 50 t.s. 7.00627E+6 33147 32560 
1 sec / 100 t.s. 7.00984E+6 33148 32560 
5. sec / 142 t.s. 7.03846E+6 33127 32540 

 
10% 

of the initial 
pressure 

20. sec / 292 t.s. 7.14594E+6 33082 32530 
 

Table II.B.5 
“Two-Loops with Pumps” - gas-phase: influence of pump head perturbations on 

the pressure in volume 103. 
Perturbation Transient  

Duration / 
No. of time steps 

Nominal  
Value 
(N/m2) 

 
0PPpred −

 
 

0PPrecal −
 

0.1 sec (10 t.s.) 7.00433E+6 27.335 20 
0.5 sec (50 t.s.) 7.00627E+6 9.8272 9 

 
1% of the initial 

pump head 1 sec (100 t.s.) 7.00984E+6 9.8588 10 
0.1 sec (10 t.s.) 7.00433E+6 273.35 160 
0.5 sec (50 t.s.) 7.00627E+6 98.272 50 

 
10% of the initial 

pump head 1 sec (100 t.s.) 7.00984E+6 98.588 50 
 
To verify further the accuracy and stability of the numerical solution of the 

ASM-REL/TF for the gas-phase, we have modified the well-known “Edwards 
Pipe” problem, supplied with the RELAP5/MOD3.2 code, by filling it initially 
with pure steam (as opposed to water, as in the original setting of this problem). 
The modified “Edwards Pipe” problem thus contains steam (i.e., gas-phase) 
only, initially at rest in the pipe, with initial pressure and internal energy of 7 
MPa and 0.27E+7 J/kg, respectively. The pipe is then depressurized by opening 
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an end into a large reservoir at atmospheric pressure and an internal energy of 
0.25E+7 J/kg. To maintain pure gas (steam)-conditions throughout the 
depressurization, the transient calculation was restricted to the first 57 time steps 
after initiation of the transient depressurization, since condensation begins to 
appear beyond this point in time. The ASM-REL/TF results and the respective 
comparisons with exact recalculations are presented in Table II.B.7. These 
results indicate that the pressure response variations predicted by using the 
sensitivities calculated with the ASM-REL/TF agree well with the exactly 
recalculated variations. For the larger (10%) variations, the effect of 
nonlinearities becomes more evident, particularly as the condensation point is 
approached in time. The results shown in Table II.B.7 indicate that the numerical 
method used for solving the ASM-REL/TF yields accurate results, too, for the 
gas-phase segment of the two-fluid model. 
 

Table II.B.6 
“Two-Loops with Pumps” - gas-phase: influence of pump head perturbations on 

the pressure in volume 101 (adjacent to the pump). 
Perturbation Transient  

Duration / 
No. of time steps 

Nominal  
Value 
(N/m2) 

 
0PPpred −

 
 

0PPrecal −  
 

0.1 sec (10 t.s.) 7.00487E+6 31.278 30 
0.5 sec (50 t.s.) 7.00630E+6 9.8284 10 

 
1% of the initial 

pump head 1 sec (100 t.s.) 7.00988E+6 9.9438 9 
0.1 sec (10 t.s.) 7.00487E+6 312.78 180 
0.5 sec (50 t.s.) 7.00630E+6 98.284 50 

 
10% of the initial 

pump head 1 sec (100 t.s.) 7.00988E+6 99.438 40 
 

Table II.B.7 
“Edwards Pipe” - gas-phase: influence of perturbations in the initial pressure in 
volume 301 (near to the pipe’s closed end) on the pressure in the same volume. 
Perturbation Transient 

duration / 
no. Of time steps 

Nominal value 
(N/m2) 

 
0PPpred −

 

 
0PPrecal −  

 

0.001 sec./19 t.s. 7.0E+6 -322.86 -320 
0.005 sec./38 t.s. 6.8909E+6 16.078 20 

0.1% of the 
initial pressure 
7.0E+6 (N/m2) 0.01 sec / 57 t.s. 3.4896E+6 116.69 120 

0.001 sec./19 t.s. 7.0E+6 -16143 -14300 
0.005 sec./38 t.s. 6.8909E+6 803.90 710 

5% of the 
initial pressure 
7.0E+6 (N/m2) 0.01 sec / 57 t.s. 3.4896E+6 5834.3 7910 

0.001 sec./19 t.s. 7.0E+6 -32286 -25060 
0.005 sec./38 t.s. 6.8909E+6 1607.8 1370 

10% of the 
initial pressure 
7.0E+6 (N/m2) 0.01 sec / 57 t.s. 3.4896E+6 11669 13970 
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II.B.4.c Validation of the ASM-REL/TF for Two-Phase Using the “Edwards 
Pipe” RELAP5/MOD3.2 Sample Problem  

 
In addition to having verified the numerical solution of the ASM-REL/TF by 

using sample problems involving single-phase fluids as described in the 
foregoing in Sec. II.B.4.a and Sec. II.B.4.b, the solution of the ASM-REL/TF 
has also been verified by using the original “Edwards Pipe” sample problem 
supplied with the RELAP5/MOD3.2 code. In this (original) setting, “Edwards 
Pipe” models the depressurization of a pipe, filled initially with single-phase 
water at a pressure of 7 MPa and temperature of 502 K. The transient 
depressurization of the single-phase water is initiated by releasing one end of the 
pipe. The time-dependent behavior of the liquid, namely water turning into a 
two-phase mixture during the pipe depressurization, simulates the basic features 
of a loss of coolant accident in a pressurized water reactor. It is important to 
mention that the calculation of the transient behavior of the pressure, 
temperature, and fluid- and gas-velocities that describe “Edwards Pipe” problem 
requires the complete hydrodynamics of the RELAP5/MOD3.2 two-fluid model, 
including several flow regimes. 

Illustrative results for validating the numerical solution of the ASM-REL/TF 
for the first 0.1s (109 time steps) of the “Edwards Pipe” problem are presented 
in Table II.B.8. The two-phase flow regimes involved during these 109 time-
steps are bubbly, slug, and mist flows, respectively; the transitions between 
regimes occur very rapidly. The results presented in Table II.B.8 illustrate the 
effects of perturbations in the initial pressure in volume 305 on the subsequent 
time-evolution of the pressure in the same volume. The good agreement between 
the results for the predicted responses obtained using the ASM-REL/TF and the 
exactly recalculated responses indicates that the solution of the ASM-REL/TF is 
calculated robustly and accurately for the respective two-phase flow regimes.  

 
Table II.B.8 

“Edwards Pipe” - two-phase: influence of perturbations in the initial pressure in 
volume 305 on the pressure in the same volume. 

Perturbation Transient duration 
/no. of time steps 

Nominal value 
(N/m2) 

 
predP  

 
recalP  

0.01 sec. / 19 t.s. 2.66073E+6 2.66070E+6 2.66071E+6 
0.06. sec / 69 t.s. 2.57470E+6 2.57471E+6 2.57473E+6 

0.1% of the 
initial pressure 
7.0E+6 (N/m2) 0.1 sec / 109 t.s. 2.58221E+6 2.58238E+6 2.58241E+6 

0.01 sec. / 19 t.s. 2.66073E+6 2.66218E+6 2.66222E+6 
0.06. sec / 69 t.s. 2.57470E+6 2.57609E+6 2.57613E+6 

10% of the initial 
pressure 7.0E+6 
(N/m2) 0.1 sec / 109 t.s. 2.58221E+6 2.57538E+6 2.57548E+6 
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II.B.5. Sensitivities of Thermodynamic Properties of Water 
 
The material properties of water play an essential role in all calculations with 

RELAP5/MOD3.2. The standard reference for the mathematical formulae of the 
thermodynamic properties of ordinary water substance is the well-known 
monograph entitled “ASME Steam Tables” (1993). In particular, this reference 
contains expressions for the specific fluid volume, fV , the specific gas volume, 

gV , the specific isobaric fluid heat capacity, pfC , the specific isobaric gas heat 

capacity, pgC , the volumetric expansion coefficient for fluid, fβ , the 

volumetric expansion coefficient for gas, gβ , the specific fluid enthalpy, fh , 

the specific gas enthalpy, gh , the isothermal coefficient of compressibility for 

fluid, fk , and the isothermal coefficient for gas, gk . The mathematical 
expressions for these thermodynamic properties comprise highly nonlinear 
functions of pressure, P , and temperature, T , and each expression involves 
many tens of experimentally determined numerical parameters. The influence of 
such parameters, as well as of P  and T , on results involving water as the 
working fluid can be quantitatively assessed by calculating the sensitivities of 
the various material properties. Denoting symbolically a material property by 
[ ]Prop. Mat. , the relative sensitivity of [ ]Prop. Mat.  to a parameter β  (which 
can, in particular, represent P , T , or any other numerical coefficient) is defined 
as the dimensionless number 

 

[ ]
[ ]

o

























Prop. Mat.

Prop. Mat. β
∂β

∂ . 

 
On the other hand, the recalculated relative change in a material property 

[ ]Prop. Mat. is defined as 
 

( ) ( )[ ] ( )o

o
o

β
β

β
βββ

Prop. Mat.
1Prop. Mat.Prop. Mat. o

∆
−∆+ , 

 
where ( )[ ]ββ ∆+oProp. Mat.  denotes the exactly recalculated (perturbed) value 
of the respective material property, using the perturbed parameter value 
( )ββ ∆+o . The superscript “o” is used in the above expressions to denote 
“nominal” value. In view of Eq. (II.B.22), the difference between the relative 
sensitivity and the recalculated relative change provides a quantitative measure 
of the nonlinear dependence of the respective material property on the parameter 
in question. In the above definitions, the superscript zero signifies that all 
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quantities enclosed within the outside brackets are to be evaluated at known 
base-case (nominal) values. For the illustrative results presented below, in 
Tables II.B.9 through II.B.14, the nominal values for evaluating the sensitivities 
of the thermodynamic properties of fluid water have been chosen to be 

KT of 7.564= , KT og 6.620= , barPo 2.159= , which are conditions typically 
used in RELAP5/MOD3.2 for simulating reactor operational transients. 

Illustrative results for the sensitivities of the thermodynamic properties of 
water to P and T are presented below, in Table II.B.9. The general trend that 
can be observed from these results is that the relative sensitivities are computed 
very accurately (as can be seen from comparisons with recalculated values for 
small changes), but the dependence of the material properties on T and (to a 
lesser extent) on P is markedly nonlinear (as can be seen from comparisons 
with recalculated values for larger changes). The sensitivities of the 
thermodynamic properties of water to the numerical parameters that enter in 
their respective mathematical formulae are presented in Tables II.B.10 through 
II.B.14, and have been grouped according to their relative importance to the 
fluid and gas phases, respectively. The sensitivities of the specific isobaric fluid 
heat capacity, pfC , and the specific isobaric gas heat capacity, pgC , are 
presented in Tables II.B.10 and II.B.11, respectively. These results show that 

pfC is highly sensitive to variations in the first nine (of twenty nine parameters), 

while pgC  is highly sensitive to variations in the first ten (of thirty seven 
parameters); otherwise, the respective heat capacities are moderately or 
negligibly sensitive to the remaining parameters. It is important to note, though, 
that the dependence of pfC  and pgC  on the most sensitive parameters is linear, 
so the respective sensitivities predict exactly (not just to first order!) the effects 
of variations in the respective parameters. Nevertheless, as will be discussed in 
the sequel, such large sensitivities could propagate large uncertainties into the 
RELAP5/MOD3.2 results from the respective material properties. 

Table II.B.12 presents numerical results for the sensitivities of the specific 
fluid enthalpy fh  to all of the 33 empirical parameters that enter in its 
mathematical formula. These sensitivities are again ordered according to their 
absolute values, from high to low, and display features that are similar to those 
for pfC  and pgC  in the previous two tables. Thus, the sensitivities of fh  to the 
first ten parameters are extremely large, the sensitivities to the next five are 
moderately large, while the sensitivities to the last eighteen or so are negligible 
regarding their respective effects on fh . Note that fh  depends linearly on the 
parameters associated with the largest sensitivities; this fact is also reflected by 
the numerical results presented in the columns labeled ( )o

f
pred
f hh −  and 

( )o
f

recal
f hh − , respectively. The respective values agree exactly, as would be 
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expected in case of a linear dependence. Nevertheless, such high sensitivities 
would lead to potentially large contributions to the overall uncertainty in fh . 

Table II.B.13 presents numerical results for the sensitivities of the specific gas 
volume, gV , to all of the 34 empirical parameters that enter in its mathematical 
formula. These sensitivities are again ordered according to their absolute values, 
from high to low, and display features that are similar to those for pfC , pgC , 

and fh  in the previous tables. Thus, the sensitivities of gV  to the first seven 
parameters are extremely large, the sensitivities to the next nine are moderately 
large, while the sensitivities to the last eighteen are negligible regarding their 
respective effects on gV . Just as fh , gV  depends linearly on the parameters 
associated with the largest sensitivities; this fact is also reflected by the 
numerical results presented in the columns labeled o

g
pred

g VV −  and o
g

recal
g VV − , 

respectively. The respective values agree exactly, as would be expected in case 
of a linear dependence. Nevertheless, such high sensitivities would lead to 
potentially large contributions to the overall uncertainty in gV . 

 
 

Copyright © 2005 Taylor & Francis Group, LLC



94         Sensitivity and Uncertainty Analysis 

Table II.B.9 
Relative sensitivities of water material properties to temperatures and pressures 

typically encountered in reactor safety analysis: 
barPKTKT oo

g
o
f 2.159,6.620,7.564 === . 

Water 
Prop. 

Rel. sens. 
with respect 

to T 

Rel. 
var. 

Recalc. 
relative 
change 

Rel. sens. 
with 

respect to P 

Rel. 
var. 

Recalc. 
relative 
change 

1. Vf 1.447 10-5 1.447 -0.0358 10-5 -0.0358 
  10-4 1.448  10-4 -0.0358 
  10-3 1.453  10-3 -0.0358 
  10-2 1.507  10-2 -0.0357 
2. Vg 12.671 10-5 12.667 -3.327 10-5 -3.327 
  10-4 12.626  10-4 -3.328 
  10-3 12.253  10-3 -3.335 
  10-2 10.146  10-2 -3.420 
3. Cpf 2.112 10-5 2.112 -0.082 10-5 -0.0816 
  10-4 2.114  10-4 -0.0816 
  10-3 2.127  10-3 -0.0816 
  10-2 2.271  10-2 -0.0813 
4. Cpg -87.002 10-5 -86.885 14.205 10-5 14.208 
  10-4 -85.844  10-4 14.232 
  10-3 -76.565  10-3 14.479 

  10-2 -36.224  10-2 17.440 
5. βf 6.390 10-5 6.390 -0.240 10-5 -0.240 
  10-4 6.394  10-4 -0.240 
  10-3 6.434  10-3 -0.240 
  10-2 6.870  10-2 -0.239 
6. βg -84.259 10-5 -84.152 14.089 10-5 14.091 
  10-4 -83.208  10-4 14.114 
  10-3 -74.803  10-3 14.345 
  10-2 -37.918  10-2 17.115 
7. hf 3.526 10-5 3.526 -0.077 10-5 -0.0762 
  10-2 4.211  10-2 -0.0752 
8. hg 3.688 10-4 3.672 -0.674 10-4 -0.674 
  10-2 2.829  10-2 -0.720 
9. κf 9.703 10-5 9.703 -0.337 10-5 -0.336 
  10-2 10.600  10-2 -0.335 
10. κg -53.661 10-5 -53.597 8.107 10-5 8.108 
  10-3 -48.034  10-3 8.250 
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Table II.B.10 
Sensitivities of the specific isobaric fluid heat capacity, pfC , to parameters in its 

mathematical formulation barPKTKT oo
g

o
f 2.159,6.620,7.564 === . 

 
 

Param 
jg  

 
Rel. sens. 

o
pf

o
j

j

pf

C
g

g
C
∂

∂
 

Rel. 
Par. 
Var.

o
j

j

g

g∆
 

 
 

o
pf

pred
pf CC −  

 
 

o
pf

recal
pf CC −  

1.A6 21356.05 0.1 10111.91 10111.91 
 linear dep. 0.5 50559.59 50559.59 

2.A7 -20340 0.1 -9627.17 -9627.17 

 linear dep. 0.5 -48135.87 -48135.87 
3.A5 -14357.93 0.1 -6795.50 -6795.50 

 linear dep. 0.5 -33977.50 -33977.50 
4.A8 12085.68 0.1 5720.06 5720.06 

 linear dep. 0.5 28600.31 28600.31 
5.A4 6039.87 0.1 2858.62 2858.62 

 linear dep. 0.5 14293.14 14293.14 
6.A9 -4094.11 0.1 -1937.71 -1937.71 

 linear dep. 0.5 -9688.57 -9688.57 
7.A3 -1458.13 0.1 -690.12 -690.12 

 linear dep. 0.5 -3450.62 -3450.62 
8.A10 605.16 0.1 286.41 286.41 

 linear dep. 0.5 1432.09 1432.09 
9. A0 156.20 0.1 73.93 73.93 

 linear dep. 0.5 369.65 369.65 
10.a1 .25957 10-4 .1228*10-3 .1228*10-3 

  10-3 .1228*10-2 .1230*10-2 

  10-2 .1228*10-1 .1251*10-1 

  10-1 .1228 .1502 
11.a3 -.10989 10-4 -.5201*10-4 -.5201*10-4 

  10-3 -.5201*10-3 -.5200*10-3 

 
 10-2 -.5201*10-2 -.5196*10-2 

  10-1 -.5201*10-1 -.5155*10-1 

12.a4 .786*10-1 10-4 .3720*10-4 .3720*10-4 

  10-3 .3720*10-3 .3721*10-3 

 
 10-2 .3720*10-2 .3731*10-2 

  10-1 .3720*10-1 .3832*10-1 

13.A11 .581*10-1 0.1 .2750*10-1 .2750*10-1 

  0.5 .1375 .1375 
14.a5 -.321*10-1 10-4 -.1521*10-4 -.1521*10-4 

 
 10-3 -.1521*10-3 -.1521*10-3 

  10-2 -.1521*10-2 -.1519*10-2 

  10-1 -.1521*10-1 -.1497*10-1 

15.a10 -.139*10-1 10-4 -.6605*10-5 -.6604*10-5 
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  10-3 -.6605*10-4 -.6593*10-4 

  10-2 -.6605*10-3 -.6486*10-3 

  10-1 -.6605*10-2 -.5561*10-2 

16.A20 .557*10-2 0.1 .2637*10-2 .2637*10-2 

 linear dep. 0.5 .1318*10-1 .1318*10-1 

17.a6 .300*10-2 10-4 .1421*10-5 .1419*10-5 

  10-3 .1421*10-4 .1400*10-4 

 
 10-2 .1421*10-3 .1227*10-3 

  10-1 .1421*10-2 .4146*10-3 

18.a2 -.266*10-2 10-4 -.1263*10-5 -.1263*10-5 
  10-3 -.1263*10-4 -.1263*10-4 
  10-2 -.1263*10-3 -.1263*10-3 
  10-1 -.1263*10-2 -.1262*10-2 

19.a9 .829*10-3 0.1 .3926*10-3 .3926*10-3 
 linear dep. 0.5 .1963*10-2 .1963*10-2 

20.A14 -.573*10-3 0.1 -.2712*10-3 -.2712*10-3 
 linear dep. 0.5 -.1356*10-2 -.1356*10-2 

21.a11 .469*10-3 0.1 .2222*10-3 .2222*10-3 
 linear dep. 0.5 .1111*10-2 .1111*10-2 

22.A15 -.887*10-4 0.1 -.4198*10-4 -.4198*10-4 
 linear dep. 0.5 -.2099*10-3 -.2099*10-3 

23.A17 .546*10-5 0.1 .2588*10-5 .2588*10-5 

 linear dep. 0.5 .1294*10-4 .1294*10-4 

24.A18 .388*10-6 0.1 .1839*10-6 .1839*10-6 

 linear dep. 0.5 .9197*10-6 .9197*10-6 

25.A16 -.529*10-7 0.1 -.2506*10-7 -.2506*10-7 

 linear dep. 0.5 -.1253*10-6 -.1253*10-6 

26.A19 .134*10-7 0.1 .6344*10-8 .6344*10-8 

 linear dep. 0.5 .3172*10-7 .3172*10-7 

27.a8 -.353*10-8 10-4 -.167*10-11 -.167*10-11 

  10-3 -.167*10-10 -.167*10-10 

  10-2 -.167*10-9 -.167*10-9 

  10-1 -.167*10-8 -.167*10-8 

28.a7 .135*10-10 10-4 .642*10-14 .642*10-14 

  10-3 .642*10-13 .642*10-13 

 
 10-2 .642*10-12 .642*10-12 

  10-1 .642*10-11 .642*10-11 

29.A22 -.10*10-10 0.1 -.509*10-11 -.509*10-11 

 linear dep. 0.5 -.254*10-10 -.254*10-10 
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Table II.B.11 
 Sensitivities of the specific isobaric gas heat capacity, pgC , to parameters in its 

mathematical formulation ( barPKTKT oo
g

o
f 2.159,6.620,7.564 === ). 

 
Param 

jg  

Rel. sens. 

o
pg

o
j

j

pg

C
g

g
C
∂

∂
 

 
Rel. Par. Var. 

o
jj gg∆  

 
o
pg

pred
pg CC −

 

 
o
pg

recal
pg CC −  

1.B93 19063.26 0.1 23277.92 23277.92 
 linear dep. 0.5 116389.6 116389.6 

2.B94 -18611.13 0.1 -22725.84 -22725.84 
 linear dep. 0.5 -113629.2 -113629.2 

3.B92 -10903.58 0.1 -13314.24 -13314.24 
 linear dep. 0.5 -66571.2 -66571.2 

4.B95 9623.61 0.1 11751.28 11751.28 
 linear dep. 0.5 58756.42 58756.42 

5.B91 3300.47 0.1 4030.17 4030.17 
 linear dep. 0.5 20150.85 20150.85 

6.B96 -2059.82 0.1 -2515.22 -2515.22 
 linear dep. 0.5 -12576.14 -12576.14 

7.B90 -412.84 0.1 -504.12 -504.12 
 linear dep. 0.5 -2520.61 -2520.61 

8.L1 -20.52 10-4 -.2506*10-1 -.2573*10-1 

  10-3 -.2506 -.3319 
  10-2 -2.506 -351.46 
  10-1 -25.06 .5204 

9.L2 10.73 10-4 .1311*10-1 .1293*10-1 

  10-3 .1311 .1146 
  10-2 1.311 .4654 
  10-1 13.11 .5204 

10.L0 10.21 10-4 .1247*10-1 .1230*10-1 

  10-3 .1247 .1097 
 

 10-2 1.247 .4601 
  10-1 12.47 .5204 

11.b 5.246 10-4 .6406*10-2 .6410*10-2 

  10-3 .6406*10-1 .6444*10-1 

 
 10-2 .6406 .6805 

  10-1 6.406 15.13 
12.B51 1.360 0.1 1.6607 1.6607 

 linear dep. 0.5 8.3039 8.3039 
13.b81 1.329 10-4 .1623*10-2 .1623*10-2 

 
 10-3 .1623*10-1 .1628*10-1 

  10-2 .1623 .1672 

  10-1 1.623 2.248 

14.B41 -.9511 0.1 -1.161 -1.161 
 linear dep. 0.5 -5.807 -5.807 
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15.B52 -.7675 0.1 -.9372 -.9372 
 linear dep. 0.5 -4.686 -4.686 

16.B31 .4262 0.1 .5204 .5204 
 linear dep. 0.5 2.602 2.602 

17.B81 .2527 0.1 .3086 .3086 
 linear dep. 0.5 1.543 1.543 

18.B53 .1930 0.1 .2357 .2357 
 linear dep. 0.5 1.178 1.178 

19.b82 -.1501 10-4 -.1833*10-3 -.1833*10-3 

  10-1 -.1833 -.1767 
20.B0 .1493 0.1 .1823 .1823 

 linear dep. 0.5 .9119 .9119 
21.B71 .1455 0.1 .1776 .1776 

 linear dep. 0.5 .8883 .8883 
22.B21 .1197 0.1 .1462 .1462 

 linear dep. 0.5 .7314 .7314 
23.B11 .615*10-1 0.1 .7511*10-1 .7511*10-1 

 linear dep. 0.5 .3755 .3755 
24.B12 .456*10-1 0.1 .5568*10-1 .5568*10-1 

 linear dep. 0.5 .2784 .2784 
25.B04 .312*10-1 0.1 .3818*10-1 .3818*10-1 

 linear dep. 0.5 .1909 .1909 
26.B42 -.283*10-1 0.1 -.3463*10-1 -.3463*10-1 

 linear dep. 0.5 -.1731 -.1731 
27.B32 .225*10-1 0.1 .2752*10-1 .2752*10-1 

 linear dep. 0.5 .1376 .1376 
28.B72 -.216*10-1 0.1 -.2643*10-1 -.2643*10-1 

 linear dep. 0.5 -.1321 -.1321 
29.B61 .137*10-1 0.1 .1676*10-1 .1676*10-1 

 linear dep. 0.5 .8384*10-1 .8384*10-1 

30.B82 .132*10-1 0.1 .1612*10-1 .1612*10-1 

 linear dep. 0.5 .8060*10-1 .8060*10-1 

31.b71 -.853*10-2 10-4 -.1041*10-4 -.1041*10-4 

  10-1 -.1041*10-1 -.1036*10-1 

32.B62 -.844*10-2 0.1 -.1031*10-1 -.1031*10-1 

 linear dep. 0.5 -.5158*10-1 -.5158*10-1 

33.B05 -.774*10-2 0.1 -.9463*10-2 -.9463*10-2 

 linear dep. 0.5 -.4731*10-1 -.4731*10-1 

34.B03 -.727*10-2 0.1 -.8887*10-2 -.8887*10-2 

 linear dep. 0.5 -.4443*10-1 -.4443*10-1 

35.b61 -.246*10-2 10-4 -.3015*10-5 -.3015*10-5 

  10-1 -.3015*10-2 -.2938*10-2 

36.B22 -.241*10-3 0.1 .2954*10-3 .2954*10-3 

 linear dep. 0.5 .1477*10-2 .1477*10-2 

37.B23 -.749*10-4 0.1 -.9154*10-4 -.9154*10-4 

 linear dep. 0.5 -.4577*10-3 -.4577*10-3 
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Table II.B.12 
Sensitivities of the specific fluid enthalpy fh  to parameters in its mathematical 

formulation ( barPKTKT oo
g

o
f 2.159,6.620,7.564 === ). 

 
 

Param 
jg  

 
Rel. sens. 

o
f

o
j

j

f

h
g

g
h
∂

∂
 

Rel.  
Par.  
Var. 

o
j

j

g
g∆

 

 
 

o
f

pred
f hh −  

 
 

o
f

recal
f hh −  

1. A6 9744.20 0.1 .105*107 .105*107 
 linear dep. 0.5 .529*107 .529*107 

2. A5 -8185.48 0.1 -.888*106 -.888*106 

 linear dep. 0.5 -.444*107 -.444*107 

3. A7 -7730.90 0.1 -.839*106 -.839*106 

 linear dep. 0.5 -.419*107 -.419*107 

4. A4 4591.12 0.1 .498*106 .498*106 

 linear dep. 0.5 .249*107 .249*107 

5. A8 3937.18 0.1 .427*106 .427*106 
 linear dep. 0.5 .213*107 .213*107 

6. A3 -1662.57 0.1 -.180*106 -.180*106 

 linear dep. 0.5 -.902*106 -.902*106 
7. A9 -1167.03 0.1 -.126*106 -.126*106 

 linear dep. 0.5 -.633*106 -.633*106 

8. A0 356.208 0.1 .386*105 .386*105 

 linear dep. 0.5 .193*106 .193*106 

9. A10 153.33 0.1 .166*105 .166*105 

 linear dep. 0.5 .832*105 .832*105 

10. A1 -35.015 0.1 -3801.97 -3801.97 
 linear dep. 0.5 -.190*105 -.190*105 

11. a3 .44819 10-4 .4866*10-1 .4866*10-1 

  10-3 .4866 .4866 
  10-2 4.866 4.864 
  10-1 48.66 48.50 
12. a1 .854*10-1 10-4 .9274*10-2 .9276*10-2 

  10-3 .9274*10-1 .9292*10-1 

  10-2 .9274 .9457 
  10-1 9.274 11.38 
13.A11 -.493*10-1 0.1 -5.362 -5.362 
 linear dep. 0.5 -26.81 -26.81 
14. a4 .284*10-1 10-4 .3085*10-2 .3085*10-2 

  10-3 .3085*10-1 .3085*10-1 

  10-2 .3085 .3090 
  10-1 3.085 3.142 
15. a10 -.211*10-2 10-4 -.229*10-3 -.229*10-3 

  10-3 -.229*10-2 -.229*10-2 

  10-2 -.229*10-1 -.225*10-1 
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  10-1 -.2296 -.1912 
16. a2 .861*10-3 10-4 .9355*10-4 .9355*10-4 

  10-3 .9355*10-3 .9355*10-3 

  10-2 .9355*10-2 .9355*10-2 

  10-1 .9355*10-1 .9352*10-1 

17.A20 .737*10-3 0.1 .8009*10-1 .8009*10-1 

 linear dep. 0.5 .4004 .4004 
18. a5 .413*10-3 10-4 .4491*10-4 .4491*10-4 

  10-3 .4491*10-3 .4492*10-3 

  10-2 .4491*10-2 .4500*10-2 

  10-1 .4491*10-1 .4588*10-1 

19. A12 -.303*10-3 0.1 -.329*10-1 -.329*10-1 

 linear dep. 0.5 -.1649 -.1649 
20. A14 -.173*10-3 0.1 -.188*10-1 -.188*10-1 

 linear dep. 0.5 -.940*10-1 -.940*10-1 

21. a9 .120*10-3 0.1 .1303*10-1 .1303*10-1 

 linear dep. 0.5 .6516*10-1 .6516*10-1 

22. a6 .424*10-4 10-4 .4610*10-5 .4603*10-5 

  10-3 .4610*10-4 .4533*10-4 

  10-2 .4610*10-3 .3904*10-3 

  10-1 .4610*10-2 .1204*10-2 

23. a11 .144*10-4 0.1 .1567*10-2 .1567*10-2 

 linear dep. 0.5 .7836*10-2 .7836*10-2 

24. A15 -.111*10-5 0.1 -.121*10-3 -.121*10-3 

 linear dep. 0.5 -.606*10-3 -.606*10-3 

25. A17 -.300*10-6 0.1 -.326*10-4 -.326*10-4 

 linear dep. 0.5 -.163*10-3 -.163*10-3 

26. A18 -.566*10-8 0.1 -.615*10-6 -.615*10-6 

 linear dep. 0.5 -.307*10-5 -.307*10-5 

27. A16 .168*10-8 0.1 .183*10-6 .183*10-6 

 linear dep. 0.5 .915*10-6 .915*10-6 

28. a12 .100*10-8 0.1 .108*10-6 .108*10-6 

 linear dep. 0.5 .544*10-6 .544*10-6 

29. A21 .100*10-8 0.1 .108*10-6 .108*10-6 

 linear dep. 0.5 .544*10-6 .544*10-6 

30. a8 .923*10-10 10-4 .100*10-10 .100*10-10 

  10-3 .100*10-9 .100*10-9 

  10-2 .100*10-8 .100*10-8 

  10-1 .100*10-7 .100*10-7 

31. A19 -.51*10-10 0.1 -.562*10-8 -.562*10-8 

  0.5 -.281*10-7 -.281*10-7 

32. a7 -.21*10-12 10-4 -.234*10-13 -.234*10-13 

  10-1 -.234*10-10 -.234*10-10 

33. A22 .606*10-14 0.1 .658*10-12 .658*10-12 

  0.5 .329*10-11 .329*10-11 
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Table II.B.13 
Sensitivities of gV  to the numerical parameters that enter its ASME 

mathematical formulation ( barPKTKT oo
g

o
f 2.159,6.620,7.564 === ). 

 
Par. jg  

Rel. Sens. 

o
g

o
j

j

g

V
g

g
V
∂

∂
 

Rel. Par. 

Var. o
j

j

g
g∆

 

 
o
g

pred
g VV −  

 
o
g

recal
g VV −  

1.B93 -12239.7 0.1 -13194.8 -13194.8 
 linear dep. 0.5 -65974.3 -65974.3 

2.B94 11250.28 0.1 12128.23 12128.23 
 linear dep. 0.5 60641.1 60641.1 

3.B92 7454.4 0.1 8036.13 8036.13 
 linear dep. 0.5 40180.65 40180.65 

4.B95 -5489.58 0.1 -5917.98 -5917.98 
 linear dep. 0.5 -29589.91 -29589.91 

5.B91 -2409.25 0.1 -2597.26 -2597.26 
 linear dep. 0.5 -12986.34 -12986.34 

6.B96 1111.1 0.1 1197.81 1197.81 
 linear dep. 0.5 5989.06 5989.06 

7.B90 322.75 0.1 347.94 347.94 
 linear dep. 0.5 1739.72 1739.72 

8. I1 1.79724 0.1 1.9374 1.9374 
 linear dep. 0.5 9.6874 9.6874 

9. L1 .94649 10-4 .102*10-2 .104*10-2 
  10-3 .102*10-1 .133*10-1 
  10-2 .1020 10.2894 
  10-1 1.020 -.222*10-1 

10.B51 -.60403 0.1 -.6511 -.6511 
 linear dep. 0.5 -3.255 -3.255 

11.B41 .55367 0.1 .59688 .59688 
 linear dep. 0.5 2.9844 2.9844 

12. L2 -.50675 10-4 -.546*10-3 -.538*10-3 

  10-3 -.546*10-2 -.479*10-2 

  10-2 -.546*10-1 -.197*10-1 

13.B12 -.46088 0.1 -.49685 -.49685 
 linear dep. 0.5 -2.4842 -2.4842 

14. L0 -.46037 10-4 -.496*10-3 -490*10-3 
  10-3 -.496*10-2 -.440*10-2 
  10-2 -.496*10-1 -.192*10-1 
  10-1 -.4963 -.222*10-1 

15. b -.44629 10-4 -.481*10-3 -.481*10-3 
  10-3 -.481*10-2 -.481*10-2 

  10-2 -.481*10-1 -.49*10-1 
  10-1 -.4811 -.6283 

16.B52 .44523 0.1 .47997 .47997 
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 linear dep. 0.5 2.3998 2.3998 
17.B31 -.35894 0.1 -.38696 -.38696 

 linear dep. 0.5 -1.9348 -1.9348 
18.B53 -.15242 0.1 -.16423 -.16423 

 linear dep. 0.5 -.82160 -.82160 
19.B71 -.11813 0.1 -.12735 -.12735 

 linear dep. 0.5 -.63677 -.63677 
20.B21 -.672*10-1 0.1 -.725*10-1 -.725*10-1 

 linear dep. 0.5 -.3625 -.3625 
21.B32 -.615*10-1 0.1 -.663*10-1 -.663*10-1 

 linear dep. 0.5 -.3315 -.3315 
22.B42 .526*10-1 0.1 .567*10-1 .567*10-1 

 linear dep. 0.5 .2837 .2837 
23.B61 -.508*10-1 0.1 -.548*10-1 -.548*10-1 

 linear dep. 0.5 -.27404 -.27404 
24.b81 -.506*10-1 10-4 -.545*10-4 -.545*10-4 

  10-3 -.545*10-3 -.546*10-3 

  10-2 -.545*10-2 -.556*10-2 

  10-1 -.545*10-1 -.679*10-1 

25.B62 .404*10-1 0.1 .436*10-1 .436*10-1 
 linear dep. 0.5 .2181 .2181 

26.B11 -.331*10-1 0.1 -.356*10-1 -.356*10-1 
 linear dep. 0.5 -.17846 -.17846 

27.B72 .320*10-1 0.1 .345*10-1 .345*10-1 
 linear dep. 0.5 .17251 .17251 

28.B81 -.177*10-1 0.1 -.191*10-1 -.191*10-1 
 linear dep. 0.5 -.959*10-1 -.959*10-1 

29.B23 .136*10-1 0.1 .147*10-1 .147*10-1 
 linear dep. 0.5 .737*10-1 .737*10-1 

30.B22 -.11*10-1 0.1 -.118*10-1 -.118*10-1 
 linear dep. 0.5 -.593*10-1 -.593*10-1 

31. b82 .691*10-2 10-4 .745*10-5 .745*10-5 

  10-2 .745*10-3 .743*10-3 

  10-1 .745*10-2 .725*10-2 

32. b71 .392*10-2 10-4 .422*10-5 .422*10-5 

 
 10-1 .422*10-2 .421*10-2 

33. b61 .244*10-2 10-4 .263*10-5 .263*10-5 

  10-3 .263*10-4 .263*10-4 

  10-2 .263*10-3 .263*10-3 

34.B82 -.103*10-2 0.1 -.111*10-2 -.111*10-2 

 linear dep. 0.5 -.558*10-2 -.558*10-2 
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Table II.B.14 
 Sensitivities of fV  to the numerical parameters that enter its ASME 

mathematical formulation ( barPKTKT oo
g

o
f 2.159,6.620,7.564 === ). 

Param.Rank Relative Sens. Rel. par. 
Var. 

Recalc. relative 
change 

1. A11 1.016 0.01 1.016 
  0.1 1.016 
  0.5 1.016 
2. a5 .982 10-4 .981 
  10-3 .981 
  10-2 .980 
  10-1 .978 
3. a1 .638 10-4 .638 
  10-3 .639 
  10-2 .648 
  10-1 .765 
4. a3 -.107 10-4 -.107 
  10-3 -.107 

  10-2 -.106 
  10-1 -.101 
5. a4 .626*10-1 10-4 .626*10-1 
  10-3 .627*10-1 
  10-2 .628*10-1 
  10-1 .648*10-1 
6. A12 -.617*10-1 0.01 -.617*10-1 
  0.1 -.617*10-1 
  0.5 -.617*10-1 
7. A14 .410*10-1 0.01 .410*10-1 
  0.1 .410*10-1 
  0.5 .410*10-1 
8. a10 -.722*10-2 10-4 -.722*10-2 
  10-3 -.720*10-2 
  10-2 -.706*10-2 
  10-1 -.584*10-2 
9. a6 -.427*10-2 10-4 -.427*10-2 
  10-3 -.421*10-2 
  10-2 -.374*10-2 
  10-1 -.139*10-2 
10.A13 .313*10-2 0.01 .313*10-2 
  0.1 .313*10-2 
  0.5 .313*10-2 
11.A20 .128*10-2 0.01 .128*10-2 
  0.1 .128*10-2 
  0.5 .128*10-2 
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12. a2 .121*10-2 10-4 .121*10-2 
  10-3 .121*10-2 
  10-2 .120*10-2 
  10-1 .120*10-2 
13. a11 -.707*10-3 0.01 -.707*10-3 
  0.1 -.707*10-3 
  0.5 -.707*10-3 
14. a9 .202*10-3 0.01 .202*10-3 
  0.1 .202*10-3 
  0.5 .202*10-3 
15.A15 .143*10-3 0.01 .143*10-3 
  0.1 .143*10-3 
  0.5 .143*10-3 
16.A21 -.321*10-4 0.01 -.321*10-4 
  0.1 -.321*10-4 
  0.5 -.321*10-4 
17. a12 .978*10-5 0.01 .978*10-5 
  0.1 .978*10-5 
  0.5 .978*10-5 
18.A17 -.220*10-5 0.01 -.220*10-5 
  0.1 -.220*10-5 
  0.5 -.220*10-5 
19.A18 -.331*10-6 0.01 -.331*10-6 
  0.1 -.331*10-6 
  0.5 -.331*10-6 
20.A19 -.182*10-7 0.01 -.182*10-7 
  0.1 -.182*10-7 
  0.5 -.182*10-7 
21.A16 .401*10-8 0.01 .401*10-8 
  0.1 .401*10-8 
  0.5 .401*10-8 
22. a8 .173*10-9 10-3 .173*10-9 
  10-2 .173*10-9 
  10-1 .172*10-9 
23.A22 .816*10-12 10-2 .816*10-12 
  10-1 .815*10-12 
24. a7 -.617*10-13 10-2 -.617*10-13 
  10-1 -.617*10-13 

 
The sensitivities of the remaining thermodynamic properties (namely the 

specific fluid volume, fV , the specific isobaric gas heat capacity, pgC , the 

volumetric expansion coefficient for fluid, fβ , the volumetric expansion 

coefficient for gas, gβ , the specific gas enthalpy, gh , the isothermal coefficient 

of compressibility for fluid, fk , and the isothermal coefficient for gas, gk ), to 
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the coefficients that enter their respective mathematical expressions, are 
relatively small; their typical magnitudes are illustrated in Table II.B.14, which 
presents sensitivities for fV   

The sensitivities of the thermodynamic properties of water to temperature, 
pressure, and the experimentally-determined parameters that enter in their 
respective mathematical formulations play an essential role for sensitivity 
analyses of results calculated by thermal-hydraulic codes, such as 
RELAP5/MOD3.2, which use water as the working fluid. In particular, the 
sensitivities for the ASME 1993 Steam Tables are expected to indicate priority 
areas for investigating the new, IAPWS-IF97 formulations [12] for the material 
properties of water, since these formulations will eventually form the basis for 
all calculations involving water.  

In closing, it is also important to discuss the essential role played by 
sensitivities for performing uncertainty analysis; in particular, the linear 
approximation of the variance of a response R  is given by 

( )∑ =
=

J
ji jiji ggSSR

1,
,covvar , where iS  is the sensitivity of R  to the 

parameter ig , and ( )ji gg ,cov  is the covariance matrix for the parameters ig  

and jg . If all of the parameters are uncorrelated, then this formula reduces to 

∑ =
=

J
j jjSR

1
22var σ , where 2

jσ  is the variance (uncertainty) of the distribution 

of the parameter jg . These formulae highlight the interplay between the 
parameter sensitivities and uncertainties in contributing to the overall response 
uncertainty - as expressed by Rvar . Thus, the largest contributions to the 

response uncertainty, Rvar , come from those parameters jg  that display not 

only a large uncertainty 2
jσ  but also a high sensitivity jS . If either one (e.g., the 

sensitivity jS ) or the other (e.g., the uncertainty 2
jσ ) of these two components 

is small, then their respective product will obviously contribute less to Rvar  
than if both components were simultaneously large. 
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APPENDIX A: THE RELAP5/MOD3.2 DISCRETIZED SET OF 
“NUMERICALLY CONVENIENT DIFFERENTIAL EQUATIONS”  

 
The components of the matrix A  introduced in Eq. (II.B.13) are defined as 

follows: 
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The components of the vector b  introduced in Eq. (II.B.13) are defined as 

follows: 
 

Copyright © 2005 Taylor & Francis Group, LLC



108         Sensitivity and Uncertainty Analysis 

( ) ( )

( )

,
2

1
2

1

**

*

**

*

2

tDISStQhht

TTH
P

PP
t

TTtH
hh

h
TTH

P
P

t
hh

h
b

gwggfw

fggf
s

f
s

if
fg

g
g

s
ig

s

fg

f

∆+∆+






 ′





 +

+′





 −

Γ∆+

−
−

∆−

−∆













−
−−∆














−
−=

εε

 

( ) ( )

( )

,
2

1
2

1

**

*

**

*

3

tDISStQhht

TTH
P

PP
t

TTtH
hh

h
TTH

P
P

t
hh

h
b

fwfgfw

fggf
s

f
s

if
fg

g
g

s
ig

s

fg

f

∆+∆+






 ′





 +

+′





 −

Γ∆−

−
−

∆+

−∆













−
+−∆














−
=

εε

 

( ) ( ) .222
****4 wf

s
if

fg
g

s
ig

s

fg
tTTtH

hh
TTH

P
Pt

hh
b Γ∆+−∆















−
−−∆















−
−=  

 
The components of the vectors 2121 ,,, ggff  introduced in Eq. (II.B.13) are 

defined below: 
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The fluid specific internal energy, ( ) 1+n
LfU , is calculated for a volume L at 

time-step ( )1+n  by using the following sequence of three operations: (i) The 
nonexpanded liquid energy equation, which reads 
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is solved to obtain ( ) 1+n

Lfff Uρα ; (ii) the nonexpanded liquid density equation, 
which reads 
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is solved to obtain ( ) 1+n

kff ρα ; and (iii) the ratio of the results obtained in steps 
(i) and (ii), respectively, is calculated to obtain 
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The total noncondensable mass fraction, ( ) 1+n
LnX , for volume L at time-step 

( )1+n  is calculated by first solving the nonexpanded total noncondensable 
density equation 
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to obtain ( ) 1+n

Lngg Xρα , and then calculating directly 
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by using the previously calculated value of ( ) 1+n
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The gas void fraction, ( ) 1+n
Lgα , for a volume L at time-step ( )1+n  is calculated 

as follows: 
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The noncondensable mass fraction for the thi  noncondensable species, 

( ) 1+n
LniX , for volume L at time-step ( )1+n  is calculated by first solving the 

nonexpanded equation for the individual noncondensable density 
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to obtain ( ) 1+n

Lningg XXρα , and then by using the previously calculated quantity 

( ) 1+n
Lngg Xρα  to obtain ( ) ( ) ( ) 111 +++ = n
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n
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n
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APPENDIX B: COEFFICIENTS IN THE EQUATIONS UNDERLYING 

THE FSM 
 
By taking the G-derivative of the vapor energy equation, we obtain the 

following expressions for the components ( )txSmn , , ( )txTmn , , and ( )txUmn ,  
that appear on the left-side of Eq. (II.B.23): 
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and where the quantity ( )G,1 χE  is defined as  
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By taking the G-derivative of the liquid energy equation, we obtain the 

following expressions for the components ( )txSmn , , ( )txTmn , , and ( )txUmn , : 
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and where the quantity ( )G,2 χE is defined as 
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By taking the G-derivative of the sum density equation, we obtain the 

following expressions for the components ( )txSmn , , ( )txTmn , , and ( )txUmn , : 
 

Copyright © 2005 Taylor & Francis Group, LLC



Applications of ASAP to Two-Phase Flow Systems                          113 

( ) ( ) ( ) ,0,,,,, 313131 ≡









≡










≡ txU

U
vtxT

U
txS

og

go
g

o
g

og

go
g ∂

∂ρ
α

∂
∂ρ

α  

( ) ( ) ( ) ,0,,,,, 323232 ≡









≡










≡ txU

U
vtxT

U
txS

of

fo
f

o
f

of

fo
f ∂

∂ρ
α

∂
∂ρ

α  

( )

( ) ( ) ,0,,,

,,

3333

33

≡







+








≡









+








≡

txU
P

v
P

vtxT

PP
txS

o

fo
f

o
f

o

go
g

o
g

o

fo
f

o

go
g

∂
∂ρ

α
∂
∂ρ

α

∂
∂ρ

α
∂
∂ρ

α

 

( ) ( ) ( ) ,0,,,,, 343434 ≡−≡−≡ txUvvtxTtxS o
f

o
f

o
g

o
g

o
f

o
g ρρρρ  

( ) ( ) ( ) ,0,,,,, 353535 ≡







≡








≡ txU

X
vtxT

X
txS

on

go
g

o
g

on

go
g ∂

∂ρ
α

∂
∂ρ

α  

( ) ( ) ( ) ,0,,,,0, 383838 ≡≡≡ txUtxTtxS o
g

o
g ρα  

( ) ( ) ( ) ,0,,,,0, 393939 ≡≡≡ txUtxTtxS o
f

o
f ρα  

 
By taking the G-derivative of the difference density equation, we obtain the 

following expressions for the components ( )txSmn , , ( )txTmn , , and ( )txUmn , : 
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and where the quantity ( )G,4 χE  is defined as  
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By taking the G-derivative of the noncondensable density equation, we obtain 

the following expressions for the components ( )txSmn , , ( )txTmn , , and 
( )txUmn , : 
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By taking the G-derivative of the mass conservation equation for each 

noncondensable component, we obtain the following expressions for the 
components ( )txSmn , , ( )txTmn , , and ( )txUmn , : 
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By taking the G-derivative of the boron density equation, we obtain the 

following expressions for the components ( )txSmn , , ( )txTmn , , and ( )txUmn , : 
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By taking the G-derivative of the sum momentum equation, we obtain the 

following expressions for the components ( )txSmn , , ( )txTmn , , and ( )txUmn , : 
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o
f

o
f

o
f

v
E

A
x

v
At

txU

vtxTtxS











−−−≡

≡≡

∂
∂

ρα
∂
∂ρα

∂
∂

ραρα

 

 
where the quantity ( )G,8 χE  is defined as 

 
( ) ( ) .,8 fggfffgggx vvFWFvFWGvBE −Γ−−−≡ ραραρGχ  

 
By taking the G-derivative of the difference momentum equation, we obtain 

the following expressions for the components ( )txSmn , , ( )txTmn , , and 
( )txUmn , : 
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( ) ( )

( )
( )

( )
,1,

,0,,0,

109
291

9191

t
vv

U
E

U
E

Ux
PtxU

txTtxS
o
f

o
g

ogogog

g
o

o
g

∂
∂

∂
∂

∂
∂

∂
∂ρ

∂
∂

ρ

−










−










−










−≡

≡≡

 

( ) ( )

( )
( )

( )
,1,

,0,,0,

109
292

9292

t
vv

U
E

U
E

Ux
PtxU

txTtxS
o
f

o
g

ofofof

f
o

o
f

∂
∂

∂
∂

∂
∂

∂
∂ρ

∂
∂

ρ

−










−










−










≡

≡≡

 

( ) ( ) ( ) ( )
,,,11,,0, 109

939393 t
vv

P
E

P
EtxUtxTtxS

o
f

o
g

oo
o
f

o
g ∂

∂
∂
∂

∂
∂

ρρ

−






−






−≡−≡≡  

( ) ( ) ( ) ( )
,,,0,,0, 109

949494 t
vvEEtxUtxTtxS

o
f

o
g

ogog ∂
∂

∂α
∂

∂α
∂ −











−










−≡≡≡  

( ) ( )

( )
( )

( )
,1,

,0,,0,

109
295

9595

t
vv

X
E

X
E

Xx
PtxU

txTtxS
o
f

o
g

ononon

g
o

o
g

∂
∂

∂
∂

∂
∂

∂
∂ρ

∂
∂

ρ

−








−








−








−≡

≡≡

 

( ) ( ) ( ) ,1,,,,1, 910
98981098

og

o
o
go

o
o
g

o

v
E

x
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EtxUvtxTEtxS 










−−≡≡−≡

∂
∂

∂
∂

∂
∂  

( ) ( ) ( ) ,1,,,,1, 910
99991099
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oo
o
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o
f

o

v
E

t
E

x
Av

A
txUvtxTEtxS 










−−≡−≡−≡

∂
∂

∂
∂

∂
∂

 
and where the quantities ( )G,9 χE  and ( )G,10 χE are defined as 

 

( ) ( )[ ] ( ),,9 fg
ffgg

fgggffIg
fg vvFI

vvv
FWFvFWGvE −−

+−Γ
++−≡ ρ

ραρα
ραραρ

Gχ

 
and, respectively, 

 

( ) .,
2

10
fg

CE
ρρ
ρ

−≡Gχ  

 
 
APPENDIX C: ELIMINATION OF THE INTERMEDIATE TIME-STEP 

VARIABLES IN THE DISCRETIZED FSM 
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The matrix ( )nT2  is defined as ( )
( )( ) ( )( )

( )( ) ( )( ) 















≡
n

MM
n

M

n
M

n

n

TITI

TITI
T

222

2

,1,

,111

2

L

MM

L

, where 2M  is 

the number of intermediate time-step variables existing in the system. To 
simplify the notation for the derivations to follow in this Appendix, the time-step 
index n  will be omitted, since all matrices involved in these derivations are 
evaluated at time-step n . 

The matrix 2T  is partitioned in the form 







≡

VL
UT

T2 , where 

( ) ( )
( ) ( ) 








≡

2221

1211

TITI
TITI

T , and where the matrices L , U , and V  are defined below: 

 
(a) If 32 =M , i.e., if only the quantities k

gU~ , k
fU~ , k

gα~  appear as intermediate 
time-step variables in Eq. (II.B.33), then the matrices L , U , and V  are defined 

as follows: ( ) ( )[ ] ( )
( ) ( )33

23

13
3231 ;; TIV

TI
TI

UTITIL ≡







≡≡ . 

(b) If 42 =M , i.e., all intermediate time-step variables exist in Eq. (II.B.33), 
then the matrices L , U , and V  are defined as follows: 

 
( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( ) .;;

4443

3433

2423

1413

4241

3231








≡








≡








≡

TITI
TITI

V
TITI
TITI

U
TITI
TITI

L  

 
The inverse [ ] 1

2
−T  of 2T  can be calculated by partitioning; this yields 

 

[ ] ,
2221

12111
2 








=−

PP
PP

T  where the matrices 22211211 ,,, PPPP  are defined as 

follows: [ ] 11
22

−−−≡ ULTVP , 1
2221

−−≡ LTPP , 22
1

12 UPTP −−≡ , 
1

22
11

11
−−− +≡ LTUPTTP . 

To evaluate the matrices ( )2,1,, =jiPij , it is necessary to evaluate 1−T . 

Using the same inversion-by-partitioning procedure as above for the matrix 2T , 

we obtain 







≡−

2221

12111

tt
tt

T , where the matrices 22211211 ,,, tttt  are defined as: 

 

( ) ( ) ( ) ( )[ ] 1
12

1
11212222

−−−≡ TITITITIt ,    ( ) ( ) 1
11212221
−−≡ TITItt , 
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( ) ( ) 2212
1

1112 tTITIt −−≡ ,      ( ) ( ) ( ) ( ) ( ) 1
11212212

1
11

1
1111

−−− +≡ TITItTITITIt . 
 
Since the matrices ( )nTI µν  are by definition diagonal matrices, it follows that  
 

( ) ( ) ( ) ( )[ ] { }n
k

n

k
diagtitititidiagt 22

111122122
22 τ≡







 −=

−
, 

( ) ( ){ } { }n
k

n
k diagtitidiagt 21

1121
2221 ττ ≡−=  

( ) ( ){ } { }n
k

n
k diagtitidiagt 12

1112
2212 ττ ≡−= , 

( ) ( ) ( )[ ] ( ){ } { }n
k

n
k diagtitititidiagt 11

1111
22

2112
11 1 ττ ≡+= , for  ( ).,,1 NVk K=  

 
We now calculate the matrices 22211211 ,,, PPPP  for the two cases (a) and (b) 

defined above: 
 
Case (a): 32 =M : 
 
In this case, 22P  is obtained as follows: 
 

( ) ( ) ( )[ ] ( )
( ) { }n

kpdiag
TI
TI

tt
tt

TITITIP 22

1

23

13

2221

1211
32313322 =





























−=

−

,  

 

where ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ } 123
22

13
21

3223
12

13
11

3133
22

−
+−+−≡ tititititititip ττττ . 

Furthermore, the row-matrix 21P  is obtained in the form 

[ ]( )21
2

21
1
2121 ×= PPP , where  

( ) ( )[ ]{ } { }n
k

n
k qdiagtitipdiagP 121

32
11

31
22

1
21 ≡+−≡ ττ  

( ) ( )[ ]{ } { }n
k

n
k qdiagtitipdiagP 222

32
12

31
22

2
21 ≡+−≡ ττ . 

