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A b s t r a c t - - T h e  a posteriori error evaluation based on differential approximation of a finite- 
difference scheme and adjoint equations is addressed. The differential approximation is composed 
of primal equations and a local truncation error determined by a Taylor series in Lagrange form. 
This approach provides the feasibility of both refining the solution and using the Holder inequality 
for asymptotic bounding of the remaining error. (~) 2005 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - D i f f e r e n t i a l  approximation, Lagrange truncation term, adjoint problem, A posteriori 
error estimation, Error bound. 

1. I N T R O D U C T I O N  

Starting with the results of paper [1] the adjoint (dual) equations are widely used for estimation 
of the a p o s t e r i o r i  e r ror  of the numerical solution both for finite-element and finite-difference 
discretization methods [2-29]. In a large number of ensuing publications, this approach is applied 
for estimation of the numerical error of some quantities of interest (goal functionals, point-wise 
parameters, etc.) using some form of the residual (truncation error). This approach may be 
also extended to estimation of model error [4] caused by a difference between fine and coarse 
models. A broad spectrum of physical models is covered. In [9], this approach is used for wave 
equations while in [12] it is used for transport equation. In [6-8], a p o s t e r i o r i  error estimate 
is obtained for Navier-Stokes and Euler equations. In these works, the Galerkin method is 
used for the local error estimation while the adjoint equations are used for calculating their 
weights in the target functional error. A similar approach is used in [19-29] for the refinement of 
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practicMly useful functionals both by finite-element and finite-difference discretization methods. 
The local truncation error (residual) was estimated by the action of a differential operator on 
the interpolated solution, while its contribution to the functional was calculated using an adjoint 
problem. 

The approach considered herein uses another approach for the calculation of the residual as 
compared with [19-29]. We use a local truncation error determined by the Taylor series with the 
remainder in Lagrange form. This enables us to both correct the error in a usual way as well as 
to obtain an asymptotic error bound (based on the Holder inequality) for the refined solution. 
This approach was used for heat transfer equation in [30] and for the parabolized Navier-Stokes 
equations in [31]. 

2. T H E  E R R O R  C O R R E C T I O N  A N D  
B O U N D I N G  F O R  F I N I T E - D I F F E R E N C E  

A P P R O X I M A T I O N  O F  H E A T  C O N D U C T I O N  

Let L be the differential operator determining the problem LT -- 0 and let Lh be the finite- 
difference operator LhTh =- 0 (Th is the grid function). The truncation error produces a field 
of sources 5T disturbing the exact solution T. The adjoint approach permits to account for the 
impact of all these sources on the goal functional by summation over the entire computational 
domain. The truncation error may be estimated via the value of residual 5T = -LT/~ engendered 
by action of differential operator on some extrapolation T~ of the numerical solution [19]. As an 
alternative option, we may use a differential approximation of the finite-difference scheme [32]. 
Then, the truncation source term assumes the form 5T = LhTh -- LTh and is composed of Taylor 
series terms with coefficients containing some powers of the grid size. If we use the Lagrange 
form of Taylor series, we may obtain a closed form of the truncation term. This form provides an 
opportunity to subdivide the truncation error into a computable part  containing known values 
and an incomputable part containing the field of Lagrange coefficients (unknown parameters 
belonging to the unit interval). This approach enables us both to correct the error and to obtain 
some asymptotic bounds of the remaining error. 

For illustrating this idea, we first apply it to the unsteady one-dimensional heat conduction 
equation and its finite-difference approximation. We assume that  the solution is smooth enough 
to have all the required derivatives bounded. Let us consider the estimation of the temperature 
error at a checkpoint, 

Cp-g-[ Ox 7 x  = 0 ;  i n Q = f ~ x ( O ,  t l ) ,  f ~ E R  1. 

initial conditions: 

boundary conditions: 

:~(0, x) = T0(x); 

0~T = 0; 
UX 

X---~0 

To(x) e Lu(~); 

-xT x=x =0"  

(1) 

(2) 

Here, C = Const is thermM capacity, >, is thermal conductivity p = Const is density, T is 
temperature (considered here as exact, error-free), x is coordinate, X is thickness, t is time, t /  
is duration of process, f / i s  domain of calculation (0, X).  We consider two cases: ~ = Const, 
T(t, x) E C~(Q) and )~ E L2(f~), T(t, x) e Hi(Q). In these spaces, the problem is well posed [33]. 