The column-matrix 12P  is obtained as 
( )12

2
12

1
12

12
×











=

P
PP , where 

( ) ( )[ ]{ } { }n
k

n
k sdiagtitipdiagP 1

23
12

13
1122

1
12 ≡+−≡ ττ , 

( ) ( )[ ]{ } { }n
k

n
k sdiagtitipdiagP 2

23
22

13
2122

2
12 ≡+−≡ ττ .  
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Finally, the matrix 11P , defined as [ ]21
1

11 UPITP −≡ − , can be written in the 

form 







=

2221

1211
11 RR

RR
P , where, for all ( ),,,1 NVk K=  the matrices 

22211211 ,,, RRRR  are defined as follows: 
 

( )[ ] ( ){ }
( ) ( )[ ]{ }
( )[ ] ( ){ }

( ) ( )[ ]{ } .1

1

1

1

2
23

222
13

2122

1
23

221
13

2121

2
23

122
13

1112

1
23

121
13

1111

n
k

n
k

n
k

n
k

qtiqtidiagR

qtiqtidiagR

qtiqtidiagR

qtiqtidiagR

−+−≡

−−≡

−+−≡

−−≡

ττ

ττ

ττ

ττ

 

 
Case (b): 42 =M : 
 
In this case, the matrix 22P  is given by the expression 
 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1

22
22

21
22

12
22

11
22

1

2423

1413

2221

1211

4241

3231

4443

3433
22

−

−












≡





































−








=

PP
PP

TITI
TITI

tt
tt

TITI
TITI

TITI
TITI

P

 

 
where the following definitions have been used: 

 
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }
{ }
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }
{ }
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }
{ }
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]{ }
{ } .

,

,

,

22

2422142142241214114144
22

22

21

2322132142231213114143
21

22

12

2422142132241214113134
12
22

11

2322132132231213113133
11
22

n
k

n
k

n
k

n
k

pdiag

TItTItTITItTItTITIP

pdiag

TItTItTITItTItTITIP

pdiag

TItTItTITItTItTITIP

pdiag

TItTItTITItTItTITIP

≡

+++−≡

≡

+++−≡

≡

+++−≡

≡

+++−≡

 

 
Carrying out the above calculations leads to the following expression for 22P : 
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=

2221

1211
22 WW

WW
P , where the components { } 2,1,; =≡ jiwdiagW n

kijij  are 

calculated from the formulae 
 

( ) ( ) ( ) ;;
111

22
21

2212
111

221122
12
22

111
2212

−−−
−≡−≡ PPWPWWPPW  

 

( ) ( ) .;
111

22
21

222221

1
12
22

111
22

21
22

22
2222

−−−
−≡



 −≡ PPWWPPPPW  

 
Carrying out the remaining calculations for the components 

{ } 2,1,; =≡ jiwdiagW n
kijij  defined above gives:  

 
( ) ;;;1 21211212211211 δδδ pwpwpww −=−=−= δ1122 pw = , with 

21122211 pppp −≡δ . 
 
Having calculated 22P  and 1−T , the remaining matrices 111221 ,, PPP  are 

obtained as 
 

( ) ( )
( ) ( ) 











≡
























−= 22

21
21

21

12
21

11
21

2221

1211

4241

3231

2221

1211
21 PP

PP
tt
tt

TITI
TITI

WW
WW

P ,  

 
where { } ( )2,1,;21 =≡ jiqdiagP n

kij
ij ,  with 

 

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] .

,

,

,

22
42

12
41

2222
32

12
31

2122

21
42

11
41

2221
32

11
31

2121

22
42

12
41

1222
32

12
31

1112

21
42

11
41

1221
32

11
31

1111







 +++−≡







 +++−≡







 +++−≡







 +++−≡

ττττ

ττττ

ττττ

ττττ

titiwtitiwq

titiwtitiwq

titiwtitiwq

titiwtitiwq

 

 
Similarly, we obtain 
 

( ) ( )
( ) ( ) 











≡
























−= 22

12
21

12

12
12

11
12

2221

1211

2423

1413

2221

1211
12 PP

PP
WW
WW

TITI
TITI

tt
tt

P ,  
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where { } ( )2,1,;12 =≡ jisdiagP n

kij
ij , with 

 

( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] .

,

,

,

22
24

12
23

2222
14

12
13

2122

21
24

11
23

2221
14

11
13

2121

22
24

12
23

1222
14

12
13

1112

21
24

11
23

1221
14

11
13

1111







 +++−≡







 +++−≡







 +++−≡







 +++−≡

wtiwtiwtiwtis

wtiwtiwtiwtis

wtiwtiwtiwtis

wtiwtiwtiwtis

ττ

ττ

ττ

ττ

 

 
Finally, we calculate ,11P  to obtain 
 

[ ]
( ) ( )
( ) ( ) 








≡
































−
















=

−= −

2221

1211
22

21
21

21

12
21

11
21

2423

1413

2221

1211

21
1

11

10
01

RR
RR

PP
PP

TITI
TITI

tt
tt

UPITP

, 

 
where the matrices 22211211 ,,, RRRR  are defined as follows: 

 
{ } ( )2,1,; == jirdiagR n

kijij , with 
 

( ) ( )[ ]{ } ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ]{ }
( ) ( )[ ]{ } ( ) ( )[ ]

( ) ( )[ ] ( ) ( )[ ]{ }.1

,1

,1

,1

22
24

12
23

2222
14

12
13

2122

21
24

11
23

2221
14

11
13

2121

22
24

12
23

1222
14

12
13

1112

21
24

11
23

1221
14

11
13

1111

qtiqtiqtiqtir

qtiqtiqtiqtir

qtiqtiqtiqtir

qtiqtiqtiqtir

+−++−≡

+−+−≡

+−++−≡

+−+−≡

ττ

ττ

ττ

ττ
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Chapter III 
 
 

FORWARD AND ADJOINT SENSITIVITY ANALYSIS 
PROCEDURES FOR AUGMENTED SYSTEMS 

 
Looking at the history of the development of large-scale simulation models, it 

becomes apparent that, in almost every field of scientific activity, such models 
took many years to develop, and their respective development invariably 
involved large and sometimes changing teams of scientists. Furthermore, such 
complex models consist of many inter-coupled modules, each module simulating 
a particular physical sub-process, serving as “bricks” within the structure of the 
respective large-scale simulation code system.  

Since the ASAP has not been widely known in the past, most of the extant 
large-scale, complex models have been developed without also having 
simultaneously developed and implemented the corresponding adjoint sensitivity 
model. Implementing a posteriori the ASAP for large-scale simulation codes is 
not trivial, and the development and implementation of the adjoint sensitivity 
model for the entire large-scale code system can seldom be executed all at once, 
in one fell swoop. Actually, an “all-or-nothing” approach for developing and 
implementing the complete, and correspondingly complex, adjoint sensitivity 
model for a large-scale code is at best difficult (and, at worst, impractical), and is 
therefore not recommended. Instead, the recommended strategy is a module-by-
module implementation of the ASAP. In this approach, the ASAP is applied step-
wise, to each simulation module, in turn, to develop a corresponding adjoint 
sensitivity system for each module. As the final step in this “modular” 
implementation of the ASAP, the adjoint sensitivity systems for each of the 
respective modules are “augmented,” without redundant effort and/or loss of 
information, until all adjoint modules are judiciously connected together, 
accounting for all of the requisite feedbacks and liaisons between the respective 
adjoint modules. 

The aim of this Chapter is to provide the theoretical foundation for the modular 
implementation of the ASAP for a complex simulation system, by starting with a 
selected code module, and then augmenting the size of the adjoint sensitivity 
system, module by module, until exhaustively completing the entire system 
under consideration. Section III.A presents the general mathematical framework 
underlying the ASAP for augmented systems. Applying this general framework, 
Section III.B illustrates how the adjoint sensitivity model corresponding to the 
two-fluid model in RELAP5/MOD3.2 (which was the subject of Chapter II) is to 
be augmented with the adjoint sensitivity model corresponding to the heat 
structure models in RELAP5/MOD3.2, in order to obtain, efficiently, the 
complete adjoint sensitivity model (called ASM-REL/TFH) for the coupled fluid 
dynamics/heat structure packages of the large-scale simulation code 
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RELAP5/MOD3.2. Subsequently, the augmented adjoint sensitivity model, 
ASM-REL/TFH, is applied for an exhaustive sensitivity analysis of a typical 
experiment performed within the QUENCH experimental program at the 
Research Center Karlsruhe (FZK). This experimental program aims at 
investigating the relatively poorly understood physical and chemical processes 
underlying the release of hydrogen during the water re-flooding of a light water 
reactor core when terminating a postulated severe accident. Sensitivity analysis 
to the parameters entering these processes is of significant importance for both 
the design and the interpretation of these experiments. 

 
 

III. A.  THEORETICAL BASIS FOR THE ASAP FOR AUGMENTED 
SYSTEMS  

 
III.A.1. Sensitivity Analysis of the Primary (Nonaugmented) 

System 
 
Using a notation similar, but not identical to that used in Chapter V of Volume 

I, the primary (or original, nonaugmented) physical system is represented 
mathematically by means of K  coupled nonlinear operator equations of the 
form 

 
( ) ( )[ ] ( )[ ] ,,, Ω∈= xxQxxuN αα   (III.A.1) 

 
where: 

1. ( )
xJxx ,,1 K=x  denotes the xJ -dimensional phase-space position 

vector for the primary system; xJ
Xx ⊂Ω∈ , where xΩ  is a subset 

of the xJ -dimensional real vector space xJ ; 
2. ( ) ( ) ( )[ ]xxxu

uKuu ,,1 K=  denotes a uK -dimensional (column) vector 

whose components are the primary system’s dependent (i.e., state) 
variables; ( ) uE∈xu , where uE  is a normed linear space over the 
scalar field F  of real numbers; 

3. ( ) ( ) ( )[ ]xxx Iαα ,,1 K=α  denotes an I -dimensional (column) vector 
whose components are the primary system’s parameters; αE∈α , 
where αE  is also a normed linear space; 

4. ( )[ ] ( ) ( )[ ]ααα uKQQxQ ,,1 K=  denotes a uK -dimensional (column) 
vector whose elements represent inhomogeneous source terms that 
depend either linearly or nonlinearly on α ; QE∈Q , where QE  is 
also a normed linear space; the components of Q  may be operators, 
rather than just functions, acting on ( )xα  and x ; 
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5. ( ) ( )[ ]αα ,,,,1 uuN uKNN K≡  denotes a uK -component column vector 
whose components are nonlinear operators (including differential, 
difference, integral, distributions, and/or infinite matrices) acting on 
u  and α . 

In view of the definitions given above, N  represents the mapping 
QEED →⊂:N , where αDDD ×= u , uu ED ⊂ , αα ED ⊂ , and 

αEEE ×= u . Note that an arbitrary element E∈e  is of the form ( )α,ue = . If 
differential operators appear in Eq. (III.A.1), then a corresponding set of 
boundary and/or initial conditions (which are essential to define D ) must also 
be given. The respective boundary conditions are represented in operator form as 

 
( ) ( )[ ] ,,0, xx

x
Ω∂∈=− Ω∂αα AuB   (III.A.2) 

 
where A  and B  are nonlinear operators, and xΩ∂  denotes the boundary of 

xΩ . 
The vector-valued function ( )xu  is considered to be the unique nontrivial 

solution of the physical problem described by Eqs. (III.A.1) and (III.A.2). The 
system response (i.e., performance parameter) ( )α,uR  associated with the 
problem modeled by Eqs. (III.A.1) and (III.A.2) is a phase-space dependent 
mapping that acts nonlinearly on the system’s state vector u  and parameters α , 
and is represented in operator form as 

 
( ) ,: RR EED →⊂eR     (III.A.3) 

 
where RE  is a normed vector space. 

In practice, the exact values of the parameters α  are not known; usually, only 
the nominal (mean) parameter values, 0α , and their covariances, ( ),,cov ji αα  
are available (in exceptional cases, higher moments may also be available). The 
nominal parameter values ( )x0α  are used in Eqs. (III.A.1) and (III.A.2) to 

obtain the nominal solution ( )xu0  by solving the equations 
 

( ) ( ) ,,, 000
xΩ∈= xQuN αα    (III.A.4) 

( ) ( ) .,, 000
xΩ∂∈= xAuB αα    (III.A.5) 

 
Thus, Eqs. (III.A.4) and (III.A.5) represent the “base-case” (nominal) state of 

the primary (nonaugmented) system, and ( )000 ,αue =  represents the nominal 
solution of the nonaugmented system. Once the nominal solution ( )000 ,αue =  
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has been obtained, the nominal value ( )0eR  of the response ( )eR  is obtained by 

evaluating Eq. (III.A.3) at ( )000 ,αue = .  
As was generally discussed in Volume I, the sensitivity of the response R  to 

variations h  in the system parameters is given by the Gâteaux- (G)-differential 
( )heR ;0δ  of the response ( )eR  at ( )000 ,αue =  with increment h , defined as 

 

( ) ( )[ ] ( ) ( ) ,lim;
00

00

00

t
tt

dt
d

tt

eRheRheRheR −+
=







 +≡

→=
δ  (III.A.6) 

 
for F∈t , and all (i.e., arbitrary) vectors E∈h . For the nonaugmented system 
considered here, it follows that ( )αhhh ,u= , since αEEE ×= u . Recall from 

Volume I that the G-differential ( )heR ;0δ  is related to the total variation 

( ) ( )[ ]00 eRheR −+ t  of R  at 0e  through the relation 
 

( ) ( ) ( ) ( ) ,;000 hheReRheR ∆+=−+ δt  with  ( )[ ] .0lim
0

=∆
→

tt
t

h  (III.A.7) 

 
The objective of local sensitivity analysis is to evaluate ( )heR ;0δ . As has been 

shown in Volume I, this objective can be achieved, in principle, by using either 
the “Forward Sensitivity Analysis Procedure” (FSAP), or the “Adjoint 
Sensitivity Analysis Procedure” (ASAP). 

 
 

III.A.1.a The Forward Sensitivity Analysis Procedure (FSAP) 
 
Recall that the system’s state vector u  and parameters α  are related to each 

other through Eqs. (III.A.1) and (III.A.2), which implies that uh  and αh  are 

also related to each other. Therefore, the sensitivity ( )heR ;0δ  of ( )eR  at 0e  can 
only be evaluated after determining the vector of variations uh  in terms of the 
vector of parameter variations αh . The first-order relationship between uh  and 

αh  is determined by taking the G-differentials of Eqs. (III.A.1) and (III.A.2), to 
obtain the forward sensitivity system  

 
( ) ( ) ( ) ,,,;, 00000

xuu Ω∈′−=′ xhuNhQhuN αααδ ααα  (III.A.8) 

( ) ( ) ( ) .,,;, 00000
xuu Ω∂∈′−=′ xhuBhAhuB αααδ ααα  (III.A.9)  

 
For a given vector of parameter variations αh  around 0α , the forward 

sensitivity system represented by Eqs. (III.A.8) and (III.A.9) is solved to obtain 
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uh . Once uh  is available, it is in turn used in Eq. (III.A.6) to calculate the 

sensitivity ( )heR ;0δ  of ( )eR  at 0e , for a given vector of parameter variations 

αh .  
Equations (III.A.8) and (III.A.9) represent the “forward sensitivity equations 

(FSE),” also called occasionally the “forward sensitivity model (FSM),” or the 
“forward variational model (FVM),” or the “tangent linear model (TLM).” The 
direct computation of the response sensitivity ( )heR ;0δ  by using the ( αh -
dependent) solution uh  of Eqs. (III.A.8) and (III.A.9) constitutes the Forward 
Sensitivity Analysis Procedure (FSAP). From the standpoint of computational 
costs and effort, the FSAP is advantageous to employ only if, in the problem 
under consideration, the number of different responses of interest exceeds the 
number of system parameters and/or parameter variations to be considered. This 
is rarely the case in practice, however, since most problems of practical interest 
are characterized by many parameters (i.e., α  has many components) and 
comparatively few responses. In such situations, it is not economical to employ 
the FSAP to answer all sensitivity questions of interest, since it becomes 
prohibitively expensive to solve the αh -dependent FSE repeatedly to determine 

uh  for all possible vectors αh . 
 
 

III.A.1.b The Adjoint Sensitivity Analysis Procedure (ASAP) 
 

When the response ( )eR  is an operator of the form RR ED →:R , the 

sensitivity ( )heR ;0δ  is also an operator, defined on the same domain, and with 
the same range as ( )eR . To implement the ASAP for such responses, the spaces 

uE , QE , and RE  are henceforth considered to be Hilbert spaces and denoted as 
( )xu ΩH , ( )xQ ΩH , and ( )RR ΩH , respectively. The elements of ( )xu ΩH  and 

( )xQ ΩH  are, as before, vector-valued functions defined on the open set 

xJ
x ⊂Ω , with smooth boundary xΩ∂ . The elements of ( )RR ΩH  are vector 

or scalar functions defined on the open set x
m

R Jm ≤≤⊂Ω 1, , with a smooth 
boundary denoted as RΩ∂ . Of course, if 1=xJ , then xΩ∂  merely consists of 
two endpoints; similarly, if 1=m , then RΩ∂  consists of two endpoints only. 
The inner products on ( )xu ΩH , ( )xQ ΩH , and ( )RR ΩH  are denoted by u••, , 

Q••, , and R••, , respectively. Furthermore, the ASAP also requires that 

( )heR ;0δ  be linear in h , which implies that ( )eR  must satisfy a weak Lipschitz 

condition at 0e , and that 
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( ) ( ) ( ) ( ) ( )

.FHH ∈×∈
=++−+−++

t
totttt

u ;,
;

21

0
2

0
1

0
21

0

αhh
eRheRheRhheR  (III.A.10) 

 
If ( )eR  satisfies the two conditions above, then the response sensitivity 

( )heR ;0δ  is indeed linear in h , and can therefore be denoted as ( )heR ;0D . 
Consequently, ( )eR  admits a total G-derivative at ( )000 ,αue = , such that the 
relationship 

 
( ) ( ) ( ) αα heRheRheR 000; ′+′= uuD   (III.A.11) 

 
holds, where ( )0eRu′  and ( )0eRα′  are the partial G-derivatives at 0e  of ( )eR  

with respect to u  and α . Note also that ( )0eRu′  is a linear operator, on uh , from 

uH  into RH , i.e., ( ) ( ) ( )( )RRuu ΩΩ∈′ HHL ,0eR . It is convenient to refer to the 

quantities ( ) uu heR 0′  and ( ) αα heR 0′  appearing in Eq. (III.A.11) as the “indirect 
effect term” and the “direct effect term,” respectively. 

The direct effect term can be evaluated efficiently at this stage. To proceed 
with the evaluation of the indirect effect term, we consider that the orthonormal 
set { } S∈ssp , where s  runs through an index set S , is an orthonormal basis of 

( )RR ΩH . Then, since ( ) ( )RRuu Ω∈′ HheR 0 , it follows that ( ) uu heR 0′  can be 
represented as the Fourier series 

 
( ) ( ) .,00

s
s

Rsuuuu ppheRheR ∑
∈

′=′
S

  (III.A.12) 

 
The notation ∑∈Ss

 is used to signify that in the above sum only an at most 
countable number of elements are different from zero, and the series extended 
upon the nonzero elements converges unconditionally. The functionals 

( )
Rsuu pheR ,0′  are the Fourier coefficients of ( ) uu heR 0′  with respect to the 

basis { }sp . These functionals are linear in uh , since ( )eR  was required to 
satisfy the conditions stated in Eq. (III.A.10). Since 

( ) ( ) ( )( )RRxuu ΩΩ∈′ HHL ,0eR , and since Hilbert spaces are self-dual, it 
follows that the following relationship holds:  

 
( ) ( ) .,,, 00 S∈=′ s

uusRsuu hpeΛpheR  (III.A.13) 
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In Eq. (II.A.13), the operator ( ) ( ) ( )( )xuRR ΩΩ∈ HHL ,0eΛ  is the adjoint of 

( )0eRu′ ; recall that ( )0eΛ  is unique if ( )0eRu′  is densely defined.  
To eliminate the unknown values of uh  from the expression of each of the 

functionals ( ) S∈s
usu ,, 0 peΛh , the next step of the ASAP is to construct the 

operator ( )0eL+ , which is the operator formally adjoint to ( )00 ,αuNu′ , by means 
of the relationship  

 
( ) ( ) ( ){ } ,,;,,, 000 S∈+=′ Ω∂

+ s
xsuuusQuus ψψαψ hPheLhuN  (III.A.14) 

 
which holds for every vector SH ∈∈ sQs ,ψ . Recall that the operator ( )0eL+  is 
defined as the uu KK ×  matrix 

 

( ) ( )[ ] ( ),,,1,,00
uji Kji K=≡ ++ eLeL   (III.A.15) 

 
obtained by transposing the formal adjoints of the operators ( )[ ]iju

00 ,αuN ′ , 

while ( ){ }
xsu Ω∂ψ;hP  is the associated bilinear form evaluated on xΩ∂ . The 

domain of ( )0eL+  is determined by selecting appropriate adjoint boundary 
conditions, represented here in operator form as 

 
( ) ( ){ } .,0; 00 S∈=− ∂

++ s
xs Ωαψ AeB   (III.A.16) 

 
Recall from Volume I that the above boundary conditions for ( )0eL+  are 

obtained by requiring that: 
(a) They must be independent of uh , αh , and G-derivatives with respect 

to α ; 
(b) The substitution of Eqs. (III.A.9) and (III.A.16) into the expression of 

( ){ }
xsu Ω∂ψ;hP  must cause all terms containing unknown values of 

uh  to vanish. 

This selection of the boundary conditions for ( )0eL+  reduces ( ){ }
xsu Ω∂ψ;hP  

to a quantity that contains boundary terms involving only known values of αh , 

ψ , and, possibly, 0α ; this quantity will be denoted by ( )0;,ˆ αψ sαhP . In general, 

P̂  does not automatically vanish as a result of these manipulations, although it 
may do so in particular instances; in principle, P̂  could be forced to vanish by 
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considering extensions of ( )00 ,αuNα′ , in the operator sense, but this is seldom 
needed in practice. Introducing now Eqs. (III.A.9) and (III.A.16) into Eq. 
(III.A.14) reduces the later to 

 
( ) ( ) ( )

( ) .,;,ˆ

,;,,

0

0000

S∈−

′−=+

ss

Qsuus

αψ

ααψψ

α

αααδ

hP

huNhQheL
 (III.A.17) 

 
The left-side of Eq. (III.A.17) and the right-side of Eq. (III.A.13) are now 

required to represent the same functional; this is accomplished by imposing the 
relation 

 
( ) ( ) ,,00 S∈=+ sss peΛeL ψ    (III.A.18) 

 
which holds uniquely in view of the Riesz representation theorem. This last step 
completes the construction of the desired adjoint system, which consists of Eq. 
(III.A.18) and the adjoint boundary conditions given in Eq. (III.A.16). 
Furthermore, Eqs. (III.A.12-18) can now be used to obtain the following 
expression for the sensitivity ( )heR ;0D  of ( )eR  at 0e : 

 
( ) ( )

( ) ( ) ( ) .;,ˆ,;,

;

0000

00

∑
∈





 −′−+

′=

Ss
ssQs

D

phPhuNhQ

heRheR

αψααψ αααα

αα

δ
 

(III.A.19) 
 
As Eq. (III.A.19) indicates, the desired elimination of all unknown values of 

uh  from the expression of the sensitivity ( )heR ;0D  of ( )eR  at 0e  has thus been 
accomplished. Note that Eq. (III.A.19) includes the particular case of functional-
type responses, in which case the summation ∑∈Ss

 would contain a single 

term ( )1=s  only. To evaluate the sensitivity ( )heR ;0D  by means of Eq. 
(III.A.19), one needs to compute as many adjoint functions sψ  from Eqs. 
(III.A.18) and (III.A.16) as there are nonzero terms in the representation of 

( ) uu heR 0′  given in Eq. (III.A.12). Although the linear combination of basis 
elements sp  given in Eq. (III.A.12) may, in principle, contain infinitely many 
terms, obviously only a finite number of the corresponding adjoint functions sψ  
can be calculated in practice. Therefore, special attention is required to select the 
Hilbert space ( )RR ΩH , a basis { } S∈ssp  for this space, and a notion of 
convergence for the representation given in Eq. (III.A.12) to best suit the 
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problem at hand. This selection is guided by the need to represent the indirect 
effect term ( ) uu heR 0′  as accurately as possible with the smallest number of basis 
elements; a related consideration is the viability of deriving bounds and/or 
asymptotic expressions for the remainder after truncating Eq. (III.A.12) to the 
first few terms. 

 
 

III.A.2. Sensitivity Analysis of the Augmented System 
 
Consider now that the primary (original, nonaugmented) nonlinear system, 

represented by Eqs. (III.A.1) and (III.A.2), is augmented by additional 
equations, containing additional independent variables, additional dependent 
variables, and additional parameters. A general way to represent such an 
augmentation process is as follows: 

1. The augmented system may depend on more independent variables 
than the original system. To reflect this possibility, the original phase-
space position vector, ( )

xJxx ,,1 K=x , xJ
x ⊂∈Ωx , is augmented 

by the additional phase-space position vector 
[ ] y

Y

J
yJyy ⊂Ω∈≡ yy ;,,1 K , where yΩ  is a subset of the yJ -

dimensional real vector space yJ . Thus, the phase-space position 
vector for the (entire) augmented system will be denoted as 

( ) J
yxyx JJJ ⊂ΩΩ≡Ω∈+≡≡ Uzyxz ;;, . 

2. The augmented system may comprise more dependent variables than 
the original system. To reflect this possibility, the original vector of 
dependent (i.e., state) variables, ( ) ( ) ( )[ ]xxxu

uKuu ,,1 K= , ( ) uE∈xu , 
is augmented by the vector of additional dependent variables 
( ) ( ) ( )[ ]zzzv

vKvv ,,1 K= , ( ) vE∈zv  where vE  is a normed linear 

space over the scalar field F  of real numbers, and where vK  
denotes the total number of additional state (i.e., dependent) variables 
appearing in the augmented system. 

3. The augmented system may depend on more parameters than the 
original system; furthermore, components of the original vector of 
system parameters, ( ) ( ) ( )[ ]xxx Iαα ,,1 K=α , αE∈α , can become 

functions of additional parameters, ( ) ( ) ( )[ ]zzzb
bIbb ,,1 K= , bb E∈ , 

where bE  is a normed linear space. In addition, feedback may be 
introduced in the augmented system, if some (or all) of the parameters 
α  become dependent on some (or all) of the components of 
( ) uE∈xu  and/or the components of ( ) vE∈zv . Finally, a subset 
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( ) ( ) ( )[ ]xxxβ
β

ββ I,,1 K= , βE∈β , where βE  is also a normed linear 

space, of the original parameters may remain unaffected by the 
transition from the original to the enlarged, augmented system. In a 
very general manner, therefore, the transition from the original system 
to the enlarged, augmented system can be described mathematically 
by the mapping ( ) ( ) ( ) ( )[ ]zv,xu;zb,xβa→α , aE∈a . Note that the 
normed linear space aE  for the augmented system will generally 
differ from the normed linear space αE  to which the parameters of 
the original (un-augmented) system belonged. 

4. In view of the extensions described above in items 1-3, the operators 
appearing in Eq. (III.A.1) will undergo the transformations 
 

( ) ( ) ( ) ( ) ( )( )[ ]
( )( ) ( )( )[ ]vu,b;,βauvu,b;,βau

zv,xu;zb,xβauNuN
,,,,

,,

1 uKNN K

≡→α
 

 
( )[ ] ( ) ( ) ( ) ( )( )[ ]

( )[ ] ( )[ ][ ].,,1 vu,b;,βaQvu,b;,βaQ
zv,xu;zb,xβaQxQ

uKK≡
→α

 

 
Note also that, for the augmented system, qE∈Q , where qE  is a 
normed linear space that differs from the original normed linear space 

QE . Similarly, the boundary operators appearing in Eq. (III.A.2) will 
undergo the transformations ( ) ( )[ ]vu,b;,βaAA →α  and 
( ) ( ) ( )[ ]vu,b;,βa;xuBuB →α, , respectively. Therefore, Eqs. (III.A.1) 

and (III.A.2) will be mapped into the following forms within the 
augmented system: 

 
( )[ ] ( )[ ] Ω∈= zvu,b;,βaQvu,b;,βauN ,,   (III.A.20) 

and 
 

( )[ ] ( )[ ] Ω∂∈= zvu,b;,βaAvu,b;,βau,B , (III.A.21)  
 
respectively. 

In addition to Eqs. (III.A.20) and (III.A.21), the augmented system will also 
contain further equations and corresponding boundary and/or initial conditions, 
as needed to balance the total number of state (i.e., dependent) variables ( )vu,  
with the total number of equations, in order to have a well-posed augmented 
system. These additional equations can be written in operator form as 

 
( ) ( ) ( )[ ] ( ) Ω∈= zbSzb,zv,xuM , ,  (III.A.22) 
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with corresponding boundary and/or initial conditions written in operator form 
as 

 
( ) ( ) ( )[ ] ( ) Ω∂∈= zbDzb,zv,xuC , .  (III.A.23) 

 
Each of the vector-valued operators appearing in Eq. (III.A.22) comprise vK -

components, defined as 
 

( ) ( ) ( )[ ] ( ) ( )[ ] ,,,1 bv,u,bv,u,zb,zv,xuM
vKMM K≡   (III.A.24) 

( ) ( ) ( )[ ] ( ) ( )[ ] SKv
SS E∈≡ Sbv,u,bv,u,zb,zv,xuS ,,,1 K . (III.A.25) 

 
In view of the definitions given above, the augmented vector of operators 
( )MN,  represents the mapping ( ) Sq EEED augaug ×→⊂:MN, , where 

avu DDDDaug ××= , uu ED ⊂ , vv ED ⊂ , aa ED ⊂ , and 

avu EEEEaug ××= . Note that a generic element augE∈f  is of the form 

( )[ ]vu,b;,βa v,uf ,≡ . The vector-valued function ( ) ( )[ ]zvxu ,  is considered to 
be the unique nontrivial solution of the physical problem described by Eqs. 
(III.A.20) through (III.A.23). 

The system response (i.e., performance parameter) associated with the 
augmented system modeled by Eqs. (III.A.20) through (III.A.23) will be denoted 
in the sequel as ( )fΘ , and is considered to be an operator that acts nonlinearly 
on the augmented system’s state vector ( ) ( )[ ]zvxu ,  and parameters ( )vu,b;,βa ; 
( )fΘ  can represented in operator form as 
 

( ) ,: augaugaug EED RR →⊂fΘ    (III.A.26) 
 

where augER  is another normed vector space.  
In practice, the exact values of the parameters α , β , and b are not known; 

only their nominal (mean) values, 0α , 0β , and 0b , and their associated 

uncertainties are usually available. The nominal parameter values 0a  are used in 

Eqs. (III.A.20) through (III.A.23) to obtain the nominal solution ( ) ( )[ ]zvxu 00 , , 
by solving the “base-case” augmented system 

 

( )[ ] ( )[ ] Ω∈= zv,u;b,βaQv,u;b,βauN ,, 00000000000  (III.A.27) 

( )[ ] ( )[ ] Ω∂∈= zv,u;b,βaAv,u;b,βa,uB ,00000000000 , (III.A.28) 
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( ) ( ) ( )[ ] ( ) Ω∈= zbSzb,zv,xuM ,0000 ,  (III.A.29) 

( ) ( ) ( )[ ] ( ) Ω∂∈= zbDzb,zv,xuC ,0000 .  (III.A.30) 
 
Using the base-case solution of the augmented system obtained by solving 

Eqs.(III.A.27) through (III.A.30) yields the base-case value, ( )0fΘ , 

( )[ ]00000000 , v,u;b,βa,vuf ≡ , of the response for the augmented system. 

The sensitivity of the response, ( )fΘ , at ( )[ ]00000000 , v,u;b,βa,vuf ≡  to 

variations [ ] h,h ,hhh bvu β,≡  in the augmented system’s parameters is the 

Gâteaux-(G)-differential, ( )hfΘ ;0δ , defined as 
 

( ) ( )[ ] ( ) ( ) ,lim;
00

00

00

t
tt

dt
d

tt

fΘhfΘhfΘhfΘ −+
=







 +≡

→=
δ (III.A.31) 

 
for F∈t , and all (i.e., arbitrary) vectors augE∈f . 

 
 

III.A.2.a The Forward Sensitivity Analysis Procedure (FSAP) 
 
Just as for the original system, the augmented system’s state vector ( ) ( )[ ]zvxu ,  

and parameters ( )b,β  are related to each other through Eqs. (III.A.20) - 
(III.A.23). Hence, it follows that the vector of variations ( )vu h ,h  around the 

nominal values ( ) ( )[ ]zvxu 00 ,  of the state functions ( ) ( )[ ]zvxu ,  is also related to 

the vector of parameter variations ( )bh ,hβ  around the nominal values ( )00 ,bβ . 

Therefore, the sensitivity ( )hfΘ ;0δ  of ( )fΘ  at 0f  can only be evaluated after 
determining the variations ( )vu h ,h  in terms of the vector of parameter variations 
( )bh ,hβ . The first-order relationship between ( )vu h ,h  and ( )bh ,hβ  is obtained 
by taking the G-differentials of Eqs. (III.A.20) through (III.A.23), to obtain the 
relations 

 
( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )

( ) ( )
( ) ( )[ ] ( ) ( ) ( )[ ] ( )

( ) ( ) 


















′−′
′′−′′′−′

=


















′′
′′−′′′−′+′

bbb

baaaa

v

u

vu

vaauaau

h
h

fMbS
fafNfQfafNfQ

h
h

fMfM
fafQfNfafQfNfN

ββ
00

000000

00

0000000

0

 

(III.A.32) 
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together with the G-differentiated boundary/initial conditions 

 
 

( ) ( ) ( )[ ] ( ) ( )[ ]
( ) ( )[ ] ( ) ( )[ ] ,,0000

00000

Ω∂∈′+′×′−′

=′+′′−′+′

zhfahfafBfA

hfahfafAfBhfB

bbaa

vvuuaauu

ββ

  (III.A.33) 

( ) ( ) ( ) ( ) .,; 0000 Ω∂∈′−=′+′ zhfChbDhfChfC bbbvvuu δ   (III.A.34) 
 
Note that the left-side of Eq. (III.A.32) represents a block-matrix-valued linear 

operator, ( )0fLa , defined as 
 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )[ ] ( ) ( ) ( )[ ] ( )
( ) ( ) .00

0000000

0
22

0
21

0
12

0
110












′′
′′−′′′−′+′

≡









≡

fMfM
fafQfNfafQfNfN

fLfL
fLfLfLa

vu

vaauaau

 (III.A.35) 

 
In Eq. (III.A.35), the subscript “a” denotes “augmented.” For a given vector of 

parameter variations ( )bh ,hβ , the system of equations represented by Eqs. 
(III.A.32) through (III.A.34) can be solved to obtain, to first-order, the vector of 
variations ( )vu h ,h . In turn, the variations ( )vu h ,h  and ( )bh ,hβ  are used in Eq. 

(III.A.31) to calculate the sensitivity ( )hfΘ ;0δ  of ( )fΘ  at 0f , for given 
parameter variations ( )bh ,hβ . Equations (III.A.32) through (III.A.34) represent 
the “forward sensitivity equations (FSE),” or the “forward sensitivity model 
(FSM),” or the “forward variational model (FVM),” or the “tangent linear model 
(TLM).” The Forward Sensitivity Analysis Procedure (FSAP) would proceed 
with the direct calculation of the response sensitivity ( )hfΘ ;0δ  by using the 
( )bh ,hβ -dependent solution of the forward sensitivity equations. From the 
standpoint of computational costs and effort, the FSAP is advantageous to 
employ only if, in the problem under consideration, the number of different 
responses of interest exceeds the number of system parameters and/or parameter 
variations to be considered. 

 
 

III.A.2.b The Adjoint Sensitivity Analysis Procedure (ASAP) 
 

The practical motivation underlying the development of an alternative method 
for sensitivity analysis is to avoid the need for repeatedly solving the FSE 
represented by Eqs. (III.A.32) through (III.A.34). This goal was achieved for the 
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original (un-augmented) system in Section III.A.1.b by constructing an adjoint 
system that was (a) uniquely defined, (b) independent of the vectors uh  and αh , 
and (c) such that its solution can be used to eliminate all unknown values of uh  

from the expression of ( )hfΘ ;0δ . A similar path will also be followed for the 
augmented system. For this purpose, the spaces uE , vE , SE , and qE  will 

henceforth be considered to be real Hilbert spaces denoted by uH , vH , qH , 

and SH , respectively. The inner products on vu HH ×  and Sq HH ×  will be 

denoted by vu×••,  and Sq×••, , respectively. 

To define the formal adjoint ( )0fLa
+  of ( )0fLa , we recall from the geometry 

of Hilbert spaces vu HH ×  and Sq HH ×  that the following relationship holds 

for a (column) vector ( ) Sq
T

υu HH ×∈ψψ , , where the superscript “T” denotes 
“transposition:” 

 

( ) ( )
( ) ( )

( ) ( ){ } .,;,,

,

00

0
22

0
21

0
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vuvu
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u
T

v

u

Sq
v

u
T

v

u

P hhffL
h
h

h
h

fLfL
fLfL

a ψψ;
ψ
ψ

ψ
ψ

  (III.A.36) 

 
The quantity ( ){ } Ω∂vuvuP hhf ,;,0 ψψ;  in the above equation denotes the 

associated bilinear form (the “bilinear concomitant”) evaluated on Ω∂ . 
Replacing Eq. (III.A.35) on the left-side of Eq. (III.A.36), and carrying out the 

operations indicated by the respective inner products shows that the explicit 
form for the formal adjoint operator ( )0fLa

+  is the following 22×  block-matrix: 
 

( ) ( ) ( )
( ) ( )

( )[ ] ( ) ( )[ ] ( ){ } [ ]
( ) ( )[ ] ( ){ } [ ]

,
000

0000

0
22

0
21

0
12

0
110















′′′−′

′′′−′+′

≡









≡

++

+++

++

++
+

vvaa

uuaau

MfafQfN
MfafQfNfN

fLfL
fLfLfLa

  (III.A.37) 

 

where the quantities ( )[ ]+′ 0fNu , ( ) ( )[ ] ( ){ }+′′−′ 000 fafQfN uaa , ( )[ ]+′ 0fMu , 

( ) ( )[ ] ( ){ }+′′−′ 000 fafQfN vaa , ( )[ ]+′ 0fMv , denote the formal adjoint operators 

Copyright © 2005 Taylor & Francis Group, LLC



ASAP for Augmented Systems               137 

corresponding to ( )0fNu′ , ( ) ( )[ ] ( )000 fafQfN uaa ′′−′ , ( )0fMu′ , 

( ) ( )[ ] ( )000 fafQfN vaa ′′−′ , and ( )0fMv′ , respectively. 

The boundary conditions for the adjoint operator ( )0fLa
+ , which define its 

domain, must be determined next. They are represented here in operator form as 
 

( ) ( ){ } ,,, 0
2

0
1 Ω∂∈=− Ω∂

++ z0fΓfΓ vu ψψ;   (III.A.38) 
 

and are determined by requiring that: 
(a) They must be independent of ( )vu h ,h  and ( )bh ,hβ , and G-

derivatives with respect to bβ and, ; 
(b) They must cause all terms containing unknown values of ( )vu h ,h  to 

vanish when substituted together with Eqs. (III.A.33) and (III.A.34) 
into the expression of ( ){ } Ω∂vuvuP hhf ,;,0 ψψ; . 

Thus, when the conditions (III.A.38) for ( )0fLa
+  are substituted together with 

Eqs. (III.A.33) and (III.A.34) into the expression of ( ){ } Ω∂vuvuP hhf ,;,0 ψψ; , 
this bilinear concomitant will be reduced to a quantity that contains boundary 
terms involving solely known values of ( )bh ,hβ , ( )υu ψψ , , and, possibly, 0f ; 

this quantity will be denoted in the sequel by ( )bvu hhfP ,;,ˆ 0
βψψ; . In general, 

( )bvu hhfP ,;,ˆ 0
βψψ;  does not automatically vanish as a result of these 

manipulations, although it may do so in particular instances. In practice, 
( )bvu hhfP ,;,ˆ 0

βψψ;  will ultimately appear as a readily computable quantity in 

the expression of the response sensitivity ( )hfΘ ;0δ . 
Replacing now Eqs. (III.A.33) and (III.A.34) together with the adjoint 

boundary conditions, given in Eq. (III.A.38), for ( )0fLa
+ , into Eq. (III.A.36) 

reduces the latter equation to  
 

( ) ( )
( ) ( )

( ) ( ).,;,ˆ,

,
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0
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0
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0
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hhfPfL
h
h

h
h

fLfL
fLfL

a βψψ;
ψ
ψ

ψ
ψ
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×

+

×  (III.A.39) 

 

Using now Eq. (III.A. 32) to replace the quantity ( ) ( )
( ) ( ) 
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the quantity ( ) ( )[ ] ( ) ( ) ( )[ ] ( )
( ) ( ) 



















′−′

′′−′′′−′
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fafNfQfafNfQ ββ

00

000000

0
 in 

Eq. (III.A.39) transforms the latter equation into the form 
 

( ) ( )

( ) ( )[ ] ( ) ( ) ( )[ ] ( )
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×

×
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ψψ;
ψ
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(III.A.40) 
 
To complete the ASAP, we need to relate the left-side of the above equation to 

the sensitivity ( )hfΘ ;0δ  defined by Eq. (III.A.31). This cannot be done yet, 

however, since the functional ( )
vu

v

u
T

v

u

×

+
















ψ
ψ0, fL

h
h

a  appearing on the left-

side of Eq. (III.A.40) is linear in ( )vu h ,h , while, in general, the sensitivity 

( )hfΘ ;0δ  defined by Eq. (III.A.31) is not necessarily linear in 

[ ] h,h ,hhh bvu β,≡ . 
Recalling the considerations detailed in the previous section (and also from 

Volume I), we note that the ASAP can only be developed if the response 
sensitivity ( )hfΘ ;0δ  is linear in [ ] h,h ,hhh bvu β,≡ . This will be the case if 

( )fΘ  satisfies a weak Lipschitz condition at 0f , and also satisfies the relation 
 

( ) ( ) ( ) ( ) ( )totttt =++−+−++ 0
2

0
1

0
21

0 fΘhfΘhfΘhhfΘ  (III.A.41) 
 

for two arbitrary vectors of increments 1h  and 2h  that have the same form (and 
the same number of components) as h . We shall henceforth assume that these 
conditions are indeed satisfied by ( )fΘ , so that the G-differential ( )hfΘ ;0δ  
can be considered henceforth to be linear in h . In this case, therefore, 

( )hfΘ ;0δ  becomes the total G-derivative ( )hfΘ ;0D  of ( )fΘ  at 0f , and can 
be written as  

 

( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ].

;
000

00000

bba

vvavuuD

hfahfafΘ

hfafΘfΘhfΘhfΘ

′+′′

+′′+′+′=

ββ

  (III.A.42) 
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In the above expression, the quantities ( )0fΘu′ , ( )0fΘv′ , ( )0fΘa′ , denote the 

respective partial G-derivatives of ( )fΘ  at 0f  , while ( )0fav′ , ( )0faβ′ , and 

( )0fab′  denote the respective partial G-derivatives of ( )fa  at 0f . 

As indicated by Eq. (III.A.42), the ( )vu h ,h -dependence in ( )hfΘ ;0D  is 
separated from the ( )bh ,hβ -dependence. Furthermore, the 2-component column 

block-vector ( ) ( ) ( ) ( )[ ]Tvavu
0000 , fafΘfΘfΘ ′′+′′  (where “T” denotes 

“transposition”) operates linearly on the vector ( )Tvu h ,h , which implies that 

( ) ( ) ( ) ( )[ ] ( )( )augaugHHHL RRvu
T

vavu Ω×∈′′+′′ ,, 0000 fafΘfΘfΘ . The direct 

effect term ( ) ( ) ( )[ ]bba hfahfafΘ 000 ′+′′ ββ  can be calculated directly at this 

stage. On the other hand, the quantity ( ) ( ) ( ) ( )[ ] vvavuu hfafΘfΘhfΘ 0000 ′′+′+′  
cannot be evaluated directly at this stage, since it depends on the unknown 
vector-valued function ( )Tvu h ,h , and is therefore called the indirect effect term. 

To proceed with the evaluation of the indirect effect term 

( ) ( ) ( ) ( )[ ] ( )augaugH RRvvavuu Ω∈




 ′′+′+′ hfafΘfΘhfΘ 0000 , we consider that the 

orthonormal set { } S∈ssθ , where s  runs through an index set S , is an 
orthonormal basis of ( )augaugH RR Ω . Therefore, the indirect effect term 

( ) ( ) ( ) ( )[ ] vvavuu hfafΘfΘhfΘ 0000 ′′+′+′  can be represented as the Fourier series 
 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ] .,0000

0000

s
s Rsvvavuu

vvavuu

θθhfafΘfΘhfΘ

hfafΘfΘhfΘ

∑
∈

′′+′+′

=′′+′+′

S
aug

 (III.A.43) 

 
The notation ∑∈Ss

 is used to signify that in the above sum only an at most 
countable number of elements are different from zero, and the series extended 
upon the nonzero elements converges unconditionally. According to customary 
terminology, the functionals ( ) ( ) ( ) ( )[ ]

augRsvvavuu θhfafΘfΘhfΘ ,0000 ′′+′+′  

are called the Fourier coefficients with respect to the basis { }sθ . It follows from 

Eq. (III.A. 42) that these functionals are linear in ( )Tvu h ,h . 
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The next step is to express each of the functionals 
( ) ( ) ( ) ( )[ ]

augRsvvavuu θhfafΘfΘhfΘ ,0000 ′′+′+′  as an inner product of 

( )Tvu h ,h  with a uniquely defined vector in vu HH × , which remains to be 

determined. Recalling that ( ) ( ) ( ) ( )[ ] ∈′′+′′
T

vavu
0000 , fafΘfΘfΘ  

( )( )augaugHHHL RRvu Ω× , , it follows that we can define the linear operator 

( ) ( )( )vuRR HHHL augaug ×Ω∈ ,0fΠ  to be the adjoint of 

( ) ( ) ( ) ( )[ ] ( )( )augaugHHHL RRvu
T

vavu Ω×∈′′+′′ ,, 0000 fafΘfΘfΘ , by means 
of the relationship 

 

( ) ( ) ( ) ( )][

( ) .,,

,

0

0000

S∈







=









′′+′′

×

s
vuv

u
s

R
s

v

u
vavu

h
h

θfΠ

θ
h
h

fafΘfΘfΘ

 (III.A.44) 

 
The operator ( )0eΠ  is actually a two-component operator (with components 

of dimensions equal to the vectors uh  and vh , respectively), and is unique if 

( ) ( ) ( ) ( )[ ] vvavuu hfafΘfΘhfΘ 0000 ′′+′+′  is densely defined. The right-side of Eq. 
(III.A.44) can now be required to represent the same functional as the left-side of 
Eq. (III.A.40); this requirement yields the adjoint sensitivity system 

 

( ) ( ) ( )
( ) ( ) ( ) ,,0

0
22

0
21

0
12

0
110 S∈=




















≡










++

++
+ sss

v

s
u

s
v

s
u θfΠ

fLfL
fLfLfLa ψ

ψ
ψ
ψ  (III.A.45) 

 
which holds uniquely in view of the Riesz representation theorem. Note that the 
superscript s  has been used to indicate the particular adjoint functions that are 
solutions of Eq. (III.A.45). This last step completes the construction of the 
Adjoint Sensitivity System, which consists of Eq. (III.A.45) and boundary 

conditions given in Eq. (III.A.38) for the adjoint function ( )Ts
v

s
u ψψ , . 

Furthermore, Eqs. (III.A.40), (III.A.42), (III.A.43), and (III.A.44) can now be 
used to obtain the following expression for the sensitivity ( )hfΘ ;0D  of ( )fΘ  

at 0f : 
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( ) ( ) ( ) ( )[ ]
( )[

( ) ( )[ ] ( ) ( ) ( )[ ] ( )
( ) ( ) .
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ββ

ψ
ψ

ψψ;
S

(III.A.46) 
 
As Eq. (III.A.46) indicates, the desired elimination of all unknown values of 
( )Tvu h ,h  from the expression of the sensitivity ( )hfΘ ;0D  of ( )fΘ  at 0f  has 

thus been accomplished. To evaluate the sensitivity ( )hfΘ ;0D  by means of Eq. 

(III.A.46), one needs to compute as many adjoint functions ( )Ts
v

s
u ψψ , , 

( )K,2,1=s , using Eqs. (III.A.45) and (III.A.38) as there are nonzero terms in 

the representation of ( ) ( ) ( ) ( )[ ] vvavuu hfafΘfΘhfΘ 0000 ′′+′+′  given in Eq. 
(III.A.43). Although the linear combination of basis elements sp  given in Eq. 
(III.A.43) may, in principle, contain infinitely many terms, only a finite number 

of the corresponding adjoint functions ( )Ts
v

s
u ψψ ,  can be calculated in practice. 

Therefore, special attention is required to select the Hilbert space ( )augaugH RR Ω , 

the orthonormal basis { } S∈ssθ  for this space, and a notion of convergence for 
the representation given in Eq. (III.A.43) to best suit the problem at hand. This 
selection is guided by the need to represent the indirect effect term 

( ) ( ) ( ) ( )[ ] vvavuu hfafΘfΘhfΘ 0000 ′′+′+′  as accurately as possible with the 
smallest number of basis elements; a related consideration is the viability of 
deriving bounds and/or asymptotic expressions for the remainder after truncating 
Eq. (III.A.43) to the first few terms. 

 
 

III.A.2.c System Responses: Functionals 
 
In the important practical case when the space augER  is the underlying scalar 

field F  of real numbers, the response defined in Eq. (III.A.26) becomes a 
nonlinear functional of the form ( ) FED augaug →⊂RΘ :f , and the sensitivity 

( )hf ;0Θδ  also becomes a functional that takes values in F . Furthermore, it will 

be assumed that the response ( )eΘ  satisfies a weak Lipschitz condition at 0f  
and also satisfies the relation shown in Eq. (III.A.41), so that the linear (in h ) 
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G-differential ( )hf ;0DΘ  exists. In this case, the summation ∑∈Ss
 shown in 

Eq. (III.A.43) for the indirect effect term ( ) ( ) ( ) ( )[ ] vvavuu ΘΘΘ hfaffhf 0000 ′′+′+′  
reduces to a single term ( )1=s ; the subscript s  can therefore be omitted in the 
sequel. Furthermore, the Riesz representation theorem ensures that there exists a 

unique 2-component vector ( ) ( )[ ] vu
T

vu ΘΘ HH ×∈∇∇ 00 , ff , where the 
respective components are defined via the relationship 
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  (III.A.47) 

 
Comparison of Eq. (III.A.47) and Eq. (III.A.44) reveals that Eq. (III.A.45) 

becomes 
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  (III.A.48) 

 
Furthermore, the expression for response sensitivity ( )hf ;0DΘ , cf. Eq. 

(III.A.46) reduces to 
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(III.A.49) 
 
Thus, once the single calculation to determine the adjoint function ( )Tvu ψψ ,  

from Eqs. (III.A.48) and (III.A.38) has been carried out, the adjoint function 
( )Tvu ψψ ,  can be used in Eq. (III.A.49) to obtain efficiently the sensitivity 

( )hf ;0DΘ  of ( )fΘ .  
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III.A.3. Discussion: Constructing the Augmented Adjoint 
Sensitivity Model from the Original Adjoint Sensitivity 

Model and Viceversa 
 
In practice, when the ASAP is applied successively to the various component 
modules of a complex code system, the practitioner first develops an adjoint 
sensitivity model of the form described by Eq. (III.A.18), and then augments the 
adjoint operator ( )0eL+  to construct the augmented adjoint operator ( )0fLa

+  

defined in Eq. (III.A.37); for convenience, the form of ( )0fLa
+  is reproduced 

below: 
 

( ) ( ) ( )
( ) ( )

( )[ ] ( ) ( )[ ] ( ){ } [ ]
( ) ( )[ ] ( ){ } [ ]

.
000

0000

0
22

0
21

0
12

0
110















′′′−′

′′′−′+′

≡









≡

++

+++

++

++
+

vvaa

uuaau

MfafQfN
MfafQfNfN

fLfL
fLfLfLa

 (III.A.37) 

 
From a programmer’s point of view, the adjoint operator 

( ) ( )[ ] ( ) ( )[ ] ( ){ }+++ ′′−′+′≡ 00000
11 fafQfNfNfL uaau  can be formally constructed 

by starting from the adjoint operator ( ) ( )[ ]++ ′≡ 000 ,αuNeL u  of the original 
(nonaugmented) system, and then adding the operator 

( ) ( )[ ] ( ){ }+′′−′ 000 fafQfN uaa . This is because the numerical representation of the 

operator ( )[ ]+′ 0fNu  is the same as that of ( )[ ]+′ 00 ,αuNu ; the fact that these two 
operators are then evaluated at distinct nominal parameter values clearly plays an 
important role in the solution evaluation, but not in the initial 
construction/programming of ( )0

11 fL+ . Of course, the adjoint operators 

( )0
12 fL+ , ( )0

21 fL+ , and ( )0
22 fL+  are specific to the augmented system, and must 

therefore be constructed/programmed ab initio.  
Often, the adjoint sensitivity system for the augmented system can be solved 

by using the same numerical methods as used for solving the nonaugmented 
adjoint system, particularly when the numerical representation of the matrix 
operator ( )0fLa

+  can be inverted by partitioning. Of course, if the off-diagonal 

operators ( )0
12 fL+  and/or ( )0

21 fL+  vanish, then the inversion of ( )0fLa
+  

becomes significantly simpler. 
The inverse route, namely going from the augmented system to the 

nonaugmented one, is quite easy, simply by setting the operators ( )0
12 fL+ , 
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( )0
21 fL+ , and ( )0

22 fL+  to zero. In this case, Eq. (III.A.46) also reduces to Eq. 
(III.A.19), as would be expected. 

The above features can be highlighted by considering that the nonaugmented 
system is represented by the simple algebraic system discussed in Volume I, 
Section IV.C, namely a response of the form 

 
,ucTR =     (III.A.50) 

 
where the superscript “T” denotes, as usual, “transposition,” and u  is the 
solution of the system of linear simultaneous equations 

 
.bAu =     (III.A.51) 

 
In the above equations, the nn ×  matrix ( ) ( )njiaij ,,1,, K==A , together 

with the vectors ( )nbb ,,1 K=b  and ( )ncc ,,1 K=c , are considered to stem from 
experiments and/or calculations, so they are not known exactly. As is often the 
case in practice, only the respective nominal (i.e., mean) values 

( ) ( )njiaij ,,1,,00 K==A , ( )00
1

0 ,, nbb K=b , ( )00
1

0 ,, ncc K=c , and the respective 
uncertainties are known. In principle, the response R  can represent either the 
result of an indirect measurement or the result of a calculation. (As usual, all 
vectors are considered to be column vectors.) 

The nominal solution 0u  is obtained by solving Eq. (III.A.51) for the nominal 
parameter values 0A and 0b : 

 
.000 buA =     (III.A.52) 

 
In turn, the nominal solution 0u  is used together with the nominal parameter 

values 0c  to calculate the nominal value, 0R , of the response by using Eq. 
(III.A.50), to obtain 

 

( ) .000 uc
T

R =     (III.A.53) 
 
As usual, the response sensitivities are obtained by computing the Gâteaux 

variation Rδ  of the response R  at the point ( )000 ,, bxA  along the directions 
( )bhA δδ ,, u . Using the definition 

 

( ) ( )( )[ ] 0hucc =






 ++−+

=0

000

ε
εεδεδ

ε uRR
d
d  
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yields the relation 

 

( ) ( ) .00 uchc T
u

T
R δδ +=   (III.A.54) 

 
The quantity ( ) 0uc Tδ  is the “direct effect” term, which can be computed 

already at this stage. On the other hand, the quantity ( ) u
T

hc0  is the “indirect 
effect” term, which can be computed only after determining the vector uh . In 
turn, uh  is obtained by solving the Gâteaux-differentiated Eq. (III.A.51), namely 

 

( )( ) ( )[ ] ,
0

000 0bbhuAA =






 +−++

=ε
εδεεδ

ε ud
d  

 
or, equivalently, 

 
( ) .00 uAbhA δδ −=u    (III.A.55) 

 
The quantity uh  can be obtained by noting that Eq. (III.A.55) can be solved by 

using the same amount of effort as required to solve the base-case system, Eq. 
(III.A.52), since it involves inverting (directly or iteratively) the matrix 0A  once 
only. However, if any of the elements of ( )Aδ  and bδ  would be modified, Eq. 
(III.A.55) would need to be solved anew. In practice, solving Eq. (III.A.55) 
repeatedly becomes impractical for large systems with many parameters, because 
of the large computational resources required by such repeated calculations. As 
has been already noted, such computationally intensive requirements limit the 
practical usefulness of the FSAP. 

The alternative procedure, which avoids the need for solving Eq. (III.A.55) 
repeatedly, is the Adjoint Sensitivity Analysis Procedure (ASAP). The ASAP 
relies on constructing and using the hermitian adjoint matrix to 0A , as follows: 

 
1. Introduce an n-component vector ( )nψψ ,,1 K=ψ , and form the inner 

(scalar) product of ψ  with Eq. (III.A.55) to obtain 
 

( ) .,, 00 uAbψhAψ δδ −=u   (III.A.56) 

 

2. Since the hermitian adjoint of 0A  is simply its transpose, ( )+0A , we 
transpose the left side of Eq. (III.A.54) to obtain 
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( ) .,, 00 ψAxhAψ
+

= δu   (III.A.57) 

 
3. Since the vector ψ  is still arbitrary at this stage, it is possible to 

specify it by identifying the right side of Eq. (III.A.57) with the first 
term on the right side of Eq. (III.A.54), to obtain 

 

( ) .00 cψA =
+

    (III.A.58) 
 

4. Collecting now the results of Eqs. (III.A.54-58) yields the following 
succession of equalities: 

 

( ) ( ) ( ) ( ) .,, 0000 uchcψAhuAbψ T
u

T
u R δδδδ −===−

+
 (III.A.59) 

 
5. Retaining the first and the last terms in Eq. (III.A.59) yields the 

expression 
 

( ) ( ) ,, 00 uAbψxc δδδδ −+= TR   (III.A.60)  

 
where the vector ψ  is the solution of Eq. (III.A.58). Since the matrix 

( )+0A  is the hermitian adjoint of 0A , Eq. (III.A.58) is called the adjoint 
sensitivity equation, and the vector ψ  is called the adjoint function. 

Consider now that the augmented system is  
 

uQvBAu =+ 12    (III.A.61) 

vQvBuB =+ 2221    (III.A.62) 
 

while the augmented response is  
 

vduc TT +=Θ .   (III.A.63) 
 
Note that the nominal solution ( )00 , vu  of Eqs. (III.A.61) and (III.A.62) would 

clearly have different values from the nominal solution (denoted by 0u ) of Eq. 
(III.A.52). Often, the augmented system represented by Eqs. (III.A.61) and 
(III.A.62) can be solved by partitioning, particularly when the matrix 0

22B  is not 
singular. In such cases, the solution can be computed from the matrix equation 
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( ) vu QBBQuBBBA 1
2212

0
21

1
2212

−− −=−    (III.A.64) 
 

requiring the inversion of the matrix ( )21
1

2212 BBBA −− , which is of the same size 
as the matrix A  for the nonaugmented system. Often, therefore, it is possible to 
solve the augmented system by applying the same methods as used for solving 
the nonaugmented system.  

The sensitivity Θδ  of the response Θ  is given by the G-differential of Eq. 
(III.A.63), namely  

 

( ) ( ) ( ) ( ) v
T

u
TTT hdhcvduc 0000 +++=Θ δδδ ,  (III.A.65) 

 
where the vector ( )vu hh ,  is the solution of the forward sensitivity system (or 
tangent linear model)  

 
( ) ( ) 0

12
00

12
0 vBuAQhBhA δδδ −−=+ uvu    (III.A.66) 

( ) ( ) .0
22

0
21

0
22

0
21 vBuBQhBhB δδδ −−=+ vvu   (III.A.67) 

 
The adjoint sensitivity system that corresponds to Eqs. (III.A.66) and 

(III.A.67) is derived by following the procedure outlined in Section III.A.2. This 
procedure leads to 

( ) ( ) 00
21

0 cψBψA =+ v
T

u
T

   (III.A.68)  

( ) ( ) 00
22

0
12 dψBψB =+ v

T
u

T
   (III.A.69) 

 
where the vector ( )vu ψψ ,  represents the adjoint function that corresponds to 
( )vu hh , . In term of this adjoint function, the sensitivity Θδ  of the response Θ  
becomes 

 
( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( )[ ] .0

22
0

21

0
12

000

vBuBQψ

vBuAQψvduc

δδδ

δδδδδδ

−−+

−−++=Θ

v
T

v

u
T

u
TT

 (III.A.70) 

 
It is apparent from Eqs. (III.A.68) and (III.A.69) that the solution of the adjoint 

requires inversion of the same matrices as required for computing the nominal 
solution of the augmented system. Therefore, Eqs. (III.A.68) and (III.A.69) can 
be solved by using the same algorithms as used for solving Eqs. (III.A.61) and 
(III.A.62). It is important to note, though, that this simplification occurs only 
when the underlying systems (nonaugmented and augmented) are linear, as has 
been the case for the simple illustrative example presented above. 
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III. B.  ILLUSTRATIVE EXAMPLE: ASAP FOR THE COUPLED 
TWO-FLUID WITH HEAT STRUCTURES MODEL IN 
RELAP5/MOD3.2 (REL/TF+HS)  

 
This Section presents the application of the ASAP for augmented systems to 

the complete fluid dynamics/heat structure packages of the large-scale 
simulation code RELAP5/MOD3.2. Thus, based on the general theory presented 
in Section III.A, this Section illustrate how the adjoint sensitivity model 
corresponding to the two-fluid model in RELAP5/MOD3.2 (which was the 
subject of Chapter II) is to be augmented with the adjoint sensitivity model 
corresponding to the heat structure models in RELAP5/MOD3.2. Section 
III.B.1, below, presents the derivation of the adjoint sensitivity model for the 
heat structures, which is then coupled to (i.e., augmented with) the adjoint 
sensitivity model for the two-fluid package, ASM-REL/TF, which was derived 
in Section II. B.  The resulting system of augmented matrix equations is denoted 
as the ASM-REL/TFH. Subsequently, Section III.B.2 presents illustrative 
sensitivity analysis results obtained by applying the augmented adjoint 
sensitivity model, ASM-REL/TFH, to the analysis of the QUENCH-04 
experiment performed at the Research Center Karlsruhe (FZK). 

 
 

III.B.1. ASM-REL/TFH: The Augmented Two-Fluid/Heat 
Structure Adjoint Sensitivity Model 

 
As has been described in Section II.B, the two-fluid model in 

RELAP5/MOD3.2 consists of a system of nine coupled nonlinear partial 
differential equations describing the conservation of mass, momentum, and 
energy for the liquid and gaseous phases, including noncondensable materials in 
the gaseous phase and boron concentration in the liquid field. Corresponding to 
these nine equations, there are nine state (i.e., dependent) variables, as follows: 
the gas specific internal energy, gU , the fluid specific internal energy, fU , the 

void fraction, gα , the pressure, P , the total noncondensable mass fraction, 

nX , the noncondensable mass fraction for the i-th noncondensable species, 

niX , the boron density, bρ , the gas velocity, gv , and the fluid velocity, fv . 
The nine field equations are re-arranged into the so-called “Numerically 
Convenient Set of Differential Equations,” which are then solved numerically by 
using a staggered spatial mesh and either a semi-implicit or a nearly-implicit 
integration procedure in time.  

Heat structures in RELAP5 permit calculation of the heat transferred across 
solid boundaries of hydrodynamic volumes. Modeling capabilities of heat 
structures include fuel pins or plates with nuclear or electrical heating, heat 
transfer across steam generator tubes, and heat transfer from pipe and vessel 
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walls. In RELAP5, the heat structures are represented by one-dimensional 
conduction in rectangular, cylindrical, or spherical geometry. Temperature-
dependent thermal conductivities and volumetric heat capacities are provided in 
tabular or functional form, either from built-in or user supplied data. The time-
dependence of the heat source can be obtained from reactor point-kinetics, tables 
of power versus time, or a control variable. Boundary conditions include 
symmetry or insulated conditions, a correlation package, tables of surface 
temperature versus time, heat transfer rate versus time, and a heat transfer 
coefficient versus time or surface temperature. The heat transfer correlation 
package can be used for heat structure surfaces connected to hydrodynamic 
volumes, and contains correlations for convective, nucleate (and transition 
boiling) and film boiling heat transfer from the wall to water, and reverse 
transfer from the water to wall (including condensation). The coefficients that 
enter in these correlations, as well as the coefficients describing the initial and 
boundary conditions for the heat conduction equations for the respective 
structures (and for the two-fluid equations, too) are parameters to be investigated 
as part of a comprehensive sensitivity analysis.  

The heat conduction equations for the heat structures together with the 
respective initial conditions and boundary conditions (which couple the heat 
transfer through the structures to the two-fluid model) are discretized by using 
finite difference methods. For each heat structure sH , [ ( )NHs ,,1 K= , NH = 
total number of heat structures], connected to a hydrodynamic volume L  
(located between hydrodynamic junctions j  and 1+j ), the discretization 
procedure yields the following matrix equation:  

 

( ) ,

1
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1
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1
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1
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AS    (III.B.1) 

 
where the matrix ( )nsAS  is defined as  

 

( )
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n
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n
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n
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111
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11

LLL , 
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and where, for each heat structure s , the dependent variables are the surface 
temperatures, n

isT , , at the spatial mesh-point index ( )sMi ,,1 K=  ( sM  denotes 
the maximum number of mesh points for structure s ), and at the time-step index 
( )NFn ,,1 K=  ( NF  denotes the final time-step).  

The components of the matrix  ( )nsAS  and the components of the right-side of 
Eq. (III.B.1) have the following functional dependencies: 

(i) for the left boundary: 
 

( )
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  (III.B.2) 

 
(ii) for each interior mesh-point ( )1,,2 −= sMi K : 
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 (III.B.3) 

 
(iii) for the right boundary: 
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α  (III.B.4) 

 
Note that the above quantities also depend on heat structure parameters (e.g., 

coefficients that enter in the heat transfer correlations, coefficients describing the 
initial and boundary conditions for the heat conduction equations, etc.), but this 
fact has not been shown explicitly, in order to keep the notation as simple as 
possible. For the mathematical derivations to follow below, the heat structure 
parameters will be denoted simply as ( )NHsMPip si ,...,1;,...,1, == . The initial 
conditions for the surface temperatures for a structure s  will be denoted as 

( ).,,10
, sis MiT K=  

The next step is to derive the forward sensitivity system (or linear tangent 
model) for the RELAP-heat structures, which is done by taking the G-derivative 
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of Eq. (III.B.1). Using the convenient notation  ,,
n

is
n
isT τδ ≡  and denoting the 

parameter variations by ipδ , the G-derivative of Eq. (III.B.1) can be written 
compactly in the form 
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 (III.B.5) 

 
The following definitions have been used in the above equation: 
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where ( )nkTFν  denotes the ν -th two-fluid dependent variable, at a junction or a 
volume k , at time n , and where ( )sMiNHs ,,1,,,1 KK == . Note also that 

( ) 01
1, ≡−n

sha  and ( ) 01
, ≡−n
Mshc . The variations in initial conditions are denoted as 

0
,isTδ . 

Equation (III.B.5) can be written in matrix form as 
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(III.B.6) 
 

by using the following definitions: 
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Recalling from Section II.B the definitions  
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and introducing in Eq. (III.B.6) the partitioned vectors and diagonal block 
matrices defined as 
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makes it possible to write Eq. (III.B.6) in the compact form  

 
.1

3
11111 −−−−−− =++ nnnnnnn FXESUSAS ττ  (III.B.7) 
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Equation (III.B.7) represents the forward sensitivity system (or the linear 

tangent model) corresponding to the heat structure package in 
RELAP5/MOD3.2. Next, Eq. (III.B.7) will be augmented to (i.e., coupled with) 
the forward sensitivity system for the two-fluid model, which was derived in 
Section II.B [cf. Eq. (II.B.33) et seq.], by using the theoretical derivations 
generally presented in Section III.A. This leads to the following matrix form for 
the augmented two-fluid/heat structures forward sensitivity system: 
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(III.B.8) 
 

where the block-matrices 1
1
−nNGQ , 1

2
−nNGQ , 1

1
−nOGQ , and 1

2
−nOGQ  represent 

the additional (off-diagonal) contributions that result from taking the partial G-
derivative of the two-fluid equations with respect to the surface temperatures 

n
isT , . 

It is convenient to eliminate from Eq. (III.B.8) the vector ( )n
IX  of variations in 

the two-fluid “intermediate variables.” For this purpose, Eq. (III.B.8) is written 
in component form as: 
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As was shown in Section II.B, the matrix 1

2
−nT  is always nonsingular; 

therefore Eq. (III.B.9b) can be used to obtain: 
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Inserting the above equation in Eq. (III.B.9a) gives the expression 
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which can be re-arranged in the form 
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.1111111 −−−−−−− =+++ nnnnnnnnn KOTXHNTXG ττ  (III.B.10)  
 
In Eq. (III.B.10), the matrices 1−nG , 1−nH , and 1−nK  are the same as 

previously defined for the two-fluid model, namely: 
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while the matrices 1−nNT  and 1−nOT  are defined as 
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Equations (III.B.9c) and (III.B.10) are now written in a single block-matrix 

equation of the form 
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Introducing in Eq. (III.B.11) the augmented matrices: 
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makes it possible to write this system (of block matrix equations) in the compact 
form 

 
( )( ) KAXAGA =    (III.B.12) 

 
where 
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Equation (III.B.12) represents the forward sensitivity system (i.e., tangent 

linear model) for the augmented (coupled) two-fluid/heat structures system. Note 
that Eq. (III.B.12) has the same structure as Eq. (II.B.35) of Section II.B, with 
the following correspondences between the two-fluid and, respectively, the 
augmented two-fluid/heat-structures models: nn GAG → , nn HAH → , 

nn XAX → , and nn KAK →  (the letter “A” is meant to indicate “augmented”).  
The adjoint sensitivity system for the augmented two-fluid/heat-structures 

system can now be constructed along the same line as detailed in Section II.B 
(for the nonaugmented adjoint sensitivity system, ASM-REL/TF). Thus, 
defining the augmented vectors 
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where nΦ  and nΨ  are the adjoint functions corresponding to nX  and nτ , 
respectively (and therefore have the same number of components as the nX  and 

nτ ). Furthermore, the source terms for the augmented adjoint sensitivity system 
are defined as 

,

0
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Q
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≡ n

n
n
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where nQ  and nQS  are the source terms corresponding to the two-fluid adjoint 
sensitivity system and, respectively, the adjoint sensitivity system for the heat 
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structures. Then, following the same procedure as that leading to Eq. (II.B.38) in 
Section II.B, we obtain the expression of the sensitivity DR , of a generic scalar 
system response R , in the form 

 
( ) ( ),KAADR TΦ=    (III.B.15) 

 
where: (i) the superscript T  denotes “transposition,” as usual; (ii) the block 
column vector ( )KA  contains the (Gateaux-) derivatives of the augmented two-
fluid/heat structure equations with respect to all of the parameters that enter in 
these equations; and (iii) the adjoint function TA)(Φ  is the solution of the 
adjoint sensitivity system for the augmented two-fluid/heat structures system. 
The adjoint sensitivity system for the augmented two-fluid/heat structures 
system will henceforth be abbreviated the ASM-REL/TFH system. In block-
matrix form, the ASM-REL/TFH can be written as  
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where the block column vector ( ) ( ) ( )[ ]TNFQAQAQA ,,0 K≡  has components 

( ) [ ]Tnnn QSQQA ,≡ , and where nQ and nQS)(  are the adjoint sources (which 
depend on the response under consideration) corresponding to the two-fluid and, 
respectively, heat-structures systems. Written in component form, Eq. (III.B.16) 
becomes 
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where the components are themselves block-matrices of the form 
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Recall, from Section II.B, that the block-matrices 1−nH  and 1−nG  stem from 
taking G-derivatives of the two-fluid equations with respect to the two-fluid 
dependent variables. Similarly, the block-matrices 1−nUS  and 1−nAS  result from 
taking G-derivatives of the heat structure equations with respect to the heat 
structure dependent variables. Furthermore, the block-matrices 1−nOT  and 

1−nNT  result from taking G-derivatives of the two-fluid equations with respect 
to the heat structures dependent variables. Finally, the block-matrix 1−nES  stems 
from taking G-derivatives of the heat structures equations with respect to the 
two-fluid dependent variables. Performing the block-matrix multiplications in 
Eq. (III.B.18) highlights the ASM-REL/TFH system’s time-dependence, namely: 
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As indicated in Eq. (III.B.19), the ASM-REL/TFH equations are solved 

“backwards in time,” commencing with the final time-step, NFn = , namely: 
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Usually, NFQ  and NFQS  are zero (due to the definition of the sensitivity DR  

of the response R ), so that NFΦ  and NFΨ  are usually zero. 
As indicated in Eq. (III.B.19), the next set of adjoint equations to be solved 

backwards in time, for 1,,1K−= NFn , are 
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Note that the above equations fully couple the contributions from the two-fluid 

equations with those from the heat structure equations. Finally, the calculation of 
the ASM-REL/TFH is completed by solving the last adjoint equation in Eq. 
(III.B.19), for 0=n  namely: 
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III.B.2. Summary Description of the QUENCH-04 Experiment 
 
The most important accident management measure for terminating a postulated 

severe accident transient in a Light Water Reactor (LWR) is the re-flooding of 
the uncovered core with water. During the re-flooding process, though, the 
immediate consequence of the contact of water and/or steam with the core 
material is not the cooling of this material, as would be intuitively expected, but 
an enhanced oxidation of the Zircaloy fuel cladding, accompanied by an increase 
in temperature, hydrogen production, and fission product release. The physical 
and chemical processes underlying the release of hydrogen under the above 
circumstances are poorly known. The QUENCH Experimental Program at the 
Research Center Karlsruhe (FZK) aims at analyzing these processes leading to 
such hydrogen releases. The pre-test parameters for setting up the QUENCH 
experiments, and the post-test analysis and interpretation of the experimental 
results are partially performed with the RELAP5/MOD3.2 code system, using its 
two-fluid thermal-hydraulics and heat structure models. For both pre-test and 
post-test analyses, it is important to understand the sensitivities of measured and 
calculated results (such as temperature profiles, pressures, and hydrogen 
production) to parameters underlying the QUENCH experiment, including initial 
and boundary conditions, geometry, and material properties. The QUENCH 
experimental facility (L. Sepold et al., 2002) comprises the following component 
systems: a test section with fuel rod simulators; an electric power supply for 
heating the test bundle; a water and steam supply system; an argon-gas supply 
system; hydrogen measurement devices; a process control system; and a data 
acquisition system. The design characteristics of the test bundle are depicted in 
Fig. III.C.1, while a top-view of the fuel rod simulator bundle is presented in 
Fig. III.C.2. As Figure III.C.2 indicates, the test bundle includes four unheated 
corner rods and 21 fuel rod simulators, each of ca. 2.5 m  long. The positioning 
of the four corner rods helps to obtain a more uniform radial temperature profile; 
these rods are also used to determine the thickness of the axial oxide layer, at 
any given instance in time. The central fuel rod simulator is unheated, while the 
others rods can be heated electrically over a length of 1024 mm . The unheated 
rod is filled with solid ZrO2 pellets, while the heated rods contain centrally 
located tungsten heaters surrounded by annular ZrO2 pellets. All of the rods are 
clad with Zircaloy-4, identical in composition and size to that used in typical 
Pressurized Water Reactors (PWR), namely: 10.75 mm  outside diameter, and 
0.725 mm  wall thickness. The rods are filled with a mixture of 95% argon and 
5% krypton at approx. 0.22 MPa , just slightly above the pressure in the rest of 
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the test section. The krypton additive allows detection (using a mass 
spectrometer) of fuel rod failure during the experiment.  
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Figure III.C.1: Characteristic of the QUENCH Test Section. 
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Figure III.C.2: Horizontal cross section of a QUENCH-04 Fuel Rod Simulator 

Bundle. 
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As shown in Fig.III.C.2, the test bundle is surrounded by a shroud made of 

Zircaloy (2.38 mm thickness), a fiber insulation of ZrO2 (37 mm thickness), and 
an annular stainless steel cooling jacket. The 6.7 mm annulus of the cooling 
jacket is cooled by argon. To allow for higher radial heat losses, the ZrO2 
insulation extends axially only up to the 1024 mm elevation of the heated region. 
To reduce the magnitude of the maximum temperature in the axial direction, the 
top region of the cooling jacket is cooled by water. 

In the QUENCH-04 experiment, the bundle was initially heated from room 
temperature to ca. 900 K , in an atmosphere of flowing argon (3 sg / ) and steam 
(3 sg / ). The bundle was stabilized at 900 K for about 2 hours, at an electrical 
power level of 4.3 kW . At the end of this stabilization period, the electrical 
power was increased so that the bundle was ramped at 0.31 sW / per rod, giving 
an average temperature increase of 0.35 sK / between 900 - 1400 K , and 
1.0 sK / between 1400- 1750 K , respectively, until the power level reached 
16.2 kW . Table III.C.1 presents the complete sequence of events in the 
QUENCH-04 experiment. The RELAP5/MOD 3.2 simulation of the QUENCH-
04 experiment commenced with the initiation of the power transient and was 
terminated 1000 s (actual time) into the test transient in order to ensure that the 
physical phenomena during the respective time period did not exceed the code-
system’s capabilities to simulate them. 

The augmented two-fluid/heat structure adjoint sensitivity model ASM-
REL/TFH was validated by calculating sensitivities of various time-dependent 
temperatures in the test bundle to variations in various initial conditions for the 
Quench-04 experiment. Tables III.C.2 through III.C.4, below, present typical 
predictions using ASM-REL/TFH, along with comparisons with exact 
recalculations, for 1% variations in the initial conditions for the respective 
temperatures. As these tables indicate, the agreement between the ASM-
REL/TFH results and the exact recalculations is very close; in turn, this close 
agreement indicates that the numerical solution of the coupled two-fluid/heat 
structure adjoint model, ASM-REL/TFH, is as robust, accurate, and stable as the 
nominal solution produced by the RELAP5/MOD 3.2 model. 

The most important response for this experiment is the time evolution of the 
cladding temperature of heated fuel rod. There are 271 parameters which affect 
the cladding temperature; the most important 34 of these parameters (designated 
as α1 through α34) are listed in the Nomenclature, at the end of this Section. To 
illustrate the usefulness of the ASAP, Table III.C.5 presents only the largest 
relative sensitivities of the cladding temperature of the heated fuel rod at a height 
of 0.7 m  (loop 1), at 1 s , 10 s , 50 s , 100 s , 200 s , 300 s , 500 s , and 800 s  after 
the start of the transient power ramping. In addition to presenting relative 
sensitivities, Table III.C.5 also presents comparisons between the predicted 
results (computed by using the augmented adjoint sensitivity system, ASM-
REL/TFH) and the exactly recomputed changes, for a perturbation of 1% in the 
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cladding temperature. These comparisons highlight the reliability and usefulness 
of the ASAP for computing sensitivity information, for tens of thousands of 
RELAP-time steps. The obtained sensitivities also illustrate the influence of 
nonlinear effects of parameter perturbations on the cladding temperature. 
Regarding their evolution in time, the relative sensitivities start out with 
relatively small absolute values, in the range from 10-3 to 10-4, in the importance 
order ( )18271726119 ,,,,,, ααααααα ; at 800 s after initiation of the power ramp, 

the relative sensitivities attain values in the range from 110− to 210− , in the 
importance order ( )1191912134361 ,,,,,,,, ααααααααα . Additional sensitivity 
analysis results regarding the heated rods at the height of 0.7 m  are presented in 
Figure III.C.3, which depicts the time-evolution of the relative sensitivities of the 
inner ring heated rod at 0.7 m  to the most important parameters. Similar 
sensitivity analysis results are also presented in Figure III.C.4, which depicts the 
time-evolution of the relative sensitivities of the inner ring heated rod at a height 
of 1.3 m to the most important parameters. Table III.C.6 presents the largest 
relative sensitivities of the cladding temperature of the heated fuel rod at 1.4m, 
where the power peak is located. Furthermore, Table III.C.7 presents the largest 
relative sensitivities of the inside temperature of the shroud (ZrO2 fiber 
insulation) at the same location (1.4 m ), where the power peak is attained. 

 
Table III.C.1 

Quench-04 Sequence of Events. 
Time [ s ] Event 
0 Start of data recording 
90 Start of electric power transient 
2012 Corner rod B withdrawn from the bundle (T ~ 1780 K ) 
2030 Begin of temperature escalation at the 750 mm  level (1560 K ) 

and at the 1050 mm level (1570 K ) 
2033 Begin of temperature escalation at the shroud (1050 mm , 

1350 K ) 
2040 Begin of significant H2 production, based on the mass 

spectrometer data 
2065 Steam flow of 3 sg /  turned off and cool-down steam turned 

on, cool-down steam at 42 sg / , strong temperature decrease at 
–250 mm  

2088 16.2 kW  of electric bundle power reached, start of electric 
power reduction from 16.2 kW  to 4 kW  

2103 Electric power of 4 kW  reached 
2302 Electric power shut off 
2303 Cool-down steam flow turned off 
2304 Steam flow at zero 
2528 End of data recording 
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Table III.C.2 
Comparisons of ASM-REL/TFH results with exact recalculations for the central 

temperature in the unheated fuel rod. 

Perturbation t  
(s) 

No. of 
time 
steps 

nominal 
value Tnom 
(K) at t = 
tfinal 

adjoint 
method 
(Tpert-Tnom) 
(K) 

Exact 
Recalc. 
(Trec-
Tnom) (K) 

1 71 509.983 2.24750 2.252 
2 111 509.959 1.17470 1.178 
10 431 510.918 0.43609 0.436 
50 2031 516.452 0.40431 0.405 
100 4031 522.898 0.36920 0.370 
120 4831 525.339 0.35620 0.357 
150 6031 528.868 0.33772 0.338 
200 8031 534.435 0.30942 0.310 

1% of central 
temperature of 
the unheated 
rod at 0.075m 

300 12031 544.504 0.26095 0.261 
 

Table III.C.3 
Comparisons of ASM-REL/TFH results with exact recalculations for the 

temperatures in heated fuel rod. 

Perturbation t  
(s) 

time 
steps 

nominal 
value Tnom 
(K) at t = 
tfinal 

adjoint 
method 
Tpert-Tnom 
(K) 

Exact 
Recalc. 
Trec-Tnom  

(K) 
1 71 740.015 5.45720 5.458 
2 111 740.075 4.10230 4.103 
10 431 742.562 0.92352 0.924 
50 2031 760.786 0.60792 0.608 
120 4831 789.881 0.53774 0.536 
150 6031 801.600 0.51035 0.508 

1% of central 
temperature of the 
heated rod at 0.7m 

300 12031 864.215 0.39430 0.390 
1 71 739.471 0.16926 0.169 
2 111 740.459 0.11829 0.118 
10 431 744.851 0.07277 0.073 
50 2031 762.938 0.06639 0.066 

1% of cladding 
temperature of the 
heated rod at 0.7m 

300 12031 864.215 0.04309 0.043 
 
It is beyond the purpose of this book to analyze in detail the physical meanings 

and implications of each of the sensitivities presented in Tables III.C.6 and Table 
III.C.7. Rather, the purpose of presenting these sensitivity analysis results is to 
illustrate the power, usefulness, and flexibility of the ASAP, which is actually the 
only practical method for exhaustive yet efficient sensitivity analysis of large-
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scale systems. Sensitivity information such as provided by the ASAP could not 
have been obtained by other methods, because of prohibitive computational 
costs.  

 
Table III.C.4 

Comparisons of ASM-REL/TFH results with exact recalculations for the 
temperature in ZrO2-Insulation. 

Perturbation t  
(s) 

time 
steps 

nominal 
value Tnom 
(K) at t = 
tfinal 

adjoint 
method 
Tpert-Tnom 
(K) 

Exact 
Recalculation 
Trec-Tnom  

(K) 
1 71 575.410 0.25792 0.258 
2 111 575.353 0.14989 0.150 
10 431 574.717 0.05672 0.057 
50 2031 571.161 0.04914 0.049 
120 4831 566.360 0.03840 0.039 

1% of 
temperature of 
ZrO2 fiber 
insulation at 
0.375m 

300 12031 560.364 0.02024 0.021 
 

Table III.C.5 
Relative sensitivities of the cladding temperature of the heated fuel rod at 0.7m  

Time st 1= ; nominal temperature KTnom 47.739= . 

Parameter  Relative 
Sensitivity Perturbation nompredicted TT −

(K) 
nomedrecalculat TT −

(K) 
α19 1.403E-03 1.038E-02 1.130E-02 
α1 1.368E-03 1.013E-02 1.013E-02 
α6 1.368E-03 1.012E-02 1.013E-02 
α2 1.363E-03 1.009E-02 1.009E-02 
α17 -3.649E-04 -2.701E-03 -1.896E-03 
α27 -3.648E-04 -2.700E-03 -1.895E-03 
α18 -3.144E-04 -2.326E-03 -1.790E-03 
α26 -2.997E-04 -2.218E-03 -1.534E-03 
α16 -2.983E-04 -2.208E-03 -1.528E-03 
α25 -2.941E-04 

1% of 
cladding 
temperature 
of the heated 
rod at 0.7m 

-2.176E-03 -1.489E-03 
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Time st 10= ; nominal temperature KTnom 85.744= : 
 

Parameter  Relative 
Sensitivity Perturbation nompredicted TT −

(K) 
nomedrecalculat TT −

(K) 
α1 1.098E-02 8.153E-02 8.156E-02 
α6 1.096E-02 8.139E-02 8.143E-02 
α2 1.049E-02 7.788E-02 7.791E-02 
α19 3.392E-03 2.519E-02 2.561E-02 
α11 -3.091E-03 -2.296E-02 -2.442E-02 
α8 -1.227E-03 -9.111E-03 -9.098E-03 
α12 -9.855E-04 -7.318E-03 -8.122E-03 
α3 4.910E-04 3.646E-03 3.647E-03 
α9 -4.140E-04 -3.074E-03 -3.074E-03 
α10 -3.108E-04 

1% of cladding 
temperature of 
the heated rod 
at 0.7m 

-2.308E-03 -1.626E-05 
 
Time st 50= ; nominal temperature KTnom 94.762= : 
 

Parameter  Relative 
Sensitivity Perturbation nompredicted TT −

(K) 
nomedrecalculat TT −

(K) 
α1 4.520E-02 3.439E-01 3.439E-01 
α6 4.494E-02 3.419E-01 3.420E-01 
α2 3.543E-02 2.695E-01 2.695E-01 
α11 -1.540E-02 -1.171E-01 -1.210E-01 
α19 1.233E-02 9.380E-02 9.442E-02 
α3 9.777E-03 7.438E-02 7.440E-02 
α12 -6.409E-03 -4.876E-02 -5.215E-02 
α8 -3.967E-03 -3.018E-02 -3.011E-02 
α9 -1.523E-03 -1.159E-02 -1.158E-02 
α10 -1.039E-03 

1% of 
cladding 
temperature 
of the 
heated rod 
at 0.7m 

-7.907E-03 -3.388E-04 
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Time st 100= ; nominal temperature KTnom 76.783= : 
 

Parameter  Relative 
Sensitivity Perturbation nompredicted TT −

(K) 
nomedrecalculat TT −

(K) 
α1 8.288E-02 6.480E-01 6.475E-01 
α6 8.202E-02 6.413E-01 6.413E-01 
α2 4.713E-02 3.685E-01 3.680E-01 
α3 3.575E-02 2.795E-01 2.795E-01 
α11 -2.581E-02 -2.018E-01 -2.062E-01 
α19 2.370E-02 1.853E-01 1.862E-01 
α12 -1.415E-02 -1.106E-01 -1.176E-01 
α8 -6.444E-03 -5.038E-02 -5.023E-02 
α9 -2.847E-03 -2.226E-02 -2.224E-02 
α10 -1.704E-03 

1% of cladding 
temperature of 
the heated rod 
at 0.7m 

-1.332E-02 -1.145E-03 
 
Time st 200= ; nominal temperature KTnom 46.823= : 
 

Parameter  Relative 
Sensitivity Perturbation nompredicted TT −

(K) 
nomedrecalculat TT −

(K) 
α1 1.483E-01 1.218E+00 1.215E+00 
α6 1.455E-01 1.195E+00 1.194E+00 
α3 1.037E-01 8.522E-01 8.514E-01 
α19 4.651E-02 3.822E-01 3.835E-01 
α2 3.949E-02 3.245E-01 3.225E-01 
α11 -3.619E-02 -2.974E-01 -2.966E-01 
α12 -3.204E-02 -2.633E-01 -2.790E-01 
α8 -9.622E-03 -7.907E-02 -7.885E-02 
α9 -5.484E-03 -4.506E-02 -4.499E-02 
α4 5.053E-03 

1% of 
cladding 
temperature of 
the heated rod 
at 0.7m 

4.152E-02 4.155E-02 
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Time st 300= ; nominal temperature KTnom 03.866= : 
 

Parameter  Relative 
Sensitivity Perturbation nompredicted TT −

(K) 
nomedrecalculat TT −

(K) 
α1 2.078E-01 1.795E+00 1.788E+00 
α6 2.023E-01 1.748E+00 1.746E+00 
α3 1.526E-01 1.319E+00 1.316E+00 
α19 6.890E-02 5.954E-01 5.973E-01 
α12 -5.511E-02 -4.762E-01 -5.040E-01 
α11 -3.746E-02 -3.237E-01 -3.090E-01 
α2 3.232E-02 2.793E-01 2.754E-01 
α4 2.279E-02 1.970E-01 1.972E-01 
α8 -1.163E-02 -1.005E-01 -1.002E-01 
α9 -8.484E-03 

1% of 
cladding 
temperature 
of the heated 
rod at 0.7m 

-7.331E-02 -7.321E-02 
 
Time st 500= ; nominal temperature KTnom 70.958= : 
 

Parameter  Relative 
Sensitivity Perturbation nompredicted TT −

(K) 
nomedrecalculat TT −

(K) 
α1 3.031E-01 2.899E+00 2.890E+00 
α6 2.888E-01 2.762E+00 2.764E+00 
α3 2.011E-01 1.924E+00 1.918E+00 
α12 -8.443E-02 -8.075E-01 -8.629E-01 
α4 8.084E-02 7.732E-01 7.772E-01 
α19 6.020E-02 5.757E-01 5.533E-01 
α11 -2.697E-02 -2.579E-01 -2.343E-01 
α2 2.116E-02 2.023E-01 1.956E-01 
α9 -1.495E-02 -1.430E-01 -1.436E-01 
α13 -1.270E-02 

1% of cladding 
temperature of 
the heated rod at 
0.7m 

-1.215E-01 -1.288E-01 
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Time st 800= ; nominal temperature KTnom 10.1108= : 
 

Parameter  Relative 
Sensitivity Perturbation nompredicted TT −

(K) 
nomedrecalculat TT −

(K) 
α1 3.872E-01 4.279E+00 4.232E+00 
α6 3.552E-01 3.926E+00 3.197E+00 
α3 1.971E-01 2.178E+00 2.136E+00 
α4 1.794E-01 1.983E+00 1.995E+00 
α13 -6.165E-02 -6.813E-01 -7.454E-01 
α12 -5.923E-02 -6.546E-01 -6.742E-01 
α19 2.816E-02 3.112E-01 2.818E-01 
α9 -2.101E-02 -2.321E-01 -2.321E-01 
α11 -1.897E-02 -2.096E-01 -1.559E-01 
α5 1.314E-02 

1% of cladding 
temperature of 
the heated rod at 
0.7m 

1.453E-01 1.302E-01 
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Figure III.C.3: Time-evolution of the relative sensitivities of the inner ring 

heated rod at 0.7m to the most important parameters. 
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Figure III.C.4 Time-evolution of the relative sensitivities of the inner ring heated 

rod at 1.3m to the most important parameters. 
 

Table III.C.6 
Relative sensitivities of the cladding temperature of the heated fuel rod at 1.4m, 

where the power peak is located. 

Param. Rel. sens. 
at 10s Param. Rel. sens. at 

100s Param. Rel. sens. at 
500s 

Param
. 

Rel. sens. 
At 800s 

α1 1.064E-02 α1 8.217E-02 α1 3.070E-01 α1 5.689E-01 
α28 1.060E-02 α28 8.002E-02 α28 2.684E-01 α28 4.566E-01 
α2 1.017E-02 α2 4.703E-02 α3 2.046E-01 α3 3.029E-01 
α29 4.098E-03 α3 3.514E-02 α4 7.767E-02 α4 2.445E-01 
α12 -3.300E-03 α29 2.893E-02 α13 -6.663E-02 α15 -6.274E-02 
α9 -9.680E-04 α12 -2.598E-02 α29 6.363E-02 α13 -6.094E-02 
α13 -5.960E-04 α13 -8.662E-03 α12 -3.663E-02 α29 4.573E-02 
α8 -5.825E-04 α9 -5.332E-03 α2 2.470E-02 α14 -4.046E-02 
α3 4.759E-04 α8 -2.064E-03 α9 -1.514E-02 α12 -3.852E-02 
α24 -4.189E-04 α24 -2.020E-03 α14 -9.465E-03 α2 2.151E-02 
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Table III.C.7 

Relative sensitivities of the inside temperature of the shroud (ZrO2 fiber 
insulation) at 1.4m. 

Param. Rel. sens. at 
10s Param. Rel. sens. at 

100s Param. Rel. sens. at 
500s Param. Rel. sens. at 

800s 
α8 4.659E-03 α8 3.745E-02 α1 8.745E-02 α1 1.874E-01 
α9 4.035E-03 α9 2.522E-02 α3 6.034E-02 α3 1.110E-01 
α29 3.539E-03 α29 2.078E-02 α31 -5.90E-02 α29 -6.911E-02 
α32 -1.643E-03 α31 -1.628E-02 α8 5.074E-02 α31 -6.609E-02 
α31 -1.425E-03 α32 -1.393E-02 α32 -2.702E-02 α4 6.506E-02 
α33 -9.550E-04 α34 7.298E-03 α30 -2.207E-02 α28 2.773E-02 
α34 8.546E-04 α30 -5.844E-03 α12 -2.008E-02 α12 -2.766E-02 
α24 -5.146E-04 α1 4.273E-03 α29 -1.851E-02 α7 2.718E-02 
α23 -4.207E-04 α33 -4.194E-03 α4 1.486E-02 α32 -2.574E-02 
α30 -4.158E-04 α24 -3.293E-03 α9 1.356E-02 α30 -2.550E-02 
 
Nomenclature 
 

Param.  Parameter Physical Meaning 

α1 Nominal power factor: 0.7 
α2 Nominal power from 0 to 121s: 4279W 
α3 Nominal power up to 2088.6s: 16350W 
α4 Nominal power up to 2103s: 3874W 

α5 
Nominal internal source multiplier (axial peaking factor) for power of heat
structure of the heated rod at 0.6m: 0.05015. This value is multiplied by the 
power to obtain the total power generated in this heat structure 

α6 
Nominal internal source multiplier (axial peaking factor) for power of heat
structure of the heated rod at 0.7m: 0.05255. This value is multiplied by the
power to obtain the total power generated in this heat structure 

α7 
Nominal internal source multiplier (axial peaking factor) for power of heat
structure of the heated rod at 1.3m: 0.06398. This value is multiplied by the
power to obtain the total power generated in this heat structure 

α8 Zircaloy, nominal volumetric heat capacity at 640K: 2168KJ/m³K 
α9 Zircaloy, nominal volumetric heat capacity at 1090K: 2456KJ/m³K 
α10 ZrO2 Pellets, nominal volumetric heat capacity at 550K: 3360KJ/m³K 
α11 ZrO2 Pellets, nominal volumetric heat capacity at 700K: 3510KJ/m³K 
α12 ZrO2 Pellets, nominal volumetric heat capacity at 873K: 3618KJ/m³K 
α13 ZrO2 Pellets, nominal volumetric heat capacity at 1083K: 3726KJ/m³K 
α14 ZrO2 Pellets, nominal volumetric heat capacity at 1173K: 3774KJ/m³K 
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α15 ZrO2 Pellets, nominal volumetric heat capacity at 1248K: 3804KJ/m³K 
α16 Nominal surface area of volume: 0.00229m², volume for water of inlet pipe 

α17 
Nominal surface area of volume: 0.006011m², volume centre at 0.075m of the
pipe height 

α18 
Nominal surface area of volume: 0.003007m², volume centre at 0.375m of the
pipe height 

α19 
Nominal surface area of volume: 0.003007m², volume centre at 0.7m of the
pipe height 

α20 
Nominal surface area of volume: 0.003007m², volume centre at 0.9m of the 
pipe height 

α21 
Nominal surface area of volume: 0.003007m², volume centre at 1.0m of the
pipe height 

α22 
Nominal surface area of volume: 0.003007m², volume centre at 1.1m of the
pipe height 

α23 
Nominal surface area of volume: 0.003007m², volume centre at 1.2m of the 
pipe height 

α24 
Nominal surface area of volume: 0.003007m², volume centre at 1.3m of the
pipe height 

α25 Nominal volume length: 0.3m, volume for Argon of inlet pipe 
α26 Nominal volume length: 0.305m, volume for water of inlet pipe 
α27 Nominal volume length: 0.15m, volume centre at 0.075m of the pipe height 

α28 
Nominal internal source multiplier (axial peaking factor) for power of heat
structure of the heated rod at 1.4m: 0.06313. This value is multiplied by the
power to obtain the total power generated in this heat structure 

α29 
Nominal surface area of volume: 0.003007m², volume centre at 1.4m of the
pipe height 

α30 Zyf b-3 isolation material: nominal thermal conductivity at 273K: 0.07W/mK 
α31 Zyf b-3 isolation material: nominal thermal conductivity at 550K: 0.098W/mK 
α32 Zyf b-3 isolation material: nominal thermal conductivity at 700K: 0.112W/mK 
α33 Zyf b-3 isolation material: nominal thermal conductivity at 873K: 0.133W/mK 
α34 Zircaloy, nominal volumetric heat capacity at 400K: 1978KJ/m³K 
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CHAPTER IV 
 
 

FORWARD AND ADJOINT SENSITIVITY ANALYSIS 
PROCEDURES FOR RESPONSES DEFINED AT CRITICAL 

POINTS 
 
Often, the response functional, ( )eR , of a physical system is located at a 

critical point, ( )αy , of a function that depends on the system’s state vector and 
parameters. In such situations, the components ( ) ( )Miyi ,,1, K=α , of ( )αy , 
must be treated as responses in addition to ( )eR . As first shown by Cacuci 
(1981), the objectives of sensitivity analysis for such systems would be to 
determine: 

(A) the G-differential ( )he ;0Rδ  of ( )eR  at the “base-case point” ( )000 ,αue = , 
which gives the sensitivity of ( )eR  to changes ( )αhhh ,u=  in the systems state 
functions and parameters; and 

(B) the vector ( ) ( )Myy δδδ α ,,; 1
0 K=hy α , whose components ( )αδ h;0αmy  

represent the G-differentials of ( )αmy  at 0α , for ( )Mm ,,1K= , which would 
thus provide the sensitivity of the critical point ( )αy  to parameter variations 

αh . 
The material presented in this Chapter is structured in two main Sections, as 

follows: Section IV.A presents the general sensitivity theory (i.e., both the FSAP 
and the ASAP) for responses defined at critical points, together with an 
illustrative application to a particle diffusion problem, while Section IV.B 
illustrates the application of the ASAP for sensitivity analysis of a paradigm 
transient behavior of a nuclear reactor system. This transient behavior is 
simulated by using the MELT III.B code system, which solves equations 
describing the following phenomena: (a) thermal-hydraulics equations 
describing the conservation of thermal energy, mass, and momentum for the 
average channel fuel pin and surrounding single-phase coolant; (b) neutron 
point-kinetics equations describing the time-dependent behavior of the core-
integrated neutron density; and (c) a loop-hydraulic equation that relates the core 
inlet and outlet pressures. 
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IV. A. FSAP AND ASAP FOR RESPONSES AT CRITICAL POINTS: 
GENERAL THEORY 

 
Consider once again a generic physical system described mathematically by 

the following system of K  coupled nonlinear equations written in operator form 
as 

 
( ) ( )[ ] ( )[ ] .,, xQxxuN αα =    (IV.A.1) 

 
The quantities appearing in Eq. (IV.A.1) are defined as follow: 
(i) ( )Jxx ,,1 K=x  is the phase-space position vector; JR⊂Ω∈x , where Ω  

is subset of the J -real vector space JR , 
(ii) ( ) ( ) ( )[ ]xxxu Kuu ,,1 K=  is the state vector; ( ) uE∈xu , where uE  is a 

normed linear space over the scalar field Λ  of real numbers, 
(iii) ( ) ( ) ( )[ ]xxx Iαα ,,1 K=α  is the vector of system parameters; αE∈α , 

where αE  is also a normed linear space, 
(iv) ( )[ ] ( ) ( )[ ]xxxxQ ,,,,, 1 ααα KQQ K=  is a (column) vector whose elements 

represent inhomogeneous source terms; QE∈Q , where QE  is also a normed 

liner space. The components of Q  may be operators (rather than just functions) 
acting on ( )xα  and x , 

(v) ( ) ( )[ ]αα ,,,,1 uuN KNN K=  represents a (column) vector whose 
components are nonlinear operators acting in general, not only on the state 
vector ( )xu , but also on the vector of system parameters ( )xα . 

In view of the above definition, N  represents the mapping QEES →⊂:N , 

where αSSS u ×= , uu ES ⊂ , αα ES ⊂ , and αEEE u ×= . Note that an 
arbitrary element E∈e  is of the form ( )α,ue = . All vectors in this Section are, 
as usual, column vectors, unless explicitly stated otherwise. If differential 
operators appear in Eq. (IV.A.1), then a corresponding set of boundary 
conditions, which is essential to define the domain S  of N , must also be given. 
This set can be represented as  

 
( ) ( ){ } ,0AeB =− Ω∂α     (IV.A.2) 

 
where A  and B  are operators, and Ω∂  is the boundary of Ω ; the operator 
( )αA  represents all inhomogeneous boundary terms. 
Consider that the system response R  is a functional of ( )α,ue =  defined at a 

critical point ( )αy  of a function ( )α,, xuF . Such a response can be represented 
in the form 
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( ) ( ) ( )[ ] ( ) .,, 1
11

J

J

Mj
jj

M

i
ii dxdxzxyxFR ∫ ∏∏

Ω +==

−−= Kδδ ααxue  (IV.A.3) 

 
The quantities appearing in the integrand of Eq. (IV.A.3) are defined as follows: 

(i) F  is the nonlinear function under consideration, 
(ii) ( )xδ  is the customary “Dirac-delta” functional, 

(iii) IR∈α , i.e., the components ( )Iii ,,1, K=α  are restricted throughout 
this section to be real numbers; 

(iv) ( ) ( ) ( )[ ]ααα Myy ,,1 K=y , JM ≤ , is a critical point of F . 
This critical point can be generally defined in one of the following two ways: 
If the G-differential of F  vanishes at ( )αy , then ( )αy  is a critical point 

defined implicitly as the solution of the system of equations 
 

{ } ( ) ( ).,,1;0 JixF i K==∂∂ αy    (IV.A.4) 

 
In this case, ( )αy  has J  components (i.e., JM = ), and 

( ) 1
1

≡−∏ +=

J
Mj jj zxδ  in the integrand of Eq. (IV.A.3). Note that, in general, 

( )αy  is a function of α . 
Occasionally, it may happen that jxF ∂∂ takes on nonzero constant values 

(i.e., values that do not depend on x ) for some of the variables 
( )JMjx j ,,1, K+= . Then, as a function of these variable jx , F  attains its 

extreme values at the points jj zx = , Ω∂∈jz . Evaluating F  at jz , 

( )JMj ,,1K+= , yields a function G  which depends on the remaining phase-
space variables ix , ( )Mi ,,1K= ; G  may then have a critical point at 
( ) ( ) ( )[ ]ααα Myy ,,1 K=y  defined implicitly as the solution of 
 

{ } ( ) ( ).,,1,0 MixG i K==∂∂ αy    (IV.A.5) 

 
With the above specifications, the definition of ( )eR  given in Eq. (IV.A.3) is 

sufficiently general to include treatment of extrema (local, relative, or absolute), 
saddle, and inflexion points of the function F  of interest. Note that, in practice, 
the base-case solution path, and therefore the specific nature and location of the 
critical point under consideration, are completely known prior to initiating the 
sensitivity studies. 

It is thus apparent that in the formulation of a complete sensitivity theory, the 
components ( ) ( )Miyi ,,1, K=α , of ( )αy , must be treated as responses in 
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addition to ( )eR . Hence, the objective of this sensitivity theory is twofold, 
namely: 

(A) To determine the G-differential ( )he ;0Rδ  of ( )eR  at the “base-case point” 

( )000 ,αue = , which gives the sensitivity of ( )eR  to changes ( )αhhh ,u=  in the 
systems state functions and parameters; and 

(B) To determine the (column) vector ( ) ( )Myy δδδ α ,,; 1
0 K=hy α  whose 

components ( )αδ h;0αmy  are the G-differentials of ( )αmy  at 0α , for 

( )Mm ,,1K= . The vector ( )αδ h;0αy  gives the sensitivity of the critical point 
( )αy  to changes αh . 
To achieve the objective mentioned above, the two alternative formalisms, the 

Forward Sensitivity Analysis Procedure (FSAP) and the Adjoint Sensitivity 
Analysis Procedure (ASAP), are developed along the same general lines as 
discussed in detail in Volume I. 

 
 

IV.A.1. The Forward Sensitivity Analysis Procedure (FSAP) 
 
Applying the definition of the G-differential to Eq. (IV.A.3) shows that 
 

( ) ( ) ( )[ ] ( )[ ] ( )

( ) ( ) ( ) .

;

1,11

11

0000

0
∫ ∏∏∑

∫ ∏∏

Ω +=≠==

Ω +==

−−−′













•−+

−−′+′=

xh

xhehehe

α
dzxyxyxF

d
dy

dzxyxFFR

J

Mj
jj

M

mii
iimm

M

m

m

J

Mj
ji

M

i
iiuu

δδδ

δδδ

α

αα

α

α

 

(IV.A.6) 
 
The last term on the right side of Eq. (IV.A.6) vanishes, since 
 

( ) ( ) ( )

( ) ( ) ( ) ( ),,,1,0
11

1,1

MmdzxyxxF

dzxyxyxF

J

Mj
jj

M

i
iim

J

Mj
jj

M

mii
iimm

K==−−∂∂−

=−−−′

∫ ∏∏

∫ ∏∏

Ω +==

Ω +=≠=

x

x

δδ

δδδ

 (IV.A.7) 

 
in view of the well-known definition of the δ ′  functional and in view of either 
Eq. (IV.A.4) if JM = , or of Eq. (IV.A.5) if JM < . Therefore, the expression 
of ( )he ;0Rδ  simplifies to 
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( ) ( ) ( )[ ] ( )[ ] ( ) .;
11

0000 ∫ ∏∏
Ω +==

−−′+′= xhehehe dzxyxFFR
J

Mj
ji

M

i
iiuu δδδ αα α (IV.A.8) 

 
Thus, the sensitivity ( )he ;0Rδ  of ( )eR  to specified changes αh  can in principle 
be evaluated once the vector uh  is determined from the FSAP, i.e., 

 
( ) ( )
( ) ( ){ }





=−

=−

Ω∂ .;,;,

,;,;,
000

000

0hAhhuB

0hQhhuN

αα

αα

δδ

δδ

αα

αα

u

u    (IV.A.9) 

 
As already mentioned, the sensitivity of the location in phase space of the 

critical point is given by the G-differential ( )αδ hy ;0α  of ( )αy  at 0α . In view 
of either Eq. (IV.A.4) or  Eq. (IV.A.5), each of the components ( ) ( )αα Myy ,,1 K  
of ( )αy  is a real-valued function of the real variables ( )Iαα ,,1 K , and may be 

viewed as a functional defined on a subset of IR . Therefore, each G-
differential ( )αδ h;0αmy  of ( )αmy  at 0α  is given by 

 

( ) ( ),,,1;;
1

0

00
Mmhy

d
dyy

i

I

i i

mm
m K=








∂
∂

=•






= ∑

=
ααα α

δ
ααα

α hh  (IV.A.10) 

 
provided that imy α∂∂ , ( )Ii ,,1K=  exist at 0α  for all ( )Mm ,,1K= . 

The explicit expression of ( )αδ h;0αy  is obtained as follows. First, it is 
observed that both Eq. (IV.A.4) and Eq. (IV.A.5) can be represented as 

 

( ) ( )[ ] ( ) ( ).,,1;0
11

MmdzxyxxF
J

Mj
jj

M

i
iim K==−−∂∂∫ ∏∏

Ω +==

xδδ α  (IV.A.11) 

 
Taking the G-differential of Eq. (IV.A.11) at 0e  yields the following system of 
equations involving the components myδ : 
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( ){ } ( )[ ] ( )

( ) { } ( )[ ] ( )[ ] ( )

( ).,,1;0

;
1,1

00

1

0

11
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0

Mm
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iimuu
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Ω +==
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xhh

e

e

δδδδ

δδ

α

αα

ααα

α

(IV.A.12) 
 

The above system is algebraic and linear in the components ( )αδ h;0αsy ; 
therefore, it can be represented in matrix form as 

 
( ) ΓyΦ =δ     (IV.A.13) 

 
by defining [ ]msφ=Φ  to be the MM ×  matrix with elements 

 

{ } ( )[ ] ( ) ( ),,,1,,
11

02
0 MsmdzxyxxxF

J

Mj
jj

M

i
iismms K=−−∂∂∂≡ ∫ ∏∏

Ω +==

xe δδφ α  

(IV.A.14) 
 

and by defining Γ  to be the M -component (column) vector 
 

( ) ,,,11
T

MM gfgf ++≡ KΓ    (IV.A.15) 
 

where 
 

( ){ } ( )[ ] ( ) ( ),,,1;
11

0
0 MmdzxyxxFf

J

Mj
ji

M

i
iimm K=−−∂′∂−≡ ∫ ∏∏

Ω +==

xh e δδαα α  

(IV.A.16) 
 

and 
 

( ){ } ( )[ ] ( ) ( ).,,1;
11

0
0 MmdzxyxxFg

J

Mj
ji

M

i
iimuum K=−−∂′∂−≡ ∫ ∏∏

Ω +==

xh e δδ α  

(IV.A.17) 
 

Notice that the definition of the δ ′  functional has been used to recast the second 
integral in Eq. (IV.A.12) into the equivalent expression given in Eq. (IV.A.14). 

As this stage, the quantities msφ  and mf  can be evaluated by directly using 
Eqs. (IV.A.14) and (IV.A.16). It is of interest to observe here that if JM = , 
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then Φ  is the Hessian of F  evaluated at the critical point ( )0αy ; alternatively, 
if JM < , then Φ  is the Hessian of the function G  [considered in Eq. (IV.A.5)] 
evaluated at the respective critical point. The quantities mg  defined in Eq. 
(IV.A.17) can also be evaluated, since uh  will have already been determined to 

compute the sensitivity ( )he ;0Rδ  given in Eq. (IV.A.8). Upon completing the 
computation of the elements of Φ  and Γ , Eq. (IV.A.13) can be solved by 
employing methods of linear algebra to obtain 

 
( ) .; 10 ΓΦhy −=αδ α     (IV.A.18) 

 
As underscored by the derivations presented so far, the availability of the 

solution uh  of the “forward sensitivity equations” given in Eq. (IV.A.9) is 

essential to evaluate both ( )he ;0Rδ  and ( )αδ hy ;0α . This is a distinctive 
characteristic of the "forward sensitivity formalism,” which, from an economical 
standpoint, makes this formalism ill-suited for sensitivity analysis of problems 
with large data bases (i.e., when α  has many components). 

 
 

IV.A.2. The Adjoint Sensitivity Analysis Procedure (ASAP) 
 
Since most of the problems encountered in practice are characterized by large 

data bases, the development of this formalism is motivated by the need for a tool 
to perform sensitivity analyses of such problems economically. To this end, the 
development of this formalism is centered on eliminating the explicit appearance 
of the unknown values of the vector uh  from Eqs. (IV.A.8) and (IV.A.18), and 
hence on circumventing the need to repeatedly solve Eq. (IV.A.9). However, as 
detailed in Volume I, uh  can be eliminated if and only if (iff) the following 
three conditions, labeled below as C.1 through C.3, are satisfied: 

(C.1)  The partial G-derivatives at 0e  of ( )eR  with respect to u  and α  exist, 

(C.2)  The partial G-derivatives at 0e  of the operators N  and B  with respect 
to u  and α  exist, 

(C.3)  The spaces uE  and QE  are real Hilbert spaces, denoted by uH  and 

QH , respectively. For uH∈21, uu , the inner product in uH  will be denoted by 

[ ]21, uu , and is given by the integral ∫Ω • xuu d21 . The inner product in QH  

will be denoted by , . 

An examination of Eq. (IV.A.8) shows that ( )he ;0Rδ  is linear in h . Hence, the 
condition (C.1) mentioned above is satisfied, and the uH -dependent component 
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of ( )he ;0Rδ ,  i.e., the “indirect effect term,” can be written in inner product form 
as 

 

( ) ( )[ ] ( ) ( )[ ],,0

11

00
uu

J

Mj
ji

M

i
iiuu RdzxyxF hexhe ∇=−−′∫ ∏∏

Ω +==

δδ α  (IV.A.19) 

 
where 

 

( ) ( )[ ] ( ) ( ) ( ) .,,
0

1

0

11

00
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K

J

Mj
ji

M

i
iiu u

F
u

FzxyxR 










∂
∂

∂
∂

×−−=∇ ∏∏
+==

eee Kδδ α  (IV.A.20) 

 
The adjoint system is constructed by following the procedure set forth in 

Volume I; for brevity, the details will be omitted here. Thus, condition (C.2) 
makes it possible to write the system of equations given in Eq. (IV.A.9) as 

 
( ) ( ) ( ) αααδ heNhQheN 000 ; ′−=′ αuu    (IV.A.21) 

 
and 

 
( ){ } ( ) ( ){ } .; 000

Ω∂Ω∂ ′−=′ αααδ heBhAheB αuu   (IV.A.22) 
 

Next, in view of Eq. (IV.A.21) and condition (C.3), the following relationship 
holds for a vector QH∈v : 

 
( ) ( )[ ] [ ]{ } ,;,, 0*0

Ω∂+=′ vhhveLheNv uuuu P   (IV.A.23) 

 
where ( )0* eL  is the operator formally adjoint to ( )0eNu′ , and [ ]{ } Ω∂vh ;uP  is the 

associated bilinear form evaluated on Ω∂ . The domain of ( )0* eL  is determined 
by selecting appropriate adjoint boundary conditions, represented here in 
operator form as 

 
( ) ( ){ } .; 0*0* 0eAevB =− Ω∂    (IV.A.24) 

 
As discussed in Volume I, these boundary conditions are obtained by requiring 
that 

(i) They be independent of uh , αh , and G-derivatives with respect to α , and 
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(ii) The substitution of Eqs. (IV.A.22) and (IV.A.24) into the expression of 
[ ]{ } Ω∂vh ;uP  must cause all terms containing unknown values of uh  to vanish. 

This selection of the adjoint boundary conditions reduces [ ]{ } Ω∂vh ;uP  to a 

quantity designated here by ( )0;,ˆ evhαP , where P̂  contains boundary terms 

involving only known values of αh , v , and (possibly) 0e . In general, P̂  does 
not automatically vanish as a result of these manipulations, although it may do 
so in particular instances. Hence, Eq. (IV.A.23) can be written as 

 
( )[ ] ( ) ( ) ( ),;,ˆ;,, 0000* evhheNhQvhveL ααααδ Pu −′−= α  (IV.A.25) 

 
where Eq. (IV.A.21) was used to replace ( ) uu heN 0′ . Comparing the left-hand 
side of Eq. (IV.A.25) with the right-hand side of Eq. (IV.A.19) shows that 

 
( ) ( ).00* eveL Ru∇=     (IV.A.26) 

 
Note that the uniqueness of the above relationship is ensured by the Riesz 
representation theorem. This completes the construction of the adjoint system. 
Furthermore, Eqs. (IV.A.19), (IV.A.25), and (IV.A.26) can be used to express 
Eq. (IV.A.8) as 

 

( ) ( ) ( )[ ] ( )

( ) ( ) ( ) .;,ˆ,;

;

000

11

000

evhvheNhQ

xhehe

αααα

αα

δ

δδδ

P

dzxyxFR
J

Mj
ji

M

i
ii

−′−+

−−′= ∫ ∏∏
Ω +==

α

α
 (IV.A.27) 

 
The desired elimination of the unknown values of uh  from the expression giving 

the sensitivity ( )he ;0Rδ  has thus been accomplished. 

Unknown values of uh  can be eliminated from the expression of ( )αδ hy ;0α  
given in Eq. (IV.A.18) only if they can be eliminated from appearing in Eq. 
(IV.A.17). Examination of Eq. (IV.A.17) reveals that each quantity mg  is a 
functional that can be expressed in the equivalent form 

 

( ) ( ) [ ] ( )∫ ∏∏
Ω +=≠=

−−−′′= xhe dzxyxyxFg
J

Mj
ji

M

mii
iimmuum

1,1

0 δδδ (IV.A.28) 

 
by employing the definition of the δ ′  functional. In turn, the above expression 
can be written as the inner product 
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( )[ ] ,,0
ummg heγ=     (IV.A.29) 

 
where 

 

( ) ( )[ ] [ ] ( ) ( ) ( ) .,,
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1

0

1,1

00
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mii
iimmm u
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Fzxyxyx 










∂
∂

∂
∂

−−−′≡ ∏∏
+=≠=

eeαeγ Kδδδ  

(IV.A.30) 
 

The desired elimination of the unknown values of uh  from Eq. (IV.A.29) can 

now be accomplished by letting each of the functions ( )0eγm  play, in turn, the 

role previously played by ( )0eRu∇  [cf. Eq. (IV.A.19)], and by following the 
same procedure as that leading to Eq. (IV.A.27). The end result is 

 
( ) ( ) ( ) ,;,ˆ,; 000 ewhwheNhQ mmm Pg ααααδ −′−= α  (IV.A.31) 

 
where each function mw  is the solution of the adjoint system 

 
( ) ( )
( ) ( ){ }





=−

=

Ω∂ 0eAewB

eγweL
0*0*

00*

;m

mm    (IV.A.32) 

 
for ( )Mm ,,1K= . 

It is important to note that ( )0* eL , ( )0* ;ewB m , and ( )0* eA  appearing in Eq. 
(IV.A.32) are the same operators as those appearing in Eqs. (IV.A.26) and 
(IV.A.24). Only the source term ( )0eγm  in Eq. (IV.A.32) differs from the 

corresponding source term ( )0eRu∇  in Eq. (IV.A.26). Therefore, the computer 
code employed to solve the adjoint system given in Eqs. (IV.A.26) and 
(IV.A.24) can be used, with relatively trivial modifications, to compute the 
functions mw  from Eq. (IV.A.32). Comparing now the right sides of Eqs. 

(IV.A.25) and (IV.A.31) reveals that the quantity ( )0;,ˆ evhαP  is formally 

identical to the quantity ( )0;,ˆ ewh mP α  and that the vector 

( ) ( ) αααδ heNhQ 00; ′−α  appears in both of the inner products denoted by , . 
This indicates that the computer program employed to evaluate the second and 
third terms on the right side of Eq. (IV.A.27) can also be used to evaluate the 
functionals mg , ( )Mm ,,1K= , given by Eq. (IV.A.31). Of course, the values of 
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v  required to compute ( )he ;0Rδ  are to be replaced by the respective values of 

mw , when computing the mg ’s. 
In most practical problems, the total number of parameters I  greatly exceeds 

the number of phase-space variables J , and hence M , since JM ≤ . Therefore, 
if the ASAP can be developed as described in this section, then a large amount of 
computing costs can be saved by employing this formalism rather than the 
FSAP. In the case, only 2+M  “large” computations (one for the “base-case 
computation,” one for computing the adjoint function v , and M  computations 
for obtaining for the adjoint functions Mww ,,1 K ) are needed to obtain the 

sensitivities ( )he ;0Rδ  and ( )αδ hαy ;0  to changes in all of the parameters. By 
contrast at least ( )1+I  computations (one for the “base-case,” and I  to obtain 
the vector uh ) would be required if the “forward sensitivity formalism” were 
employed. 

 
 

IV.A.3. Discussion 
 
Note that, as shown in Eqs. (IV.A.6)-(IV.A.8), the contributions to ( )he ;0Rδ  

arising from the α  dependence of ( )αy  vanish only because ( )αy  is a critical 
point of F . An important consequence of this fact can be demonstrated by 
considering the point y  not to be a function of α . The response would then 
take on the form 

 

( ) ( ) ( ) ( ) .,,
11

1 ∫ ∏∏
Ω +==

−−= xxue dzxyxFR
J

Mj
jj

M

i
ii δδα  (IV.A.33) 

 
In the above equation, the subscript “1” indicates that the mathematical 

characteristics of ( )e1R  differ from those of ( )eR , although both responses take 

on identical values at 0ee = , i.e., 
 

( ) ( ) .00
1 ee RR =    (IV.A.34) 

 
Calculating the G-differential ( )he ;0

1Rδ  of ( )e1R  at 0e  gives 
 

( ) ( ) ( )[ ] ( ) ( ) .;
11

000
1 ∫ ∏∏

Ω +==

−−′+′= xhehehe dzxyxFFR
J

Mj
jj

M

i
iiuu δδδ αα (IV.A.35) 

 
Comparison of Eqs. (IV.A.35) and (IV.A.8) shows that 
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( ) ( ).;; 00

1 hehe RR δδ =    (IV.A.36) 
 
Consider now the total variations of ( )eR  and ( )e1R  at 0ee = , i.e., 
 

( ) ( ) ( ) ( )hheehe ∆+=−+ ;000 RRR δ , where ( )[ ] ,0lim
0

=∆
→

tt
t

h  (IV.A.37) 

 
and 

 
( ) ( ) ( ) ( )hheehe 1

0
1

0
1

0
1 ; ∆+=−+ RRR δ , where ( )[ ] .0lim 10

=∆
→

tt
t

h  (IV.A.38) 

 
Subtracting Eq. (IV.A.38) from Eq. (IV.A.37) and taking into account Eqs. 
(IV.A.34) and (IV.A.36) yields the relationship 

 
( ) ( ) ( )hhehe ε=+−+ 0

1
0 RR , where ( )[ ] .0lim

0
=

→
tt

t
hε (IV.A.39) 

 
The result given in Eq. (IV.A.39) can be strengthened if R  is Fréchet 

differentiable [i.e., if ( )he ;0Rδ  is continuous and linear in h  at 0e , and is 

continuous in e  at 0e . In such a case, 1R  is also Fréchet differentiable; hence, 
the relations ( )[ ] 0lim

0
=∆

→
tt

t
h  in Eq. (IV.A.37) and ( )[ ] 0lim 10

=∆
→

tt
t

h  in Eq. 

(IV.A.38) hold uniformly with respect to h on the set { }1: =hh . 
Consequently, ( )[ ] 0lim

0
=

→
tt

t
hε in Eq. (IV.A.39) also holds uniformly with 

respect to h  on { }1: =hh , and can be written in the equivalent form 

( )[ ] 0lim
0

=
→

hhε
h

. Thus, the stronger result 

 
( ) ( ) ( )20

1
0 hhehe ORR =+−+   (IV.A.40) 

 
holds if R  is Fréchet differentiable at 0ee = . 

A simple illustration of the distinctions between ( )eR  and ( )e1R  is shown in 
Figure IV.A.1. There, the critical point ( )α1y  of ( )α,, xuF  is a maximum 
occurring in the (one-dimensional) direction 1x . Changes ( )αhhh ,u=  would 

cause the new maximum of F  to take on the value ( )he +0R  at ( )αhα +0
1y . 

The sensitivity ( )he ;0Rδ  of ( )eR  at 0e  is given by Eq. (IV.A.8) [or Eq. 
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(IV.A.27)], while the sensitivity ( )αδ h;0
1 αy  of ( )α1y  at 0α  is given by Eq. 

(IV.A.18). However, if 1y  is considered not to be a function of α , then 

( )he +0
1R  would be the altered value of the functional ( )e1R . Nevertheless, the 

sensitivity ( )he ;0
1Rδ  of ( )e1R  at 0e  is the same as the sensitivity ( )he ;0Rδ  of 

( )eR  at 0e , as shown in Eq. (IV.A.36). This results solely from the fact that 
( )α1y  is a critical point of ( )α,, xuF . 

 

 
Figure IV.A.1. Illustration of the distinction between ( )eR  and ( )e1R . 

 
 

IV.A.4. Illustrative Example: A Particle Diffusion Problem 
 
The sensitivity analysis theory for responses defined at critical points, 

presented in the foregoing Sections, will now be illustrated by considering a 
simple diffusion problem of neutral particles (e.g., neutrons) within a slab of 
material of extrapolated thickness [ ]cma , placed in vacuum, which contains 

distributed particle sources of strength [ ]13 −− ⋅⋅ scmparticlesQ , and is also 

driven externally by a flux of particles of strength [ ]12 −− ⋅⋅ scmparticlesinϕ  
which impinges on one side (e.g., on the left side) of the slab. Consider, also for 
simplicity, that the material within the slab only scatters the particles, but does 
not absorb them. The linear particle diffusion equation that simulates 
mathematically this problem is 

 

( ) ( ) ,,0,2

2
axQ

dx
dDL ∈−=≡
ϕϕα   (IV.A.41) 
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where ( )xϕ  is the (everywhere positive) particle flux, D  is the diffusion 
coefficient in units of [ ]cm , and Q  is the corresponding distributed source term 
within the slab. The boundary conditions considered for ( )xϕ , namely  

 
( ) ( ) ,0,0 == ain ϕϕϕ     (IV.A.42) 

 
simulate an incoming flux inϕ  at the boundary 0=x , and a vanishing flux at the 
extrapolated distance ax = . Thus, the vacuum at the right-side of the slab plays 
the role of a perfect absorber, in that particles which have left the slab can never 
return. The response R  considered for the diffusion problem modeled by Eqs. 
(IV.A.41) and (IV.A.42) is the reading of a particle detector placed at the 
position y  within the slab where the flux attains its maximum value, maxϕ . 
Such a response (i.e., the reading of the particle reaction rate at y ) would be 
simulated mathematically by the following particular form of Eq. (IV.A.3): 

 

( ) ( ) ( )[ ] ,
0
∫ −Σ=
a

d dxyxxR αδϕe    (IV.A.43) 

 
where dΣ  represents the detector’s equivalent reaction cross section, in units of 

[ ]1−cm . The location ( )αy  where the flux attains its maximum value is defined 
implicitly as the solution of the equation 

 
( ) ( )[ ] .0

0

=−∫
a

dxyx
dx

xd αδϕ    (IV.A.44) 

 
The parameters for this problem are the positive constants dΣ , D , Q , and 

inϕ , which will be considered to be the components of the vector α  of system 
parameters, defined as 

 
( ) .,,, ind QD ϕΣ≡α     (IV.A.45) 

 
The vector ( )xe  appearing in the functional dependence of R  in Eq. 

(IV.A.43) denotes the concatenation of ( )xϕ  with α , i. e., ( ) ., αϕ≡e  The 
parameters α  are considered to be experimentally determined quantities, with 
known nominal values ( )00000 ,,, ind QD ϕΣ=α  and known variances 

( ) ( ) ( )[ ,var,var,var QDdΣ  ( )]inϕvar , but being otherwise uncorrelated to one 
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another. These parameter variances will give rise to variances in the value of the 
response R  (i.e., variance in the maximum flux measured by the detector) and 
the location ( )αy  of R  within the slab. The goal of this illustrative example is 
to determine the variances of R  and ( )αy  by using the “Sandwich Rule” of the 
“Propagation of Moments” method presented in Section III.F of Volume I. 

The nominal value ( )x0ϕ  of the flux is determined by solving Eqs. (IV.A.41) 

and (IV.A.42) for the nominal parameter values ( )00000 ,,, ind QD ϕΣ=α . For this 

simple example, the expression of ( )x0ϕ  can be readily obtained in closed form 
as 

 

( ) ( ) .1
2

02
0

0
0

ina
xxax

D
Qx ϕϕ 






 −+−=   (IV.A.46) 

 
Note that even though Eq. (IV.A.41) is linear in ϕ , the solution ( )xϕ  depends 

nonlinearly on α , as evidenced by Eq. (IV.A.46). Using Eq. (IV.A.46), the 
nominal value, 0

maxϕ , of the maximum of ( )x0ϕ , and ( )0αy , respectively, are 
readily obtained as  

 

( ) .
228

0

02

200

0

20
0
max

inin

Qa
D

D
aQ ϕϕϕ ++=    (IV.A.47) 

 
and 

( ) .
2 0

00
0

aQ
Day inϕ

−=α    (IV.A.48) 

 
From Eqs. (IV.A. 43) and (IV.A.47), it follows that the nominal value, ( )0eR , 

of the response ( )eR  is obtained as 
 

( ) .0
max

00 ϕdR Σ=e    (IV.A.49) 
 

Of course, for the complex large-scale problems analyzed in practice, it is not 
possible to obtain exact, closed form expressions for ( )x0ϕ , 0

maxϕ , ( )0eR , and 

( )0αy . 
For uncorrelated parameters, the “Sandwich Rule” formula presented in 

Section III.F of Volume I can be readily applied to this illustrative problem, to 
obtain the following expression for the variance, ( )Rvar , of R :  
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( ) ( ) ( ) ( ) ( ) ,varvarvarvarvar
2222

in
in

d
d
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D
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δϕ
δ

δ
δ

δ
δ

δ
δ
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Σ

=  

(IV.A.50) 
 

where the symbol ( )iR δαδ  denotes the partial sensitivity (i.e., the partial G-
derivative) of ( )eR  to a generic parameter iα . In turn, the sensitivities of the 
response ( )eR  are obtained by applying Eq. (IV.A.6) to Eq. (IV.A.43), to 

compute the G-differential ( )he ;0Rδ  of ( )eR  at 0e , for variations  
 

( )αϕ hh ,h≡ ; ( ) .,,, ind QD δϕδδδα Σ≡h    (IV.A.51) 
 

 
This gives the following expression for ( )he ;0Rδ : 
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α

ϕ
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h

he

  (IV.A.52) 

 
The last term on the right-side of Eq. (IV.A.52) vanishes in view of Eq. 
(IV.A.44), namely 

 

( ) ( ) ( ) .0/
00

=−∂∂−=−′ ∫∫ dxyxxdxyx
aa

δϕδϕ  

 
Therefore, Eq. (IV.A.52) reduces to 
 

( ) ( ) ( ) ,; 000
ϕϕααδ hRRR ehehe ′+′=    (IV.A.53) 

 
where the “direct-effect” term αα hR′  is defined as 

 

( ) ( ) ( )[ ]∫ Σ=−Σ≡′
a

dd dxyxxR
0

0
max

00 ϕδδϕδαα αhe   (IV.A.54) 
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while the “indirect-effect” term ϕϕ hR′  is defined as 

 

( ) ( ) ( )[ ] .
0

000 ∫ −Σ≡′
a

d dxyxxhhR αδϕϕϕ e   (IV.A.55) 

 
The “direct-effect” term αα hR′  can be evaluated at this stage by replacing Eq. 

(IV.A.47) into Eq. (IV.A.54), to obtain 
 

( ) ( ) .
228

0

02

200

0

20
0












++Σ=′ inin

d Qa
D

D
aQR ϕϕδαα he  (IV.A.56) 

 
The “indirect-effect” term ϕϕ hR′ , though, cannot be evaluated at this stage, 

since ( )xhϕ  is not yet available. The first-order (in αh ) approximation to the 
exact value of ( )xhϕ  is obtained by calculating the G-differentials of Eqs. 
(IV.A.41) and (IV.A.42) and solving the resulting “forward sensitivity 
equations” (FSE) 

 
( ) ( )[ ] ( ),2000

αααϕ ϕ hh OLhL =′+ αα   (IV.A.57) 
 

together with the boundary conditions 
 

( ) ( ) .0,0 == ahh in ϕϕ δϕ    (IV.A.58) 
 
In Eq. (IV.A.57), the operator ( )0αL  is defined as 
 

( ) ,2

2
00

dx
dDL ≡α     (IV.A.59) 

 
while the quantity 

 

( )[ ] Q
dx

dDL δϕδϕ αα +≡′
2

02
00 hα ,   (IV.A.60) 

 
which is the partial G-differential of ϕL  at 0α  with respect to α , contains all 
of the first-order parameter variations αh . Solving the FSE yields the solution  
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( ) ( ) .1
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0 ina
xxax

D
DQQ

D
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−=  (IV.A.61) 

 
Replacing Eq. (IV.A.61) in Eq. (IV.A.55) gives the following expression for the 
“indirect-effect:” 
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(IV.A.62) 
 

 
From Eq. (IV.A.56), it follows that the partial sensitivity (i.e., the partial G-

derivative) of R  with respect to dΣ  has the expression 
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D
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δ
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++==
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   (IV.A.63) 

 
Similarly, from Eq. (IV.A.62), it follows that the partial sensitivities (i.e., the 

partial G-derivatives) of R  with respect to ,, QD  and inϕ  are:  
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DR in

d
in

ϕ
δϕ
δ      (IV.A.66) 

 
Since the sensitivities of the response ( )eR  have thus been determined, Eqs. 

(IV.A.63) through (IV.A.66) can be replaced in Eq. (IV.A.50) to compute the 
variance ( )Rvar . 

The “Sandwich Rule” presented in Section III.F of Volume I can also be 
applied to obtain the variance, ( )yvar , of the critical point ( )αy , where the flux 
attains its maximum (and where the particle detector is located in this illustrative 
problem). The corresponding expression for ( )yvar  is: 
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( ) ( ) ( ) ( ) ,varvarvarvar
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= (IV.A.67) 

 
where the symbol ( )iy δαδ  denotes the partial sensitivity (i.e., the partial G-

derivative) of ( )αy  to a generic parameter iα . In turn, the sensitivity ( )αδ hα ;0y  

of the critical (i.e., maximum) point ( )αy  at 0α  is obtained by applying Eq. 
(IV.A.18) to our illustrative example. Thus, Eq. (IV.A.14) takes on the following 
specific form for our problem: 

 

{ } ( )[ ] .0

0

0

022
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D
Qdxyxx
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−=−∂∂≡ ∫ αe δϕφ   (IV.A.68) 

 
Evaluating Eq. (IV.A.17) for our problem gives 
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Replacing Eqs. (IV.A.68) and (IV.A.69) into the particular form taken on by Eq. 
(IV.A.18) for this illustrative example leads to 

 

( ) .; 0000
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Dy

ϕ
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The above expression indicates that the partial sensitivities (i.e., the partial G-
derivatives) of ( )αy  with respect to ,, QD  and inϕ are as follows: 

 

,0
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aQD
y inϕ

δ
δ

−=      (IV.A.71) 

( ) ,20

00
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D
Q
y inϕ

δ
δ

=      (IV.A.72) 

.0

0

aQ
Dy

in
−=

δϕ
δ      (IV.A.73) 

 
The variance ( )yvar , of the critical point of ( )αy , can now be computed by 
replacing Eqs. (IV.A.71) through (IV.A.73) in Eq. (IV.A.67) 
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In practice, though, it would not be possible to solve analytically the FSE 
[namely, Eqs. (IV.A.57) and (IV.A.58)], as has been done for this simple 
illustrative example, in order to obtain the sensitivities of R  shown in Eqs. 
(IV.A.63) through (IV.A.67). Instead, the solution ( )xhϕ  would need to be 
computed by solving the FSE numerically. Therefore, the FSE would need to be 
solved anew for each parameter variation αh . Furthermore, the first-derivative 
of ( )xhϕ  with respect to the independent-variables ( x , for this illustrative 
example) would be needed, for each parameter variation αh , in order to 
compute the partial sensitivities of ( )αy . It is thus apparent that, for large-scale 
problems, the FSAP would become very expensive computationally. 

The need to solve repeatedly the FSE can be circumvented by using the 
Adjoint Sensitivity Analysis Procedure (ASAP). The first prerequisite for 
applying the ASAP is that the “indirect-effect” term ( ) ϕϕ hR 0e′  be expressible as a 
linear functional of ϕh . An examination of Eq. (IV.A.55) readily reveals that 

( ) ϕϕ hR 0e′  is indeed a linear functional of ϕh . Therefore, ( ) ϕϕ hR 0e′  can be 
represented as an inner product in an appropriately defined Hilbert space uH ; 
for our illustrative example, uH  is chosen to be the real Hilbert space 

( )Ω≡ 2LHu , with ( )a,0≡Ω , equipped with the inner product 
 

( ) ( ) ( ) ( )

( ) ( ) .,0,,for

,,

2

0

agf

dxxgxfxgxf

u

a

≡ΩΩ≡∈

≡ ∫
LH

  (IV.A.74) 

 
In ( )Ω≡ 2LHu , the linear functional ( ) ϕϕ hR 0e′  defined in Eq. (IV.A.55) can 

be represented as the inner product 
 

( ) ( )[ ] .,000
ϕϕϕ δ hyxhR d α−Σ=′ e   (IV.A.75) 

 
The next step underlying the ASAP is the construction of the operator ( )0α+L  

that is formally adjoint to ( )0αL . Using Eq. (I.B.20) of Volume I readily yields 
 

( ) .2

2
00

dx
dDL ≡+ α     (IV.A.76) 

 
Note that ( )0α+L  and ( )0αL  are formally self-adjoint. The qualifier “formally” 

must still be kept at this stage, since the boundary conditions for ( )0α+L  have 
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not been determined yet. The boundary conditions for ( )0α+L  are derived by 

applying Eq. (IV.A.23) to the operators ( ) ϕhL 0α  and ( )ψ0α+L , to obtain 
 

( ) ( ) ( ) ( )

[ ]{ } .,
0

0
2

2
0

0
2

2
0

ax
x

aa

hP

dxxh
dx

xdDdx
dx

xhd
Dx

=
=

+












=












∫∫

ψ

ψψ

ϕ

ϕ
ϕ

  (IV.A.77) 

 
Note that the function ( )xψ  is still arbitrary at this stage, except for the 

requirement that ( )Ω=∈ 2LHQψ ; note also that the Hilbert spaces uH  and 

QH  have now both become the same space, i.e., ( )Ω== 2LHH Qu . 
Integrating the left-side of Eq. (IV.A.77) by parts twice and canceling terms 

yields the following expression for the bilinear boundary form: 
 

[ ]{ } .,
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0
0

ax

x

ax
x dx

dh
dx

dh
DhP

=

=

=
= 








−=

ψψψ ϕ
ϕ

ϕ   (IV.A.78) 

 
The boundary conditions for ( )0α+L  can now be selected by applying to Eq. 

(IV.A.78) the general principles (i) and (ii) outlined immediately following Eq. 
(IV.A.24). From Eq. (IV.A.58), ϕh  is known at 0=x  and ax = ; however, the 

quantities { } ax
xdxdh =
=0ϕ  are not known. These unknown quantities can be 

eliminated from Eq. (IV.A.78) by choosing 
 

( ) ( ) ,0,00 == aψψ     (IV.A.79) 
 

as boundary conditions for the adjoint function ( )xψ . Implementing Eqs. 
(IV.A.79) and (IV.A.58) into Eq. (IV.A.78) yields 

 

[ ]{ } ( ).;,ˆ, 0

0

0
0

αψψδϕψ αϕ hP
dx
dDhP

x
in

ax
x

≡



=

=

=
=

  (IV.A.80) 

 
Note that the quantity ( )0;,ˆ αψαhP  appearing in Eq. (IV.A.25) does not 

vanish; furthermore, the boundary conditions in Eq. (IV.A.79) for the adjoint 
operator ( )0α+L  differ from the boundary conditions in Eq. (IV.A.58) for 

( )0αL . Hence even though the operators ( )0α+L  and ( )0αL  are formally self-
adjoint, they are not self-adjoint for this illustrative example. 
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The last step in the construction of the adjoint system is the identification of 
the source term, which is done by applying Eq. (IV.A.26) to Eqs. (IV.A.75). 
This identification readily shows that 

 

( ) ( )[ ] ,000 αyxR d −Σ=∇ δϕ e    (IV.A.81) 
 

so that the complete adjoint system becomes 
 

( ) ( )[ ],00
2

2
00 αα yx

dx
dDL d −Σ=≡+ δψψ    (IV.A.82) 

 
where the adjoint function ( )xψ  is subject to the boundary conditions given in 
Eq. (IV.A.79). 

Using Eqs. (IV.A.82), (IV.A.81), (IV.A.80), and (IV.A.77) in Eq. (IV.A.75) 
gives the following expression for the “indirect-effect” term ( ) ϕϕ hR 0e′ : 

 

( ) ( ) ( ) ( ) ( ) ,
0

0
2

02

0

0

=





−












+−=′ ∫

x
in

a

dx
xdDdxQ

dx
xdDxhR ψδϕδϕδψϕϕ e  (IV.A.83) 

 
where ( )xψ  is the solution of the adjoint sensitivity system defined by Eqs. 
(IV.A.82) and (IV.A.79). 

As expected, Eqs. (IV.A.82) and (IV.A.79), which underlie the adjoint 
sensitivity system, are independent of parameter variations αh ; thus, the adjoint 
sensitivity system needs to be solved only once to obtain the adjoint function 
( )xψ . Very important for our illustrative example is also the fact (characteristic 

of linear systems) that the adjoint system is independent of the original solution 
( )x0ϕ , and can therefore be solved directly, without any knowledge of the 

(original) flux ( )xϕ . Of course, the adjoint sensitivity system depends on the 
response, which provides the source term as shown in Eq. (IV.A.82).  

Solving the adjoint sensitivity system, namely Eqs. (IV.A.82) and (IV.A.79), 
for our illustrative example yields the following expression for the adjoint 
function ( )xψ : 

 

( ) ( )[ ] ( )[ ] ( )[ ] ,000
0

0







 −−−−

Σ
=

a
xyayxHyx

D
x d αααψ  (IV.A.84) 

 

where ( )[ ]0αyxH −  is the Heaviside-step functional defined as 
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( ) .
0,1
0,0
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=
xfor
xfor

xH  

 
Noting from Eq. (IV.A.41) that  
 

( ) ,0

0

2

02

D
Q

dx
xd

−=
ϕ  

 
using the above result together with Eq. (IV.A.84) in Eq. (IV.A.83), and 
carrying out the respective integrations over x  yields, as expected, the same 
expression for the “indirect-effect” term ( ) ϕϕ hR 0e′  as obtained (by having used 
the FSAP) in Eq. (IV.A.62), namely in: 
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Using the ASAP, the sensitivities of the critical point ( )αy  can be computed by 

specializing Eqs. (IV.A.30) through (IV.A.32) to our illustrative example. Thus, 
applying Eq. (IV.A.30) to our example shows that 

 

( ) ( )[ ] .00
1 αyx −′≡ δeγ    (IV.A.85) 

 
Furthermore, Eq. (IV.A.31) reduces to  
 

( ) ( ) ( ) ( ) ,
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02

0
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+−= ∫

x
in

a

dx
xdwDdxQ

dx
xdDxwg δϕδϕδ (IV.A.86) 

 
where the function 1w  is the solution of the following particular form taken on 
by the adjoint system shown in Eq. (IV.A.32) for our illustrative example:  

 

( ) ( ) ( ) ( )[ ]
( ) ( )








==

−′=≡+

.0,00

,

11

0
2

1
2

0
1

0

aww

yx
dx

xwdDxwL αα δ  (IV.A.87) 

 
It is important to note that the same operator, namely ( )0α+L , appears in both 

Eq. (IV.A.82) and in Eq. (IV.A.87). Furthermore, the functions ( )xψ  and 1w  
satisfy formally identical boundary conditions, as can be noted by comparing Eq. 
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(IV.A.79) to Eq. (IV.A.87), respectively. Only the source term, ( )0
1 eγ , in Eq. 

(IV.A.87) differs from the corresponding source term ( )0eRu∇  in Eq. (IV.A.82). 
Therefore, the computer code employed to solve the adjoint system given in Eqs. 
(IV.A.82) to compute the adjoint function ( )xψ  can be used, with relatively 
trivial modifications, to compute the function 1w  by solving Eq. (IV.A.87). 
Comparing now the right-sides of Eqs. (IV.A.83) and (IV.A.86) reveals that they 
are formally identical, except that the function ( )xψ , which appears in Eq. 
(IV.A.83), is formally replaced by the function 1w  in Eq. (IV.A.86). This 
indicates that the computer program employed to evaluate the “indirect effect 
term” ( ) ϕϕ hR 0e′  can also be used, with only formal modifications, to evaluate 
the functional 1g , in Eq. (IV.A.86). 

To finalize this illustrative example, we note that the explicit form of 1w  can 
be readily obtained by solving Eq. (IV.A.87), as 

 

( ) ( )[ ] ,1 0
01







 −−=

a
xyxH

D
xw α    (IV.A.88) 

 

where ( )[ ]0αyxH −  is the previously defined Heaviside-step functional. 
Replacing Eq. (IV.A.88) in Eq. (IV.A.86) and carrying out the respective 
integrations over x  yields 
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(IV.A.89) 
 

which is the same expression as was obtained in Eq.(IV.A.69) by having used 
the FSAP. The foregoing derivations have clearly underscored the important 
advantages offered by the ASAP, which should be applied, whenever possible, 
for computing sensitivities efficiently.  

 
 
 

IV. B. ILLUSTRATIVE EXAMPLE: ASAP FOR THE MAXIMUM 
CLAD TEMPERATURE PREDICTED BY A REACTOR SAFETY 

CODE 
 
As has also been illustrated by the example presented in Chapter II, the 

transient behavior of a nuclear reactor system is typically simulated by solving 
coupled time- and spatially-dependent differential equations that model the 
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neutron-, mass-, momentum-, and energy-balances within the system. In 
particular, the RELAP5/MOD3.2 code, which has been analyzed from the point 
of view of the ASAP in Section II.B, simulates the thermal-hydraulic 
characteristics of light water nuclear reactors (LWR) by using a one-
dimensional, nonequilibrium, nonhomogeneous two-phase flow model, together 
with conservation equations for boron concentration and non-condensable gases. 
A similar code system, called MELT IIIB, can be used for simulating the 
transient behavior of sodium-cooled fast reactors. Since sodium remains in its 
liquid-phase during the normal transient operation of a fast reactor, the equations 
solved within the MELT IIIB code system are somewhat simpler than those 
solved within the RELAP5/MOD3.2 code system. Specifically, the MELT code 
solves equations simulating the following phenomena: (a) thermal-hydraulics 
equations describing the conservation of thermal energy, mass, and momentum 
for the average channel fuel pin and surrounding single-phase coolant, for each 
channel type j  ( )NCj ,,1K= , where NC  denotes the maximum number of 
channels in the reactor core; (b) neutron point-kinetics equations describing the 
time-dependent behavior of the core-integrated neutron density; and (c) a loop-
hydraulic equation that relates the core inlet and outlet pressures, inletP  and 

exitP , respectively. The explicit forms for these equations are as follows: 
(a) Suppressing, for notational convenience, the channel index j , the thermal-

hydraulics equations comprise the following conservation equations:  
(i) thermal energy conservation equations for the average channel fuel pin, 

surrounding coolant, and structure, respectively:  
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  (IV.B.2) 
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=−− πρ
   (IV.B.3) 

 
(ii) mass conservation equations for each coolant channel: 
 

( ) ( ) ( ) .,0,,0,0 f
ccc

c ttLz
z
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A ∈∈=
∂

∂
+

∂
∂ ρρ   (IV.B.4) 
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(iii) momentum conservation equations for each coolant channel: 
 

( )

( ) ( ) .,0,,0
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 (IV.B.5) 

 
(b) The point kinetics equations for the reactor core are 
 

,0
1

=−
Λ
−

− ∑
=

NG

i
iiCn

dt
dn λβρ    (IV.B.6) 

 
and 

 

,0=
Λ

−+
nC

dt
dC i

ii
i βλ     (IV.B.7) 

 
for ( )ftt ,0∈ , and ( )NGi ,,1K= , where the NG  denotes the total number of 
precursor groups considered in the simulation.  

(c) The loop-hydraulic equation relating inletP  to exitP  is 
 

( ) ,02 =∆+∆+−− PHWfPP Lexitinlet   (IV.B.8) 
 

where 
 

( )[ ] .
1

0∑
=

=
=

NC

j
zjccj uANW ρ    (IV.B.9) 

 
Note that coupling among the various channels occurs solely through Eq. 

(IV.B.8) and is specifically due to the mass flow rate W  defined in Eq. (IV.B.9). 
In contrast to the thermal-hydraulic equations, the point-kinetics equations and 
the primary-loop hydraulics equations apply to the total reactor domain; thus, 
these equations are time dependent but are channel independent. 

The initial and boundary conditions for Eqs. (IV.B.1) through (IV.B.7) are as 
follows:  

( ) ,~0 TtT ==      (IV.B.10) 

,0
0
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∂
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=rr
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( ) ,~0 cc TtT ==      (IV.B.15) 
( ) ,0 inc TzT ==     (IV.B.16) 

,0=







∂
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=Lz

c
cc z

TkA     (IV.B.17) 

( ) ,~0 ss TtT ==      (IV.B.18) 
( ) ,~0 utu ==      (IV.B.19) 
( ) ,exitPLzP ==     (IV.B.20) 
( ) ,0 inletPzP ==     (IV.B.21) 
( ) ,~0 ntn ==      (IV.B.22) 

( ) .
~~0
i

i
ii

nCtC
λ

β
Λ

===     (IV.B.23) 

 
The physical meaning of the symbols appearing in the above equations is 

provided in the “Nomenclature”, at the end of this Section.  
The total reactor domain, henceforth denoted by Ω , consists of the union of 

all the (pin) domains jΩ , i.e., 
 

U
NC

j
j

1=
Ω=Ω .    (IV.B.24) 

 
The domain jΩ  is the set ( ) ( ){ ;,,0/,, RRRrtzr gfj U∈=Ω  

( ) ( )}fttLz ,0;,0 ∈∈ , and its boundary jΩ∂  consists of the set of points 

{ }fgfj ttLzRRRr ,0;,0;,,,0 ====Ω∂ . Thus, jΩ∈x  for the thermal-
hydraulic equations, since these equations describe the physical behavior of the 
average channel fuel pin, surrounding coolant, and structure for each channel of 
type j . Similarly, jΩ∂∈x  for the boundary and initial conditions associated 

with these thermal-hydraulic equations. Note that there are jN  pins in each 
channel j . 
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Thus, integrals over Ω  are related to integrals over jΩ  through the 
relationship 

 

[ ] [ ]∑ ∫∫
= ΩΩ

=Ω
NC

j
j

j

dtdzdrrNd
1

2π .  (IV.B.25) 

 
The system of coupled nonlinear partial differential equations represented by 

Eqs. (IV.B.1) through (IV.B.9) can be written in operator form as 
 

( )[ ] ( ) ,,, jΩ∈= xQxUN αα    (IV.B.26) 
 

where ( )tzr ,,=x  is the phase-space position vector whose components are the 
radial, axial, and time-independent variables, respectively, and 

( )NGsc CCn ,,,,,,,, 1 KuPTTΤU =  is the state vector whose components are the 
dependent variables. Note that the vectors ,,,, PTTΤ sc  and u  are channel-
dependent; therefore, each of these vectors has NC  components; for example, 

( )NCj TTT ,,,,1 KK=T , where jT  refers to the temperature in the thj  channel. 
Thus, U  is an M -dimensional (column) vector, where 15 +×+= NCNGM . 
In Eq. (IV.B.26), the vector α  denotes, as usual, the system parameters, which, 
in this case, comprise various coefficients, scale factors, boundary and initial 
conditions; the total number of such parameters will be denoted by I . 

The boundary and initial conditions shown in Eqs. (IV.B.10) through 
(IV.B.23) can also be written in operator form as 

 
[ ] ( ) .,, jΩ∂∈= xAUB αα    (IV.B.27) 

 
The responses that will be analyzed in the sequel are the maximum power and 
the maximum temperature attained in the reactor. These responses are of 
fundamental importance both for the reactor’s performance and for reactor 
safety. The equations satisfied by ( )tn  and ( )xT  reveal that both of these 
(dependent) variables are continuous; in particular, their first derivatives with 
respect to the independent variables exist at the locations where ( )tn  and ( )xT  
attain their respective maxima. From the viewpoint of sensitivity analysis, the 
maximum power response, denoted henceforth as ( )enR , and the maximum fuel 
temperature response, denoted as ( )eTR , are functionals of ( )α,Ue = , where e  
denotes the concatenation of the state vector U  and the vector α  of system 
parameters.  

The maximum power response can be represented as 
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( ) ( ) ( )[ ]∫
Ω

Ω−= dtttnKR nn αδe ,   (IV.B.28) 

 
where the constant 

 

( )











−+≡ ∑

j
gfj RRRLNK 2221 π   (IV.B.29) 

 
serves as a normalization factor, and where ( )αnt  represents the phase-space 
location of the maximum; ( )αnt  is defined implicitly as the solution of  

 
( ){ } ( )αnttdttdn == at,0 .   (IV.B.30) 

 
Note that ( )αnt  is a function of α , so variations in the system parameters will 

induce variations in the phase-space location of the maximum power. 
The maximum fuel temperature response for any channel J  can be 

represented as 
 

( ) ( ) ( ) ( )[ ] .1∫
Ω

Ω−= δδ αTJJT NR xxxTge  (IV.B.31) 

 
In Eq. (IV.B.31), Jg  represents an −NC components vector 

 
( )0,,0,1,0,,0 KK=Jg ,    (IV.B.32) 

 
whose only nonzero component is the unit-value taken on by its thJ  component. 
Also, in Eq. (IV.B.31), the vector 

 
( ) ( ) ( ) ( )[ ]αααα TTTT tzr ,,=x    (IV.B.33) 

 
represents the location in the phase-space where the maximum fuel temperature 
in channel J  occurs, while the functional 

 
( )[ ] ( )[ ] ( )[ ] ( )[ ]αααα TTTT ttzzrr −−−=− δδδδ xx  (IV.B.34) 

 
represents the customary three-dimensional Dirac-delta functional. Note that 

( )αTx  is defined implicitly as the solution of the system of equations 
 

( ) ( ) ,0=∂∂ αT
rTJ x    (IV.B.35a) 
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( ) ( ) ,0=∂∂ αT
zTJ x    (IV.B.35b) 

( ) ( ) ,0=∂∂ αT
tTJ x    (IV.B.35c) 

 
which express the conditions necessary for ( )xjT  to have a maximum at ( )αTx . 

Due to the boundary condition ( ) 0
0
=∂∂

=rj rT , the fuel temperature will attain 
its maximum in the radial direction at the center of the fuel rod. Thus, the 
components ( )αTz  and ( )αTt  of ( )αTx  are functions of (the system 
parameters) α , but the radial location of the maximum is always 

 
0≡Tr     (IV.B.36) 

 
regardless of α . 

As discussed in Section IV.A, sensitivity analysis of responses defined at 
critical points has a twofold objective, namely: (i) to determine the sensitivities 
of nR  and TR  (i.e., the sensitivities of the numerical values of the maximum 
power and maximum fuel temperature responses, respectively) to changes in the 
system parameters α ; and (ii) to determine the sensitivities of the critical points 

nt  and Tx  (i.e., the sensitivities of the phase-space locations where the 
respective maxima occur) to changes in the system parameters α . 

Recall that the most general concept for the definition of the sensitivity of a 
response ( )eR  to variations in the system parameters is the Gateaux (G-) 

differential ( )he ;0Rδ  of ( )eR  at 0e , defined as 
 

( ) ( )[ ]{ } 0
00; =+≡ εε

ε
δ hehe R

d
dR ,   (IV.B.37) 

 
where ε  is a real scalar, and ( )αhhh ,U=  represents a fixed, but otherwise 

arbitrary, vector of “changes” around the base-case configuration ( )000 ,αUe = . 
The vectors Uh  and αh  have the same number of components as U  and α , 
respectively; for example, ( )

NGsc CCnuPTTTU hhh ,,,,,,,,
1
Khhhhhh = . Recall also 

that if the G-differential ( )he ;0Rδ  is linear in h , then it is customarily denoted 

by ( )he ;0DR . The necessary and sufficient conditions for a G-differential of an 
operator that acts nonlinearly on ( )α,Ue =  to be linear in h  have been 
generally discussed in Volume I. As will be shown in the sequel by the actual 
computation of the various G-derivatives, all of the operators that act on 

( )α,Ue =  in this problem admit G differentials that are linear in h .  
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The G differential of ( )enR  at 0e , which gives the sensitivity of nR  to 
changes h , is obtained by applying the definition given in Eq. (IV.B.37) to Eq. 
(IV.B.28), to obtain 
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 (IV.B.38) 

 
Using the definition of the δ ′  functional, i.e., 

 
( ) ( ) ( ) ( )∫∫ −−=−′ dxxxdxdfdxxxxf 00 δδ ,  (IV.B.39) 

 
and recalling Eq. (IV.B.30), the last term appearing on the right side of Eq. 
(IV.B.38) can be shown to vanish, since 

 
( ) ( ) ( )[ ] 00 =−=Ω−′∫

Ω
ntn dttdndtttn δ .   (IV.B.40) 

 
Thus, Eq. (IV.B.38) simplifies to 

 
( ) ( ) ( )[ ]∫

Ω

Ω−= dttthKDR nnn
00; αδhe .   (IV.B.41) 

 
The sensitivity ( )he ;0

TDR  of ( )eTR  at 0e  is determined by using Eq. 
(IV.B.31) and by following the same procedure as that leading to Eq. (IV.B.41). 
The result is 

 
( ) ( ) ( )[ ]∫

Ω

Ω−⋅= dNDR TTJJT
01 αxxxhg δ .  (IV.B.42) 

 
The sensitivities of the critical points ( )αnt  and ( )αTx  to changes αh  are 

given by the respective G-differentials of ( )αnt  and ( )αTx  at oα . In view of 
Eqs. (IV.B.30), (IV.B.33), and (IV.B.35), each of the quantities nt , Tz , and Tt  
is a real-valued function of the real variables ( )Iαα ,,1 K  and can therefore be 

regarded as a functional defined on a subset of IR . Applying now the 
definition given in Eq. (IV.B.37) to the functionals ( )αnt , ( )αTz , and ( )αTt  
yields 
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In view of Eqs., (IV.B.33), (IV.B.36), (IV.B.44), and (IV.B.45), the sensitivity 
of the critical point ( )αTx  to changes αh  around 0α  is given by the three-
component column vector 

 
( ) ( )TTT DtDzD ,,0;0 =αhx α .   (IV.B.46) 

 
To determine nDt , Eq. (IV.B.30) is recast in the equivalent form 
 

( ) ( )[ ] .0=Ω−∫
Ω

dttdtdn n αδ    (IV.B.47) 

 
Taking the G differential of Eq. (IV.B.47) gives 
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Solving the above equation for nDt  gives 

 
( ) ( ) ( ) ( )00

22
αα nn ttnn dtnddtdhDt = .  (IV.B.48) 

 
The explicit expressions for TDz  and TDt  are obtained by following the same 

procedure as that leading to Eq. (IV.B.48). Thus, Eqs. (IV.A.35b) and 
(IV.A.35c) are recast in the forms 

 
( )[ ] ( )[ ] 0=Ω−∂⋅∂∫

Ω

dz TJ αxxTg δ  

 
and 
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( )[ ] ( )[ ] 0=Ω−∂⋅∂∫
Ω

dt TJ αxxTg δ . 

 
Taking the G-differentials of the above equations and simultaneously solving the 
resulting equations for TDz  and TDt  leads to 

 

FM 1−=








T

T

Dt
Dz

,   (IV.B.49) 

 
where 

 
( ) ( )
( ) ( )











∂∂−
∂∂−

≡
0

0

α

α

T

T

th
zh

T

T

x

xF    (IV.B.50) 

 
and 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 












∂∂∂∂∂

∂∂∂∂∂
≡

00

00

222

222

αα

αα

TT

TT

tTztT
tzTzT

JJ

JJ

xx

xxM . (IV.B.51) 

 
Computing the G-differentials at oe  of Eqs. (IV.B.26) and (IV.B.27) yields 
 

( ) ( ) ( )[ ] jUU Ω∈′−′=′ xheNQheN ,000
ααα α ,  (IV.B.52) 

 
and 

 

( ) ( ) ( )[ ] .,000
jUU Ω∂∈′−′=′ xheBAheB ααα α   (IV.B.53) 

 
The explicit representation of ( )0eNU′  is the MM ×  matrix whose elements 

are the partial G-derivatives at 0e  of the components of N  with respect to the 
components jU  of U , namely 

 
( ) ( )[ ] ( ) ( ) ( ) ( ).,,1,;; 0000 MjiNLL

jUiijijU K=′≡≡′ eeeeN  (IV.B.54) 

 
The representation of ( )0eNα′  is the IM ×  matrix whose elements are the 

partial G-derivatives at 0e  of the components of ( )eN  with respect to the 
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components of α . The elements of the matrices representing ( )0eBU′ , ( )0ααQ′ , 

and ( )0ααA′  are obtained in a similar manner. Note that ( ) UU heN 0′  and 

( ) UU heB 0′  are linear in Uh  and are independent of αh ; on the other hand, 

( ) αα heN 0′  and ( ) αα heB 0′  are linear in αh , and are independent of Uh . 
For a given vector of changes αh , Eqs. (IV.B.52) and (IV.B.53) could be 

solved to determine Uh ; Uh  could then be used to evaluate the sensitivities 

nDR , TDR , TDx , and nDt . However, due to the large number of system 
parameters, it would be prohibitively expensive to repeatedly solve Eqs. 
(IV.B.52) and (IV.B.53) for all vectors αh  of possible interest to the sensitivity 
analysis of the problem at hand. The alternative procedure, which avoids the 
need to solve Eqs. (IV.B.52) and (IV.B.53) repeatedly, relies on the 
implementation of the ASAP, in order to evaluate the above-mentioned 
sensitivities by using appropriately constructed adjoint operators. 

As Eqs. (IV.B.41), (IV.B.42), (IV.B.48), and (IV.B.49) respectively indicate, 
each of the functionals nDR , TDR , nDt , TDz , and TDt  is linear in Uh . 
Considering now that HU ∈h , where H  denotes an appropriately defined 
Hilbert space equipped with the inner product 

 

HHdwv
M

j
jj ∈∈Ω=∑∫

= Ω

WVWV ,,,
1

, (IV.B.55) 

 
it follows that the Riesz representation theorem ensures that each of the 
functionals nDR , TDR , nDt , TDz , and TDt  can be written as the inner product 
of Uh  with a uniquely defined vector in H . Thus, the functional nDR  given by 
Eq. (IV.B.41) can be represented as 

 
*, nUnDR Sh= ,   (IV.B.56) 

 
where the M -component vector *

nS  is defined as 
 

( )[ ] ( )Tnn ttK 0,,0,1,,,,,0* K00000S α−≡ δ .  (IV.B.57) 
 

Similarly, the functional TDR  given by Eq. (IV.B.42) can be represented as 
 

*, TUTDR Sh= ,   (IV.B.58) 
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where the M -component vector *

TS  is defined as 
 

( ) ( )[ ] ( )TJTJT N 0,,0,,,,,1 0* K0000gxxS α−≡ δ . (IV.B.59) 
 

With the help of the δ ′  functional, Eq. (IV.B.48) can be written in the inner 
product form as 

 
( ) ( )0

22*, αntUn dtndDt Gh= ,   (IV.B.60) 

 
where 

 
( )[ ] ( )TnttK 0,,0,1,,,,,0* K00000G α−′≡ δ . (IV.B.61) 

 
Similarly, Eq. (IV.B.49) can be expressed as 

 














=







 −
*
2

*
11

,

,

Fh

Fh
M

U

U

T

T

Dt
Dz

,   (IV.B.62) 

 
where 

 
( ) ( )[ ] ( )[ ] ( )( )TJTTJ rttzzN 0,,,1 00*

1 K0gF δδδ αα −−′≡ , (IV.B.63) 
 

and 
 

( ) ( )[ ] ( )[ ] ( )( )TJTTJ rzzttN 0,,,1 00*
2 K0gF δδδ αα −−′≡ . (IV.B.64) 

 
To proceed with the construction of the appropriate adjoint system, recall that 

both Eqs. (IV.B.52) and (IV.B.53) are linear in Uh . Consequently, the following 
relationship holds for an arbitrary vector H∈V : 

 
( ) ( ) ( )[ ] Ω∂+=′ VhVeLhheNV ;,, 0*0

UUUU P . (IV.B.65) 

 
In Eq. (IV.B.65), ( )0* eL  is the operator formally adjoint to ( )0eNU′ , and 
( )[ ] Ω∂Vh ;UP  represents the associated bilinear form that consists of terms 

evaluated on the boundary Ω∂  of Ω . Note that the use of the inner product 
defined by Eq. (IV.B.55) in conjunction with Eq. (IV.B.65) requires the use of 
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appropriate normalization constants for those components of ( ) UU heN 0′  which 
are functions of only some, rather than all, of the independent variables ( )tzr ,, . 

Specifically, the formal adjoint operator ( )0* eL  is the MM ×  matrix 
 

( ) ( ) ( )MjiLll jiijij ,,1,,; *0* K===eL ,  (IV.B.66) 
 

obtained by transposing the formal adjoints of the operators ( )0eijL  given by Eq. 
(IV.B.54). The explicit representation of the adjoint sensitivity system is given 
below: 

 

( ) ( ) ( )
( ) ( ) ( ) ( ),,0;,0;,,0

;1
1

*
00*

0
*

00

fgf

p

ttLzRRRr

Sn
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n
r

Hr
rr

Tk
t

HTCT

∈∈∪∈

=






∂
∂

Λ
−











∂
∂

∂
∂

−
∂
∂

−
ρρ

 (IV.B.67) 

( )
( ) ( )

( ) ( ),,0,,0
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2
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∂
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−
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 (IV.B.68) 

( )
( ) ( ),,0,,0

;2 3
**

*

f

css
s

psss

ttLz

SHHhR
t

HCA

∈∈

=−+
∂
∂

− πρ
    (IV.B.69) 

( ) ( )

( )

( ) ( ),,0,,0
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2

*
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*

*
2
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f
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cccc
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SH
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−+
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∂
∂

−
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−
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−

∑

ρ

δρ

ρρρ

    (IV.B.70) 

( ) ( ),,0,,0;*
5 fttLzS

z
p

∈∈=
∂
∂

−     (IV.B.71) 
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( )
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 (IV.B.72) 

( ) ( ) ( ),,0,,,1;6
**

*

fiii
i ttNGiSnC

dt
dC

∈==−+− + Kλ  (IV.B.73) 

 
and, for the thj channel, the “adjoint loop-balance” relationship 

 

( ) .0at    02
1

*** ==−+ ∑
=

zpNWAfmAup
NC

i
iicLjc   (IV.B.74) 

 
The source terms of the form iS , which appear on the right-sides of Eqs. 

(IV.B.67) through (IV.B.73), will be determined in the sequel, below, by the 
specific response under consideration. Furthermore, the superscript “0” is used 
in Eq. (IV.B.67) to denote explicitly that the components of ( )0* eL  depend on 

the nominal value 0e  of ( )α,Ue = . Although the explicit display of this 
dependence has been omitted in subsequent equations, in order to keep the 
notation simple, it should be understood that all 0e -dependent values in the 
expression of ( )0* eL  are known from the base-case solution. Also, note that the 
term involving ( )0tt −δ  in Eq. (IV.B.72) is due to the particular problem (i.e., a 
protected transient with scram on high-power) analyzed in this illustrative 
example. 

Of course, there is a one-to-one correspondence between Eqs. (IV.B.67) 
through (IV.B.73) and Eqs. (IV.B.1) through (IV.B.7), respectively. Thus, just 
like in the case of Eqs. (IV.B.1) through (IV.B.5), Eqs. (IV.B.67) through 
(IV.B.71) are actually vector equations (in that they refer to NC  distinct 
channels) although, as written here, this fact was not explicitly indicated. Note 
also that coupling between channels in the adjoint sensitivity system occurs 
solely via Eq. (IV.B.74); this fact is explicitly indicated in Eq. (IV.B.74) by the 
use of the index j . Thus, Eq. (IV.B.74) is the counterpart of Eq. (IV.B.8). 

The adjoint sensitivity system represented by Eqs. (IV.B.67) through (IV.B.74) 
can be written in matrix form as 
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( ) ,0* SVeL =     (IV.B.75) 

 
where 

( )**
1

****** ,,,,,,,, NGCCn KmpHHHV sc=   (IV.B.76) 
 

is, at this stage, an arbitrary vector with components and structure as shown 
above, while the vector 

 
( )13654321 ,,,,,,, SS KSSSSSS =    (IV.B.77) 

 
has the same structure as V . 

The domain of ( )0* eL  is determined by selecting adjoint boundary conditions 
such as to satisfy the following requirements: (i) be independent of Uh , αh , and 
G-derivatives with respect to α , and (ii) substitution of Eq. (IV.B.53) together 
with the selected adjoint boundary conditions into the expression of 

( )[ ] Ω∂Vh ;UP  must cause all terms containing unknown values of Uh  to vanish. 
Implementing these requirements leads to the following explicit expressions for 
the resulting adjoint boundary conditions and final-time conditions for Eqs. 
(IV.B.67) through (IV.B.73): 

 
,at    ftt == 0V     (IV.B.78) 

,0at     0* == zHc     (IV.B.79) 

,at   0*
*

* Lzm
T

u
z

HkHCu
c

cc
ccpcc ==

∂
∂

+
∂
∂

+
ρρ  (IV.B.80) 

,at    0** LzupmAc ==+    (IV.B.81) 

( ) ,0**
*

=−









+

∂
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=
=

g
f

Rrg
Rr

g HhHh
r

Hk   (IV.B.82) 

,0**
*

=−









+

∂
∂

=
c

Rr

hHhH
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Hrk    (IV.B.83) 

.0
0

*
=











∂
∂

=r
r

H     (IV.B.84) 

 
The above adjoint boundary conditions can be represented in operator form as 

 
( ) ( ) jΩ∂∈= xeAeVB ,; 0*0* .   (IV.B.85) 
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Substituting Eqs. (IV.B.85) and (IV.B.53) into Eq. (IV.B.65) reduces the later to 
the form 

 
( ) ( ) ( )[ ] ( )0000* ;,ˆ,, eVhheNQVVeLh αααα PU −′−′= α , (IV.B.86) 

 
where Eq. (IV.B.52) has been used to replace the quantity ( ) UU heN 0′ , and 

where ( )0;,ˆ eVhαP  contains boundary terms involving only known values of 

αh , V , and 0e . 
Equations (IV.B.75), (IV.B.85), and (IV.B.86) hold for all (i.e., arbitrary) 

vectors H∈V . Five such vectors will now be determined, in a unique manner, 
to eliminate the vector Uh  from Eqs. (IV.B.56), (IV.B.58), (IV.B.60), and 
(IV.B.62), respectively, in order to obtain, correspondingly, alternative 
expressions for the sensitivities nDR , TDR , nDt , and TDx . 

The alternative expression for nDR  is obtained by using Eq. (IV.B.56) and by 
considering Eqs. (IV.B.85) and (IV.B.86) as written specifically for the vector 

Hn ∈
*V , namely  
 

( ) ( ) ( )[ ] ( )0*00**0* ;,ˆ,, eVhheNQVVeLh nnnU P αααα −′−′= α , (IV.B.87) 

 
and 

 
( ) ( ) jn Ω∂∈= xeAeVB ,; 0*0** .   (IV.B.88) 

 
Comparing the left side of Eq. (IV.B.87) with the right side of Eq. (IV.B.56) 
shows that 

 
( ) jnn Ω∈= xSVeL ,**0* .   (IV.B.89) 

 
Equations (IV.B.56), (IV.B.87), and (IV.B.89) can now be used to express nDR  
as 

 
( ) ( )[ ] ( )0*00* ;,ˆ, eVhheNQV nnn PDR αααα −′−′= α .  (IV.B.90) 

 
With the derivation of Eq. (IV.B.90), the unknown values Uh  that appeared in 
the original expression of nDR  [namely, in Eq. (IV.B.56)] have been eliminated. 
Consequently, the adjoint system given by Eqs. (IV.B.88) and (IV.B.89)] needs 
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to be solved once only, and the adjoint vector *
nV  thus determined is used in Eq. 

(IV.B.90) to compute efficiently the sensitivity nDR  of ( )enR  to changes αh  

around oα . 
To derive an alternative expression for TDR , the same procedure as outlined 

in the foregoing paragraph is applied to Eqs. (IV.B.58), (IV.B.85), and (IV.B.86) 
to obtain 

 
( ) ( )[ ] ( )0*00* ;,ˆ, eVhheNQV TTT PDR αααα −′−′= α ,  (IV.B.91) 

 
where the adjoint function *

TV  satisfies the adjoint system 
 

( ) jTT
o Ω∈= xSVeL ,*** ,   (IV.B.92) 

 
including the final-time and adjoint boundary conditions 

 
( ) ( ) jT Ω∂∈= xeAeVB ,; 0*0** .   (IV.B.93) 

 
Repeating the above procedure, an alternative expression is obtained for nDt  

by using Eq. (IV.B.60), and by considering Eqs. (IV.B.85) and (IV.B.86) as 
written specifically for the vector H∈*Y . The ensuing result is 

 
( ) ( )[ ] ( ){ } ( ) ( )0

22000 ;,ˆ, αα
nt

**
n dtndPDt eYhheNQY αααα −′−′= , (IV.B.94) 

 
where the adjoint function *Y  satisfies the adjoint system 

 
( ) jΩ∈= xGYeL ,**0* ,   (IV.B.95) 

 
subject to 

 
( ) ( ) jΩ∂∈= xeAeYB ,; 0*0** .   (IV.B.96) 

 
The above procedure is repeated once again to derive an alternative expression 

for the left side of Eq. (IV.B.62). The final result is 
 

( ) ( )[ ] ( )
( ) ( )[ ] ( )
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, (IV.B.97) 
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where the adjoint function H∈*

1W  satisfies the adjoint system 
 

( ) jΩ∈= xFWeL ,*
1

*
1

0* ,   (IV.B.98) 
 

subject to 
 

( ) ( ) jΩ∂∈= xeAeWB ,; 0*0*
1

* ,   (IV.B.99) 
 

while the adjoint function H∈*
2W  satisfies the adjoint system 

 
( ) jΩ∈= xFWeL ,*

2
*
2

0* ,   (IV.B.100) 
 

subject to 
 

( ) ( ) jΩ∂∈= xeAeWB ,; 0*0*
2

* .   (IV.B.101) 
 

Note from Eq. (IV.B.97) that each sensitivity TDz  and TDt  depends on both 
*

1W  and *
2W . Thus, two adjoint calculations are needed to evaluate the 

sensitivity TDx  [via Eq. (IV.B.62)] of the critical point x  (where the fuel 

temperature attains a maximum) for all changes αh  around 0α . 

Note that the same operator, namely ( )0* eL , appears on the left sides of Eqs. 
(IV.B.89), (IV.B.92), (IV.B.95), (IV.B.98), and (IV.B.100); only the source 
terms appearing on the right sides of these equations differ from one another. 
Furthermore, as evidenced by a comparison of Eqs. (IV.B.88), (IV.B.93), 
(IV.B.96), (IV.B.99), and (IV.B.101), the adjoint functions *

nV , *
TV , *Y , *

1W , 

and *
2W  satisfy formally identical boundary conditions. Therefore, apart from 

the relatively trivial modifications required to accommodate the distinct source 
terms *

nS , *
TS , *G , *

1F , and *
2F , the same computer code can be used to solve 

all the respective adjoint systems to determine the functions *
nV , *

TV , *Y , *
1W , 

and *
2W . An examination of the right sides of Eqs. (IV.B.90), (IV.B.91), 

(IV.B.94), and (IV.B.97) reveals that the function ( ) ( )[ ] ααα heNQ 00 ′−′ α  appears 
in all of the respective inner products denoted by , ; furthermore, the residual 

bilinear concomitants P̂  appearing in those inner products are formally 
identical. Therefore, the computer code used to evaluate the sensitivity nDR  can 
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also be used to evaluate the sensitivities TDR , nDt , and tDx . Of course, the 

values of *
nV  required to compute nDR  are to be replaced by the respective 

values of *
TV , *Y , *

1W , and *
2W . 

The components of the adjoint functions *
nV , *

TV , *Y , *
1W , and *

2W  can be 
interpreted as “importance functions,” by recalling that each of these adjoint 
functions can be represented generically as the M -component vector 

 
( )**

1
***** ,,,,,,,, NGsc

* CCn KmpHHHV = .  (IV.B. 76) 
 

Thus, when evaluating the response sensitivities nDR  and TDR , V  represents 
*
nV  and *

TV , respectively. In this case, a dimensional analysis of Eqs. (IV.B.90) 
and (IV.B.91), respectively, shows that the dimensions [ ]jV  of each component 

( )MjV j ,,1K=  of V  are 
 

[ ] [ ]
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ionnormalizat
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V j . (IV.B.102a) 

 
Similarly, V  represents *Y , *

1W , and *
2W  when evaluating the critical point 

sensitivities nDt , TDz , and TDt , respectively. In this case, a dimensional 
analysis of Eqs. (IV.B.94) and (IV.B.97) shows that 

 

[ ] [ ] [ ]

























=

constant
ionnormalizat

nintegratio
ofregion 

equation forward
th' in the terms

point critical ofcomponent response
j

V j . (IV.B.102b) 

 
The considerations leading to Eqs. (IV.B.102a) and (IV.B.102b) hold generally 

for any maximum-type response. According to Eq. (IV.B.102a), each component 
of the adjoint function used to compute response sensitivities can be viewed as a 
measure of the importance of the physical quantity described by the 
corresponding forward equation in contributing to the response. Furthermore, 
according to Eq. (IV.B.102b), each component of the adjoint function used to 
compute critical point sensitivities can be viewed as a measure of the importance 
of the physical quantity described by the corresponding forward equation in 
contributing to the response movement in phase space. As a specific example, 
consider the coolant temperature equation for channel j  [see Eq. (IV.B.4)] and 

the corresponding component *
cjH  of V . The dimensions of the terms in this 
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equation are [ ]1-1- scmJ ⋅⋅ . The respective region of integration is volume and 

time, with dimensions [ ]scm3 ⋅ . The dimension of the appropriate normalization 

constant, i.e., ( )2221 gf RRR +−π , is [ ]2-cm . Thus, Eq. (IV.B.102a) gives 
 

[ ] [ ]
[ ][ ][ ]

[ ]
[ ]J

response
cmscmscmJ

response
2-31-1-

* =
⋅⋅⋅

=cjH . 

 
For the responses nR  and TR , the dimensions of *

cjH  are [ ]JMW  and [ ]JK , 

respectively. For the critical point nt , Eq. (IV.B.102b) indicates that *
cjH  has 

units of [ ]JsMW 1-⋅ , while the units of *
cjH  corresponding to the components 

Tz  and Tt  of the critical point Tx  are [ ]JcmK 1-⋅  and [ ]JsK 1-⋅ , 

respectively. This dimensional analysis shows that *
cjH  is a measure of enthalpy 

importance in the coolant region of the thj  channel. Similar analyses indicate 

that, for each channel, the components of *H , *
sH , *m , and *p  are measures 

of enthalpy importance in the fuel pin region, enthalpy importance in the 
structure region, coolant mass importance, and momentum flux importance, 
respectively. Furthermore, *n  and **

1 ,, NGCC K  are measures of power 
importance and precursor amplitude importances, respectively. Therefore, the 
adjoint variables *H , *m , etc., can justifiably be called “adjoint enthalpy,” 
“adjoint mass,” etc. 

As already discussed in the closing paragraphs of Section IV.A, it is instructive 
to examine the differences between the sensitivities of the “maximum response” 
considered in the foregoing, and a response which simply happens to be located 
at the position in phase-space where the maximum of the respective dependent 
variable occurs in the base-case calculation, but the position itself  is considered 
to remain invariable, regardless of variations ihα  in the system parameters iα . 
Specifically, consider the responses 

 
( ) ( ) ( ) ( )∫

Ω

Ω−⋅= dNP TJJT yxxTge δ1 ,  (IV.B.104) 

 
and  

 
( ) ( ) ( )∫

Ω

Ω−= dttnKP nn τδe ,   (IV.B.105) 
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respectively, where Ty  and nτ  represent the same physical locations as ( )αTx  
and ( )αnt , respectively, but where the points Ty  and nτ  are considered to be 
independent of α . Based on the concluding paragraphs of Section IV.A, the 
following relationships are valid at 0e  for the pair of responses ( )eTP  and 

( )eTR : 
 

( ) ( )00 ee TT PR = ,   (IV.B.106a) 

( ) ( )hehe ;; 00
TT DPDR = ,  (IV.B.106b) 

( ) ( ) ( )200
αhhehe OPR TT =+−+ .  (IV.B.106c) 

 
Equation (IV.B.106a) indicates that the nominal values of ( )eTP  and ( )eTR  are 
identical. Equation (IV.B.106b) indicates that, for a given vector αh , the 
sensitivities of these two responses are also identical. As generally discussed in 
Section IV.A, the equality expressed by Eq. (IV.B.106b) holds only because 

( )0αTx  is a critical point of ( )xT . The fact that ( )eTR  and ( )eTP  are 
nevertheless two distinct responses is clearly demonstrated by the relationship 
given by Eq. (IV.B.106c). This relationship shows that, if the system parameters 
α  are changed by αh  from their base-case value 0α , and if the values of these 

two responses are recalculated for the new configuration ( )he +0 , then the 

difference between the recalculated values ( )he +0
TR  and ( )he +0

TP  is of 
second order in αh . 

Similar relationships and, consequently, similar conclusions hold for the pair 
of responses ( )enR  and ( )enP , i.e., 

 
( ) ( )00 ee nn PR = ,   (IV.B.107a) 

( ) ( )hehe ;; 00
nn DPDR = ,  (IV.B.107b) 

( ) ( ) ( )200
αhhehe OPR nn =+−+ .  (IV.B.107c) 

 
As will be seen from the numerical results to be presented in Section IV.B.2, 
below, the second-order terms in Eq. (IV.B.106c) are practically negligible, 
while those in Eq. (IV.B.107c) are not. 

Typical quantitative sensitivity analysis results obtained by applying the ASAP 
to the simulation of a subprompt-critical transient in the Fast Flux Test Facility 
(FFTF) will be presented in the sequel. The geometry of the FFTF is modeled 
using the MELT code, with a two-channel representation of the reactor flow 
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path. Channel two (for which 2=J ) is designated as the hot channel and 
consists of 227 pins. Channel one represents the remainder of the FFTF core and 
consists of 15624 pins. Only one flow loop is considered. The dimensions of the 
outer radii for the fuel, gap, and cladding are cm249.0=fR , cm254.0=gR , 
and cm292.0=R . The channel height is cm800=L ; the bottom of the core is 
located axially at cm16.105=z , and the core length is cm44.91 . 

The simulated sub-prompt-critical transient power excursion involves a 
sdollar23.0 ramp reactivity insertion with scram that trips the control rods and 

primary pumps on high-power level. The power profile for this transient is given 
in Figure IV.B.1. Although the high-power level for trip is attained at 

s 851.00 =t , a time delay of s 19.0=∆t  postpones the actual control rod 
insertion and pump shutdown until s 870.0  after initiation of the transient 
conditions. Just after this point in time, the power ( )tn  attains its maximum 
value of MW 7.467 . Note that the scram component ( )tscramρ of the system’s 
total reactivity ( )tρ is just a reactivity ramp 0ρ that is switched on at tt ∆+0 , 
i.e., 

 
( ) ( ) ( ),000 tttHttttscram ∆−−∆−−= +ρρ  (IV.B.108) 

 
where 

 

( )




≥
<

=+ 0,1
0,0

t
t

tH 

 
is the Heaviside unit-step functional. The large magnitude of 0ρ and the 
discontinuous time derivatives of scramρ are the main causes for the highly 
nonlinear behavior of the power ( )tn  and of the asymmetric shape of its 
maximum, which can be readily noted in Figure IV.B.1. 

An examination of the temperature distribution ( )tztT ,,  for this transient 
shows that the fuel temperature in the hot channel attains a maximum value of 

K 1.2734 . Spatially, this maximum is located at 0=Tr  at cm 155=Tz , i.e., at 
the center of the fuel rod and just above the core mid-plane. The time variation 
of the temperature at this spatial location is plotted in Figure IV.B.2, which 
shows that the maximum occurs in time at s 870.0=Tt . Note that this maximum 
fuel temperature occurs later in time than the maximum power (compare Figs. 
IV.B.2 and IV.B.3) due to the time delay in the power-to-thermal energy 
integration. 
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Figure IV.B.1. Power profile for the coupled neutron kinetics/thermal-

hydraulics transient with reactor scram on high-power level. 
 

 
Figure IV.B.2. Time variation of the temperature at the spatial location 

( 0=Tr , cm 155=Tz ). 
 
The sensitivities of the numerical value of the maximum fuel temperature 

response ( )eTR  are calculated using Eq. (IV.B.91), where the adjoint function 
*

TV  is the solution of the adjoint system represented by Eqs. (IV.B.92) and 

(IV.B.93). Numerical values for the quantities appearing in the source term *
TS  
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are ( ) ( )870.0,155,00 =αTx , 227=JN , and ( )1,0=Jg . Recall that the same 

adjoint function, *
TV , would be used to compute the sensitivities of either ( )eTR 

or ( )eTP . 
Illustrative sensitivity results for those parameters that have the largest impact 

on the numerical value of the maximum fuel temperature response, TR , are 
presented in Table IV.B.1. Note that, for every value of the index i , these 
results correspond to a vector of parameter variations αh  whose components are 
all zero except for the i -component 

i
hα . The parameters are ranked in order of 

decreasing absolute magnitude of relative sensitivity. Based on these relative 
sensitivities, it can be concluded that the numerical value of the maximum fuel 
temperature is practically insensitive to variations in any of the system 
parameters except for variations in T~ , 0n , and fuelk . 

The results presented in Table IV.B.1 also serve to illustrate the use of 
sensitivities for predicting the effects of parameter variations on the response, 
highlighting both similarities and fundamental distinctions between the 
responses ( )eTR  and, respectively, ( )eTP . The basis for using sensitivities to 
predict the effects of parameter variations αh  on these responses is the general 
relationship expressed by Eqs. (IV.A.37) and (IV.A.38), which take on the 
following particular forms, respectively: 

 
( ) ( ) ( ) ,200

αhehe ODRRR TTT +=−+   (IV.B.109) 
 

and 
 

( ) ( ) ( ).200
αhehe ODPPP TTT +=−+   (IV.B.110) 

 
The ( )2

αhO  terms in Eqs. (IV.B.109) and (IV.B.110) result from the facts that: 
(a) TDR  and TDP  are both linear in h ; and (b) the vectors Uh  and αh  are 
linearly related via Eqs. (IV.B.52) and (IV.B.53). As Eq. (IV.B.109) indicates, 
the sensitivity TDR  predicts changes (i.e., deviations from the base-case value) 
that occur in the numerical value of the response TR  when the base-case 

parameter values 0α  are varied by αh . These predictions, though, do not take 
into account effects of second- and higher order terms in αh . For each specific 

fractional variation 0
ii

h αα , the fifth column of Table IV.B.1 correspondingly 
lists the (sensitivity-based) predicted changes in the numerical value of the 
response TR . 
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On the other hand, the results presented under the heading 
“ ( ) ( )00 ehe TT RR −+ ” are the exact differences, obtained by direct 

recalculations, between the base-case numerical value of the response, ( )0eTR , 

and the numerical value of the new maximum, ( )he +0
TR , which is attained at 

( )αhxT +0α . Thus, for each specific 0
ii

h αα , these results represent the 
corresponding numerical value taken on by the left-side of Eq. (IV.B.109). Note 
that for each iα , the results presented in the fifth and sixth columns of Table 
IV.B.1 are in close agreement. This close agreement indicates that the nonlinear 
terms in 

i
hα  [see Eq. (IV.B.109)] have relatively little practical impact on the 

numerical value of the maximum fuel temperature response, and highlights the 
usefulness of sensitivities for predicting the actual numerical value of the 
“perturbed” response ( )he +0

TR . 
The results presented in Table IV.B.1 also serve to highlight similarities and 

distinctions between ( )eTR  and ( )eTP . Using those results, the relative 

sensitivities ( ) ( )[ ]( )iiTT hPDP αα 000 ; ehe  of TP  can be readily calculated and, in 
view of Eqs. (IV.B.106a) and (IV.B.106b), they are identical to the 
corresponding relative sensitivities of TR  presented here in Table IV.B.1. For a 
given 

i
hα , the predicted changes in the numerical value of the respective 

responses TR  and TP  are also identical; this is because of Eqs. (IV.B.106b), 
(IV.B.109), and (IV.B.110). 

The results presented in the last column of Table IV.B.1 represent the value of 

the quantity ( ) ( )[ ]00 ehe TT PP −+ . A comparison between the fifth and the last 
columns of Table IV.B.1 shows that, for each iα , the respective results are in 
close agreement. In view of Eq. (IV.B.110), this close agreement indicates that 
the second- and higher order terms in 

i
hα  have relatively little impact on 

( )eTP . Recall that the same conclusion was reached when the effects of such 
terms on the numerical value of ( )eTR  were examined. 

A comparison between the results presented in the last two columns in Table 

IV.B.1 evidences the fact that the quantities ( ) ( )[ ]00 ehe TT RR −+  and 

( ) ( )[ ]00 ehe TT PP −+  are not identical. According to Eqs. (IV.B.106a), 
(IV.B.106b), and (IV.B.106c), the differences between these two quantities arise 
from second- and higher order terms in 

i
hα . Although small, the numerical 

differences between these two quantities are nonetheless sufficiently noticeable 
to highlight the existence of conceptual and, consequently, mathematical 
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distinctions between the maximum fuel temperature response ( )eTR  and the 
response ( )eTP . 

Sensitivity analysis results for the critical point ( )αTx , at which the fuel 
temperature attains its maximum in phase space, are discussed next. As shown in 
Eq. (IV.B.97), the sensitivity ( )αhx ;0αTD  has two nonzero components, 

namely TDz  and TDt . The adjoint functions *
1W  and, respectively, *

2W , which 
must be determined prior to using Eq. (IV.B.97), are obtained by solving the 
adjoint systems represented by Eqs. (IV.B.98) and (IV.B.99) and, respectively, 
Eqs. (IV.B.100) and (IV.B.101). The source terms *

1F  and *
2F   are computed 

by using 227=JN , ( ) cm 1550 =αTz , ( ) s 870.00 =αTt , and ( )1,0=Jg . 
 

Table IV.B.1 
Sensitivities for the Maximum Fuel Temperature Response ( )eTR . 

Recalculated change in 
response value (K) 

 
 
i 

 
 

iα 

Relative 
sensitivity 

( )
( )

i
hR

DR i

T

T

α

α 0

0

0;
e

he

 

 

0
i

i
h

α
α  

(%) 

Predicted 
change in 
response 
value (K) 

( )he ;0
TDR

 

( )
( )0

0

e

he

T

T

R

R

−

+

 

( )
( )0

0

e

he

T

T

P

P

−

+
 

1 T~  0.746 0.5 10.20 10.0 9.7 
2 0n 0.155 0.3 1.27 1.3 1.2 

3 fuelk -0.128 5.0 -17.5 -17.0 -18.3 

4 pCρ -0.015 1.0 -0.41 -0.4 -0.4 

5 inT 0.013 1.0 0.35 0.2 0.2 

6 gh -0.012 5.0 -1.58 -1.5 -1.6 

7 t∆ 0.008 10.0 2.23 2.3 2.0 
8 β 0.007 1.0 0.20 0.2 0.2 
9 n~ -0.007 0.4 -0.08 -0.1 -0.1 
10 progρ -0.006 5.0 -0.82 -0.4 -1.0 

11 pcC -0.005 10.0 -1.29 -0.8 -1.3 

 
For illustrative purposes, the profiles of the adjoint momentum in channels one 

and two, adjoint power, and adjoint precursors are depicted in Figures IV.B.3 
through IV.B.5, below. These profiles reveal that each of the respective adjoint 
functions undergo rapid and sizable variations around 518.0 s. At this point in 
time, a scram source, represented by a Dirac-delta functional in time, is triggered 
in the adjoint equation satisfied by the adjoint power ( )tn* . The effect of this 
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scram source is clearly seen in Figure IV.B.4, as a large positive spike. This 
spike then quickly propagates, causing the large and rapid shape changes in the 
other components of *

2W . 
 

 
Figure IV.B.3. Profiles of the adjoint function *

2W  [see Eqs. (IV.B.100) and 
(IV.B.101)]: adjoint momentum in channels one and two. 

 

 
Figure IV.B.4. Profiles of the adjoint function *

2W  [see Eqs. (IV.B.100) and 
(IV.B.101)]: adjoint power. 
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Figure IV.B.5. Profiles of the adjoint function *

2W [see Eqs. (IV.B.100) and 
(IV.B.101)]: adjoint precursors.  

When the numerical calculations based on Eq. (IV.B.97) were performed, it 
was found that all of the sensitivities TDz and most of the sensitivities TDt are 
negligibly small. Several of the sensitivities TDt , though, were found to be quite 
large. This implies that variations in the system parameters will affect almost 
exclusively the time component ( )αTt of ( )αTx ; they will have negligible 
effects on the axial component ( )αTz , and, as already discussed, they have no 
effects on the radial component Tr . 

Table IV.B.2 presents sensitivity results for those parameters that have the 
largest impact on ( )αTt . Just as in Table IV.B.1, these results correspond to a 

vector of changes αh  whose components are zero except for the thi component, 

i
hα . The parameters are ranked in order of decreasing absolute magnitude of 
relative sensitivity, a process equivalent to ranking the importance of their 
effects on ( )αTt . 

The relative sensitivity results presented in Tables IV.B.1 and IV.B.2 indicate 
that, in both tables, the largest relative sensitivities involve the parameters T~  
and 0n . Thus, if varied, T~  and 0n  would have the largest impact on the 
numerical value of the maximum fuel temperature response, and would also 
cause the largest time shifts in the phase-space location of the resulting (i.e., 
new) maximum. Since all the relative sensitivities in Tables IV.B.1 and IV.B.2 
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to T~  and 0n  are positive, it follows that when a positive variation in T~  and/or 

0n  is affected, the resulting maximum fuel temperature is both larger and occurs 
later in time than the original (nominal) maximum fuel temperature. 

 
Table IV.B.2. 

Sensitivities for the Time Component ( )αTt  of ( )αTx . 
 
 
i 

 
 

iα 

 
Relative 
sensitivity  

 
0
ii

h αα 
(%) 

 
Predicted 
change (s) 

 
Recalculated  
change (s) 

1 T~  4.828 0.5 0.021 0.02 
2 0n 4.598 0.3 0.012 0.01 
3 n~ -3.448 0.4 -0.012 -0.01 
4 inT 1.149 1.0 0.01 0.01 
5 β 0.575 1.0 0.005 0.01 
6 progρ -0.575 5.0 -0.025 -0.03 
7 fuelk -0.552 5.0 -0.024 -0.02 

8 gh -0.322 5.0 -0.014 -0.01 

9 pcC -0.276 10.0 -0.024 -0.02 

10 t∆ 0.230 10.0 0.02 0.02 
11 pCρ -0.115 1.0 -0.001 0.00 

 
Comparing the second and the third columns in Table IV.B.1 to the respective 

columns in Table IV.B.2, it becomes apparent that, except for T~  and 0n , the 
parameter ranking in Table IV.B.1 differs from the ranking in Table IV.B.2, 
although the same ranking procedure was used for both tables. The implications 
of this fact can be illustrated by considering the system parameters fuelk  and 

inT . In Table IV.B.1, fuelk  is ranked ahead of inT , but this ranking is reversed in 

Table IV.B.2. Consequently, a fractional variation in fuelk  causes a larger 
change in the numerical value of the maximum fuel temperature, but causes a 
smaller time shift of the maximum than does the same fractional variation in inT . 

Comparison of the relative sensitivities in Tables IV.B.1 and IV.B.2 also 
shows that, in general, the parameters affect the time location of the maximum 
fuel temperature significantly more than they affect the numerical value of this 
maximum. This conclusion is clearly illustrated by examining the two 
sensitivities to the initial value n~  of the reactor power amplitude. It becomes 
readily apparent that a variation in n~  is of no practical importance to the 
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numerical value of the maximum fuel temperature, but is of significant 
importance to ( )αTt . 

The sensitivities presented in Table IV.B.2 were used to predict the time shift 
[namely, the difference between the time location ( )αh+0αt  at which the 

perturbed maximum ( )he +0
TR  occurs, and the time location ( ) s870.00 =αt  at 

which ( )0eTR  occurs] which is caused by each of the fractional parameter 
variations shown in the fourth column. The results for these predicted time shifts 
are presented in the fifth column. These predicted changes are in good 
agreement with the actual changes presented in the last column of Table IV.B.2. 
These actual changes were obtained by direct recalculation of the fuel 
temperature, using the respective fractional parameter variations. It is 
informative to mention that, in all “forward” calculations, results are only printed 
at 0.01 s time intervals, although the actual time step used in such calculations is 
not fixed to 0.01 s, but varies as computed internally by the MELT-code. 

The sensitivities of the numerical value of the maximum normalized power 
level response ( )enR  are calculated using Eq. (IV.B.90), where the adjoint 

function *
nV  is the solution of the adjoint system represented by Eqs. (IV.B.88) 

and (IV.B.89). The sensitivities of the critical point ( )αnt , at which the power 
level attains its maximum, are calculated using Eq. (IV.B.94), where the adjoint 
function *Y  is the solution of the adjoint system represented by Eqs. (IV.B.95) 
and (IV.B.96). In the base-case computation, the power level ( )tn  attains its 

maximum value of 467.7 MW at ( ) s71.00 =αt . This time value is used in both 

Eq. (IV.B.57) and (IV.B.61) to calculate the source terms *
nS  and *G . 

The power transient induced by reactor scram is characterized by the important 
fact that ( ) s708.00

0 =∆+≅ ttt α ; this implies that the time at which the power 
level attains its maximum in the base-case calculation practically coincides with 
the time of control rod insertion. The sensitivities nDR  contain the effects of the 

scram mechanism, since ( ) tttn ∆+> 0
0α . Therefore, these sensitivities can be 

used to predict the effects of only those variations 
i

hα  that cause the time of 

control rod insertion to occur earlier (i.e., to be less than) than ( )0αnt , since 
otherwise the perturbed case would not contain the scram mechanism in the time 
domain of the adjoint calculation. Thus, prior to using the sensitivities nDR  to 
predict the effects of variations 

i
hα  on the numerical value of the maximum 

power response, it is essential to know whether the respective variations 
i

hα  
cause the perturbed maximum (and, hence, the scram) to occur before or after 
control rod insertion. 
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At this stage, it is also possible to conclude that the maximum temperature 
predictions obtained using the sensitivities TDR would also be invalid if the 

variations 
i

hα  moved the time scram beyond ( ) s87.00 =αTt . However, it would 

require extremely large variations 
i

hα  to move the time of scram from 

s708.00 =∆+ tt  to beyond ( ) s87.00 =αnt . 
Since the maximum power response, nR , is located extremely close to the 

discontinuity caused by the scram insertion, it is apparent that the information 
provided by the sensitivities nDR  can be fully exploited only after having 
established the signs of the “time shifts” induced in the maximum power 
response by variations 

i
hα . Valuable information regarding the signs of these 

time shifts is provided by the sensitivities nDt . Since nDt  can be calculated 
independently of nDR , the expected signs of the time shifts can be established 
prior to performing a sensitivity analysis of the numerical value of the 
maximum. 

Table IV.B.3 presents sensitivity results for those parameters that have the 
largest impact on ( )αnt . These results were obtained by taking all components 

of αh  to be zero, except for the thi  component 
i

hα . The parameters are ranked 
in order of decreasing absolute magnitude of relative sensitivity. For the critical 
point ( )αnt , we note that 

 
( ) ( ) ( ),200

αα hh ODttt nnn +=−+ αα   (IV.B.111) 
 

where ( )αh+0αnt  is the time location at which the perturbed maximum 

( )he +0
nR  occurs. Equation (IV.B.111) is the basis for using the sensitivities 

nDt  to predict the time shifts ( ) ( )[ ]00 αα nn tt −+ αh caused by each of the 

fractional variations 0
ii

h αα  shown in Table IV.B.3. The results for the 
predicted time shifts are presented in the fifth column, and they were found to 
agree well with the actual time shifts (presented in the last column) obtained by 
direct recalculations. For the parameters with large sensitivities, relatively small 
fractional variations were used in the direct recalculations to minimize the 
nonlinear effects. 

Table IV.B.4 presents sensitivity analysis results for those parameters that have 
the largest impact on the numerical value of the maximum power response nR . 
The parameters are again ranked in order of decreasing absolute magnitude of 
relative sensitivity. Note that this ranking procedure produces identical 
parameter sequences in both Tables IV.B.3 and IV.B.4, which is in contrast to 
the situation depicted by Tables IV.B.1 and IV.B.2. Nevertheless, Tables IV.B.3 
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and IV.B.4 show that, in general, the parameters affect the time location of the 
maximum power response significantly more than they affect the numerical 
value of this maximum; this situation is similar to that depicted by Tables IV.B.1 
and IV.B.2 regarding the response TR . 

 
Table IV.B.3 

Sensitivities for the Time Location ( )αnt  of the Maximum Power Response. 
 
 
i  

 
 
iα  

 
Relative 

sensitivity  

 
0
ii

h αα

 (%) 

 
Predicted 

change (s) 

 
Recalculated  

change (s) 

1 0n  11.299 -0.1 -0.008 -0.01 
2 T  8.475 -0.5 -0.030 -0.03 
3 n~  -5.650 0.5 -0.020 -0.02 
4 inT  1.554 -1.0 -0.011 -0.01 
5 β  0.989 -1.0 -0.007 -0.01 
6 progρ  -0.847 5.0 -0.030 -0.03 
7 t∆  0.565 -10.0 -0.02 -0.02 
8 fuelk  -0.508 5.0 -0.018 -0.02 

9 pcC  -0.424 5.0 -0.015 -0.02 

10 gh  -0.424 5.0 -0.015 -0.02 

11 P∆  -0.212 10.0 -0.015 -0.02 
12 f

 
0.141 -10.0 -0.010 -0.01 

 
As previously discussed, the sensitivities presented in Table IV.B.4 can be 

used to predict the effects of only those values of 
i

hα  that cause the perturbed 

maximum ( )he +0
nR  (and, hence, the scram) to occur earlier in time than the 

nominal maximum ( )0enR . For this reason, the sign of each parameter variation 
0
ii

h αα  was chosen to be the opposite of the sign of the relative sensitivity 

( )( )
i

htDt inn αα 0  shown in Table IV.B.3. Note that the expected negative time 
shifts did indeed occur, as confirmed by the direct recalculation results shown in 
the last column of Table IV.B.3. 

Table IV.B.4 also highlights the similarities and distinctions between the 
response ( )enR  and ( )enP . In view of Eqs. (IV.B.107a) and (IV.B.107b), the 
relative sensitivities for nP  are identical to the corresponding relative 
sensitivities of nR . For a given 

i
hα , the predicted changes in the numerical 
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value of the respective responses are also identical; this is because of Eq. 
(IV.B.107b) and because the relationships 

 
( ) ( ) ( ),200

αhODRRR nnn +=−+ ehe   (IV.B.112) 
 

and 
 

( ) ( ) ( ),200
αhODPPP nnn +=−+ ehe   (IV.B.113) 

 
hold for the same reasons as those underlying the validity of Eqs. (IV.B.109) and 
(IV.B.110). 

Numerical results for the quantity ( ) ( )[ ]00 ehe nn PP −+ are presented in the last 
column of Table IV.B.4. These results are in good agreement with the 
sensitivity-based predicted changes, which indicates that the ( )2

αhO  terms in 
Eq. (IV.B.113) are relatively small. The results presented in the sixth column of 
Table IV.B.4 are the actual differences between the base-case numerical value of 
the response nR , and the numerical value of the new maximum, ( )he +0

nR , 

which is attained at ( )αh+0αnt . It is observed that these results disagree with 
the sensitivity-based predictions presented in the adjacent column. This 
(IV.B.90) disagreement indicates that the ( )2

αhO  terms in Eq. (IV.B.112) are 
larger than the first-order effects nDR . 

The complexities of the problem analyzed prohibit a complete analytical 
analysis of the causes underlying the fact that the ( )2

αhO  terms in Eq. 

(IV.B.112) are much larger than the ( )2
αhO  terms in Eq. (IV.B.113). 

Nonetheless, this fact can be largely attributed to the form of scramρ  represented 
by Eq. (IV.B.108), and to the fact that the maximum power level occurs 
practically at the same time as the time of reactivity insertion. Consequently, the 
derivatives of the reactivity ( )tρ  are continuous at the fixed point nτ (= 0.71 s), 
but are discontinuous at the point of reactivity insertion. Since the maximum 
power occurs practically at the same time as the scram, these discontinuities 
occur, for all practical purposes, at ( )αh+0αnt  regardless of whether αh  is 
identically zero or not. Also, note that a discontinuity in the first- and higher-
order derivatives of ( )tρ  induces a discontinuity in the second- and higher-order 
derivatives of ( )tn . It follows that the second- and higher-order derivatives of 

( )tn  are discontinuous at points that practically coincide with ( )αh+0αnt , but 
these derivatives are generally continuous at nτ . These distinctive characteristics 
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of the second- and higher order derivatives of ( )tn  are not discerned by the first-
order sensitivity analysis methods, but are probably the main cause underlying 
the large differences between the magnitudes of the ( )2

αhO  terms appearing in 
Eqs. (IV.B.112) and (IV.B.113), respectively. By highlighting the conceptual 
distinctions between the responses nR  and nP , the foregoing analysis also 
underscored the need for a careful understanding of the use of sensitivities to 
predict response changes. 

 
Table IV.B.4 

Sensitivities for the Maximum Power Response ( )enR . 
Recalculated change in 
response value (MW) 

 
 
i  

 
 
iα  

 
 

Relative 
sensitivity 

 
 

0
i

i
h
α
α  

(%) 

 
Predicted 
change in 
response 

value (MW) 
 

( )
( )0

0

e

he

n

n

R

R

−

+
 

( )
( )0

0

e

he

n

n

P

P

−
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1 0n  3.784 -0.1 -1.77 -0.1 -1.7 

2 T  2.805 -0.5 -6.56 0.0 -8.3 
3 n~  -1.920 0.5 -4.50 0.3 -5.4 
4 inT  0.541 -1.0 -2.53 0.8 -2.8 

5 β  0.425 -1.0 -1.99 0.7 -1.5 
6 progρ  -0.278 1.0 -1.30 -0.9 -1.4 

7 t∆  0.171 -10.0 -8.00 -2.5 -9.7 
8 fuelk  -0.153 5.0 -3.58 0.6 -3.4 

9 pcC  -0.139 5.0 -3.25 0.3 -3.5 

10 gh  -0.133 5.0 -3.11 0.5 -3.7 

11 P∆  -0.068 10.0 -3.18 0.4 -3.3 
12 f

 
0.049 -10.0 -2.30 1.1 -2.6 
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Nomenclature 
 

sc AA / = cross area of coolant/structure, m2 

iC = precursor amplitude for group i , MW 
*
iC = adjoint precursor amplitude for group i , (response dimension)/MW 

pspcp CCC // = heat capacity of fuel pin/coolant/structure, J/kg K 
D = equivalent diameter for coolant channel, m 

tDD / = one-dimensional substantial (i.e., total) derivative operator 
f = channel friction factor 

Lf = loop friction multiplier, Pa/(kg/s)2 
g = gravitational constant = 9.807 m/s2 

H∆ = cold leg pressure head, Pa 
*** // sc HHH = adjoint enthalpy of fuel pin/coolant/structure, (response 

dimension)/J 
hhg / = heat transfer coefficient for gap/coolant, W/m2 K 

LK = pressure head loss coefficient for an abrupt area change 

ckk / = thermal conductivity in fuel pin/coolant, W/m K 
L = length of coolant channel, m 

*m = adjoint mass, (response dimension)/kg 
jN = number of pins in channel j  

NC = number of coolant channels 
NG = number of precursor groups 
n = neutronic power amplitude, MW 

*n = adjoint power, (response dimension)/MW 
γn = gamma-ray heating power amplitude, MW 

on = trip power level for reaction scram, MW 
P∆ = pressure drop across pump, Pa 

P = coolant channel pressure, Pa 
inletP = inlet plenum pressure, Pa 

exitP = exit plenum pressure, Pa 
*P = adjoint momentum flux, (response dimension)/[(kg m/s)/m2] 

RRR gf // = outer radius of fuel/gap/cladding, m 

sR = inner radius of structure, m 
r = fuel pin radius variable, m 

sc TTT // = temperature in fuel pin/coolant/structure, K 

inT = inlet coolant temperature, K 
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t = time variable, s 
ft = final time value (also used to initiate adjoint calculations), s 

ot = trip time of reactor scram, s 
t∆ = time delay between scram trip and scram reactivity insertion, s 

pt∆ = time delay between scram trip and pump coastdown, s 
u = channel coolant velocity, m/s 
W = reactor mass flow rate, kg/s 
z = axial direction variable, m 
 
Greek symbols 

iβ = delayed neutron fraction for i precursor group 

β = ∑
=

NG

i
i

1
β  

Λ = prompt neutron generation time, s 
iλ = precursor decay constant for group i , s-1 

sc ρρρ // = density in fuel pin/coolant/structure, kg/m3 
ρ = total reactivity 

progρ = programmed input reactivity 

scramρ = programmed scram reactivity 

Doppρ = Doppler and other feedback reactivity 
ψ = normalized power shaping function, which includes the coolant regions, 

W/(m3 MW) 
 
Subscripts 
 
m = coolant channel abrupt area change m  
 
Superscripts 
~ = steady-state quantity 
* = adjoint quantity 
0 = base-case (nominal) value 
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CHAPTER V 
 
 

USING THE ASAP TO GAIN NEW INSIGHTS INTO 
PARADIGM ATMOSPHERIC SCIENCES PROBLEMS 
 
Our understanding of atmospheric processes relies considerably on the use of 

mathematical models to test the consequences of a collection of physical 
assumptions. An essential part of weather prediction and climatic research 
consists of interpreting the results of large-scale simulation models. For 
example, the current concern about the climatic impact of CO2 stems from the 
sensitivity that climatic models exhibit to the atmospheric concentration of 
CO2. A further example is the occurrence of atmospheric blocks, which 
strongly affect the variability in predictive skills of numerical weather 
prediction (NWP) models; it is therefore important to understand the model 
errors associated with blocking situations. As mathematical models increase in 
sophistication, though, the reasons for the results they give become less clear, 
making the results more difficult to interpret. A quantitative procedure to help 
interpret the results of a mathematical model is to perform a sensitivity 
analysis, i.e., to investigate how the results of the model change when 
parameters in the model are varied. Valuable information for this purpose 
comes from analyzing sensitivities of the results to parameters involved in 
modeling physical processes. For example, the ice-albedo feedback mechanism 
corresponds to the observed negative sensitivity of surface air temperature to 
surface albedo. Furthermore, sensitivities quantify the extent that uncertainties 
in parameters contribute to uncertainties in results of models. For example, 
sub-grid processes need to be parameterized. These parameterizations are 
highly simplified approximations of complex processes, so the uncertainties in 
the parameters involved can be large. If the corresponding sensitivities are also 
large, then the results of the model will have large uncertainties. 

This Chapter presents paradigm applications of the Adjoint Sensitivity 
Analysis Procedure (ASAP) to a radiative-convective model (RCM) for climate 
simulation and to a two-layer isentropic primitive equation model for 
numerical weather prediction (NWP). The material presented in this Chapter is 
organized as follows: Section V.A presents a brief mathematical description of 
the RCM. This model includes 312 parameters and contains the nonlinear 
phenomena characteristic of radiatively-coupled processes. Section V.B 
presents the application of the Adjoint Sensitivity Analysis Procedure (ASAP) 
to derive the adjoint equations satisfied by the adjoint functions, to compute 
efficiently the response sensitivities in terms of these adjoint functions, and to 
illustrate the use of sensitivities. Section V.C shows that the adjoint functions 
themselves can be interpreted as the sensitivity of a response to instantaneous 
perturbations of the model’s dependent variables. Furthermore these adjoint 
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functions can be used to reveal the time scales associated with the most 
important physical processes in the model. In particular, the adjoint functions 
for the RCM reveal the three time scales associated with: (i) convective 
adjustment; (ii) heat transfer between the atmosphere and space; and (iii) heat 
transfer between the ground and atmosphere. Calculating the eigenvalues and 
eigenvectors of the matrix of derivatives occurring in the set of adjoint 
equations reveals similar physical information without actually solving for the 
adjoint functions. Section V.D illustrates the use of the ASAP for evaluating 
the sensitivity to feedback mechanisms. The paradigm response considered is 
the increase in the average surface air temperature which occurs after the 
atmospheric CO2 concentration in the model is doubled, while the paradigm 
feedback is the surface albedo feedback, which is introduced by making the 
surface albedo a function of the surface air temperature averaged over the 
preceding 24 hours. 

Section V.E describes a paradigm two-layer isentropic NWP model which 
simulates the nonlinear life cycles of baroclinic waves, including the 
occurrence of blocks. The variability in predictive skills of numerical weather 
prediction (NWP) models is strongly related to the occurrence of blocks; it is 
therefore important to understand the sensitivities of blocking indexes to model 
parameters. Section V.F illustrates the application of the ASAP for performing 
sensitivity analysis of a time-dependent blocking index, underscoring the fact 
that the exceptional computational efficiency of the ASAP yields quantitative 
results that could not have been obtained, in practice, by any other sensitivity 
analysis method because of prohibitively computational costs. 

 
 

V. A. A PARADIGM RADIATIVE-CONVECTIVE MODEL (RCM) OF 
THE ATMOSPHERE 

 
The RCM to be considered in this Section is based on the Oregon State 

University two-level atmospheric general circulation model (Schlesinger and 
Gates, 1980); it simulates the equilibrium vertical temperatures for a single 
atmospheric column and its underlying surface, subject to prescribed 
insolation, atmospheric composition, and surface albedo. The RCM includes 
models for the transfer of solar and terrestrial radiation, the heat exchange 
between the earth’s surface and atmosphere, the vertical redistribution of heat 
within the atmosphere, the atmospheric water vapor content, and clouds. For 
the solar radiation, this model includes the effects of water vapor and ozone 
absorption, molecular scattering, and the scattering and absorption by clouds. 
For the terrestrial radiation, the RCM includes emission and absorption by 
water vapor, carbon dioxide, and clouds. The exchange of heat between the 
earth’s surface and atmosphere is treated as a Newtonian heating with a 
prescribed heat transfer coefficient multiplied by the temperature difference 
between the earth’s surface and surface air. The vertical redistribution of heat 
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within the atmosphere is modeled following Manabe and Wetherald (1967) 
such that the lapse rate does not exceed a prescribed critical value of 

-1kmC5.6 ⋅° . For the results to be presented in this Section, the atmospheric 
water vapor content is determined from the saturation vapor pressure of water 
as a function of temperature, and from a prescribed vertical profile of relative 
humidity taken as that of Manabe and Wetherald (1967). Consequently, the 
water vapor content depends on the temperature, but clouds do not exist for the 
results presented in Section V.B. 

In the RCM, the atmosphere is modeled by two layers of equal mass between 
the earth’s surface with pressure ( )mb10004 =p , and the level 0 surface, with 
pressure ( )mb2000 =p . The pressure thickness of each layer is given by 

( ) 204 ppp −=∆ . The mass-averaged temperatures of the layers are 
determined prognostically at their mid-levels by solving the equations 

 

,2442
3

3

220
1

1

QQRR
t

TC

QRR
t

TC

−+−=
∂
∂

+−=
∂
∂

   (V.A.1) 

 
where gpcC pkk ∆= , and where: pkc  denotes the equivalent specific heat for 

moist air at constant pressure; g  denotes the acceleration of gravity; t  denotes 
the time; lR  denotes the net downward flux of solar plus terrestrial radiation at 
level ( )4,2,0=l ; 4Q  denotes the upward heat flux from the earth’s surface to 
the atmosphere; and 2Q  denotes the upward heat flux from the lower to the 
upper layer required to prevent the lapse rate ( )zT ∂∂−=Γ  from exceeding a 

prescribed critical value 1kmC5.6 −°=Γc . 
The state of radiative-convective equilibrium is computed as an asymptotic 

state by integrating Eqs (V.A.1) in time from some prescribed initial state at 
at = . For each time step t∆ , the temperatures are first updated to include the 

effects of radiative heating, namely: 
 

( ) ( ) ( ) ( )[ ] ( ),3,1,11
*1 =−

∆
+= +−

+ kRR
C

tTT n
k

n
k

k

n
k

n
k  (V.A.2) 

 
where the superscripts are the time-step index, and ( ) tnat n ∆+= . Next, the 
temperature of the lower layer is updated to include the heating from the 
earth’s surface: 
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( ) ( ) ( ) ,4
3

*1
3

**1
3

nnn Q
C

tTT ∆
+= ++    (V.A.3) 

 
where ( )nQ4  is obtained as a Newtonian heating 

 
( ) ( ) ( )[ ]nn

ss
n TTCQ 44 −=     (V.A.4) 

 
with a prescribed heat transfer coefficient ( )-1-1Kdayly0.1 ⋅=sC . The surface 

air temperature ( )nT4  is obtained by linear extrapolation of the temperature 
profile with respect to pressure, i.e., 

 
( ) ( ) ( ) .

2
1

2
3

134
nnn TTT −=     (V.A.5) 

 
The temperature of the earth’s surface ( )n

sT  satisfies (at equilibrium) the 
surface energy budget 

 
( )[ ] ( ) ( ) ,44

4 nnn
s DRQT =+σ    (V.A.6) 

 

where ( )[ ]4n
sTσ  is the upward flux of terrestrial radiation (with σ  denoting the 

Stefan-Boltzmann constant) which, along with ( )nQ4 , is required to balance the 

absorbed solar plus downward terrestrial radiation at the earth’s surface ( )nDR4 . 

Because of the dependence of ( )nQ4  on ( )n
sT , Eq. (V.A.6) is an implicit 

equation which must be solved by iteration. To avoid such iterations, at each 
time step during the integration toward equilibrium, Eq. (V.A.6) is 
approximated by the explicit form 

 
( )[ ] ( ) ( ) ;1

4
1

4
4 −− −= nnn

s QDRTσ    (V.A.7) 
 

this computational expedient is based on the consideration that Eq. (V.A.7) is 
identical to Eq. (V.A.6) at equilibrium. 

Finally, the temperature of each layer is affected by the interlayer heat flux 
2Q  which is required to prevent a supercritical lapse rate cΓ>Γ , which leads 

to 
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Using the hydrostatic equation it can be shown that the temperature ( )cT1 , at 
the isobaric level 1 for the critical lapse rate cΓ , is related to a given 3T  by the 
relation 
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where R  is the gas constant. Thus 2Q  is zero, except when ( )*1

1
+nT  is less than 

the value of ( )cT1 , given by (V.A.9) with 3T  set to ( ) **1
3

+nT . In the latter case, 

2Q  is determined by (V.A.8) and the condition for the critical lapse rate is 
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In the RCM, the insolation at the top of the atmosphere ( )mb0=p  is 
 

,cos
2

00 ζd
e

e F
r
rSS 







=    (V.A.11) 

 
where 0S  (=2793.6 ly day-1) is the solar constant at one astronomical unit, er ; 

er  is the earth-sun distance ( ee rr = ); ζcos (=0.5) is an averaged cosine of the 
solar zenith angle ζ ; and dF  (=0.5) is an averaged fraction of a day that the 
sun is above the horizon. The insolation is absorbed by a prescribed amount of 
ozone Ω  (=367 Dobson units) above the 0p  surface, by water vapor below 
the 0p  surface, and by the earth’s surface with a prescribed albedo sα  (=0.1). 
The terrestrial radiation is emitted and absorbed by water vapor and a 
prescribed CO2 concentration 

2COµ (=320 ppmv). The water vapor mixing 

ratios kq  are determined from 
 

( ),3,1,* == kRHqq kkk    (V.A.12) 
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where kRH  is the relative humidity and 
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is the saturation mixing ratio. The saturation vapor pressure *e  is obtained 
from the relation given by the polynomial fit of Lowe and Ficke (1974), i.e., 
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The relative humidities are prescribed from the profile of Manabe and 
Wetherald (1967), 
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By prescribing the relative humidities rather than the mixing ratios, the water 
vapor content becomes a variable which depends on temperature. Although the 
radiative transfer model treats both convective (cumuloform) and large-scale 
(stratiform) clouds in both the solar and terrestrial radiative calculations, the 
clouds are prescribed not to exist for the results presented in Sec. V.B, below. 
However, in the subsequent investigation presented in Sec. V.C,  the stratiform 
clouds are made time dependent through an existence criterion that kRH  
exceed some prescribed critical RH , and by prescribing kq  rather than kRH . 

The difference equations (V.A.2), (V.A.3), and (V.A.8) for 1T  and 3T , and 
the explicit equation (V.A.7) for sT , can all be written in the form 
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where the kF  are functions of 1T , 3T , sT , and the vector ( )pαα ,,1 K=α  

contains the system parameters. Eq. (V.A.17) represents the numerical method 
of solving the set of coupled first-order equations 

 

( ) ( ).3,2,1,,,,,, 1321 == iuuuf
dt

du
pi

i αα K   (V.A.18) 

 
The variables 11 Tu ≡  and 32 Tu ≡  represent the temperatures of the two layers 
of the model atmosphere, while sTu ≡3  represents the temperature of the 
earth’s surface. The functions if , ( )3,2,1=i  represent all processes that affect 
these temperatures. In practice, each if  is a nonlinear function of 1u , 2u , and 

3u . The real scalars Pαα ,,1 K  represent parameters of the model such as 
specific heats, transmission functions, albedos, and initial conditions. For this 
study, the total number of model parameters is 312 (i.e., P =312). The state of 
radiative-convective equilibrium is computed as an asymptotic state of an 
initial-value problem, by time integration of the model’s set of three nonlinear, 
coupled differential equations represented by Eq. (V.A.18). 

 
 
V. B. APPLYING THE ASAP FOR EFFICIENT AND EXHAUSTIVE 

SENSITIVITY ANALYSIS OF THE RCM 
 
To apply the Adjoint Sensitivity Analysis Procedure (ASAP), Eq. (V.A.18) is 

written in operator form as 
 

( ) ( ),3,2,1,0, == iNi αu    (V.B.1) 
 

where the operator ( )α,uiN  is defined by 
 

( ) ( ).,, αα uu i
i

i f
dt

duN −=    (V.B.2) 

 
In Eqs. (V.B.1) and (V.B.2) the components of the column vector 
 

( ) ( ) ( ) ( )[ ]tututut 321 ,,=u    (V.B.3) 
 

are the dependent variables, and the components of the column vector 
 

( )Pαα ,,1 K=α     (V.B.4) 
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are the real scalars representing the parameters in the model. 

The initial conditions at time at =  associated with the set of differential 
equations represented by Eq. (V.B.1) are 

 
( ) ( ),3,2,1,0, == iBi αu    (V.B.5) 

 
where 

 
( ) ( ) ., iii auB α−=αu     (V.B.6) 

 
Thus, as indicated by Eqs. (V.B.5) and (V.B.6), the initial conditions are 
considered as the first three components of the vector of model parameters α . 

For sensitivity analysis, the results of interest calculated with the model are 
customarily referred to as responses. To begin with, we consider that the 
response, to be denoted as ( )α,uR , is a functional of u  and α  of the form 

 

( ) ( ) .,,, ∫=
b

a

dttrR αα uu    (V.B.7) 

 
In this equation, b  represents the final time value considered in the model, 

and ( )tr ,,αu  is a function of u , α , and t . The form of R  given in (V.B.7) is 
sufficiently general to represent a wide variety of specific responses. For 
example, if the response is the surface air temperature at some time c  (where 

bca ≤≤ ), then r  is given by 
 

( ) ( ),,, ctδtr −⋅= udu α    (V.B.8) 
 

where ( )0,5.1,5.0−=d . Note that the traditional definition of the response 
for an RCM corresponds to ∞→c . In practice, c  is a sufficiently large but 
finite time value at which equilibrium in the RCM is judged to have been 
reached. 

The sensitivity ( )ghu ,;, 00 αRδ  of the response ( )α,uR  is obtained by taking 
the G-differential of Eq. (V.B.8); this yields 
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where ur ′  is the column vector 
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and αr ′  is the column vector 
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Here ( )t0u  represents the nominal solution of Eqs. (V.B.1) and (V.B.5), 

obtained by using the nominal parameter values 0α . Note that Eq. (V.B.10) is 
linear in both h  and g . 

When performing sensitivity analysis, the vector g  of variations around the 

base case parameter values 0α  is chosen at the outset. The sensitivity 
( )ghu ,;, 00 αRδ , though, can be evaluated only after determining the 

corresponding vector ( )th  of variations around the base-case solution ( )t0u . 
The first-order relationship between h  and g  is obtained by taking G-
differentials of Eqs. (V.B.1) and (V.B.5), which yields 
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( ) ( ).3,2,1, == igah ii      (V.B.13) 
 
Equations (V.B.12) and (V.B.13) constitute the “forward sensitivity 

equations” (or “tangent linear model”). In principle, given an arbitrary vector 
of parameter variations g , Eqs. (V.B.12) and (V.B.13) can be solved to obtain 
( )th . This value of ( )th  can then be used in Eq. (V.B.9) to evaluate the 

sensitivity Rδ . In practice, though, since there are P  linearly independent 
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choices of g , a complete sensitivity analysis using this procedure would 
involve solving Eqs. (V.B.12) and (V.B.13) anew P  times.  

The alternative procedure for evaluating the sensitivity Rδ , which 
circumvents the need to solve Eqs. (V.B.12) and (V.B.13) repeatedly, is the 
ASAP. To apply the ASAP, we write Eq. (V.B.13) in matrix form as 

 
,QgLh =      (V.B.14) 

 
where the components ijL  of the 33×  matrix L  are 
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and the components ikQ  of the P×3  matrix Q  are 
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The quantity ijδ  appearing in Eq. (V.B.15) denotes the customary Kronecker-

delta.  
The operator *L  that is adjoint to L  is introduced through the relationship 
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a

b

a
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a

dtdt vhLhvvLh ⋅−⋅=⋅ ∫∫   (V.B.17) 

 
where ( ) ( ) ( )[ ]tvtvtv 321 ,,=v  is a column vector that at this stage is arbitrary. In 

view of (V.B.17) and (V.B.15), the elements *
ijL  of the 33×  matrix *L  are 

given by 
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−−= ji
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ijij δ   (V.B.18) 

 
The vector v  is now chosen by identifying the term on the left side of 

(V.B.17) with the first term on the right side of (V.B.9). Note that this 
identification is only possible if the response is defined by a functional. 

This identification gives the relationship 
 

.*
urvL ′=     (V.B.19) 
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The value of ( )ah  is known from Eq. (V.B.13); the unknown value of ( )bh  
can be eliminated from Eq. (V.B.17) by choosing 

 
( ) .0v =b     (V.B.20) 

 
Eqs. (V.B.19) and (V.B.20) uniquely determine the adjoint function v . Note 
that these equations are independent of h  and g . 

In view of Eqs. (V.B.19), (V.B.20), (V.B.13), and (V.B.14), Eq. (V.B.19) is 
recast into the form 

 

( ) ( ).
3

1
∑∫∫
=

+⋅=′⋅
j

jj

b

a

b

a
u avgdtdt Qgvrh   (V.B.21) 

 
Comparison of Eqs. (V.B.22) and (V.B.10) shows that the sensitivity Rδ  is 

given by 
 

( ) ( ).
3

1
∑∫∫
=

+⋅+⋅′=
j

jj

b

a

b

a

avgdtdtR Qgvgrαδ  (V.B.22) 

 
Note that this expression is independent of h . Once the single calculation to 

determine the adjoint function v  has been performed, Eq. (V.B.22) can be 
used to efficiently evaluate the sensitivity Rδ  of R  for any vector of 
variations g  around the base case parameter values 0α . 

If a variation occurs solely in the thn  parameter, then the vector of parameter 
variations g  is denoted by ng , where 

 
( ).0,,,,0 KK n

n g=g     (V.B.23) 
 
In this case, the corresponding sensitivity Rδ  is denoted by nRδ , where 
 

( ).,;, 00 nn RR ghu αδδ =    (V.B.24) 
 
The value of nRδ  can be used to predict the change in the response when the 

value of the thn  parameter is changed by an amount ng . 

The relative sensitivity of R  to 0
nα , denoted by ns , is defined as the 

dimensionless quantity 
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.0
n

n
n

n
g

R
Rs

α
δ

=     (V.B.25) 

 
In view of Eq. (V.B.25), the relative sensitivity ns  is a measure of the ratio 

between the fractional change in R  and the corresponding fractional change in 
0
nα . In practice, relative sensitivities are used to rank the importance of 

parameters. 
Sensitivities can also be used to calculate the uncertainty in R  due to 

uncertainties in the parameters. If 0α  represents the nominal values of the 
parameters, and g  represents the error in the parameters, then the 

corresponding error in R  is given, to first order in g , by ( )ghu ,;, 00 αRδ . 
Consequently, the standard deviation ( )Rσ  of R  is given by 

 

( ) ( ) ,
212RR δσ =     (V.B.26) 

 
where the angular braces denote the expected value. Neglecting second- and 
higher-order effects, the relative standard deviation of R  can be expressed in 
the customary form  

 
( ) [ ] .

21
CssT

R
R

=
σ     (V.B.27) 

 
In this equation the elements of s  are the relative sensitivities defined in 

(V.B.25), and C  is the relative covariance matrix with elements given by 
 

( ) ( ).,,1,,00 Pmn
gg

C
mn

mn
nm K==

αα
  (V.B.28) 

 
Note that the square root of the thn  diagonal element of C  is the relative 

standard deviation of the thn  parameter. This procedure for evaluating 
( ) RRσ  is customarily called uncertainty analysis. 
For illustrative purposes, the explicit form of the adjoint system and the 

expression for Rδ  are given below for the particular case when ( )tr ,,αu  is 
specified by Eq. (V.B.8). Since ( )ctu −=′ δdr , the adjoint system [namely, 
Eqs. (V.B.19) and (V.B.20)] becomes 
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( )
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,
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==
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=

ibv

ctd
u
f

v
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dv

i

i
j i

j
j

i δ
αu  (V.B.29) 

 
Since 0r =′α  and kiik fQ α∂∂= , the expression for Rδ  [i.e., Eq. (V.B.22)] 

becomes 
 

( )
( ).

3

1

3

1 1 , 00
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== =

+












∂
∂

=
j

jj

b

a i

P

j j
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αu
α

δ  (V.B.30) 

 
Since radiative-convective processes do not depend explicitly on initial 

conditions, 1f , 2f , and 3f  are independent of 1α , 2α , and 3α . In this case, 

Eq. (V.B.30) yields the following expressions for the sensitivities nRδ : 
 

( ) ( ),3,2,1, == navgR nn
nδ    (V.B.31) 

( )
( ).,,4,

3

1 , 00

PndtfgvR
b

a i n

i
ni

n K=







∂
∂

= ∫∑
= αuα

δ (V.B.32) 

 
In view of Eq. (V.B.31), the value of the adjoint function nv  at at =  is the 

ratio of the variation in the response to the variation in the initial value of the 
dependent variable nu  at at = . 

For a response that is a linear combination of two other responses, i.e., 
 

,21 RRR βγ +=     (V.B.33) 
 

application of G-differentials gives 
 

.21 RRR βδγδδ +=     (V.B.34) 
 
This equation can be used to obtain the sensitivities for a CO2 -doubling 

experiment by taking R  to represent the response with the normal 
concentration of CO2 and 2R  to represent the response with double this 
concentration, and by setting γ  to -1 and β  to 1 in Eqs. (V.B.33) and 
(V.B.34). 

The adjoint system represented by Eq. (V.B.31) is solved numerically by 
using the modified Euler's method. The true solution ( )tv  is approximated at 
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( )1+M  evenly spaced values of time, bttat M ,,,, 11 −= K . The time interval is 
given by 

 
( ) ,Mabt −=∆     (V.B.35) 

 
and the discrete times are given by 

 
( ).,,0, Mmtmatm K=∆+=   (V.B.36) 

 
Integrating Eq. (V.B.29) from 1−mt  to mt  gives 
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(V.B.37) 

 
If the approximate value of ( )m

i tv  is denoted by m
iv , then the modified 

Euler's method gives the following relationship between m
iv  and 1−m

iv : 
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(V.B.38) 

 
where jv  is given by 
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(V.B.39) 

 
The above equations are solved sequentially for iv , ( )3,2,1=i  and 

( )0,,KMm = , starting from the final time condition 
 

( ).3,2,1,0 == ivM
i     (V.B.40) 

 
Note that the adjoint equations are solved by incrementing backward in time. 

Also note that Eqs. (V.B.40) and (V.B.41) require information about the 
nominal solution through the values of { }( )tij uf

,, 00 αu
∂∂ . In practice, these 

values are obtained during the base-case calculation using relationships of the 
type 
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( ) ( )
ε

ε 0000 ,,,, αα ujij

i

j fuf
u
f −+

=
∂

∂ KK
 (V.B.41) 

 
for small ε ; in this work the value of ε was chosen to be tfi∆ . 

The sensitivities themselves are calculated using Eqs. (V.B.31) and (V.B.32). 
Eq. (V.B.32) is approximated using the trapezoidal rule to give 

 

( )
,

0

3

1 ,, 00
∑ ∑
= = 







∂
∂

∆=
M

m i tn

i
n

m
im

n

m

fgvwtR
αuα

δ (V.B.42) 

 
where 

 

( )




 =

=
otherwise. ,1

,,0,
2
1 Mm

wm 

 
The values of njf α∂∂ are obtained in the same way as are ij uf ∂∂ , but 

with 0001.0 nαε = . Despite sharp changes in the adjoint functions arising from 
convective adjustment switching on and off during a diurnal cycle, the first-
order modified Euler’s method for solving the adjoint equations gives 
agreement with direct recalculations to three significant figures, as will be 
illustrated by the results presented in the next section. 

The accuracy of the numerical calculations of the adjoint functions can be 
assessed by considering the sensitivities to the initial conditions using Eq. 
(V.B.31). Illustrative results depicting the behavior of the sensitivities of the 
surface air temperature to the initial conditions are presented in Table V.B.1; 
the surface air temperature and the corresponding sensitivities are evaluated at 
3, 300, and 800 days after at = . The results presented in the columns labeled 
“Actual change” represent the changes in the surface air temperature after 
actually varying each initial condition in turn by 0.1%, and rerunning the 
model. (The small variations of 0.1% were chosen in order to reduce the effect 
of higher order terms.) The results in the columns labeled “Predicted change” 
are the values of the sensitivities nRδ  calculated by using Eq. (V.B.31). These 
results are related directly to the value of the adjoint functions at at = . The 
close agreement between the actual and predicted changes shown in Table 
V.B.1 gives confidence in the adequacy of the numerical method used to solve 
the adjoint system. 

The other purpose served by the results presented in Table V.B.1 is to show 
that as time increases, the absolute values of the sensitivities decrease. This 
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confirms the fact that if the calculation is extended over sufficiently long times, 
the results become independent of initial conditions. 

Presented in Table V.B.2 are the sensitivities of the equilibrium surface air 
temperature to the solar constant, the surface albedo, the relative humidity at 
the surface, and the atmospheric CO2 concentration. As shown in this table, the 
relative sensitivity of the surface air temperature to the solar constant is 0.381. 
Note that if the Stefan-Boltzmann law were valid for the surface air 
temperature, then the relative sensitivity would be exactly 0.25. The value of 
0.381 obtained for this model indicates the existence of a feedback mechanism 
that enhances temperature changes. Such a mechanism is the effect of constant 
relative humidity: an increase in temperature will increase the moisture content 
of the atmosphere, and hence increase the “greenhouse” effect. To verify this, 
the sensitivity was calculated with fixed absolute humidity, and the value was 
found to be 0.234. Note that the agreement between predicted changes, using 
the sensitivity given by Eq. (V.B.32), and the actual changes is excellent for 
both 0.1% and 10% variations in the solar constant. This indicates that the 
surface temperature varies linearly with the solar constant, at least for 
variations in this range. 

 
Table V.B.1 

Sensitivity of surface air temperature to initial conditions. 
Time after 

at =  days 
 

3 
 

300 
 

800 
Surface air 
temperature 
(response) 

 
292.63 K 

 
283.32 K 

 
283.28 K 

 Change in response 
(K) 

Change in response 
(K) 

Change in response 
(K) 

Param 
0
n

ng
α

 
Predicted 
change 

Actual 
change 

Predicted 
change 

Actual 
change 

Predicted 
change 

Actual 
change 

( )au1  0.1% 9.42E-2 8.37E-2 3.29E-4 3.39E-4 2.45E-8 2.45E-8 

( )au2  0.1% 2.00E-1 2.24E-1 7.10E-4 9.24E-4 5.28E-8 6.70E-8 

( )au3  0.1% 4.53E-3 4.61E-3 1.63E-5 1.58E-5 1.21E-9 1.15E-9 

 
Table V.B.2 also shows that, as expected, the sensitivity to the surface albedo 

is negative; in more complicated models this causes the ice-albedo feedback 
mechanism. The sensitivity to the relative humidity at the surface is positive 
confirming the greenhouse effect caused by water vapor. The sensitivity to the 
CO2 concentration was used to predict the result of a CO2 doubling experiment 
(i.e., a change of 100%). The discrepancy between the predicted change of 
3.43 K and the actual change of 2.42 K arises from neglecting the higher order 
terms. 
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Table V.B.2 
Sensitivity of equilibrium surface air temperature to physically significant 

parameters. 
Equilibrium surface temperature = 283.28 K (response) 
Parameter Relative 

sensitivity 
Fractional 
variation in 
parameter 

Predicted 
change in 
response 

Actual change 
in response 

Solar constant 0.381 0.1 % 
10% 

0.108 
10.8 

0.108 
10.8 

Surface 
albedo 

-0.0299 0.1 % 
10% 

-0-00847 
-0.847 

-0.00850 
-0.853 

Relative 
humidity at 
surface 

 
0.0285 

 
0.1 % 
10% 

 
0.00807 
0.807 

 
0.00811 
0.795 

Atmospheric 
CO2 
concentration 

 
0.0121 

 
0.1 % 
10% 

 
0.00343 

3.43 

 
0.00343 

2.42 
 
The equilibrium surface temperature is most sensitive to the coefficient A1.3 

in Eq. (V.A.14) used to calculate the saturation vapor pressure of water. The 
results given in Table V.B.3 illustrate the nonlinear dependence of the 
equilibrium surface air temperature on this parameter. For small variations in 
this parameter (i.e., 0.1%), the predicted change [again calculated using Eq. 
(V.B.32)] agrees well with the actual change in the response. By contrast, for 
larger variations (i.e., 1.0%), the nonlinear behavior becomes clear; for 
positive parameter variations the change is over-predicted, while for negative 
parameter variations the change is under-predicted. Once again, the differences 
between predicted and actual change arise from neglecting higher order terms. 

 
Table V.B.3 

Sensitivity of equilibrium surface air temperature to the coefficient A1.3 in Eq. 
(V.A 14) used to calculate the saturation vapor pressure of water. 

Relative 
sensitivity 

Fractional variation 
in parameter 

Predicted change in 
response (K) 

Actual change in 
response (K) 

-1% -3.37 -6.73 
-0.1% -0.337 -0.390 
0.1% 0.337 0.328 

 
1.19 

1% 3.37 2.10 
 
It is instructive to note the relative computing times needed to compute 

sensitivities using the ASAP, taking the CPU-time needed for the RCM to 
reach equilibrium as the “unit measure” (i.e., 1 “unit measure” ≡  “the total 
CPU required for the RCM to reach equilibrium”). The CPU-time needed to 
compute the adjoint functions amounted to 0.6 “unit measures,” while the 
CPU-time needed to compute the derivatives jif α∂∂ , 
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( )312,,1;3,2,1 K== ji , and subsequently the 312 sensitivities using the ASAP 
amounted to 0.8 “unit measures.” The additional computing time needed to 
obtain the same information by rerunning, with each of the parameters changed 
in turn, would have been at least 312 “unit measures.” A complete list of the 
sensitivities to all 312 parameters in the RCM is presented in the article by 
Hall, Cacuci, and Schlesinger (1982). 

Note that Eqs. (V.B.1) and (V.B.6) describe both radiative convective and 
general circulation models. For general circulation models, the vector of 
dependent variables u  represents a spatially discrete form of the synoptic 
state, and f  includes terms that represent spatial derivatives of u . Although 
the number I  of dependent variables is of practical importance, it does not 
affect the interpretation of the adjoint functions. 

 
 

V. C. PHYSICAL INTERPRETATION OF SOLUTIONS, 
EIGENVALUES, AND EIGENVECTORS OF THE ADJOINT 

SENSITIVITY SYSTEM FOR ATMOSPHERIC MODELS 
 
As detailed in Section V.B, the adjoint functions for an atmospheric model 

are the solution to a system of equations derived from the “forward sensitivity 
equations” (also known as “tangent variational model,” or “tangent linear 
model”). Each component of the solution to the adjoint equations is an adjoint 
function that uniquely corresponds to one of the model’s dependent variables. 
This Section will show that the adjoint functions themselves can be interpreted 
as the sensitivity of a response to instantaneous perturbations of the model’s 
dependent variables. Furthermore these adjoint functions can be used to reveal 
the time scales associated with the most important physical processes in the 
model. This interpretation is illustrated by using the same radiative convective 
model (RCM) as introduced in Section V.A, but the interpretation holds 
equally well for general circulation models of the atmosphere. In particular, the 
adjoint functions for the RCM reveal the three time scales, associated with: (i) 
convective adjustment; (ii) heat transfer between the atmosphere and space; 
and (iii) heat transfer between the ground and atmosphere. Calculating the 
eigenvalues and eigenvectors of the matrix of derivatives occurring in the set 
of adjoint equations reveals similar physical information without actually 
solving for the adjoint functions. 

As detailed by Hall and Cacuci (1983), the three time-scales mentioned 
above are evidenced by activating options in the RCM such as to cause the 
clouds and the connective adjustment to switch on and off during a diurnal 
cycle. By activating the respective options, the specific humidities in both 
atmospheric layers are fixed so that the relative humidity becomes a function 
of temperature. The lower level relative humidity determines the fractional 
cloud cover. Diurnal insolation, corresponding to a perpetual equinox at 30° 
latitude, causes both connective adjustment of lapse rate and cloud cover to 
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switch on and off periodically. The ground has a thermal capacity equivalent to 
a 0.1 m depth of water. 

 
Table V.C.1 

Values of variables during the last integration day of the radiative convective 
model. 

Day: 
hour 

Upper 
level 
atm. 
temp. 
(K) 

Lower 
level 
atm. 
temp. 
(K) 

Surface 
air 
temp. 
(K) 

Ground 
temp. 
(K) 

Conv. 
Adjust. 

Fractional 
cloud cover 

199:0000 226.69 275.17 299.41 301.82 Yes 0 
199:0100 226.66 275.14 299.38 300.16 Yes 0 
199:0200 226.64 275.10 299.34 298.65 No 0 
199:0300 226.61 275.05 299.28 297.26 No 0 
199:0400 226.58 275.00 299.21 295.98 No 0 
199:0500 226.56 274.94 299.12 294.80 No 0 
199:0600 226.53 274.86 299.03 293.71 No 0 
199:0700 226.52 274.80 298.94 294.18 No 0 
199:0800 226.51 274.74 298.86 296.23 No 0.00023 
199:0900 226.51 274.74 298.86 299.59 No 0.00122 
199:1000 226.51 274.70 298.80 303.84 No 0.00184 
199:1100 226.52 274.72 298.83 308.47 No 0.00199 
199:1200 226.52 274.77 298.90 312.96 No 0.00161 
199:1300 226.53 274.85 299.01 316.80 No 0.00068 
199:1400 226.53 274.95 299.16 319.54 No 0 
199:1500 226.57 275.03 299.26 320.87 Yes 0 
199:1600 226.63 275.10 299.33 320.62 Yes 0 
199:1700 226.67 275.15 299.39 318.74 Yes 0 
199:1800 226.70 275.19 299.43 315.59 Yes 0 
199:1900 226.72 275.21 299.46 312.72 Yes 0 
199:2000 226.73 275.22 299.47 310.12 Yes 0 
199:2100 226.73 275.22 299.46 307.75 Yes 0 
199:2200 226.72 275.21 299.46 305.60 Yes 0 
199:2300 226.71 275.20 299.44 303.62 Yes 0 
200:0000 226.69 275.17 299.41 301.82 Yes 0 
 
The time integration of the nominal solution starts at time a  from arbitrary 

initial values of the dependent variables (i.e., temperatures) iu . These initial 
values are the first I  components of the vector α  of parameters. The 
integration proceeds until the final time b . For the results presented in this 
paper, the total time span of the model (i.e., ab − ) is 200 days. Table V.C.1 
shows the values of some of the model variables during the last integration 
day. Convective adjustment occurs from 1500 to 2000, and clouds exist from 
0800 to 1300 (all times are local standard). The temperature of the air at the 
earth’s surface (the surface air temperature) is obtained by linearly 
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extrapolating the temperatures of the two atmospheric layers (i.e., 
21 5.15.0 uu +− ). The seasonal and regional conditions simulated by this model 

could be interpreted to correspond to late March at the same latitude as Florida. 
 
 

V.C.1. Physical Interpretation of the Adjoint Functions 
 
To highlight the physical interpretation of the adjoint functions, it is 

sufficient to consider responses of the form 
 

( ) ( ) ( ) ,, ∫ ⋅=
b

a

dttrtR udu α    (V.C.1) 

 
where d  is a constant vector, and ( )tr  is a function of time. In general, the 
vector d  represents the spatial and physical properties that characterize the 
result, and the function ( )tr  defines either an averaging time period or an 
instantaneous time for the result. For example, with the radiative convective 
model, if d  is the vector ( )0,5.1,5.0− , then ud ⋅  is the surface air 
temperature. If, in addition, ( )tr  is the Heaviside function ( ) ( )[ ]ττ +− btH1 , 
then the result defined by Eq. (V.C.1) is the average surface air temperature 
from time τ−b  to time b . On the other hand, if ( )tr  is the Dirac delta 
function ( )ct −δ , then the response defined by Eq. (V.C.1) is the 
instantaneous surface air temperature at time c . Henceforth, this response will 
be denoted by cR . 

Recall from Eq. (V.B.30) that the sensitivity Rδ  of R  for any vector of 
variations g  around the base case parameter values 0α  is given by  
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In this above equation number, I  represents the total number of dependent 

variables, while iv , ( )Ii ,,1K=  denote the adjoint functions that satisfy the 
adjoint sensitivity system 
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As indicated by Eq. (V.C.3), the adjoint functions v are independent of the 
parameter variations g , but depend on the source term ( )trdi , derived from 
the response functional defined by Eq. (V.C.1). Thus, there is a different set of 
adjoint functions for each response. For example, cv  will denote the adjoint 
functions associated with the response cR . 

Note from Eq. (V.C.2) that, if a variation occurs only in the initial value of 
the thi  dependent variable [i.e., ( )0,,0,,0,,0 KK jg=g , ( )Ij ≤ ], then Eq. 

(V.C.2) becomes ( ) jj gavR =δ . This implies that the value of the adjoint 

function jv at the initial time is the sensitivity of the result to the initial value 

of the corresponding dependent variable ju . The considerations to be 
presented in this Section will show the more general result that the value of the 
adjoint function jv  at an arbitrary time s is the sensitivity of the result to an 

impulsive perturbation at time s of the corresponding dependent variable ju . 
If the system is perturbed impulsively so that the solution u  of Eq. (V.B.2) 

jumps by an amount γ at time s , then this perturbed solution satisfies the 
equations 

 

( ) ( )
( ) ( ).,,1,

,

Iiau

stf
dt

du

ii

ii
i

K==

−+=

α

γδαu
   (V.C.4) 

 
In order that Eqs. (V.B.2) and (V.C.4) describe the same nominal model, the 

elements of γ must be parameters having vanishing nominal values (i.e., 

00 =γ ). Then Eqs. (V.B.2) and (V.C.4) will have the same nominal solution 
0u , and will lead to the same adjoint solution v , although a variation of y 

about 00 =γ  represents an impulsive perturbation to the nominal solution 0u 
at time s . Figure V.C.1 illustrates schematically the effect of such a 
perturbation: of course, at times st > , the perturbed solution will differ from 

0u . 
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Figure V.C.1. Illustration of the effect of an impulsive perturbation jy  at 

time s  on the nominal solution. 
 
Deriving the adjoint equations for Eq. (V.C.4) uses the same procedure as 

deriving the adjoint equations for Eq. (V.B.2), except that ( )γstδ −+f  
replaces f , ( )γα ,   replaces α , and ( )yg,  replaces g . Introducing these 
replacements in Eq. (V.C.3) shows explicitly that the same adjoint equations 
arise respectively from Eqs. (V.B.2) and (V.C.4). Introducing the same 
replacements in Eq. (V.C.2), though, introduces additional terms into Eq. 
(V.C.2), which now becomes 
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Note that ( ) 0=∂∂ ip γα , ( ) 0=∂∂ ij fγ , and ( ) ijij δγγ =∂∂  (where ijδ  is 

the Kronecker delta), so the above expression reduces to 
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∂
∂
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Choosing ( ) ( )0,,0,,0,,0,0, KK jy=yg  (i.e., all parameters variations are 

zero except for the perturbation jy  at time st = ) gives 
 

( ) .jj ysvR =δ    (V.C.5) 
 

This equation shows that the adjoint function jv  at time s  is the sensitivity of 

the result R  to an impulsive perturbation jy  of the solution 0
ju  at time s . 

 
 

V.C.2. Interpretation of Eigenvalues and Eigenvectors Associated 
with the Adjoint Equations 

 
Recall that, for the response cR , the corresponding adjoint sensitivity system 

represented by Eq. (V.C.3) takes on the matrix form 
 

( ) ( )
( ) ,0=

−−=+
b

ctt
v

dvAv δ&
 

 
where the dot denotes differentiation with respect to t , and where 

 

( )
( )

( ).,,1,,
00 ,

Iji
u
f

tA
i

j
ij K=








∂

∂
≡

αu

 

 
The matrix ( )tX  is now defined to consist of the normalized column 

eigenvectors, of ( )tA , i.e., ( )IxxX ,,1 K=  where k
k

k xAx λ=  and 

1=⋅ kk xx , ( )Ik K,1= . Provided the eigenvectors of A  are linearly 
independent, the use of the linear transformation ( ) ( ) ( )ttt wXv =  in the above 
equations leads to 

 
( )

( ) ,0

11

=
−−=++ −−

b
ct

w
dXDwwXXw δ&&

  (V.C.6) 

 
where the diagonal matrix D  of eigenvalues is given in terms of the 
Kronecker delta by 

 
( ) ( ).ttD jijij λδ=  
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The physical significance of the eigenvectors of A  can be analyzed by 
choosing the vector d  to be the thk  eigenvector of A  evaluated at ct = , i.e., 

( )ckxd = . Substituting this value in (V.C.6) gives the equations 
 

( ) ( )
( ) ( ).,,1,0

1

1

Iibw

wctww

i

I

j
jijikiii

K

&&

==

−−−=+ ∑
=

− XXδδλ
  (V.C.7) 

 
Treating the right side of Eq. (V.C.7) as an inhomogeneous source term, and 
solving this equation by using the integrating factor method gives 

 

( ) ( ) ( ) ( ){ }( )

( ) ( ).,exp

exp
1

1

cttdt

tdtwtdttw

c

t
iik

t

b

I

j
tijj

t

t
ii

<











′′′′+

′′











′′′′−=

∫

∫ ∑∫
=

′
−

′

λδ

λ XX &

 (V.C.8) 

 
The above equation can be solved iteratively. The initial iterate 0

iw  is chosen 
to be 

 

( ) ( ) ( ) ,exp0












′′′′−= ∫

c

t
iiki tdttcHtw λδ    (V.C.9) 

 
where H  is the Heaviside function. The fractional difference between the next 
iterate 1w  and the initial iterate 0w  can be obtained by substituting Eq. 
(V.C.9) in the right side of Eq. (V.C.8) and evaluating the resulting expression 
using the mean value theorem. This gives 

 
( ) ( )

( )
( ) ( ){ }( ) ,1

1
0

01

τkk
k

kk tc
tw

twtw XX &−−=
−    (V.C.10) 

( ) ( )
( )

( ){ }( )
( ) ( )

( ) ( )[ ]( ){ } ( ) ( )[ ]( ){ }( ) ( ),,expexp 5352

32

1

0

01
4

kitctc
tw

twtw

kkki

ki

ik

k

ii

≠−−−−−×

−
=

−
−

τλτλτλτλ
τλτλ
τXX &

(V.C.11) 

 
where the quantities nτ , ( )5,,2,1 K=n , take values somewhere in the range 

ct n ≤≤τ . Provided the magnitudes of the right-sides of both Eqs. (V.C.10) 
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and (V.C.11) are much less than unity, the first iterate 0w  given by Eq. 
(V.C.9) is an adequate solution to Eq. (V.C.8). Further use of the linear 
transformation ( ) ( ) ( )ttt wXv =  on Eq. (V.C.9) then implies that the adjoint 
solution ( )tv  associated with the response 

 
( ) ( )ccR k

k ux=     (V.C.12) 
 

is 
 

( ) ( ) ( ) ( )[ ],exp tctctt k
kk −−= λHxv   (V.C.13) 

 
where 

 
( ) .∫ ′′
−
′′

=
c

t

i
k td

tc
tλλ     (V.C.14) 

 
Equations (V.C.12), (V.C.13), and (V.C.14) indicate that each eigenvector kx  
of ( )cA  can be used to construct a response as shown in Eq. (V.C.12) whose 
sensitivity to previous states takes on the form of the adjoint function shown in 
Eq. (V.C.13), which is governed solely by the eigenvalue kλ . Furthermore, the 
mean value of this eigenvalue, cf. Eq. (V.C.14), determines the exponential 
rate at which this sensitivity changes. 

The practical usefulness of the preceding mathematical discussion is now 
illustrated by using the radiative convective model with the value of c  taken as 
midnight on the 200th day after the start of time integration of the model, i.e., 

0000:200+= ac . At this value of c , convective adjustment is occurring and 
the unphysical transients in the model have decayed. In view of Eq. (V.C.12), 
the matrix ( )tX  of eigenvectors of ( )tA  needs to be evaluated at time c . The 
matrix ( )cA  is 

 

( ) ,h
0855.000374.000308.0

0923.0418.0480.0
0291.0501.0587.0

1-

















−
−

−−
=cA  

 
giving the matrix of normalized column eigenvectors, 
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( ) .
844.00576.01084.4
353.0759.0636.0
405.0648.0772.0

13- 















×
−−
−

=cX   (V.C.15) 

 
Recall that Eq. (V.C.13) is valid provided the magnitude of the right side of 

both Eqs. (V.C.10) and (V.C.11) is much less than unity. Investigation of these 
magnitudes requires evaluation of the matrices ( )τD  and { }( )τXX &1−  at times 
τ  anywhere in the range ct ≤≤τ . At c=τ , these matrices are 

 

( ) ,h
108.8600

01053.10
00000.1

1-

2-

3-

















×−
×−

−
=τD  (V.C.16) 

 

( ){ }( ) .h
102.72101.71108.38

105.71029.81072.1
1003.91088.31028.2

1-

3-414

35-12

5614

1

















×−××−
×−××−
××−×

=
−−

−−

−−−

−
τXX & (V.C.17) 

 
Evaluation of the matrices D  and XX &1−  at several additional values of t  

shows that in the range cc ≤≤− τ10 , where 1400:199h1010 +=−=− acc , the 
eigenvalues appearing in ( )τD  vary by only a few percent and the elements of 

{ }( )τXX &1−  remain at the same order of magnitude. But since the right side of 

both Eqs. (V.C.10) and (V.C.11) involves nτ  in the range ct n ≤≤τ , use of 
Eqs. (V.C.16) and (V.C.17) imposes on t  the lower bound 10−≥ ct . 

For 1=k , the quantities appearing on the right sides of Eqs. (V.C.10) and 
(V.C.11) are computed by using Eqs. (V.C.16) and (V.C.17), to obtain: 

 
( ){ }( ) ,h10~ 1-14

11
1

1

−−
τXX &  

( ) ( ) ( ),3,2,h1~ -1
312 =− ii τλτλ  

( ){ }( ) ( ),3,2,h10 1-12
1

1
4

=< −− ii τXX &  

( ) ( )[ ]( ){ } ( )( ){ } ( )3,2,h1exp~exp -1
512 =−−− itctci τλτλ  
( ) ( )[ ]( ){ } ,1~exp 5131 tc −− τλτλ  

 
for cc ≤≤− τ10 , ( )5,,2,1 K=n . Therefore, for ctc ≤≤−10 , the right side of 

Eq. (V.C.10) has a magnitude less than -1310 , and the right side of Eq. 
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(V.C.11) has a magnitude less than -810 . Thus Eq. (V.C.13) is valid for 1=k , 
and for st =  the sensitivity of the response ( ) ( )ccR ux ⋅= 1

1  where ( ) =c1x  

( )131084.4,636.0,772.0 −×−  decays as ( )[ ]1exp λsc −  with h000.11 1 −=λ . 

The physical significance of ux ⋅= 1
1R  can be deduced by examination of 

the above components of 1x . The last component of 1x  is effectively zero, 
indicating that 1R  is independent of the ground temperature. The first and 

second components of 1x  are approximately of equal magnitudes but opposite 
signs. This indicates that 1R  is related to the difference between the two 
atmospheric temperatures, i.e., 1R  is related to the lapse rate. In this model, the 
critical lapse rate for convective adjustment occurs when 21 824.0 uu = . Note 
that 1R  can be written ( )211 824.0772.0 uuR −= ; therefore 1R  measures the 
departure of the lapse rate from its critical value for convective adjustment. 
Thus, it can be concluded that convective adjustment of lapse rate takes place 
on a time scale of h000.11 1 =λ . Since the time step in this model is one hour, 
this conclusion agrees with the observation that convective adjustment occurs 
every time step in this RCM. 

A similar line of reasoning to that above can be used to deduce the physical 
significance of kx  and kλ  when 2=k  and 3=k . Evaluation of Eqs. 
(V.C.10) and (V.C.11) shows that Eq. (V.C.13) is valid for both 2=k  and 

3=k . The components of ( )0576.0,759.0,648.02 =x  are approximately in 

the ratio gaa ccc ::  (recall that 216 mKJ101.4 −−×≈ac is the heat capacity of 

each atmospheric layer, and 215 mKJ102.4 −−×≈gc  is the heat capacity of the 

ground). Therefore ux ⋅= 2
2R  is a measure of the total heat energy of both 

the ground and the atmosphere. Since Eq. (V.C.13) is valid, it can be 
concluded that changes in the total heat energy of the ground and atmosphere 
take place on a time scale of days271 2 =λ . Since in this RCM most of the 
heat resides in the atmosphere, this conclusion agrees with the previous 
conclusion that perturbations to atmospheric temperature decay on a time scale 
of 28 days. 

The components of ( )844.0,353.0,405.03 −−=x  are in the ratio 

00.1:42.0:48.0 −− . Thus, the response ux ⋅= 3
3R  indicates the difference 

between the ground temperature and an average atmospheric temperature. 
Again, since Eq. (V.C.13) is valid, it can be concluded that changes in this 
difference (between the ground temperature and an average atmospheric 
temperature) take place on a time scale of h111 3 =λ . This conclusion agrees 
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with the previous conclusion that a perturbation of the ground temperature 
diminishes because of heat transfer to the atmosphere on a time scale of h11 . 

 
 

V.C.3. Numerical efficiency 
 
The dependent variables u  have been obtained numerically using a first-

order finite difference approximation for Eq. (V.B.2), of the form 
 

( ),, 01 αmmm t ufuu ∆+=+  
 

where mu  is the approximate value of u  at time tmatm ∆+= , and the time 
step t∆  is h1 . The numerical adjoint solution has been obtained similarly, 
leading to the equation 

 

( ) ( ) ,
1

1 ∫
−

−∆−=−

m

m

t

t

mmmm dttrtt dvAvv  

 
where the Jacobian matrix A  of derivatives was obtained using 
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i

jm
ij
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 −+

≈







∂

∂
=

ε
ε αα

α

u

u

KK
 

 
with ( ) tfi ∆= 00 ,01.0 αuε . 

In the radiative convective model, most of the computation consists of 
evaluating the function ( )α,uf  at each time step. Since there is a h1  time 
step, the numerical solution requires 96 evaluations of f  during days 196-

200. The perturbation to m
ju  occurs at the thm  time step, and recalculation of 

the solution occurs for all time steps after the thm . For three different values of 
j  and 96 different values of m , these recalculations require 

( ) 139682196963 =+××  evaluations of f . To obtain the adjoint function v  
requires values of ju∂∂f , at each time step. Calculating these derivatives for 
three different values of j  using a finite difference expression requires 

288963 =× evaluations of f .  
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V. D. EFFICIENT ESTIMATION OF FEEDBACK EFFECTS FOR 
CLIMATE MODELS 

 
For certain types of feedback, it is physically meaningful to vary the strength 

of the feedback continuously, compare the actual effect with the sensitivity, 
and verify that as the strength of the feedback tends to zero, the actual effect 
tends to the respective sensitivity. For any feedback, even for one that may lose 
physical meaning if varied continuously, a comparison between the actual 
effect of feedback and the corresponding sensitivity shows the effect of 
neglecting second- and higher-order terms in the strength of the feedback, and 
provides guidance for judging when the sensitivity to feedback provides a 
realistic estimate of the actual effects of feedback.  

Following the original work by Cacuci and Hall (1984), this Section 
illustrates the application of the ASAP to evaluate the sensitivity of temperature 
changes to feedback processes in the RCM. Specifically, the response, 
( )00 ,αuR , considered in the sequel is the increase in the average surface air 

temperature which occurs after the atmospheric CO2 concentration in the 
model is doubled; the nominal solution 0u  is that described in Section V.C. 
The averaging period τ  for the average surface air temperature is the last day 
of the model integration. Hence, the response can be written as  

 
12 RRR −= ,     (V.D.1) 

 
where 1R  and 2R  denote, respectively, the average surface air temperatures 
with the normal and twice the normal atmospheric CO2 concentrations. 
Mathematically, 1R  and 2R  can be expressed in the form 

 

( )[ ] ( ),2,1,1
=+−⋅≡ ∫ idtbtH

T
R

b

a
ii τud   (V.D.2) 

 
where ( )0,5.1,5.0−=d , 1u  represents the RCM-solution with the normal 
atmospheric CO2 concentration, 2u  represents the RCM-solution with twice 
the normal atmospheric CO2 concentration, and H  denotes the Heaviside step 
function. 

The sensitivity of R  to a feedback A  is obtained by applying the ASAP 
presented in Chapter V of Volume I. This gives 

 

( )
( )

,
3

1 1 ,

0

00
∫ ∑ ∑

= = 

























∂
∂

=
b

a i

P

p p

i
pi

fAvdtR
αu

A u
α

δ   (V.D.3) 
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where the adjoint functions ( )tvi  satisfy, for ( )3,2,1=i , the adjoint sensitivity 
system 

 

( )
( )

( ) .0

3

1 , 00

=

+−=












∂

∂
−− ∑

=

bv

d
btH

u
f

v
dt

dv

i

i

j i

j
j

i

τ
τ

αu  (V.D.4) 

 
Note that in this model the result R  does not depend explicitly on α , and 

the initial conditions 1α , 2α , and 3α  are not involved in the feedback A . 
A surface albedo feedback can be introduced by making the surface albedo 

sα  (i.e., the ths  component of α ) a function of the surface air temperature 
averaged over the preceding 24 hours. For this albedo feedback, the only 
nonzero components of the feedback operator A  is sA ; this component has 
the form 

 
( ) ( )[ ] ,4 tTFuAs =    (V.D.5) 

 
where 

 

( ) ( )
,4 ∫

−

′′⋅
=

t

t

tdt
tT

τ
τ

ud
   (V.D.6) 

 
and F  is a function of 4T . Here, ud ⋅  is the surface air temperature and 

24=τ hours, so 4T  is the average surface air temperature during the day 
before time t . The function F is depicted i Fig.V.D.1, below, and defined 
as follows: 

 
.025.0≤F  

 
For 025.0<F , F  causes the surface albedo to depend linearly on 4T , so sα  

changes from its nominal value of 1.00 =sα  at a rate -1Kβ . ( ) 0K17.299 =F , 
so when K17.2994 =T , the value of the average surface air temperature 
without feedback, the surface albedo takes on its nominal value. 
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Figure V.D.1. Change in surface albedo as a function of the average surface 

air temperature for feedback parameter 1005.0 −= Kß . 
 
Table V.D.1 shows the effect of the surface albedo feedback on the results of 

a CO2 doubling experiment using the RCM. As expected, negative values of 
β  correspond to positive feedback, which enhances the CO2 warming. For the 
weaker feedbacks (i.e., 0005.0±=β ), the actual effect agrees with the 
sensitivity to within 4%, indicating that the numerical implementation of the 
adjoint method is correct. For the stronger positive feedback (i.e., 

005.0−=β ), the sensitivity is about 30% smaller than the actual effect, while 
for the stronger negative feedback (i.e., 005.0=β ), the sensitivity is about 
30% larger than the actual effect. Thus, even for the severe effects of the 
stronger feedback, the sensitivities calculated using adjoint functions give 
useful estimates of the actual effects of the feedbacks. 

 
Table V.D.1 

Effects of surface albedo feedback on a CO2-doubling experiment using the 
RCM. (CO2 warming without feedback was 1.664 K.) 

 Feedback parameter β  
 0.005 0.0005 -0.0005 -0.005 
CO2 warming with 
feedback (K) 

1.27 1.614 1.717 2.389 

Actual effect of 
feedback (K) 

-0.39 -0.050 0.053 0.72 

Sensitivity to 
feedback (K) 

-0.51 -0.051 0.051 0.51 
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A more complicated but also well-recognized feedback is that caused by 
water vapor. This feedback can be introduced in the RCM by allowing the 
water vapor mixing ratios 1mα  and 2mα  of the two atmospheric layers to be 
determined by a prescribed relative humidity profile. The water vapor mixing 
ratios thus become functions of temperature. For this feedback, the only 
nonzero components of the feedback operator A  are 1mA  and 2mA . These 
components are 

 
( )[ ] ,0*

mkkkkmk tuqRHA α−=  
 

where, for the thk  atmospheric layer, kRH  is the prescribed relative humidity, 
*
kq  is the saturation mixing ratio, and ku  is the temperature. 
 

Table V.D.2 
Effects of water vapor feedback on a CO2-doubling experiment using the 

radiative-convective model. 
CO2 warming without feedback (K) 1.66 
CO2 warming with feedback (K) 2.77 
Actual effect of feedback (K) 1.11 
Sensitivity to feedback (K) 0.67 

 
Table V.D.2 shows the effect of this water vapor feedback on the results of a 

CO2-doubling experiment using the RCM. The actual effect of introducing 
water vapor feedback is to increase the CO2 warming by K11.1 . For this 
feedback, the sensitivity calculated using adjoint functions is K67.0 . Thus, 
although the sensitivity is about 40% less than the actual effect, it still provides 
a useful estimate of the effect of the water vapor feedback. 

 
 
V. E. AN ISENTROPIC TWO-LAYER MODEL FOR NUMERICAL 

WEATHER PREDICTION  
 
The variability in predictive skills of numerical weather prediction (NWP) 

models is strongly related to the occurrence of blocks (Kimoto et al., 1992; 
Tracton et al., 1989). It is therefore important to understand the model errors 
associated with blocking situations. This Section describes a paradigm two-
layer isentropic NWP model, which will be employed subsequently to illustrate 
the application of the ASAP to compute sensitivities of a blocking index to 
model parameters. The material presented in this Section is based on the article 
entitled “An Adjoint Sensitivity Study of Blocking in a Two-Layer Isentropic 
Model,” by X. Zou, A. Barcilon, I. M. Navon, J. Whitaker, and D. G. Cacuci 
(1993). 
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The isentropic primitive equations can be written as 
 

( )
0=⋅∇+

∂
+∂ J
t

fζ
, (vorticity equation)   (V.E.1) 

0
2

2 =





 ⋅

+∇+×∇⋅−
∂
∂ VVJk M

t
D , (divergence equation) (V.E.2) 

( ) ( ) 0=
∂
∂

+⋅∇+
∂
∂

θ
σθσσ &

V
t

, (continuity equation)   (V.E.3) 

π
θ

=
∂
∂M , (hydrostatic equation)    (V.E.4) 

 
where: (i) the quantity f+ζ  gives the absolute vorticity, or potential vorticity 

(PV) per unit volume; (ii) the quantity ( )[ ] +−∂∂++= ijFvfu θθζ &J  

( )[ ]jiFufv +∂∂−+ θθζ &  represents  the flux of PV per unit volume due to 

advective, diabatic, and frictional effects; (iii) ( )kp ppC 0=π  represents the 
Exner function; (iv) gzM += πθ  represents the Montgomery potential; (v) 

θσ ∂∂−= − pg 1  represents the isentropic mass density; and (vi) 
ji ji FF +=F  represents the local friction force per unit mass. 

In view of Eq. (V.E.1), “PV substance,” that is, the amount of PV per unit 
volume, can not be created or destroyed in an isentropic layer, except where 
that layer intersects a boundary. The “PV substance” is thus concentrated 
within the respective layer by advective, diabatic, and friction forces (Haynes 
and McIntyre, 1987). 

The nonlinear relationship between σ  and M  in Eq. (V.E.3) can be 
eliminated approximately by noting that 

 

,
θ

ρσ
∂
∂

= a
a

z
     (V.E.5) 

 
where 

 

( )πθπ
θ

ρ −=









= pa

RC

p
a C

g
z

CR
p v

0

0

0 ,   (V.E.6) 

 
are the density and height in an isentropic atmosphere with potential 
temperature 0θ , and by introducing the Boussinesq approximation 

000 θρρ Rpa == , which reduces Eq. (V.E.5) to 
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    (V.E.7) 

 
Replacing Eq. (V.E.5) into (V.E.3) reduces the latter to the form 
 

.0=







∂
∂

∂
∂

+







∂
∂

⋅∇+






∂
∂

∂
∂

θ
πθ

θθ
π

θ
π &V

t
  (V.E.8) 

 
The fluid system to be studied consists of two layers of constant potential 

temperature on a rotating sphere. The subscripts 1 and 2 are used to denote the 
lower and upper layers, respectively, while the subscripts 21 , 23 , and 25  
indicate the surface, layer interface, and upper boundary, respectively. The 
boundary conditions are taken as 

 
.02125 ==θθ &&     (V.E.9) 

 
The condition given in Eq. (V.E.9) implies that mass is not exchanged through 
the upper and lower boundaries. In addition, the upper boundary is assumed to 
be a free surface, which implies that =25π constant. Therefore, the continuity 
equation represented by Eq. (V.E.8) in the upper layer becomes an equation for 
the layer interface pressure 23π . 

Using the hydrostatic equation, θπ gz −=∂∂ , it can be shown that 
zzM ∂∂=∂∂ θπ . Therefore, M  can change only in the vertical direction 

when θ  changes, and is, therefore, independent of height within each layer. 
The horizontal momentum equations then require that u  and v  (hence ζ  and 
D ) be independent of height within each layer, if they are initially so. The 
dynamics of each layer is then similar to that of a shallow-water model. 

From the definition of M  at the surface, it follows that 
 

,1211 sgzM +≈ θπ     (V.E.10) 
 

where sz  represents the topographic height. Integrating the hydrostatic 
equation across the layer interface leads to 

 
( ) ( ).252252112312 ππθπππθθπ +∆∆+++∆+∆=∆+= sgzMM  

(V.E.11) 
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Equations (V.E.1), (V.E.2), and (V.E.8) are discretized by using Eqs. 
(V.E.10) and (V.E.11) together with the discretization procedure of Hsu and 
Arakawa (1990) for the vertical advection terms appearing in J , to obtain 

 

( )[ ] ,0, =⋅∇+
∂
∂

kk
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t
ζ

    (V.E.12) 
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where 
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,2121 +− −=∆ kkk πππ     (V.E.15c) 

.12 θθθ −=∆      (V.E.15d) 
 

In the above equations, the frictional force F  was parameterized by using 
hyperdiffusion in both layers (to control the enstrophy cascade), and a linear 
mechanical damping applied in the lower layer only (to simulate surface drag).  

The diabatic heating 23θ&  is parameterized as a Newtonian relaxation toward 

an equilibrium interface Exner function eπ . Therefore, for 2=k , Eq. 
(V.E.14) becomes 

 

( )[ ] ( ) ., 23
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2222
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ππ
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π −
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(V.E.16) 

 
Thus, the diabatic heating at the interface is 

 
( )

( ) ,
12

23
23 ππτ

θππ
θ

∆+∆

∆−
=

diab

e&     (V.E.17) 

 
implying that mass can be transferred between the layers. 
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The prognostic equations (V.E.12)-(V.E.14), together with the diagnostic 
relations (V.E.10), (V.E.11), (V.E.15), and (V.E.17), are integrated 
numerically in spherical geometry using a spectral transform technique similar 
to that described by Browning et al. (1989). The specific basis functions used 
are spherical harmonics with triangular truncation, truncated at wavenumber 
31, together with a semi-implicit time integration procedure using a time step 
of 45 minutes. This semi-implicit scheme requires that the layer thickness π∆  
be split into a horizontally uniform reference state π∆  and a horizontally 
varying part π ′∆ , as follows: 

 
,πππ ′∆+∆=∆    (V.E.18) 

 
where 
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The divergence equation (V.E.13) and the continuity equation (V.E.14) can 

then be written in the form 
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All dependent variables are expanded in spherical harmonics, i. e.,  
 

( ) ( ) ,,, ,,∑∑
−= =

=
J

Jl

J

ln

l
nknlk YtFtF λφ  (V.E.21) 

 
where the expansion is truncated at 31=J , and where the spherical harmonics 

l
nY  are defined as 
 

( ) ( ) ,sin, λφλφ ill
n

l
n ePY =   (V.E.22) 

 
with l

nP  denoting the customary associated Legendre polynomials. 
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Using the expansion shown in Eq. (V.E.21) yields the following spectral 
form of the model equations (V.E.12), (V.E.19), and (V.E.20): 

 

( ) ,,,1,,
,,

knlknl
knl nA

dt
d

ζδ
ζ

+=    (V.E.23) 
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   (V.E.25)  

 
In Eqs. (V.E.23) through (V.E.25), the quantities knlA ,,  represent the spectral 

coefficient of all terms except the diffusion term in Eq. (V.E.12); the quantities 
knlB ,,  represent the spectral coefficient of all terms except the diffusion and 

M ′∇ 2  terms in Eq. (V.E.19); the quantities knlC ,,  represent the spectral 
coefficient of all terms except the knlk D ,,π∆  term in Eq. (V.E.20); and the 
quantities ( )n1δ  and ( )n2δ  are defined as follows 

 

( ) ( ) ,1 2

21

ν

αδ 



 +

−=
a
nnn    (V.E.26a) 

( ) ( ) .1
22 a

nnn +
−=δ     (V.E.26b) 

 
The last terms on the left-sides of Eqs. (V.E.24) and (V.E.25) are responsible 

for gravity-wave propagation and are therefore treated implicitly using the 
Crank-Nicholson time-differencing scheme; the other terms are treated 
explicitly using the leapfrog scheme. The vorticity equation (V.E.23) is 
integrated explicitly using the leapfrog scheme. A weak time filter is applied to 
all three prognostic equations to damp the computational mode. 

The following specific parameter values are used in this model: ,2801 K=φ  

,3202 K=φ  ,10000 mbp =  ,104 mztop =  ,125 θπ topp gzC −=  ,12=ν  

,5 daysdrag =τ  ;15daysdiab =τ  furthermore, α  is chosen so that the smallest 
resolvable scale is damped within an e -folding time scale of 3h. The 
topographic height is given by ( ) ,2sin4 42

0 λµµ −= hzs  while the 
equilibrium interface Exner function is expressed as 

 

( ) ( ),22sin2cos
2
1 2 +−−= φφππππ β midpmide C  
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where φµ sin= , mh 20000 = , ( ) 225ππ += pmid C , and 75.0=βπ . 

Following Zou et al. (1993), a time- and space-dependent blocking index, 
( )tR ,λ , is defined as 
 

( ) ( ) ( )( ) ( ) ( )( ),,,,,, ttHtttR
hlhl
λψλψλψλψλ φφφφ −−≡ −  (V.E.27) 

 
where 

 

( ) ,
0  if,0
0  if,1





≤
>

≡− x
x

xH     (V.E.28) 

 
denotes the unsymmetrical Heaviside function, 

lφψ  denotes the upper-level 

stream function at the latitude lφ , and 
hφψ  denotes the upper-level stream 

function at the latitude hφ . For the illustrative sensitivity analysis results 
presented in the following Sections, lφ  and hφ  were empirically selected as 
the Gaussian latitudes 39° and 65°N, respectively. 

Between day 250 and day 350 during the simulation interval, three model 
blocks form: the first one, denoted as “block 272 ,” formed about day 272; the 
second block, denoted as “block 283 ,” formed about day 283; while the third 
block, denoted as “block 322 ,” formed about day 322, respectively. The 
formation of blocks is particularly difficult to predict, and several theories have 
attempted to offer mechanisms for this process; no single theory is universally 
accepted yet. The illustrative sensitivity analysis results presented in the sequel 
are not aimed at resolving differences between blocking theories, but aim at 
indicating the powerful insights provided by the ASAP even for such difficult 
simulation problems. 

The index defined by Eq. (V.E.27) is a function of both time and space. A 
simplified blocking index can be defined by selecting a fixed longitude λ , for 
a given block, and redefine the blocking index response as a function of time 
only as 

 
( ) ( ) ( )( ) ( ) ( )( ).ttHtttR

hlhl φφφφ ψψψψ −−= −   (V.E.29) 
 

Specifically, the following constant longitude are selected for the blocks under 
consideration: longitude W23°=lλ  for “block 272 ,” W150°=lλ  for “block 
283 ,” and W360°=lλ  for “block 322 .” In the experiments to be described, 
a time window attt ≤≤0  which encompasses the respective “block” must be 
selected, with 0t  being selected from a few to several days before blocking, 
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and at  chosen past the duration time of blocking, such that the response 
vanishes there, i.e., ( ) 0=atR . Since the predictive capabilities of first-order 
sensitivities deteriorate when nonlinearities become significant, it is very 
important to select an appropriate time window for the sensitivity study of a 
specific problem in order to avoid, as much as possible, the loss of 
predictability due to nonlinearities.  

 

 
Figure V.E.1. Variation of the blocking index in time (solid line) and its 

approximation of the finite Fourier sine expansion truncated at 8=M  (dash-
dotted line) and 16=M  (dotted line). 

 
As a representative measure of the blocking index, we first select a time 

window extending from 2670 =t  days to 298=at  days for “block 283 ” and 
calculate the response once a day, shown as a solid line in Fig. V.E.1. The 
finite Fourier sine expansion 

 

( ) ( )∑
= −

−
−

=
M

m a
m

a tt
ttma

tt
tR

1 0

0

0
sin2 π   (V.E.30) 

 
is also shown in Fig. V.E.1 as a dash-dotted line, for 8=M , and as a dotted 
line, for 16=M . The 16=M  representation matches the response extremely 
well in the region where the computed response differs from zero, that is, 
between day 180 +t  and 220 +t . When the response is zero, the 
approximation given by Eq. (V.E.30) suffers from Gibbs oscillations, and 
therefore, one should be careful in interpreting pre-blocking results that are 
tainted by this shortcoming. Therefore, the subsequent developments in this 
Section are all based on the truncated basis function 
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( ) ( ) ( )[ ]00sin ttttmtw am −−= π  and ( )16,,1 K=m , with 16=M . Using the 
relation ( ) 0=xxδ , and noting that the response does not depend on the model 
parameters, it follows that the direct effect αα hR′  is zero and the indirect effect 
is 

 
( )( ) ( ) ( )[ ] ( ) ( )[ ]., 00 ttHththtR

hlhlxx φφφφ ψψ −−=′ −hx α  (V.E.31) 
 
 

V. F. APPLYING THE ASAP FOR EFFICIENT SENSITIVITY 
ANALYSIS OF BLOCKING INDEXES IN THE TWO-LAYER 

ISENTROPIC MODEL 
 
Equations (V.E.23) through (V.E.25) can be written in operator form as  
 

( ),,; αxFx t
dt
d

=    (V.F.1)  

 
subject to known initial conditions 

 
( ) ( ).00

tt tt xx ==    (V.F.2) 
 
The quantities appearing in Eq. (V.F.1) are defined as follows:  

(i) ( )Nαα ,,1 K≡α  represents the N -dimensional vector of model parameters; 
(ii) ( )Pxx ,,1 K≡x  denotes the P -dimensional state vector; and (iii) the 
operator F  represents all processes that change the model state x . The 
dimension P  of the model variable x  is taken to be NMDIM6×=P , where 

( )[ ] 221NMDIM +−≡ JJ  denotes all of the spectral coefficients of vorticity, 
ζ , divergence, D , and perturbation layer thickness, π ′∆ , while J  denotes 
the total zonal wave numbers. When x  represents the model variables on a 
Gaussian grid, with NLONS  and NLATSH  denoting the total number of grid 
points along longitude and latitude, then P  takes on the value 

NLATSHNLONS6 ××=P .  
The time integration of the model starts at time 0=t  from arbitrary initial 

values of the dependent variables, and the first ca. 100  days are discarded. The 
integration then proceeds until a final time, at , is reached. For the results 
presented in this Section, the total time span of the model is 1100  days. For 
sensitivity analysis, a 32 -day time window [ ]att ,0  was used when a blocking 
event occurred. 

The first step towards constructing the adjoint sensitivity system for applying 
the ASAP is to derive the forward sensitivity system (or tangent linear model) 
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corresponding to Eqs. (V.F.1) and (V.F.2). This is accomplished by computing 
the G-differential of Eqs. (V.F.1) and (V.F.2) around the nominal solution 
( )00 ,αx , for arbitrary variations ( )αhh ,x , to obtain 

 

( )[ ] ( ) ( )[ ] αhxQhxL 0000 ,, αα ttt x = ,  (V.F.3)  
 

where the function ( )txh  is subject to the known initial conditions 
 

( ) ( )00 ttx xh δ≡ .    (V.F.4) 
 

The operators L  and Q  in Eq. (V.F.3) are matrix-valued operators defined, 
respectively, as 

 

( )[ ] ,, 00

x
FIxL
∂
∂

−≡
dt
dt α    (V.F.5) 

( )[ ] ,, 00

α
α

∂
∂

≡
FxQ t     (V.F.6) 

 
where I  is the P -dimensional unit matrix.  

The operator *L , adjoint to L , is defined through the relationship 
 

( ) ( ) ( ) ,
0

00

* a

aa
t
t

t

t
x

t

t

dtdt qhLhqqLh xx ⋅−⋅=⋅ ∫∫  (V.F.7) 

 
where q  is at this stage an arbitrary column vector of dimension P . Carrying 
out the integration shown in Eq. (V.F.7) yields 

 

( )[ ] ,, 00* T

dt
dt 







∂
∂

−−≡
x
FIxL α   (V.F.8) 

 
where the superscript “T ” denotes “transposition.” 

The accuracy of the numerical procedures for discretizing the operators L , 
*L , and Q , for solving the adjoint sensitivity system, and for computing 

sensitivities can be verified by considering the simple functional response (not 
related to blocking) ( )( )α,0tR x  defined below: 

 
( )( ) ( ) ( ),layerupper ,2,;,,,

,,

2
0 == ∑ ktktR

rji
rji φλψαx  (V.F.9) 
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where the summation is extended over longitude, latitude, and time, once a day 
for 32  days, starting at 2670 =t  days. 

The sensitivity of the response to variations ( )0txh  in the model’s state 
variables, and to parameter variations αh , can be obtained in three different 
ways, as follows:  

(a) Computing the sensitivity adjδR , formulated in terms of the adjoint 
functions ( )rtq , namely 

 
( ) ( )( ) ( ) ( ) ,, 00

00 ttttδR x
r

rr
adj qhhxQq +=∑ αα   (V.F.10) 

 
where the adjoint function ( )rtq  is the solution of the adjoint sensitivity 
system  

 
,*

xrqL ′=     (V.F.11) 
( ) ,0=atq     (V.F.12) 

 
and where the components of the inhomogeneous source-term xr ′  are nonzero 

only for the forcing terms of the form ( )rx tr 02ψ=′ , which are present at times 

rt , 0,, ttr a K= , where 298=at  days and 2670 =t  days. 

(b) Computing the sensitivity dirRδ  by applying the FSAP, i.e., by using the 
corresponding solution ( )rtψh , obtained by integrating, forward in time, the 
“forward sensitivity system” (or “linear tangent model”), to compute: 

 
( ) ( ).2 0∑=

r
rr

dir ttR ψψδ h    (V.F.13) 

 
(c) Computing the total variation of the response 

 
( ) ( )
( ) ( ).;,;,

,,
002002∑ −++=

−++=

r
rrx

x

tt

RRdR

αα

αα

xhhx

xhhx

ψψ α

α
  (V.F.14) 

 
It is expected that Eqs. (V.F.10) and (V.F.13) would yield identical results, to 

within numerical accuracy. However, Eq. (V.F.14) is expected to produce 
results which would be close to those produced by either Eq. (V.F.10) or Eq. 
(V.F.13) only for changes xh  and αh  that are sufficiently small for 
rendering the higher-order effects negligible. 
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Table V.F.1 

Sensitivity of R , defined by Eq. (V.F.9), to the increments ( )0tεψ in the field 
of the stream-function ( )0tψ . 

 Predicted change  
 Adjoint 

methoda 
Direct 

methodb 
Actual 

changec 

10E-3 4.683E16 4.683E16 4.721E16 
10E-4 4.683E15 4.683E15 4.709E15 
10E-5 4.683E14 4.683E14 4.686E14 
10E-6 4.683E13 4.683E13 4.683E13 

aPredicted change (ASAP) ( ) ( )[ ]0,0 xhq= . bPredicted change (FSAP) 

[ ]xxR h,′= . cActual change ( ) ( )0000 ,, αα xhx RR x −+= . 
 
Table V.F.1, above, presents illustrative results for adjRδ , dirRδ , and dR for 

( )( )Tx t 0,0,0
0εψ=h and 0=αh , where ε ranges from 210− to 610− . The 

results presented in the columns labeled “actual change” represent the actual 
changes in the blocking index obtained by rerunning the two-layer isentropic 
model after ψ has been increased by εψ . The column labeled “predicted 

change (direct method)” presents the sensitivities values dirRδ , while the 
columns labeled “predicted change (adjoint method)” displays the results 

adjRδ . The ASAP results (given by adjRδ ) are practically identical to the 
results produced by the FSAP ( dirRδ ), and also agree with direct 
computations, for small values of ε . For larger values of ε ( 310−> ), the 
nonlinear effects become apparent.  

An additional investigation of the effects of nonlinearities on the behavior of  
the response R defined by Eq. (V.F.9) is presented in Figures V.F.1a and 
V.F.1b, below. Thus, Fig.V.F.1a depicts the time-behavior, for 210−=ε , of 
the quantities ( ) ( )rr tt ψψ h02 and ( ) ( ){ }rrx tt ;,;, 002002 αα xhx ψψ −+ , 
respectively. The two curves are very close for the first 9 days of integration 
and begin to diverge afterward, indicating that the cumulative effects of the 
nonlinear terms, for this value of ε , are no longer negligible. This result 
implies that the tangent linear model approximation is valid for 9 days of 
integration for a perturbation of  size 210−=ε . However, when 610−=ε , the 
agreement between these same curves (Fig. V.F.1b) is excellent, confirming 
the results shown in Table V.F.1, and thereby indicating the extent to which 
the forward sensitivity system (i.e., tangent linear model) yields reliable 
predictions.  
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Figure V.F.1a. Variation of ( )tdR  (dotted line for 210−=ε  and solid line for 

610−=ε ) and ( )tRdirδ  (solid line for 210−=ε  and circles for 610−=ε ) with 
time in the time window of [ ]αtt ,0 , for a variation of ( )0tεψ  in the field of ψ , 

at time 0t , for 210−=ε . 
 

 
Figure V.F.1b. Variation of ( )tdR  (dotted line for 210−=ε  and solid line for 

610−=ε ) and ( )tR dirδ  (solid line for 210−=ε  and circles for 610−=ε ) with 
time in the time window of [ ]αtt ,0 , for variation of ( )0tεψ  in the field of ψ , 

at time 0t , for 610−=ε . 
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Having verified the adequacy of the numerical solution of the adjoint 
sensitivity model, we now apply the ASAP to the time-dependent blocking 
index ( )tR  defined in (V.E.29) and reproduced, for convenience, below: 

 
( ) ( ) ( )( ) ( ) ( )( ).ttHtttR

hlhl φφφφ ψψψψ −−= −  (V.E.29) 
 
The above blocking index can be considered either as being dependent upon 

the vector ( )tX  in physical space or as being dependent upon the vector of 
time-dependent spectral coefficients x . Both points of view will be treated in 
the sub-sections below. 

 
 

V.F.1. Blocking Index in Physical Space 
 
The blocking index, ( )tR , defined by Eq. (V.E.29), and the indirect effect, 

XXR h′ , given by Eq. (V.E.31), can be expressed as functions of the model 
variables on a Gaussian grid space, in matrix form, as 

 
( ) ( ),XaXa TT HtR −= −    (V.F.15) 

( ),0Xahah T
X

T
XX HR −=′ −    (V.F.16) 

 
where the components of the vector a  are defined as 

 
( )
( )








+−=−
+−=

=
,otherwise       ,0

;1  if,1
;1  if,1

12

11

iIjl
iIjl

al   (V.F.17) 

 
and where 1j , 2j , and 1i  correspond to lφ , hφ , and lλ , respectively, while 

NLONS=I  denotes the total number of grid points in the longitudinal 
direction. It follows that the partial G-derivative of the response with respect to 
the model variables X  is given by  

 

( ) .,, 0








∂
∂

−=′ − KK
i

TT
X X

HR XaXa   (V.F.18) 

 
Expressing the indirect effect term (which gives, at the same time, the 

sensitivity of the blocking index) in terms of the basis function 
( ) ( )[ ] ( ){ }Mmttttm a ,,1,sin 00 K=−−π  leads to 
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( ) ( )( ) ( ) ,sin2,;,
1 0

0

0

00 ∑
= −

−
−

==′
M

m a
m

a
XXX tt

ttma
tt

ttRR πδ αhhXh α (V.F.19) 

 
where the coefficients ma  are defined as 

 

( ) ( )

( ) ( ) .sin,

sin,sin
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XXm
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π

ππ

h

hh
 (V.F.20) 

 
It follows from the last term of the above sequence of equalities that the 

source term for the adjoint sensitivity system is provided by the quantity 
( ) ( ) ( )00sin ttttmR a

T
X −−′ π . Hence, the adjoint sensitivity system becomes 

 

( ) ( ) ( )
,sin

0

0***

tt
ttm

Rtq
a

T
Xm −

−
′=

π
SLG    (V.F.21) 

 
where G  is a transform from the Gaussian grid space of  ( )πψ ′∆,, D  to the 

spectral space of ( )πζ ′∆,, D , while 1−=GS . Replacing the left-side of Eq. 
(V.F.21) into the last term of Eq. (V.F.20), and using the definition of adjoint 
operators yields 

 
( )[ ] ( ) ( )[ ] ( ) ( )[ ].,,, 00

*** tqtttqtqa mXXmmXm hSLGhSLGh +== (V.F.22) 
 
The appearance of Xh  can be eliminated from the above expression by using 

the forward sensitivity system, 
 

,αSQhSLGh =X     (V.F.23) 
 

in the inner product on the rightmost side of Eq. (V.F.22). Hence, the 
coefficients ma  can be expressed in terms of the adjoint functions as 

 
[ ] ( ) ( )[ ].,, 00 tqtqa mXmm hSQh += α    (V.F.24) 

 
Substituting the above expression into Eq. (V.F.19) yields the following 

expression for the sensitivity ( ) ( )( )αδ hhX ,;, 00 ttR Xα  of the blocking index 
( )tR : 
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( ) ( )( )

[ ] ( ) ( )[ ]{ } ( ) .sin,,2

,;,

1 0

0
00

0

00

∑
= −

−
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−
=

M

m a
mXm

a

X

tt
ttmtqtq

tt

ttR

π

δ

α

α

hSQh

hhX α
 (V.F.25) 

 
The nominal solution of the nonlinear two-layer isentropic model is used in 

Eqs. (V.F.15) and (V.F.18) to obtain the nominal value of the blocking index 
response, ( )tR , and, respectively, the partial G-derivative ( )TXR′ . Then, the 
adjoint sensitivity model is integrated backwards in time sixteen times, with 
sixteen different right-sides ( ) ( ) ( )[ ]00sin ttttmR a

T
X −−′ π  for 

( )16,,1 == Mm K , to obtain the values of the respective adjoint functions 
( )tqm . The values of ( )tqm , ( )Mm ,,1K=  thus obtained are replaced in Eq. 

(V.F.25) to obtain the sensitivities of the blocking index to all model 
parameters, as well as model-states at any point in time. Note that the inner 
product in Eq. (V.F.25) is of the form 
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(V.F.26) 

 
where ( )1g  and ( )2g  represent two arbitrary vectors in physical space. The 
time-integration was performed by using an extended trapezoidal rule, with 

( ) ( )[ ]100 −−+= Nttjtt aj , ( )1,,0 −= Nj K , where 311=−N  denotes the 

total number of subintervals in the integration period [ ]att ,0 . Furthermore, 
since the summation in Eq. (V.F.25) is actually of the form 

 

( ),1,,0,
1

sin2

10
−=

−−
= ∑

=
=

Nj
N
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m
m

a
tt j

K
πδ  (V.F.27) 

 
the value of the sensitivity 

jttR
=

δ  of the blocking index is computed using a 

Fast Fourier Sine Transform. 
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V.F.2. Blocking Index in Spectral Space 
 
Expressing the response ( )tR and the indirect effect xxR h′ as functions of 

the model variables in spectral space enables sensitivity analysis of the 
blocking index response to variations in amplitudes of the various 
wavenumber. Then (V.F.15) and (V.F.16) are written, respectively, as 

 
( ) ( ),SxaSxa TT HtR −= −   (V.F.28) 

( ),0SxaShah T
x

T
xx HR −=′ −   (V.F.29) 

 
where the vector a  has been defined in Eq. (V.F.17). The partial G-derivative 
of the response with respect to the spectral model variables x is 

 

( ) .,, 0








∂
∂

−=′ − KK
i

TT
x x

HR xSaSxa   (V.F.30) 

 
Applying the ASAP as outlined in Chapter V of Volume I along the same 

lines as in the previous subsection, the sensitivity of the blocking index 
representation in spectral space is obtained as 
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 (V.F.31) 

 
where the adjoint function ( )tmq is the solution of the adjoint sensitivity 
system 

 

( )( ) ( ) ( ) ( ) ,sin,
0

000*

tt
ttmRtt

a

T
Xm −

−′=
πqxL α  (V.F.32) 

( )  .0=am tq     (V.F.33) 
 
 

V.F.3. Illustrative Sensitivity Analysis Results 
 
Table V.F.2 presents relative sensitivities of the blocking index for block 

272 to different wavenumbers in the upper layer; these results were computed 
using Eq. (V.F.31). The quantities ( )nm,  represent the zonal wavenumber and 
the number of nodes in the meridional direction. A Cartesian meridional 
wavenumber, l , could be approximately obtained by writing ( ) 2nml −≈ . 
The sets of waves that contribute most to block intensification could thus be 
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characterized as being planetary ( )2;7;0 ≈== lnm , synoptic 
( )2;11;6 ≈== lnm , or zonal ( )65;11;0 −≈== lnm . The results shown in 
Table V.F.2 highlight the importance of zonal flow, planetary waves, as well 
as synoptic-scale features; positive relative sensitivities imply block 
intensification, and the scales ( ) ( )11,6;11,0;7,2, =nm bring the dominant 
contribution. The waves producing negative values of relative sensitivity 
contribute most to block demise; the respective scales are 
( ) ( )6,5;7,4;7,0;3,0, =nm , indicating again that zonal flow is important. The 
largest sensitivities in the wave band 60−=m occur mainly for meridional 
wavenumbers 90 −=n . The sensitivities within wavenumbers 127 −=m are 
an order of magnitude smaller than those occurring within wavenumbers 

60 −=m .  
Recall that when a variation occurs solely in the thn parameter, the 

corresponding vector of parameter variation n
αh takes on the form 

 

( ) .0,,,,0 
Tnn h KK αα =h    (V.F.34) 

 
Denoting the corresponding response sensitivity by nRδ , we recall that the 

relative sensitivity ns is defined as the dimensionless quantity 
 

.
1

0

−











=

n

nn

n
h

R
Rs
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δ α     (V.F.35) 

 
Note that because 0≤R and 00 >n

nh αα , ns and nRδ have opposite signs; 
thus, 0>ns implies block intensification.  

Figure V.F.2 shows the relative sensitivity of the blocking index at longitude 
W231 °=λ during the time window [ ]298day,267day . Only the relative 

sensitivities for the five days when the blocking index differs from zero are 
plotted. Note that although the variation of the blocking index response is quite 
symmetric (see Figure V.E.1), the time evolution of the relative sensitivities is 
antisymmetric. As can be seen from Figure V.F.2, the largest sensitivity is to 
the mountain height 0h ; the second most important parameter affecting the 
blocking index is the quantity βπ  (which represents a measure of the slope of 
the layer interface and, therefore, a measure of the upper-level zonal jet in the 
radiative drive). The third most important parameter is dragτ , which denotes 
the surface drag that controls the baroclinic life cycle via the barotropic 
governor mechanism of James and Gray (1986) and James (1987). Mechanical 
drag is an order of magnitude more important than the Newtonian damping, 
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diabτ , which is the fourth most important parameter in the two-layer isentropic 
model.  

 
Table V.F.2 

Values of relative sensitivities of the blocking index at longitude 150°W and 
day 271 to 1% perturbations of ψ  in spectral space at the upper layer, 

at time 2670 =t  (day). 
 0=m  1=m  2=m  3=m  4=m  5=m  6=m  7=m  

0=n          

1=n  -3.0E-2        

2=n   -4.6E-4       

3=n  -2.7E-1  -2.3E-2      

4=n   -4.4E-2  2.7E-2     

5=n  8.6E-3  -4.9E-2  -5.0E-2    

6=n   -5.0E-2  -3.4E-2  -1.7E-3   

7=n  -1.2E-1  8.8E-2  -1.2E-1  1.3E-2  

8=n   -4.1E-3  6.4E-2  -8.7E-2  8.8E-3 

9=n  -2.5E-2  3.5E-2  -5.0E-2  -2.2E-2  

10=n   -4.0E-3  -1.3E-2  -4.8E-2  -1.2E-2 

11=n  9.5E-2  -7.7E-3  -2.0E-2  8.4E-2  

12=n   3.1E-2  -9.8E-2  -1.0E-2  -8.4E-3 

13=n  -4.6E-4  -8.1E-4  -6.4E-3  -1.9E-2  

14=n   2.0E-3  -7.8E-3  2.9E-3  -4.2E-4 

 

 
Figure V.F.2. The relative sensitivities of the blocking index to model 

parameters dragτ  (solid line), diabτ  (dotted line), ßπ  (dashed line), and 0h  
(dash-dotted line). 

Copyright © 2005 Taylor & Francis Group, LLC



Applications of the ASAP in Atmospheric Sciences             281 
 

V.F.4. Computational Costs 
 
A few adjoint calculations, each involving a similar amount of computation 

as would be required for solving once the tangent linear of the original model, 
sufficed to obtain sensitivities of a blocking index to all the relevant model 
parameters and model states (the total dimension is 3076 in spectral space and 
13 828 in grid space). The sensitivity of the blocking index to mountain height 
was found to be the largest. The sensitivity analysis in grid space and spectral 
space has shown that the significant sensitivities for blocking occur in some 
preferred regions and spectral wave bands. 

It is instructive to analyze the computational cost of applying the ASAP for 
performing sensitivity analysis of a time-dependent blocking index. The CPU 
time required to compute the nominal solution by a 32-day time-integration of 
the two-layer isentropic model, namely Eq. (V.F.1), was 46 seconds. Hence, 
the CPU time for calculating an exact change in the response would be 92 
seconds (namely: twice the time needed for a base-case computation). On the 
other hand the CPU time needed for the 32-day time-integration of the adjoint 
sensitivity model described by Eq. (V.F.21), for a given right-side, was 86 
seconds. Consequently, the CPU times for calculating the sixteen adjoint 
functions ( )16,,1, == Mmqm K , which are needed to obtain the sensitivities 
of the blocking index using the ASAP, was 1455 seconds. Once the values of 
the adjoint variables ( )16,,1, == Mmqm K  are available, the subsequent 
sensitivity analysis is computationally very efficient. The computation of the 
response sensitivity to any change in any of the model’s state variables 
parameter requires only 1 second, while the CPU for computing the sensitivity 
of the response to any parameter variation requires only 33 s [which is the 
CPU time required to compute the quadrature in Eq. (V.F.25)]. This 
underscores the fact that the ASAP is most economical for sensitivity analysis 
of large-scale models, as is the case for the two-layer isentropic model under 
consideration (the total model dimension is 3076 in spectral space and 13 828 
in grid space). 

Using the ASAP, the CPU for computing the sensitivities of the blocking 
index to vorticity sources placed in different locations is quite modest. Once 
the values of the adjoint variables ( )16,,1, == Mmqm K  have been computed 
for this blocking index, the ASAP computation to any perturbations of the 
model dynamic fields takes only a few seconds of CPU time. In particular, the 
CPU time required to compute the sensitivities to perturbation at different grid 
points of the model variables [namely: 4608NLATSHNLONS2 =××  
computations using Eq.  (V.F.25) or 1024NMDIM2 =×  computations using 
Eq. (V.F.31)] required only tens of seconds; such sensitivity analyses would be 
practically unfeasible by using the FSAP or brute-force recalculations. 
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CHAPTER VI 
 
 

ADJOINT SENSITIVITY ANALYSIS PROCEDURE FOR 
OPERATIONAL METEOROLOGICAL APPLICATIONS 

 
Adjoint sensitivity analyses in meteorological applications have been gaining 

in popularity since the pioneering work of Hall and Cacuci (1983) and Hall, 
Cacuci and Schlesinger (1982), which applied the basic sensitivity analysis 
theory for nonlinear systems (ASAP) provided by Cacuci (1981; see also Volume 
I). This chapter presents three additional illustrative examples of applying the 
ASAP to representative large-scale models used in operational numerical weather 
prediction. Thus, Section VI.A presents the illustrative sensitivity analysis 
results, first obtained by Li and Navon (1998), by applying the ASAP to the 
diagnostic equations underlying the nonlinear radiation model used in the 
National Center for Environmental Prediction (NCEP) model for medium-range 
weather forecasting. Section VI.B presents illustrative results of a sensitivity 
analysis of the localized model forecast error to the initial conditions, for a test 
case occurring during the Indian summer monsoon. These results were obtained 
by Zhu and Navon (1998) by applying the ASAP to the FSU Global Spectral 
Model (GSM), developed by Krishnamurti and Dignon (1988). Finally Section 
VI.C presents illustrative sensitivity analysis results obtained by Yang, Navon, 
Todling (1997) and Yang et al. (1999), who have applied the ASAP to develop 
the adjoint sensitivity model (Yang, Navon and Todling, 1997) corresponding to 
the moisture part of the physics module (namely, the Relaxed Arakawa Schubert 
(RAS) scheme) in the NASA Goddard Earth Observing System-1 (GEOS-1) 
general circulation model (GCM) developed by the Data Assimilation Office 
(DAO) at the National Aeronautics and Space Administration (NASA) Goddard 
Space Flight Center (GSFC). The response-functions considered in Section VI.C 
measure the strength of the convective cloud precipitation, and the cloud 
induced heating and drying, in both an instantaneous and a time-integrated 
sense. 

 
 
VI. A. ADJOINT SENSITIVITY ANALYSIS PROCEDURE (ASAP) 

FOR THE EARTH’S RADIATION BUDGET IN THE NCEP 
MEDIUM-RANGE FORECASTING MODEL 

 
This Section presents illustrative sensitivities of the Earth’s radiation budget 

(ERB) to cloud cover water vapor, atmospheric temperature, and Earth’s surface 
temperature, by applying the ASAP to the nonlinear radiation model used by the 
National Center for Environmental Prediction (NCEP) in their medium range 
weather forecasting system. Section VI.A.1 briefly describes the relevant 
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parameterizations in the NCEP radiation model, and presents the salient features 
(including verifications) of the corresponding adjoint sensitivity model. Section 
VI.B presents paradigm sensitivity analysis results for the clear sky and cloudy 
sky shortwave and long-wave radiation, as well as for the ERB.  

 
 

VI.A.1. Derivation and Verification of the Adjoint Sensitivity Model 
Corresponding to the NCEP Nonlinear Radiation Model 

 
The radiation codes considered in this Section were operationally used in the 

NCEP medium-range weather forecasting model [Kanamitsu et al., 1991]. The 
effects of the major radiatively active atmospheric constituents, including water 
vapor ( OH2 ), carbon dioxide ( 2CO ), ozone ( toaF ), and clouds, are taken into 
account in the modeling of both shortwave (SW) and longwave (LW) processes. 
The model forecasts layer radiative heating rates, upward SW ( stoaF ) and LW 
( ltoaF ) fluxes at top of the atmosphere, as well as downward LW and net SW 
fluxes at the earth's surface. The radiation is calculated with 28 vertical layers 
and the horizontal resolution of 2.8125 degrees.  

The cloud parameterization is a diagnostic scheme based on Slingo (1987). 
The main difference between this parameterization and Slingo's scheme and its 
performance were detailed in Campana (1990, 1994). The SW radiation 
parameterization scheme is based on Lacis and Hansen (1974). A mean cosine of 
the solar zenith angle, µ , is employed to calculate the SW fluxes at each model 
grid point, and it is computed for each model latitude as in the following 
equation (Manabe and Strickler, 1964) 

 
( )

daylight

daylight

t dt

dt

µ
µ =

∫

∫
,   (VI.A.1) 

 
where ( )tµ is the cosine of the solar zenith angle at time t . The mean cosine of 
the solar zenith angle is a function of latitude. The longwave radiation model 
was developed by Fels and Schwarzkopf, and its details can be found in Fels and 
Schwarzkopf (1975), and Schwarzkopf and Fels (1985, 1991).  

To apply the ASAP, the following five variables were selected in the NCEP 
radiation model to be perturbed: the atmospheric moisture q , temperature T , 
pressure p , surface temperature sT , and cloud fractions iC , ( )3,2,1=i , where 

1=i  corresponds to high clouds, 2=i  corresponds to middle clouds, and 3=i  
corresponds to low clouds. The amounts of 3O  and 2CO  were not perturbed in 
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the NCEP model, since these two variables were given climatological values 
with seasonal variations. 

As described by Navon et al. (1992) and Zou (1997), the forward sensitivity 
model (i.e., linear tangent model), obtained by G-differentiation of the NCEP 
radiation model, can be written in the form 

 
3

1

toa toa toa toa toa
toa i s

i i s

F F F F F
F C q T T p

C q T T p
δ δ δ δ δ δ

=

∂ ∂ ∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂∑ , (VI.A.2) 

 
where toaF  stands for either stoaF  or ltoaF . Applying the ASAP to Eq. (VI.A.2) 
yields the following adjoint sensitivity model:  

 
3

1

toa toa

toa s

T TT T T
toa toa toa

i
i i s

F FF F F
F C q T T p

C q T T p
δ δ δ δ δ δ∗ ∗ ∗ ∗ ∗ ∗

=

∂ ∂∂ ∂ ∂
= + + + +

∂ ∂ ∂ ∂ ∂∑ , (VI.A.3) 

 
where the variables with the superscript *  denote the corresponding adjoint 
variables.  

For the sensitivity analyses to be presented in the sequel, the responses 
considered are of the form  

 
( ) ( )∑ −= ↓

k
kstoaksis FSpTTqCR ,,,, ,   (VI.A.4) 

( , , , , ) ( )l i s ltoa k
k

R C q T T p F= ∑ ,    (VI.A.5) 

 
where ↓

kS  represents the downward day-averaged solar fluxes at the top of the 
atmosphere, lR  represents the total outgoing long wave radiation (OLR), sR  
represents the total absorbed shortwave radiation (ASR) by the Atmospheric 
Environment Service (AES), Environment Canada’s model ground surface 
temperature data, while k  denotes all horizontal model grid points. The 
sensitivities of the above responses to the five variables mentioned in the 
foregoing are obtained from Eqs.(VI.A.2) through (VI.A.5) by using the chain 
rule and noting that s stoa kR / (F ) =-1∂ ∂  and l ltoa kR / (F ) =1∂ ∂ . The resulting 
expressions for these sensitivities can be written in the form  

 

( , , , , )s s s s s

i s

R R R R R
C q T T p

∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂

i

3
stoa stoa stoa stoa stoa 

C q T p
1 i

     
[ ( ) ( ) ( ) ( ) ( )

C s

T T T T T
T

i s

F F F F F
I I I I I

q T T p=

∂ ∂ ∂ ∂ ∂
− + + + +

∂ ∂ ∂ ∂ ∂∑ , 

(VI.A.6) 

Copyright © 2005 Taylor & Francis Group, LLC



286            Sensitivity and Uncertainty Analysis 

 

 
and, respectively,  

 

( , , , , )l l l l l

i s

R R R R R
C q T T p

∂ ∂ ∂ ∂ ∂
=
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i

3
ltoa ltoa ltoa ltoa ltoa 

C q T p
1 i

     
[ ( ) ( ) ( ) ( ) ( )

C s
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i s

F F F F F
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q T T p=

∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂∑ , 

(VI.A.7) 
 

where ( , , , , )i sI C q T T p  are column vectors of the form ( )Tk 1,,1,1,1 .  
The correctness of the adjoint sensitivity model can be verified in several 

ways. One way is to use the relationship 
 

( ) ( )**
toa

T
toa FzFz δδ = ,   (VI.A.8) 

 
which holds (to computer accuracy) for any z=(δCi, δq, δT, δTs, δp)T and 
z∗=(δCi

∗ ,δq∗, δT∗, δTs
∗, δp∗)T, where toaFδ  and *

toaFδ  are computed from Eqs. 
(VI.A.2) and (VI.A.3), respectively. The nonlinear effects of parameter 
variations on the responses can be assessed by comparing the values of toaFδ  
obtained from Eq. (VI.A.2) with the quantity toaF∆ , defined as 

 
toa = ( , , , , ) - ( , , , , )toa i i s s toa i sF F C C q q T T T T p p F C q T T pδ δ δ δ δ∆ + + + + +  

(VI.A.9) 
 

which is computed by recalculations using perturbed parameter values. In 
addition, the nonlinear effects of parameter variations can also be assessed by 
using the so-called gradient test (see, e.g., Navon et al., 1992; Li et al., 1993), in 
which one computes the quantity t , defined as  

 
( ) ( )

( )pTTqCR
pTTqCRppTTTTqqCCRt

si

sissii

,,,,
,,,,,,,,

∇
−+++++

≡
δδδδδ  (VI.A.10) 

 
where ,( , , , )i sR C q T T p∇  is evaluated from (VI.A.6) and (VI.A.7). The quantity 
t  measures both the accuracy of the forward sensitivity model and the effect of 
nonlinearities. In particular, if t tends to 1 (at computer accuracy) as z  tends to 
zero, it can be concluded that the forward sensitivity model, given by Eq. 
(VI.A.2), is consistent with the nonlinear model, and the adjoint sensitivity 
model has also been implemented correctly.  
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Table VI.A.1 presents illustrative results for computed correlations between 
toaFδ  and toaF∆ , as well as results for the gradient test t . The nominal state of 

the NCEP model, taken at 00GMT on 29 June 1989, was perturbed by removing 
part of the largest spatial scale components for wind components, temperature, 
pressure and the surface temperature. The sizes of the respective perturbations 
are controlled by multiplying perturbations by a given constant a  (where a  
ranges between 110-  and 910- , as shown in Table VI.A.1). Perturbed moisture 
and cloud fractions are obtained by simply multiplying the corresponding 
nominal states by 3 a  (rather than a ), since 3 a  is needed to account for large 
variabilities of moisture and cloud cover. The sizes of perturbations tend to zero 
when 0→a . Table VI.A.1 indicates that 1→t  as the computer accuracy is 
reached for a  = 710- ; this result verifies the consistency between the linear and 
nonlinear models and the correctness of the adjoint. 

 
Table VI.A.1 

Gradient test and correlation coefficients between the nonlinear and linear 
solutions (the size of atmospheric and surface perturbations is proportional to 

a )  
 Gradient test t  Correlation coefficients  

a   shortwave  longwave  shortwave stoaF  longwave ltoaF   

110-   0.998111620665  0.537319071595 0.999803252808 0.891854024493  

210-   1.000121232373  0.987566689942 0.999984396298 0.987636759208  

310-   1.000083505989  0.996395394981 0.999995154225 0.999135310713  

410-   1.000000034075  0.999999408383 0.999999999999 0.999999999998  

810-  0.999994658625  0.999999991261 0.999999999994 0.999999999999  

910-   0.999996809749  0.999995380071 0.999999999474 0.999999999971  

 
The results shown in Table VI.A.1 also indicate that the nonlinear effects are 

weak for a considerable range of perturbation sizes. For example, when a  = 0.1, 
the perturbations are, respectively: 4 K  for temperature, 5 sm /  for wind speed, 
10 hPa  for pressure, 4 kgg /  for moisture mixed ratios, and 0.2 for cloud 
fraction. The linearization approximation inherent to Eq. (VI.A.2) is valid with a 
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high degree of accuracy for SW radiation, while the accuracy is lower, but still 
within a tolerable range, for LW radiation, as indicated by a correlation 
coefficient as high as 0.89. This suggests that the linearization is valid even for 
values of a  as large as 0.1. Similar computations, with similar results and 
conclusions, have also been carried out for different nominal states, 
representative of different months and seasons.  

Note that the above conclusions are true only when the discontinuities (in both 
functions and the first order derivatives) in the original radiation models are 
properly handled, since discontinuities associated with table look-ups and cloud 
calculations may invalidate the linearization; the validity is restored when these 
discontinuities are replaced with cubic spline interpolations or Fourier sine/ 
cosine expansions. 

 
 

VI.A.2. Illustrative Sensitivity Analysis Results 
 
Two nominal states of the NCEP model were used for the sensitivity analysis 

results to be presented in this section, namely: 00GMT, June 19-29 and 
December 19-29, 1989, which are representative of the northern summer and 
winter seasons, respectively. Computations were performed for both clear and 
cloudy skies. In cloud radiative forcing computations, clear and cloudy skies 
were defined with a slight difference (Cess and Potter, 1987, Zhang et al., 1994). 
The definition of clear sky has been taken as used in so-called "method II" (Cess 
and Potter, 1987), where the clear sky atmosphere retains the states unchanged 
while the clouds are set zero.  

In addition to the response functions defined in Eqs. (VI.A.4) and (VI.A.5), 
another response function is defined as 

 
.lsnet RRR −=    (VI.A.11) 

 
Note that netR  is representative of the total net ERB. The following sub-sections 
present illustrative time-averaged (daily) sensitivities of atmospheric moisture, 
temperature, clouds, and surface temperature.  

 
 

VI.A.2.a  Clear Sky Shortwave Radiation Sensitivities 
 
Shortwave (SW) radiation can be absorbed by water vapor (Lacis and Hansen, 

1974). An increase in water vapor will cause an increase in ASR. Figure VI.A.1 
presents the zonally averaged sensitivity of moisture. A remarkable feature is 
that ASR is most sensitive to water vapor mixing ratios at high latitudes in the 
summertime hemisphere, while the tropics region is insensitive to these ratios. 
These latitude dependent features are linked to the surface albedo. Water vapor 
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may have a larger absorption ratio and cause larger atmospheric heating rates at 
the tropics due to stronger incident solar radiation. Since the tropical surface is 
characterized by oceans with large darkness (near black bodies), the incident 
radiation is almost fully absorbed by the atmosphere and surface system 
irrespective of the absorption by water vapor. Thus the absorption by water 
vapor has little effect on ASR. In contrast, the surface at high latitudes is 
characterized by snow or ice cover with large brightness, the absorption by water 
vapor being nearly equal to the net increase in ASR. 

 

 
Figure VI.A.1. Zonally averaged sensitivities of the ASR by the atmosphere 

and earth's surface to water vapor mixing ratios ( 1.g kg − ) for 19-29 June 1989 (a) 
and 19-29 December 1989 (b). The contour interval is 0.2 2 1Wm g kg− −  in (a) and 
0.3 in (b). Note that panel (a) is for 19-29 June 1989 and panel (b) is for 19-29 

December 1989 in all of the following figures. 
 
The sensitivity structure at 600 hPa (Fig. VI.A.2), which corresponds to the 

maximum absorption height, illustrates the predominant linkage to the surface 
albedo, i.e., a larger sensitivity is found over the summer polar areas and lands 
with larger albedo. Note also that the sensitivity structures are rather symmetric 
about the equator between the northern and southern summertime, though the 
sensitivity at high latitudes in the southern summer hemisphere is stronger than 
that in the northern summer hemisphere.  
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Figure VI.A.2. Same information as in Fig. VI.A.1, but for sensitivities of the 
ASR to water vapor mixing ratios at 560 hPa . The contour interval is 0.2 

2 1Wm g kg− −  in (a) and 0.4 2 1Wm g kg− −  in (b). The stippled region is under the 
surface. 

 
 

VI.A.2.b Clear Sky Longwave Radiation Sensitivities 
 
The vertical structure of the atmospheric temperature strongly affects OLR 

variations since OLR depends strongly on the AES temperature, and on the 
amount and spatial distribution of water vapor.  
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Figure VI.A.3. The zonally averaged sensitivities of the OLR at the top of the 

atmosphere to water vapor mixing ratios. The contour interval is 2.5 
2 1Wm g kg− − . Dashed lines denote negative values. 

 
Figure VI.A.3, above, illustrates the zonally averaged sensitivity structure of 

the moisture for OLR. A striking feature is the larger sensitivity found near the 
tropopause, with a maximum of 22 Wm−2g−1kg. The middle and lower 
troposphere have a magnitude of less than 2.5 Wm−2g−1kg. On the whole, OLR is 
one order of magnitude more sensitive to the mixing ratio in the upper 
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troposphere than in the middle and lower troposphere. The high sensitivity of 
OLR to the water vapor in the upper troposphere has been noted in observational 
studies. Kiehl and Briegleb (1992) clearly indicated that the differences in upper 
tropospheric moisture were the major cause for the OLR difference during a two 
year observation period in most regions over the tropical oceans. This result may 
help understanding the super greenhouse effect over tropical oceans, which will 
be discussed in the following section. 

The meridional features depicted in Fig. VI.A.3 indicate that, in the middle and 
lower troposphere, sensitivities have a small positive value at the high latitudes, 
while the positive value is slightly larger in the winter hemisphere than in the 
summer hemisphere. Near the tropopause, sensitivities are relatively large 
between the subtropics of the summer hemisphere and the middle latitude of the 
winter hemisphere. The existence of two weak sensitivity regions at the latitudes 
of around 30° N in the northern winter and 45° N in the northern summer are of 
interest since these two regions are linked to activities of polar fronts (Palmén 
and Newton, 1967).  

Qualitatively, the above results may be understood by considering the radiation 
transfer equation. We may write the perturbed radiation transfer equation in the 
form (Stephens, 1984): 

 

( ) ( ) dvdh
dh

hdBhzF v
vltoa ∫ ∫

∞ ∞

′−=′
0 0

,τ    (VI.A.12) 

 
where v  is wavenumber, vB  represents the Planck function, ltoaF ′  represents the 
perturbed OLR flux associated with water vapor perturbations, and ( )hzv ,τ ′  
represents the perturbed transmission function between levels h  and z ; note 
that vB  is a function of the temperature T , which implies that ( ) dhhdBv  
depends on temperature lapse rates. A large temperature lapse rate leads to a 
large magnitude of perturbed OLR. The inversion enhances OLR, which is the 
leading cause to positive values of sensitivities at high latitudes.  
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Figure VI.A.4. Same as Fig. VI.A.3, but for atmospheric temperature. The 

contour interval is 0.025 2 1Wm g kg− − . 
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The sensitivity of atmospheric temperature depicted above in Fig. VI.A.4 
displays a strong spatial variation. In the vertical direction, the largest 
sensitivities are located between 600 and 500 hPa , and the globally averaged 
sensitivity at 600 hPa  is approximately 0.2 2 1Wm g kg− − . The sensitivities 
rapidly decrease above and below the largest sensitivity regions. The sensitivity 
between 600 and 500 hPa  is one order of magnitude larger than that near the 
tropopause, and three times stronger than that near the surface. The latitudinal 
variation shows that the sensitivities are largest over tropical areas, and decrease 
toward the poles. Unlike water vapor, the sensitivity structure of the atmospheric 
temperature does not present a significant difference between the northern 
summer and southern summer. It is worth noting that a 1 K temperature 
perturbation in the middle troposphere produces an OLR increase equivalent to 
that produced by a 0.1 kgg /  water vapor perturbation in the middle and lower 
troposphere or by a perturbation of about 0.15 K in the surface temperatures 
(see also the following discussion). Thus, temperature perturbations in the 
middle troposphere have a significant effect on OLR variabilities. 

Figure VI.A.5, below, shows the sensitivity structures of the surface 
temperature. A positive surface temperature perturbation leads to an increase in 
the emission of LW radiation, and thus an increase in OLR when feedbacks are 
not taken into account. Note that an increase in sea surface temperatures may 
lead to a decrease in OLR when the feedback of water vapor is involved, as 
discussed by Inamdar and Ramanathan (1994). The globally averaged sensitivity 
is 1.4 kggWm 12 −− . As expected, the tropical areas display the smallest 
sensitivities due to the strong greenhouse trapping by an abundant water vapor. 
On the average, the tropical sensitivities are about half as large as those in the 
middle and high latitude. The sensitivities tend to increase from the tropics to the 
polar regions. The northeastern regions of the Pacific and Atlantic oceans, which 
are associated with the upward motion in the front of the semi-permanent 
troughs over the central oceans, are relatively insensitive (Palmén and Newton, 
1967). 
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Figure VI.A.5. Sensitivities of the OLR to the earth's surface temperature. The 

contour interval is 0.25 2 1Wm g kg− − . Stippled regions denote sensitivities smaller 
than 1.2 2 1Wm g kg− − . 

 
To describe the greenhouse trapping, we analyzed the sensitivity of the surface 

LW emission. The gradient, lseR∇ , of the OLR response with respect to the 
surface emission is not a direct output of the adjoint sensitivity model, but can be 
obtained from lT R

s
∇ , using the relationship 
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=∇    (VI.A.13) 

 
where lT R

s
∇  is the gradient of the OLR with respect to the surface temperatures 

Copyright © 2005 Taylor & Francis Group, LLC



296            Sensitivity and Uncertainty Analysis 

 

sT , and σ  denotes the Stefan-Boltzmann constant. Note that lseR∇  varies 
between 0 and 1, and actually represents the fractional perturbed OLR. An 
increased perturbation emission at the surface is completely trapped by the 
column atmosphere when the gradient is 0, and escapes completely through the 
top of the atmosphere when the gradient is 1.  

 

 

 
Figure VI.A.6. Sensitivities of the OLR to the earth's surface perturbation 

emission. These sensitivities are the ratios between an increase in the earth's 
surface emission and the corresponding increase in OLR. The contour interval is 
0.05. Stippled regions denote ratios larger than 0.2, or indicate that atmospheric 

columns trap more than 80% of a perturbation increase in the earth's surface 
emission. 
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Figure VI.A.6, above, illustrates the structure of lseR∇ . Note that less than 
20% of an increased perturbation emission at the surface escapes through the top 
of the atmosphere over the tropical areas. In other words, the column tropical 
atmosphere traps more than 80% of a perturbation increase in the emission at the 
surface. The magnitude of lseR∇ at mid-latitudes is in general larger than 30%, 
increasing to over 40% at high latitudes. Previous studies (e.g., Raval and 
Ramanathan, 1989) have shown that the moistening effect of deep convection 
activity strongly enhances the atmospheric greenhouse effect. The computations 
presented in the foregoing have also confirmed that the regions with a 
greenhouse trapping larger than 80% significantly correlate with deep 
convection activities. Additional analysis (not discussed here) has shown that 
this conclusion also holds for the region within the inner Eurasian continent in 
northern summer. It is also of interest to note that the deep upward motion in the 
front of the semi-permanent troughs over the middle Pacific and Atlantic oceans 
in the wintertime may play a role similar to deep convective activities, and the 
greenhouse trapping is about 70-80% over these areas. 

 
 

VI.A.2.c Cloudy Sky Shortwave Radiation Sensitivities 
 
An accurate modeling of the interaction between radiation and clouds is very 

difficult. In atmospheric general circulations models, for example, the 
representation of this interaction has improved considerably in recent years, but 
substantial deficiencies are still present, as indicated by model comparisons 
(Cess et al., 1996). This interaction comprises two feedback processes, since 
clouds affect radiation by absorption and reflection, while radiation, in turn, 
affects clouds through changing the structure of the atmosphere by heating and 
cooling. The former feedback is generally considered easy to model; 
nevertheless, its modeling is still unsatisfactory (Baer et al., 1996; Ellingson et 
al., 1991).  

The sensitivity analysis results presented in this sub-section illustrate the 
effects of variations in cloud fraction on the ASR and OLR. Thus, Figure 
VI.A.7, below, presents the zonally averaged sensitivity structure of clouds for 
SW radiation. The cloud reflection effect on SW radiation is illustrated by the 
negative sensitivity. The sensitivity has a tendency to increase proportionally 
with the incident solar radiation, but there are important features that result from 
atmospheric variations. The ASR is most sensitive to low clouds; this result may 
stem primarily from the larger reflectivity assigned to the lower clouds. On the 
contrary, the high latitudes in both the wintertime and summertime hemispheres 
are extremely insensitive to low clouds. This lack of sensitivity is due to the high 
albedo of the surface in these regions; an increase in cloud fraction has little 
additional reflective effect on ASR over snow and ice at high latitudes.  
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Figure VI.A.7. Zonally averaged sensitivities of the ASR. The contour interval 
is 50 2−Wm  per cloud fraction, i.e., equivalent to an increase of 5 2−Wm  in the 

ASR due to a 0.1 cloud fraction increase. Regions without presence of clouds in 
the basic states are stippled, where sensitivities are not calculated. 
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Figure VI.A.8. Zonally averaged sensitivities of the ASR to three types of 
clouds (high, middle, and low). Thick solid curves are for high clouds, dotted 

curves for middle clouds, and thin solid curves for low clouds, respectively. The 
unit is 2−Wm  per cloud fraction. 
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Figure VI.A.8, above, depicts the latitudinal variations of sensitivity of the 

three types of clouds (high, middle, and low) defined in the NCEP model. In the 
wintertime hemispheres, the sensitivity to the three types of clouds consistently 
increases from zero, at high latitudes, to about 20 2−Wm , for a 0.1 cloud fraction 
increase at the equator; the lower cloud has slightly larger sensitivity. While the 
high clouds are most sensitive at latitudes consistent with the location of the 
largest incident solar radiation, the lower clouds tend to have the largest 
sensitivity at mid-latitudes in the summertime hemisphere. Consequently, the 
difference between the high and lower clouds reaches its maximum in the 
summer middle latitudes; at these latitudes, the lower cloud sensitivity is on the 
average about 30 2−Wm  per 0.1 cloud fraction. This sensitivity is twice as large 
as that of the high clouds, which is about 15 2−Wm  per 0.1 cloud fraction. 

 
 

VI.A.2.d Cloudy Sky Long-wave Radiation Sensitivities 
 
Figure VI.A.9 shows the zonally averaged sensitivity structure of clouds for 

LW radiation. The effects of clouds on OLR are similar to the effects of water 
vapor, and are intimately related to temperature lapse rates. The largest 
sensitivity is located near the tropopause and at the tropics with a shift of about 

010  to the summertime hemispheres. Associated with the inversion at the polar 
latitude, the sensitivity has a small positive value. The rates of vertical decrease 
in the sensitivities are largest between 900 and 700 hPa . Such features indicate 
that the OLR is more sensitive to the high and middle clouds than to lower 
clouds. Figure VI.A.10 further illustrates this feature by depicting the sensitivity 
variation of the three types of the clouds with latitude. The sensitivity to high 
and low clouds displays a consistent meridional variation, whereas the lower 
cloud presents a significantly smaller sensitivity, except for high latitudes. At the 
tropics, the sensitivities of the middle and high clouds are, on the average, 
approximately 11 2−Wm  per 0.1 cloud fraction, a value which is twice as large 
as that of the lower cloud. At high latitudes, the sensitivity of all the three types 
of clouds becomes smaller, even attaining smaller positive values at polar 
latitudes. Such a feature was also observed by Yamanouchi and Charlock 
(1995). 
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Figure VI.A.9. Same as in Fig. VI.A.7, but for the OLR and with a contour 

interval of 25 2−Wm . 
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Figure VI.A.10. Same as in Fig. VI.A.8, but for the OLR. 
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VI.A.2.e Cloudy Sky Net Earth's Radiation Budget Sensitivity 

 
The sensitivity of clouds to the net ERB is closely related to the cloud radiative 

forcing. Figure VI.A.11 illustrates the zonally averaged sensitivity structure. 
There are two striking features: a cancellation occurring between the LW 
greenhouse effect and the SW reflection for middle and high clouds at lower 
latitudes, and a strong negative sensitivity of the lower cloud at the summer mid-
latitudes. These two features become apparent by comparing the sensitivity 
structures of SW and LW radiation depicted in Figures VI.A.7 and VI.A.9, 
respectively. The middle and high clouds at lower latitudes strongly trap the LW 
radiation, and simultaneously strongly reflect the SW radiation. Thus, a large 
cancellation occurs in the middle and high cloud areas at lower latitudes. The 
low clouds cause a smaller LW trapping, but a larger SW reflection. Such an 
opposite tendency creates a larger positive sensitivity to low clouds. Note also 
the importance of low clouds at the summer mid-latitudes, i.e., where the net 
ERB displays the strongest sensitivities to low clouds. This latitudinal 
dependence is consistent with observed results which indicate that the net cloud 
cooling effect on the earth is larger over the middle and high latitude oceans 
(e.g., Ramanathan et al., 1989). Such features are also depicted in Fig. VI.A.12, 
which presents sensitivity variations of the three types of the clouds with 
latitude. The lower clouds, especially at mid-latitudes, may play a role in the 
earth's radiation budget variations. 

The main results illustrated by the sensitivity analysis of the radiation model in 
the NCEP medium-range weather forecasting system can be summarized as 
follows:  

(a) For a clear sky, the absorbed shortwave radiation (ASR) is much more 
sensitive to the water vapor in the middle troposphere at high latitudes in the 
summertime hemisphere than at the tropical and subtropical areas. The outgoing 
long wave radiation (OLR) is one order of magnitude more sensitive to water 
vapor mixing ratios in the upper troposphere than to that in the middle and lower 
troposphere. In the tropics, more than 80% of a perturbation increase in the 
earth's surface emission is trapped by the clear sky column atmosphere, while 
only about 60% to 70% is trapped at middle and high latitudes. Rapidly 
decreasing latitude bands of trapping are found within the subtropics, and the 
semi-permanent troughs over the central oceans display a significant effect. 

(b) For a cloudy sky, the ASR is more sensitive to low clouds than to middle 
and high clouds. The most sensitive lower clouds tend to be located at mid-
latitudes rather than in the tropical regions. The OLR, as expected, is most 
sensitive to high clouds, and displays similar sensitivity to middle clouds.  

(c) The net ERB is most sensitive to lower clouds at mid-latitudes in the 
summer hemisphere. 
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Figure VI.A.11. Same as Fig. VI.A.8, but for the zonally averaged sensitivities 

of the net earth's radiation budget to clouds. The negative values indicate a net 
decrease in the net earth's radiation with cloud increase. 
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Figure VI.A.12. Same as in Fig. VI.A.9, but for the sensitivity of the net earth's 
radiation budget to three types of clouds (high, middle, and low). 
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VI. B. FSU-GSM FORECAST ERROR SENSITIVITY TO INITIAL 
CONDITIONS: APPLICATION TO INDIAN SUMMER MONSOON  

 
The modern use of adjoint operators in sensitivity studies was initiated by the 

early work of Cacuci (1981a, b), who introduced a general sensitivity theory for 
nonlinear systems, generally referred to as the Adjoint Sensitivity Analysis 
Procedure (ASAP). Hall, Cacuci, and Schlesinger (1982) applied the ASAP to 
perform an exhaustive sensitivity analysis of a climate radiative-convective 
model of the atmosphere. An in-depth review of the entire range of applications 
of sensitivity theory has been presented by Cacuci (1988).  

Since the numerical weather prediction model forecasts are generally sensitive 
to the small but inevitable errors in the initial conditions, the errors might 
amplify rapidly in model computations, leading to large forecast errors. An 
important application of the adjoint sensitivity model is to identify the 
geographical regions that are responsible for originating large forecast errors. 
Errico and Vukicevic (1992) indicated that the adjoint fields quantify the 
previous conditions that most affect a specified forecast aspect. Rabier et al. 
(1992) used the adjoint sensitivity model of a global primitive equation model to 
investigate the following question: to which aspects of the initial conditions is 
cyclogenesis most sensitive to, in a simple idealized situation? Morss et al. 
(1998) examined adaptive observation strategies using a multilevel quasi-
geostrophic channel model and a realistic data assimilation scheme. Pu et al. 
(1998) applied the quasi-inverse linear and adjoint methods to targeted 
observations during FASTEX. Both of these works indicated that the adjoint 
method was useful in determining the optimal locations for introducing adaptive 
observations.  

This Section presents a sensitivity analysis, using the ASAP, of the 1-day 
forecast error over a localized region of interest with respect to the initial 
conditions for the nominal-conditions extant on June 8, 1988, when the Indian 
summer monsoon entered its active stage. Thus, Section VI.B.1 presents the 
salient features of simulating the nominal conditions on Florida State University 
(FSU) Global Spectral Model (GSM). Section VI.B.2 presents the gradients of 
the 1-day forecast error with respect to the initial conditions of the model state 
variables (these gradients are called sensitivity patterns). These sensitivity 
patterns are then used as a diagnostic tool to identify regions, characterized by 
large uncertainties, which are responsible for originating large forecast errors. 
This way, the sensitivity patterns (to initial conditions) indeed indicate the 
locations where the placement of adaptive observations is most needed. The 
subsequent reduction of the forecast errors can then be accomplished by adding 
observations in the areas of large uncertainty (Lorenz and Emanuel, 1998), as 
identified by the sensitivities to initial conditions obtained via the ASAP.  
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VI.B.1. Modeling the Nominal Conditions on June 8, 1988 with the FSU 
GSM 

 
The model used in this study is a version of the Florida State University (FSU) 

Global Spectral Model (GSM) developed by Krishnamurti et al. (1988); this 
version employs 12 levels in the vertical resolution, and a triangular truncation 
limiting the horizontal resolution to a total wavenumber of 42. The full physical 
processes were active in both the forecast model and the adjoint sensitivity 
model (Zhu et al., 1997), including planetary boundary layer processes, vertical 
diffusion, dry adjustment, large-scale condensation and evaporation, deep 
cumulus condensation, horizontal diffusion, and radiation processes.  

In the FSU GSM, the components of the model’s state vector, X , are vorticity, 
divergence, virtual temperature, logarithm of the surface pressure, and the 
dewpoint depression. The time evolution of the model’s state vector X  
simulates the time evolution of the atmosphere, and is governed by the equation 

 

( )dX F X
dt

=     (VI.B.1) 

 
where the nonlinear operator ( )XF  represents all of the physical processes 
active during the time period under consideration. The discretized tangent linear 
model (i.e., discretized forward sensitivity model) corresponding to Eq. (VI.B.1) 
can be written in the form of the evolution equation 

 
( ) ( ) ( )0011 , tXttPtX δδ = ,    (VI.B.2) 

 
where ( )tXδ  denotes the vector of perturbation variable, and 0t  and 1t  denote 
the initial time and verification time, respectively. The adjoint of the tangent 
linear model (i.e., the adjoint sensitivity model) can be written in the form of a 
“backward evolution equation,” as 

 
( ) ( ) ( )1

*
010

* , tXttPtX T δδ = ,   (VI.B.3) 
 

where ( )tX *δ  denotes the vector of adjoint variable, and ( )TttP 01,  is the adjoint 
of the operator ( )01, ttP . As shown in Rabier (1992), the gradient of a forecast 
aspect (i.e., response), ( )[ ]tXJ , evaluated at 1tt = , with respect to ( )0tX  can be 
computed by means of  

 

0 1( ) 0 1 ( )( , )T
X t X tJ P t t J∇ = ∇    (VI.B.4) 
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where the operator ( ) ( )XJtX 0

∇  denotes the gradient of ( )[ ]tXJ  in the direction 

( )tX , evaluated at 0tt = . The gradients of the 1-day forecast error with respect 
to the initial conditions are called sensitivity patterns. 

A small perturbation or a small analysis error, ( )tXδ , in the initial conditions 
( )0tX  will cause a forecast error ( )[ ]tXJδ in the forecast aspect, ( )[ ]tXJ : this 

forecast error can be computed by means of the relation 
0( )  0, ( )X tJ J X tδ δ=< ∇ > . Hence, in geographical areas with a large (small) value 

of the gradient ( ) ( )XJtX 0
∇ , a change in the initial conditions will cause a large 

(small) impact upon the forecast error ( )[ ]tXJδ in the direction ( )0tXδ .  
To compute the sensitivity patterns (i.e., sensitivity of 1-day forecast error), 

integrated from 12UTC on June 7, 1988, over the Indian Monsoon region, with 
respect to the initial conditions from ECMWF analysis data, the forecast aspect 
was defined as the square norm of the differences between the model 1-day 
forecasts and the verifying analysis over the Indian Monsoon region. The Indian 
Monsoon region of interest is defined to be the area between 60 E and 100E in 
longitude, equator, and 30 N  in latitude. A projection operator (masking 
operator) was applied to obtain the localized model forecast error over this 
limited region of interest. On June 8, 1988, the Indian summer monsoon entered 
its active stage. A cross-equatorial flow set in, both the Arabian Sea and the Bay 
of Bengal branches were established, with depressions over the east central 
Arabian Sea and over the northern Bay of Bengal. Figures VI.B.1 and VI.B.2 
display the geopotential height fields at 500 hPa  at 12UTC on June 7 and June 
8, 1988 and the model 1-day forecast, respectively. Note that the depression over 
the northern Bay of Bengal did not fully develop in the model 1-day forecast. 
The difference field of the geopotential height field at 500 hPa  between the 
model 1-day forecast and the verifying analysis is displayed in Fig. VI.B.3. 
These differences are found to be rather large over the northern Bay of Bengal 
around 17.5N.  
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Figure VI.B.1. The geopotential height field at 500 hPa  for 12 UTC June 7. 

(upper panel) and June 8 (bottom panel), 1988. 
 

 
 

Figure VI.B.2. The geopotential height field at 500 hPa  of the model 1-day 
forecast. 

 
Figure VI.B.3. The difference field of the geopotential height field at 500 hPa  

between the model 1-day forecast and the verifying analysis. 
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VI.B.2. Illustrative Sensitivity Analysis Results 
 
Recall that the objective is to identify the geographical areas to which the 

forecast aspect is most sensitive. The gradients ( ) ( )XJtX 0
∇ , i.e., the sensitivity 

patterns, are evaluated with respect to the model state variables by integrating 
the adjoint sensitivity model backwards in time along the nominal solution 
derived from the forward nonlinear FSU GSM, which started from the ECMWF 
analysis, valid 24 hours before the verification time (as described in the previous 
sub-section). 

It is known that the analysis of moisture field is usually unreliable over the 
tropics due to the lack of sufficient observations, i.e., there is a large uncertainty 
in this analysis. Figure VI.B.4 depicts the squared sum of sensitivities with 
respect to the initial analysis of dewpoint depression for each model vertical 
level. The striking feature is that the forecast error is very sensitive to the initial 
analyses of dewpoint depression at the lowest three model vertical levels, while 
the sensitivities to the upper model levels are small.  

Additional, more detailed, sensitivity patterns with respect to the dewpoint 
depression at model vertical levels 12, 11, and 10, are presented in Figures 
VI.B.5 - Fig. VI.B.7, respectively. A large positive maximum center located at 
the upstream of the region with large forecast errors over the northern Bay can 
be observed for both of the lowest two model levels, but a large negative 
maximum center appears to be more pronounced at the third lowest level. The 
analyses of dewpoint depression at time 0t  were diagnosed to be too dry over 
the northern Bay of Bengal at the lowest two model vertical levels. 

The results depicted in these figures also show that the model 1-day forecast 
error is most sensitive to the analysis errors in the dewpoint depression around 
90 E , 20 N . Therefore, additional observations around this point are expected to 
improve the model 1-day forecast. In particular, Figure VI.B.8 shows the vertical 
cross-section at 20 N  for the sensitivity with respect to the dewpoint depression 
at time 0t . This pattern is tilted in the vertical to the west, which indicates that 
further growth of the depression is sensitive to baroclinic perturbations at the 
initial time.  
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Figure VI.B.4. Evolution of the squared sum of sensitivities with respect to the 

initial analysis of dewpoint depression for each model vertical level. 
 
 

 
Figure VI.B.5. Sensitivities with respect to the dewpoint depression at the 

lowest model level. Isolines interval is 1 1−K . 
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Figure VI.B.6. Sensitivities with respect to the initial analysis of dewpoint 
depression at the second lowest model level. Isolines interval is 1 1−K . 

 
 

 
Figure VI.B.7. Sensitivities with respect to the initial analysis of dewpoint 

depression at the third lowest model level. Isolines interval is 1 1−K . 
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Figure VI.B.8. Vertical cross-section at 20 N  for the sensitivity with respect to 

the dewpoint depression at time 0t . Isolines interval is 2 1−K . 
 
 

 
Figure VI.B.9. Sensitivity pattern with respect to the initial analysis of virtual 

temperature at model vertical level 12. Isolines interval is 1 1−K . 
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Figure VI.B.10. Sensitivity pattern with respect to the initial analysis of virtual 

temperature at model vertical level 10. Isolines interval is 2 1−K . 

 
Figure VI.B.11. Vertical cross-section at 20 N  for the sensitivity pattern with 

respect to the virtual temperature at time 0t . Isoline interval is 2 1−K . 
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As illustrated in Figures VI.B.9 and VI.B.10, the sensitivity patterns with 
respect to the initial analysis of virtual temperature at model vertical levels 12 
and 10 also indicate the locations of the geographical regions where the analysis 
problems lie in. The analyses of virtual temperature over the northern Bay of 
Bengal were diagnosed to be too low at model vertical level 12 and too high at 
model vertical level 10. The vertical cross-section at 20 N  is displayed in Fig. 
VI.B.11. 

The evolution of the squared sum of sensitivities with respect to the initial 
analysis of vorticity for each model vertical level (shown in Figure VI.B.4) 
indicates that the model 1-day forecast error is sensitive to the uncertainties in 
the analysis at model vertical levels 11 and 7, which are located (approximately) 
above the surface and at 700 hPa , respectively. The sensitivity pattern with 
respect to the initial analyses of vorticity at model vertical levels 11 and 7 are 
displayed in Fig. VI.B.12 and Fig. VI.B.13, respectively. Two important areas 
with opposite signs are observed for both sensitivity patterns. 

 

 
Figure VI.B.12. Sensitivity pattern with respect to the initial analysis of 

vorticity at model vertical level 11. Isoline interval is 200000 s . 
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Figure VI.B.13. Sensitivity pattern with respect to the initial analysis of 

vorticity at model vertical level 7. Isoline interval is 200000 s . 
 

 
Figure VI.B.14. Vertical cross-section at 20 N  for the sensitivity pattern with 

respect to vorticity at time 0t . Isoline interval is 200000 s . 
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As depicted in Fig. VI.B.14, above, the vertical cross-section at 20 N for the 
sensitivity pattern with respect to vorticity at time 0t  exhibits two large centers 
with opposite signs, both of which were located in the lower troposphere around 
90 E , 20 N . This indicates that the forecast error is very sensitive to the 
vorticity analysis uncertainties in the lower atmosphere. One maximum center, 
which is located at model vertical level 7, was also observed in the vertical 
cross-section at 10 N  for the sensitivity pattern with respect to the initial 
analysis of vorticity (see Fig. VI.B.15); a westward-tilting of the vertical 
structure was not observed. The analysis uncertainties at model vertical level 7 
are mainly distributed over the eastern Arabian Sea, while the analysis 
uncertainties at model vertical level 11 are mainly located around 90 E , 20 N .  

 

 
Figure VI.B.15. Vertical cross-section at 10 N  for the sensitivity pattern with 

respect to vorticity at time 0t . Isoline interval is 200000 s . 
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Figure VI.B.16. Sensitivity signal for vorticity at time 0t . 

 

 
Figure VI.B.17. Sensitivity signal for dewpoint depression at time 0t . 

 
To pinpoint the overall locations of the analysis uncertainties, the sensitivity 

signal, represented by the sum of squares of the sensitivity patterns throughout 
the whole range of vertical levels, has also been computed. Figures VI.B.16 and 
VI.B.17 depict the sensitivity signals for vorticity and dewpoint depression, 
respectively. It is apparent that the model 1-day forecast error is most sensitive 
to the analysis errors located at around 90 E , 20 N  over the northern Bay of 
Bengal.  
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VI. C. SENSITIVITY TO LARGE-SCALE ENVIRONMENTAL FIELDS 
OF THE RELAXED ARAKAWA-SCHUBERT 

PARAMETERIZATION IN THE NASA GEOS-1 GCM 
 
The heating and moistening induced by convection clouds play an important 

role in the energy balance and water budget in the global atmosphere. Therefore, 
the representation of the effects of convective clouds is recognized as a key 
process in numerical weather prediction for time scales ranging from short-term 
forecasting to seasonal prediction and climate simulation. Moreover an accurate 
parameterization of sub-grid moisture processes in a general circulation model 
(GCM) is essential for assimilating observational data such as precipitation, 
cloudiness, and outgoing radiation, which are closely related to moisture and 
convection.  

The Goddard Earth Observing System-1 (GEOS-1) GCM was developed by 
the Data Assimilation Office (DAO) at NASA/GSFC/Goddard Laboratory for 
Atmospheres (GLA), in collaboration with the Climate and Radiation Branch 
(Takacs et al., 1994). This GCM has been used to produce multiple 10-year 
climate simulations, and is currently used to produce a multi-year global 
atmospheric data set for climate research. 

There are four physics packages in the GEOS-1 GCM, namely: the RAS 
parameterization and large-scale convection package; the short-wave radiation 
and long-wave radiation packages; and the turbulence parameterization package. 
Among them, the moisture simulation process plays an essential role towards 
improving the quality of the products of the Data Assimilation System (DAS). 
The Relaxed Arakawa-Schubert (RAS) parameterization scheme (Moorthi and 
Suarez, 1992) is the central part of the moisture simulation processes.  

The RAS parameterizes sub-grid cumulus convection in terms of the large-
scale fields. It computes the cloud-induced variations in the potential 
temperature θ  and moisture q , and also computes convective precipitation 
according to large-scale conditions in θ  and q . To improve the model forecast 
and the quality of data assimilation products, a thorough understanding of the 
interactions between large-scale fields and convective clouds in the model, and 
an evaluation of the performance of the parameterization scheme in terms of its 
sensitivity to the large-scale environmental fields are indispensable. 

This Section presents an application of the ASAP to evaluate, qualitatively and 
quantitatively, the impact of grid-scale perturbations on the RAS-output. The 
following issues are addressed:  

• Examining the spatial variation of the sensitivity and identifying the 
vertical levels where the perturbations have the largest impact on RAS 
output;  

• Evaluating the relative importance of the perturbations in the 
temperature, moisture, and wind fields of the surrounding air in 
changing the outputs of RAS scheme;  
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• Discussing the feedback between the convective clouds and the large-
scale fields.  

In Section VI.C.2, we describe the theory and algorithm of adjoint sensitivity. 
Section VI.C.3 consists of a brief description of the RAS scheme in the GEOS-1 
GCM. Section VI.C.4 presents an analysis of the results of the sensitivity 
analyses. Summary, conclusions, and the implications of this work for further 
research are provided in Section VI.C.5. 

 
 

VI.C.1. Sensitivity Analysis of the GEOS-1 GCM Using the ASAP 
 
To sketch the application of the ASAP for computing the sensitivities of the 

output vector, ( )ty , of RAS model to the vector ( )tx  of the large-scale 
environmental fields which are inputs of RAS model, it is convenient to 
represent the nonlinear time-dependent RAS operator in the generic form 

 
 ( , )y A x t=     (VI.C.1) 

 
where t  denotes time. Three general types of response functionals of y , 
denoted as ( )yR1 , ( )yR2 , and ( )yR3 , will be considered in this section. Thus, 

( )yR1  is defined as 
 

( ) SyyyyyR T
S ≡〉〈≡ ,1    (VI.C.2) 

 
where Syy 〉〈 ,  denotes the inner product between two vectors weighted by a real 
symmetric matrix S  which is specified according to the field of interest, and 
where the superscript T  denotes transposition. Next, ( )yR2  is defined as 

 
( ) yWyWyR T

E ≡〉〈≡ ,2    (VI.C.3) 
 

where W  is a specified weighting vector and EyW 〉〈 ,  denotes the usual 
Euclidean inner product. Finally, ( )yR3  is defined as 

 

( ) ∫∫ ≡〉〈≡
NN t

t

T
t

t
S SydtydtyyyR

00

,3 .   (VI.C.4) 
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The responses ( )yR1 , ( )yR2  are instantaneous responses, in that they are 
determined at the same time level as that of the input variables, while ( )yR3  
represents a time-integrated response.  

The G-differential of ( )yR1δ  of ( )yR1  can de readily determined from Eqs. 
(VI.C.1) and (VI.C.2) to obtain  

 

( ) ( ) ( )
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 (VI.C.5) 

 

where ( , )A x t
x

∂
∂

 is the Jacobian representing the discretized tangent-linear model 

(i.e., the discretized forward sensitivity model) of the RAS scheme, while 
( , ) TA x t
x

∂ 
 ∂ 

 is actually the adjoint of the Jacobian.  

From Eq. (VI.C.5), it follows that the gradient ( )yRx 1∇  of ( )yR1  with respect 
to x  is  

( ) ( ) yS
x

txAyR T
T

x 





∂
∂

=∇
,21 .   (VI.C.6) 

 
In practice, ( )yRx 1∇  is computed by first running the original RAS with 

prescribed large-scale conditions at a certain time t  to obtain the output 
  ( , )y A x t= , then apply the operator S , and finally using the result as the input 

to the adjoint of RAS. The output of the adjoint of the RAS model yields the 
gradient vector ( )yRx 1∇ .  

For the response ( )yR2 , a similar reasoning as above leads to: 
 

( ) ( ) W
x

txAyR
T

x 





∂
∂

=∇
,

2 ,  (VI.C.7) 

 
implying that the input to the adjoint of RAS is, in this case, the weighting 
vector W . 

The G-differential of ( )yR3δ  of ( )yR3  can be readily determined from Eqs. 
(VI.C.1) and (VI.C.4) to obtain  
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( ) ( )
∫ 





∂
∂

≡
Nt

t

T
T

dtxyS
x

txAyR
0

,,23 δδ .  (VI.C.8) 

 
To evaluate the gradient ( )yRx 30

∇  of ( )yR3  with respect to the initial 

perturbations 
0

0 t tx xδ δ
=

= , we recall that a small perturbation ( )x tδ  can be 

related to 0xδ  through the resolvent operator ( )0, ttL  of the tangent-linear model 
(i.e., forward sensitivity model) of the GCM by means of the evolution equation 

 
( ) 00, xttLx δδ = .   (VI.C.9) 

 
Defining the operator ( )0

* , ttL  to be the adjoint of ( )0, ttL , and using Eq. 
(VI.C.9) in Eq. (VI.C.8) transforms the latter to 

 

( ) ( ) ( )
∫ 





∂
∂

=
Nt

t

T
T

xydtS
x

txAttLyR
0

,,,2 0
*

3 δδ . (VI.C.10) 

 
It follows from Eq.(VI.C.10) that the gradient ( )yRx 30

∇  of ( )yR3  with respect 

to the initial perturbations 
0

0 t t
x xδ δ

=
= is given by  

 

( ) ( ) ( )
∫ 





∂
∂

=∇
Nt

t

T
T

x ydtS
x

txAttLyR
0

0

,,2 0
*

3 .  (VI.C.11) 

 
As has been already discussed in Section IV.B, in areas with a large gradient 

( )yRx 30
∇ , a perturbation 0xδ  would cause a larger impact on ( )yR3  than the 

same perturbation would cause in areas where ( )yRx 30
∇  is small. Thus the 3-D 

distribution of ( )yRx 30
∇  provides the sensitivity pattern of ( )yR3  to 0x . 

Furthermore, ( )yRx 30
∇  yields an optimal initial perturbation pattern in the sense 

that for all the initial perturbations with a given value of the norm 0x , the 
initial distribution that has the same spatial distribution as ( )yRx 30

∇  (i.e., the 

one which is parallel to ( )yRx 30
∇  in phase space) would cause the largest 

changes in ( )yR3 . The same argument applies to ( )yRx 1∇  and ( )yRx 2∇ . Note 
that the terms gradient and sensitivity will be used interchangeably in this 
section. 
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In practice, the algorithm for computing the gradient vector ( )yRx 30
∇ , via Eq. 

(VI.C.10), is as follows:  
1) Integrate the GCM from time 0tt =  to Ntt = , saving in Eq. (VI.C.11) 

both the environmental fields and the RAS output ( )ty , at all times nt , for 
0,1, 2, ,n N= … ;  

2) At each time nt , use the stored trajectory of RAS [i.e.,  ( , )y A x t= ] and 
the adjoint RAS to compute Eq. (VI.C.6), to obtain ( )yRx 30

∇  with respect 

to instantaneous perturbations of the large-scale fields at each time nt ;  
3) Finally, integrate backward in time the adjoint of the GCM from Ntt =  to 

0tt = , using the result of step 2 at 0tt =  as the “initial condition.” Since 

the operator ( )0
* , ttL  is linear, the result of step 2 is added to the 

corresponding environmental fields of the adjoint GCM at each time step 
nt . The final result thus obtained at the “final” time step 0tt =  in the 

backward integration yields the gradient vector ( )yRx 30
∇ .  

Note also that while Eq. (VI.C.6) provides the sensitivity of the response 
( )yR1  with respect to instantaneous perturbation in the surrounding air, the 

integration of the adjoint of the GCM yields the time evolution of this 
sensitivity.  

The above considerations clearly highlight the advantages of using the ASAP 
for such applications, since a single integration of the adjoint sensitivity model 
yields the gradient of one response function to all the model variables, at all 
model grid points. If the forward sensitivity analysis method were used, then 
obtaining the same information would require integrating the original model 

MN ×  times, where N  denotes the number of variables and M  denotes the 
number of model grid points (on the order of 510 ). Such a large number of 
computations cannot be performed even with the most powerful computers 
available today.  

 
 

VI.C.2. The RAS Parameterization Scheme in GEOS-1 GCM 
 
There are four physics packages in the GEOS-1 GCM, namely the RAS 

parameterization and large-scale convection schemes, the short-wave radiation 
and long-wave radiation schemes, and the turbulence parameterization scheme. 
Among these physical processes, the moist process, in which the RAS scheme is 
the central part, plays an essential role towards improving the quality of the 
products of the Data Assimilation System (DAS). The adjoint sensitivity model 
of the adiabatic GCM and the RAS scheme were developed by and documented 
in Yang and Navon (1996), and Yang et al. (1997). For the results to be reported 
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in this Section, only the RAS scheme is considered in the GCM and its adjoint 
sensitivity model.  

The effect of convective clouds on large-scale environment will be illustrated 
now by presenting paradigm numerical experiments performed with the RAS 
scheme, using a 50 ×40 horizontal resolution on 20 vertical σ  levels. The initial 
time was arbitrarily chosen at 00GMT, Jan. 1st, 1985. The initial data was 
extracted from the DAO archived data set, which is assimilated and analyzed 
with the data assimilation system of DAO. This set has the same resolution as 
the RAS model, and includes five independent variables, namely the potential 
temperature, the zonal and meridional winds, the surface pressure, and the 
specific humidity. The model time integration was set to 6 hours.  

The convective cloud precipitation from RAS at the initial time is depicted in 
Fig. VI.C.1.a. It indicates that strong convective activities occur over the low 
latitude oceans, especially over the eastern Indian and the western Pacific 
Oceans as well as the Atlantic Ocean.  

 

 
Figure VI.C.1.a. Convective cloud precipitation (interval 1.5 daymm / ) output 

from the RAS scheme at the initial time, at 00GMT, Jan. 1st, 1985. 
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Figure VI.C.1.b. Output from the RAS scheme at 00GMT, Jan. 1st, 1985: 

cloud-induced change θ∆  in the potential temperature (interval 2.0 ×10-4 
sK / ), averaged between 1000 S  and 1000  N . The ordinates indicate σ  

levels. 
 

 
Figure VI.C.1.c. Output from the RAS scheme at 00GMT, Jan. 1st, 1985: 

cloud-induced moisture change q∆  (interval 1.0 ×10-4 ( ) skgg // ). Shading 
indicates negative values. The ordinates indicate σ  levels. 
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Figure VI.C.1.b depicts the longitude-height distribution of the rate of 
convection-induced potential temperature change θ∆ , averaged between 1000 
S  and 1000  N . Note that the heating rate is represented by θ∆ , rather than by 

T∆ , for the results presented in this Section. (To be converted into an actual 
temperature change θ∆ , θ∆  should be multiplied by a factor ( )κ0/ pp , where 
p  denotes p is the pressure and p0 is a reference pressure,   / pR Cκ = , R  is the 

gas constant, and Cp is the specific heat at constant pressure. Therefore the 
heating at the higher levels is scaled down more than at the lower levels.) The 
ordinate represents the vertical σ level. The results in this figure indicate that 
convective clouds act as a heat source to the environmental air at all levels. The 
strongest heating occurs at the mid-troposphere between σ = 0.4 and σ = 0.5 
(between 400 and 500 hPa ). Longitudinally, the Indian and Western Pacific 
Oceans are the areas with the strongest convective heating. The levels between 
σ = 0.1 and 0.2 (approximately 100 to 200 hPa ) also exhibit very strong 
heating rates. This feature is probably due to the fact that here the heating rate 

θ∆  is calculated by the change of θ∆ in unit time.  
Figure VI.C.1.c depicts the rate of cloud-induced moisture change q∆ . Only 

the layers below σ  = 0.3 are shown. The convective cloud generally dries out 
the layers below 500 hPa , especially the subcloud layers and around 600 hPa , 
but only weakly moistens the upper layers. At mid-troposphere, the layer with 
the strongest convective drying is lower than that with the strongest heating.  

The convective clouds impact upon the large-scale fields through θ∆  and q∆ . 
On the other hand, variations in grid scale vertical profile in the environing air, 
in turn, influence the convective activities. In the following sections we will 
investigate the sensitivity of the RAS outputs to large scale environmental fields, 
i.e., the effects of small perturbations in the surrounding air on the RAS outputs.  

The range of the validity of the model predictions that can be made using a 
first-order functional Taylor-series expansion of the model response can be 
assessed by computing the functional: 

 
( ) ( )

( )
,

x

x x E

R X h R x
F

R h
β

β
β

+ −
=

∇
   (VI.C.12) 

 
where xh  is a prescribed distribution of perturbation and β  is a scaling factor 
which controls the magnitude of the perturbation. A unit value of ( )βF  
indicates that a first-order functional Taylor-series expansion of the model 
response can be reliably used to predict effects of perturbations. An illustrative 
example of the use of ( )βF  is presented in Table VI.C.1, below, where xh  was 
obtained by taking the difference between the result of a 6 hour integration of 
the original GCM and the initial condition. The results in this table indicate that 
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a first-order functional Taylor-series expansion can be used to make reliable 
predictions within several orders of magnitude of β .  

 
Table VI.C.1 

Range of validity of first-order predictions. 
β F( β )  

01.0 10× 1.075056131   
11.0 10−× 1.001115046   

-31.0 10× 1.000012075   
-51.0 10× 1.000000098   
-71.0 10× 0.9999898195  
-91.0 10× 1.000668568   
-111.0 10× 0.9696400849  

 
 

VI.C.3. Sensitivity Analysis Results 
 

(1) Instantaneous sensitivity 
 
This subsection present the illustrative results for instantaneous sensitivities 

(meaning that the response functionals are for a single time-level) for convective 
precipitation to the temperature field, θ and, respectively, moisture field q . The 
response functional for convective precipitation is defined as:  

 
p rR P

Ω

= ∑    (VI.C.13) 

 
where rP  denotes the convective cloud precipitation rate, and Ω denotes the 
low-latitude belt from 3000 S   to 300 N , where most of the precipitation occurs. 
Figure VI.C.2.a, below, shows the longitude-vertical distribution of the 
sensitivity of precipitation to θ  potential temperature field, averaged between 
100 S  and 100 N . A large positive sensitivity is observed below the cloud-base 
level, together with a negative sensitivity from 850 to 450 hPa , which means 
that if the surrounding air in the boundary layer becomes warmer while the mid-
troposphere becomes colder, there will be stronger convective activities and 
stronger cloud precipitation. For instance, if 1 K  positive θ  perturbation occurs 
at the point with the largest gradient in the sub-cloud layer, it will induce an 
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increase of approximately 9 daymm /  in the overall precipitation rate. On the 
other hand, if this θ  perturbation occurs at the point with the largest negative 
gradient around 500 hPa , it will result in a decrease of approximately 14 

daymm /  in the total convective rain. This is due to the fact that warming at 
lower level destabilizes the surrounding air and cooling at upper level 
strengthens the cloud buoyancy force (which is measured by the difference 
between the moisture static energy in the cloud plume and the environment), 
thus favoring convective cloud development. From 500 to 400 hPa , the gradient 
changes its sign from negative to positive, which indicates that precipitation is 
very sensitive to the vertical profile of temperature perturbations in mid-
troposphere. For instance, if some heat source produces a positive θ  potential 
temperature perturbation at around 500 hPa , it tends to suppress convective 
activities as a whole, whereas if this perturbation occurs at a slightly higher 
level, say around 400 hPa , it will induce stronger convection and stronger 
precipitation.  

 

 
Figure VI.C.2.a. Longitude-vertical distribution of the sensitivity of RAS 

precipitation to perturbations in θ  [interval 1.5, one unit corresponds to 2.0 
( ) Kdaymm // ]. Shading indicates negative values. The ordinates are in hPa . 
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Figure VI.C.2.b. Longitude-vertical distribution of the sensitivity of RAS 
precipitation to perturbations in moisture field q  [interval 1.0, one unit 

corresponds to 0.144 ( ) ( )[ ]kggdaymm /// ]. Shading indicates negative values. 
The ordinates are in hPa . 

 
The variation with height of the sensitivity of precipitation to moisture is 

displayed in Fig. VI.C.2b, above. Only the levels below 850 hPa  show 
significant positive sensitivity with the largest near 950 hPa , the cloud-base 
level. This means that more moisture near the cloud base level favors convective 
activities and induces stronger convective precipitation. Specifically, if a 1 
( )kgg /  perturbation in q  occurs at the largest gradient point at 950 hPa , it 
tends to induce about 2.3 daymm /  increase in total cloud precipitation. At 
upper levels around 450 hPa , there is a weak negative gradient, indicating 
opposite effects to these obtained at the lowest levels.  

Based on the results depicted in Figures VI.C.2, four representative grid points, 
with high convective activities and high sensitivity, are now selected for further 
analysis. Three of the four selected points are: (i) Point A: at (1000 E , 60 S ) over 
the eastern Indian Ocean; (ii) Point B: at (1650W , 420 N ) over the mid-latitude 
Pacific Ocean; and (iii) Point C: at (250 E , 20 S ) over the tropical African 
continent.  

The response functionals corresponding to these points are defined as 
 

( , , ) /R i j k tθ θ= ∆ ∆    (VI.C.14) 
 

and 
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( ,  ,  ) /qR q i j k t= ∆ ∆    (VI.C.15) 
 

where ( )kji ,,  indicates a particular grid point ( )ji,  at a particular vertical level 
k , and t∆ denotes the RAS time step. Since the RAS scheme is implemented 
column-wise, the output at a particular point at certain level can be sensitive to 
all the other vertical levels at this point, but not to the surrounding grid points. 
Thus, the gradients of Rθ and qR  with respect to the environmental variables θ 
and q  constitute the four component blocks of the Jacobian matrix  

 
( )  ( )
( )  ( )

q

q q q

R R
R R

θ θ θ

θ

∇ ∇
∇ ∇

.   (VI.C.16) 

 
Figures VI.C.3.a through VI.C.3.d, below, display the four components of the 

above Jacobian at point A (1000 E , 60 S ). The ordinate is the σ  level 
corresponding to k  in Rθ , is directed upwards from the surface, and is referred 
to as the response level. The abscissa consists of the σ  levels of the surrounding 
air where perturbations occur, which are referred to as the influential levels. For 
example, the large negative value at point (0.5, 0.45) in Fig. VI.C.3.a provides 
the gradient of Rθ  at the point (1000 E , 60 S ) at level σ  = 0.45 (near 450 hPa ) 
with respect to perturbations in θ  at level σ  = 0.5 (around 500 hPa ).  
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Figure VI.C.3. The four blocks of Jacobian at point (1000 E , 60 S ). a: 

( )Rθ θ∇ , interval 0.5, one unit corresponds to 0.86 ( ) daydayK // ;  b: ( )q Rθ∇ , 
interval 2.0, one unit corresponds to 0.62 ( ) ( )kggdayK /// ; c: ( )qRθ∇  interval 

1.0, one unit corresponds to 1.2× 310−  ( ) Kdaykgg /// ;  d: ( )q qR∇ , interval 2.0, 

one unit corresponds to 0.86× 310−  ( ) ( )kggdaykgg //// . Shading indicates 
negative values. 

 
Figures VI.C.3.a and VI.C.3.b indicate that for Rθ , the level around 450 hPa  

displays the largest sensitivity, with positive gradient to both θ  and q , in the 
sub-cloud layers, where a 1 K  increase in θ  leads to about 4 dayK /  increase in 
cloud heating at 450 hPa  level, whereas an additional 1 kgg /  in the moisture 
content leads to about 8.7 dayK / increase in heating at 450 hPa  level, in terms 
of θ  change. This impact is very significant. Figure VI.C.3.a also shows a 
significant negative gradient with respect to θ  near 500 hPa , where a 1 K  
decrease in θ  leads to a 5.6 dayK /  increase in cloud heating rate at around 450 
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hPa . This implies a negative feedback between the θ perturbation in the 
environing air and the cloud-induced heating at around 450 hPa . However, at 
height 400 hPa , a positive θ perturbation tends to enhance convective heating 
and the θ perturbation will grow, thus indicating a positive feedback.  

The opposite impacts of perturbations occurring at 500 and 400 hPa on the 
convective heating can be explained by the fact that environmental heating is 
mainly accomplished by compensating downdrafts outside the clouds induced by 
the updrafts inside (Redelsperger and Guichard, 1996). Lower environmental air 
temperature in the mid-troposphere increases the difference of static energy 
between the cloud and the environment, thus increasing the buoyant force. This 
induces stronger updraft inside the cloud and downdraft outside it and stronger 
heating of the air column. On the other hand, if the layer around 400 hPa 
becomes colder, the heating at the 450 hPa level through subsidence will be 
less effective. This explains the two opposite centers observed below and above 
450 hPa in Fig. VI.C.3.a. The implication is that in order to parameterize 
accurately the cloud effects, an accurate vertical profile of the surrounding air is 
an essential prerequisite.  

For qR , the most influential layer is the sub-cloud layer (depicted in Figs. 
VI.C.3.c and VI.C.3.d). The mid-level perturbation also can exert significant 
influence, but only on the adjacent layers. The layer around 500 to 600 hPa  is 
significantly influenced by the θ - and q -perturbations in the surrounding air at 
the same level, as well as at sub-cloud levels. A raise of 1 K in temperature and 
1 kgg /  in moisture content at sub-cloud layer tends to enhance convection, 
leading to a stronger convective drying of about -37 10  × daykgg //  and, 
respectively, -35 10× daykgg //  in the mid-troposphere (note from Fig. VI.C.1.c 
that q∆  is negative at most of the vertical levels). On the other hand, occurrence 
of positive θ - and negative q -perturbations at mid-troposphere around 600 
hPa  tends to suppress convective drying at the same level. Note the opposite 
effect of the q -perturbations at σ = 0.5 (500 hPa ) and σ = 0.6 (600 hPa ) 
levels on the convective drying at 600 hPa . At around 600 hPa , the negative 
gradient implies that the feedback between the moisture perturbation and cloud 
drying effect is negative. The behavior of point A is typical of model grid-point 
locations over low-latitude oceans with strong deep convective clouds.  

Now we turn our attention to point B (1650W , 420 N ). Fig. VI.C.4 shows the 
four components of the Jacobian at this point. Comparing Figs. VI.C.4a and 
VI.C.4b with Figs. VI.C.3a and VI.C.3b, one can see that for Rθ , the most 
sensitive response level is lowered to σ  = 0.5 (around 500 hPa ). This layer 
shows significant sensitivity to θ  perturbations at the same level as well as at 
the levels below it. For qR , Fig. VI.C.4c and d shows that the most sensitive 
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response level is even confined to below σ = 0.8 level. Negative θ and positive 
q perturbations between σ  = 0.8 and σ  = 0.9 (800 to 900 hPa ) induce 
stronger convective drying. Also, the positive θ perturbation around σ = 0.6 
level can lead to a suppression of convective drying at the layers lower than 850 
hPa . This may be attributed to the reduced buoyancy force by higher 
environmental temperature.  

 
Figure VI.C.4. Same as Fig. VI.C.3 but for point (1650W , 420 N );  a: 

( )Rθ θ∇ , interval 0.5, one unit corresponds to 0.86 ( ) KdayK // ; b: ( )q Rθ∇ , 
interval 1.5, one unit corresponds to 0.62 ( ) ( )kggdayK /// ; c: ( )qRθ∇ , interval 

0.2, one unit corresponds to 1.2× 310− ( ) Kdaykgg /// ; d: ( )q qR∇ , interval 2.0, 

one unit corresponds to 0.86× 310− ( ) ( )kggdaykgg //// . Shading indicates 
negative values. 

 
The diagonal structure of the Jacobian, which is most evident in Fig. VI.C.4.d, 

indicates the local effect of the perturbations on convective drying. The qR  at 
layers above 500 hPa  shows little sensitivity to the θ - and q -perturbations at 
any level, probably since at high latitudes the convective clouds can not 
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penetrate to very high levels, due to the fact that the moisture content in the air 
column is lower than that at low latitudes.  

Figure VI.C.5 displays the Jacobian at grid point C (250 E , 20 S ). For Rθ , the 
major difference between the points C and A is the fact that the sensitivity of 
mid-troposphere Rθ to both θ - and q -perturbations is now about an order of 
magnitude weaker (notice the difference in the contour intervals). Here the 
impact on convective heating from perturbations at mid- to upper troposphere is 
relatively more important than that from sub-cloud layers.  

 
Figure VI.C.5. Same as Fig. VI.C.3 but for point (250 E , 20 S );  a: ( )Rθ θ∇ , 

interval 0.05, one unit corresponds to 0.86 ( ) KdayK // ;   b: ( )q Rθ∇ , interval 
0.1, one unit corresponds to 0.62 ( ) ( )kggdayK /// ; c: ( )qRθ∇ , interval 1.0, one 

unit corresponds to 1.2× 310−  ( ) Kdaykgg /// ; d: ( )q qR∇ , interval 1.0, one unit 

corresponds to 0.86× 310−  ( ) ( )kggdaykgg //// . Shading indicates negative 
values. 

 
For qR , Figures VI.C.5.c and VI.C.5.d show a marked difference compared to 

locations A and B. Now both the significantly sensitive layer and the influential 
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layer are confined to below 900 hPa (notice the difference of the scale on the 
ordinate and abscissa between Figs. VI.C.5.c, VI.C.5.d, and the corresponding 
figures for points A and B). This is probably due to the presence of less moisture 
content in the air column and lower cloud top over land area than over low-
latitude oceans. However, Figures VI.C.5.c and VI.C.5.d still display detailed 
sensitivity structures with respect to the temperature and moisture perturbations, 
i.e., positive θ - and q -perturbations at the lowest model level and negative 
perturbations higher above (between 900 to 950 hPa ) tend to destabilize the 
sub-cloud layers and strengthen convective drying. In fact at locations A and B 
such sensitivity structures at the lowest model levels are also observed. At the 
lowest model layers those points depict strong negative feedback between q  and 
the convective drying, whereas in the slightly higher layers, the feedback is 
positive.  

The foregoing analysis of perturbations at the three types of grid point 
locations (A, B, and C) indicates that the conditions in the sub-cloud layers can 
most significantly influence the convective activities at each of these locations. 
For cloud effects at mid-troposphere, the influence from sub-cloud layer 
disturbances may surpass that arising from perturbations in the immediate 
surrounding air at the same level, especially for Rθ  at grid points over the 
oceans. Regarding the response functions, the mid-troposphere is the one most 
easily influenced. When forced by the same perturbation, the variations in cloud 
heating and drying effects are larger at these levels than at other levels. Over 
land and high latitude oceans, the moisture perturbation exhibits more localized 
effects, which are mostly confined to the lowest model levels, whereas over the 
low latitude oceans with high sea surface temperature (SST) and stronger deep 
clouds, the impact of the boundary layer can be more readily transferred to 
higher levels.  

Most of the layers display negative feedback between Rθ  and the θ -
perturbation and between qR  and q -perturbation. This suggests that 
perturbations in the environing air are suppressed by cloud activities. Therefore 
the cloud effect acts, by and large, as a stabilizing factor for large-scale 
perturbations, except for the vertical levels with positive feedback, which can 
cause rapid growth of the initial perturbations in the environing air.  

The gradient of a time-integrated response is expected to yield a more stable 
and reliable sensitivity pattern than that of the instantaneous sensitivity. 
Moreover, it can provide us with the time evolution of the sensitivity. To 
investigate the strength of the impact of convective clouds on the large-scale 
fields, the matrix S  in Eq. (VI.C.4) is now chosen to define the response 
functionals  
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where 

G
∑ represents summation over the globe. In Eq. (VI.C.17), the time-

integrations were carried out for 6 hours, from 00 to 06GMT, on Jan. 1st, 1985. 
To avoid repetitious language in the presentation of the results to follow, the 
sensitivity of the time-integrated response with respect to the perturbation of that 
variable at initial time will simply be called the “sensitivity” or “gradient” to the 
respective variable. 

Figures VI.C.6.a and VI.C.6.b display the longitude-height distribution of Rθθ  
and qqR to θ - and q -perturbations, respectively, averaged in the latitudinal band 
between 100 S  and 100 N . Comparing these two figures to Figure VI.C.2.a 
reveals a major difference, namely that now all the levels above 700 hPa  display 
negative gradients instead of a sharp change from negative to positive from 
500 hPa  to 400 hPa . The most influential levels are around 950 hPa , and 
between 500 to 600 hPa , in that the perturbations occurring at these levels lead 
to larger variations in Rθθ  than similar perturbations at other levels. Specifically, 
a 1 K  increase at sub-cloud layer, or a 1 K  decrease around 500 hPa  in θ  leads 
to about 5× 610− sK /2  increase, or a 2 × 610− sK /2  increase in Rθθ , 
respectively. Figures VI.C.6.a and VI.C.6.b also indicate that, longitudinally, the 
perturbations over the eastern Indian Ocean and the western Pacific Ocean exert 
the strongest influence on the convective heating and drying. Over the western 
Indian Ocean and the eastern Pacific Ocean, however, only the temperature 
perturbations under 800 hPa  level can have a significant impact.  

In summary, the cloud impacts on the large-scale fields are most sensitive to 
the initial perturbations in θ -field at two levels: one is the sub-cloud layer, and 
the other is the mid-troposphere layer between 500 hPa  and 600 hPa . The 
perturbations at these layers have opposite effects on the convective 
parameterization, namely positive perturbations in the lower layers and negative 
perturbations in the upper layers, which lead to enhanced convective activities 
and to stronger impact on the environmental fields.  
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Figure VI.C.6. Variations with longitude and height of the sensitivity to θ  

perturbations of the response  (a) Rθθ  [interval 0.5; one unit corresponds to 7.2 

× 710−  ( ) KsK //2 ], and (b) qqR  [interval 1.0; one unit corresponds to 1.4 × 
810− ( ) Kskgg /// 2 ]. Shading indicates negative values. The ordinates are in 

hPa . 
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Figures VI.C.7.a and VI.C.7.b show the vertical distribution of the sensitivity 
to moisture perturbations of Rθθ and qqR , respectively, again averaged between 
100S and 100N. Note the differences from Fig. VI.C.2.b, which depicted the 
sensitivity of precipitation to the q -perturbation. As depicted in Fig. VI.C.7.a, 
Rθθ displays a positive sensitivity to all the vertical levels, especially to the 
layers around 950 hPa and, respectively, 400 hPa , where a 1 kgg / increase in 

moisture content can result in a 51 10−× sK /2  and, respectively, 
61.5 10−× sK /2  increases in Rθθ (which means an increase in convective 

heating).  
Figure VI.C.7.b depicts the (more complex) behavior of the qqR sensitivity to 

moisture. Only the levels below 300 hPa are displayed, since there is very little 
moisture above this level. The most significant positive gradient is observed 
around 950 hPa and 600 hPa . From 600 hPa to 500 hPa , the gradient changes 
from large positive to negative. At around the 600 hPa layer, an addition of 
1 kgg / in the moisture field leads to an increase of approximately 

72 10−× ( ) skgg // 2  in qqR . On the contrary, adding 1 kgg / moisture at around 
500 hPa tends to suppress convection (cf. Fig. VI.C.2.b) and reduce the 
convective drying effect, as manifested by the ca. 71.5 10−× ( ) skgg // 2  decrease 
in qqR .  

This intricate structure is also manifest in Fig. VI.C.3.d but with reversed sign 
since in that figure, the response function is the q∆ itself, which is negative, 
whereas in Fig. VI.C.7.b the response is the square sum of q∆ which is always 
positive.  

As Fig. VI.C.2.b shows, the q -perturbation around 600 hPa does not 
significantly influence the strength of convection, which is represented there by 
convective precipitation, but Figure VI.C.7.b indicates that it can very 
significantly influence the convective drying. A possible explanation is that the 
convective drying in the environing air, like the convective heating, is mainly 
due to the compensating subsidence outside the clouds (Redelsperger and 
Guichard, 1996). This effect is most significant at around 600 hPa (see Fig. 
VI.C.1.c). Presence of additional moisture in the environing air at this level will 
cause more water vapor to be transported to lower layers by downdrafts, thus 
leading to a larger depletion of moisture and larger negative q∆ , even though 
the strength of convection does not increase significantly. If, on the other hand, 
there is additional moisture at higher levels, it tends to suppress convective 
activity (cf. Fig. VI.C.2.b) so that the cloud-induced drying is reduced 
accordingly.  

 

Copyright © 2005 Taylor & Francis Group, LLC



Adjoint Sensitivity for Operational Meteorological Applications            339 

 

 

 
Figure VI.C.7. Height-longitude distribution of sensitivity to moisture 

perturbations of: (a) Rθθ  [interval 1.0, one unit corresponds to 

5.18× 710− ( ) ( )kggsK ///2 ], and (b) qqR  [interval 0.2, one unit corresponds to 

1.0× 710− ( ) ( )kggskgg //// 2 ]. Shading indicates negative values. The ordinates 
are in hPa . 
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The wind field does not exert an immediate impact on RAS scheme, so there is 

no instantaneous sensitivity to wind field. However the wind field redistributes 
the θ - and q -perturbations through advection and convergence/divergence. In 
this way, it provides an indirect influence on the output of the RAS scheme. The 
integration of the adjoint model can provide the gradient of Rθθ and qqR , from 
RAS, with respect to the wind field. A concise view of the sensitivity to the 
perturbations in the wind vector can be obtained by displaying, in vector form, 
the gradient of Rθθ with respect to the u - and v -components of the wind. 
Figures VI.C.8.a and VI.C.8.b show the horizontal distribution of the sensitivity 
of Rθθ to the wind vector at 200 hPa  (upper level) and 700 hPa  (lower level). 
The gradients of Rθθ  at these layers have opposite signs, again indicating a 
baroclinic character. The most significant influence is due to the divergent 
component; the vorticity component is very weak except at some isolated areas 
at high latitudes. The lower (upper) level gradient vector is largely convergent 
(divergent). The sensitivity of qqR to wind is very similar to that of Rθθ , and is 
therefore not shown here. As already discussed previously, wind perturbations 
with the same structure and distribution (i.e., convergence at lower levels and 
divergence at upper levels over the convectively active regions at initial time) 
will lead to stronger cloud impacts on the environment in the ensuing several 
hours. The most sensitive region extends geographically from the eastern Indian 
Ocean to the western Pacific Ocean at low latitudes.  

To complete the sensitivity analysis results, Table VI.C.2 illustrates the relative 
importance of the impacts of the perturbations in potential temperature, 
moisture, and wind fields on the response functions. The perturbations shown in 
this table are effected at the most sensitive grid-point for that variable (i.e., the 
point with the largest gradient). As Table VI.C.2 illustrates, the precipitation, θ , 
is the most influential factor; its impact is 2 to 3 times larger than that arising 
from q -perturbations. For convective heating and drying, q -perturbations 
become the most influential factors, although θ -perturbations are almost as 
important. The variations caused by wind perturbations are at least one order of 
magnitude smaller than those due to the θ  and q -perturbations, respectively.  
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Table VI.C.2 
1st order variations in response functionals. 

   pRδ (mm/day) Rθθ  
(oK2/s)  

qqR  
(g2/kg2/s)  

δθ   21 10−×  0K  11.4 10−×   1.4 × 710−   2.2 × 910−   

qδ   21 10−×  g/k
g  

25.0 10−×   2.9× 710−   5.0 × 910−   

Wδ   21 10−×  m/s  1.5 × 1010−  1.0 × 1010−   
 

 
Figure VI.C.8. Sensitivity of Rθθ  to perturbations in wind vector at (a) 

200 hPa  and (b) 700 hPa ; one unit corresponds to 5.2 × 1010− ( ) ( )smsK ///2 . 
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In summary, the sensitivity analysis results presented in this sub-section 
showed that the θ -perturbation has a significant impact on all the response 
functionals analyzed, especially on the convective precipitation. The 
perturbations at sub-cloud layers and at mid-troposphere, from 500 hPa  to 
600 hPa , were found to be the most influential. The effects at the lower layers 
and upper layers are opposite to each other, i.e., higher (lower) temperature 
perturbations at lower (upper) levels tend to produce positive variations to the 
response functions, indicating stronger convectivities and stronger cloud impact 
on the environing air. The impact from moisture fields is most significant on the 
cloud heating and drying effects; the strongest influence comes from the sub-
cloud layers, where additional moisture is conducive to stronger convective 
activities. The cloud-induced drying (moistening) is also significantly influenced 
by the moisture perturbations at mid-troposphere, with completely opposite 
effects from the 500 hPa  compared to the 600 hPa  disturbances, indicating a 
strong sensitivity of the response to grid-scale vertical profiles at mid-
troposphere.  

The regions where the perturbations are most effective in inducing variations 
in these response functions extended geographically from the eastern Indian 
Ocean to the western Pacific Ocean at low latitudes, where the convective 
activities are intense and frequent in a climatological sense. The implications of 
these sensitivity analysis results are that accurate data for temperature, moisture, 
and surface pressure are essential for an accurate evaluation of cumulus cloud 
effects, especially at the most influential vertical levels which were identified by 
this sensitivity analysis, since small perturbations at these locations tend to exert 
a stronger influence on the RAS outputs than the same perturbations at other 
locations. Therefore, the illustrative results presented in this sub-section indicate 
that data quality is particularly important at those levels and areas with positive 
feedback between cloud activities and the environment, since small errors tend 
to grow through this feedback. 

Finally, we note that the ASAP is also important for variational data 
assimilation. For example, in variational assimilation of precipitation data, in 
which moist convection is the dominant process, the difference between model 
output rainfall and the observed rainfall (or the derivative of the cost function) is 
taken as input to the adjoint RAS scheme, and the output is the gradient of this 
cost function with respect to the large-scale variables. We may expect that the 
most influential levels identified by the sensitivity analysis presented in this sub-
section are the ones most responsible for the reduction of the misfit, or the 
forecast error, which is represented by the cost function. In other words, these 
levels are the ones which would experience the largest impact from 
observational data. Such information also indicates the regions where additional 
adaptive observations should be taken. A thorough discussion of these and 
related topics (such as optimal control of fluid flow) is planned for a future 
volume. 
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