Consider a finite-difference approximation of equation (1) having the first order in time and 
second order in space (for the constant ),): 

cpT~n _.r~-I  .IT~%I - 2T~h~ + T~-I = O. (4) 

Here, T is the solution of finite-difference equation, 7 is temporal step, and hk is the spatial step 
size. The simplicity of the scheme and the low order of approximation are deliberately chosen to 

(3) 
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illustrate the features of this approach with the simplest mathematical treatment and to obtain 
an observable (comparing with other sources) truncation error. Herein, we address the impact 

of this error on the temperature at a certain checkpoint Test = T(test, Zest). Let us denote the 
estimated temperature Tes t by s and express it as the functional, 

= ~ - - / f  T (t, x) ~ (t - test) 5 (x -- Zest) dt dx. (5) To t 
Q 

Here, ~ is Dirac's delta function. 
The error of the temperature is determined as the sum of contributions of local truncation error 

with weights depending on the transfer of disturbances and determined by the adjoint parameter. 
In order to determine the truncation error, let us expand the mesh function T~ in a Taylor series 
and substitute into (4). Herein, we imply that there exists a smooth enough function T(t, x) that 
coincides with T~ at all grid points. Then, equation (4) transforms into equation (6), 

OT 02T 
cp-  -  b-7 2 + = 0. (6) 

Here, 6T = 6Tt +~T~ is a local truncation error engendered by the Taylor series remainders. We 
use here the Lagrange form of remainder, which contains unknown parameters a~ , /~ ,  7~ E (0, 1), 

Cp. r 02T(tn - a'~'r, xk ) 
aTt (7) Z-  Ot 2 

A ~04r( tn ,xk  q-firth) + 04T( tn ixk_v 'kh)~  . 
5T~ 

- 2 4  h~ \ ~ Ox 4 J 
(S) 

The mathematical properties of the differential approximations are discussed in [32,34]. Ac- 
cording to [32], T(t, x) E C°°(Q). Thus, we may consider a finite-difference equation to be 
equivalent to an approximated equation with an additional perturbation term. By introducing a 
solution error A T ( T  = T + AT), we can reformulate (6) as 

Cp Ot A Ox 2 + 5T = O. (9) 

Let us find the error of the functional (5) as a function of the truncation error. For this purpose 
let us introduce the Lagrangian of the following form, 

= f / T  (t, x) 5 (t - test) (~ (X  - -  Zest) L dt dx 

Q (10) [[ 
( t , z )  d t d x  - I I  ( t ,x)  dtd  + I I  dt x. 

Q Q Q 

Here, • is the adjoint temperature defined by the solution of following adjoint (dual) problem. 

0 h C p ~  + ~ k Ox/ - ~ (~- test) ( ~ ( x - z e s t )  : 0, ( t , x )  e a .  (11) 

O~ ~=x 9~ ~=o 
boundary conditions: ~-x = 0, ~ = 0, (12) 

initial conditions: • (t$, x) = 0. (13) 

According to [35] problem (13) is well posed for qy(t,x) E H-~(~) ,  c~/n > 1/2, f~ E R ~. In 
the case considered here, the problem is well posed if q2(t, x) 6 H - l ( f t ) ,  however, if we smooth 
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the source term according to [3,33], we may obtain a solution q2~(t, z) E HZ(ft), fl > 1 (although 
containing an error proportional to smoothing parameter s, (s > 0), which may be as small as 
necessary). Finite-difference methods for the solution of such equations are presented in [36,37]. 

It may be shown from this Lagrangian variation [38] that for solutions of primal (1)-(3) and 
adjoint (11)-(13) problems, the variation of the functional caused by the truncation error equals 

t t  
A ~  = ATest  = Test - Texact ~ - / / ~ T q ( t ,  x) dt dz. 

J l l  Q 
(14) 

2.1 D i s c r e t e  F o r m  

Taking into account (14) and the temporal part of truncation error described by (7), we obtain 
the corresponding part of error ATest as 

Az(STt) = ---CP f (~-O2T(t~ -a';~"xk) ) a t  2 (15) 
Q 

Further discussion is significantly devoted to the calculation of the magnitude and bounds of 
expression (15) and its analogues. Let us present (15) in a discrete form, for example, 

N x , N t  

--7- F_, t f  or2 
k = l , n = 2  

Herein, Nt is the number of time steps while Nz is the number of spatial nodes. 
Equation (16) may be expanded in series over a~-,  

Az(STt) 

_ CP2 gz,m~ \(TC32T(t'~'- Ot ~ xk) _ l"akv= 03T(tn,xk)ot 3 + ~ - ( ~ T )  2 04T(tn,xk)ot 4 . . . .  . . . .  ) q2,~hk~r. 
k=l,  n=2 

(17) 

The first part of sum (17) may be used for correcting of functional (5), 

ATtCOr r - ~  _ C._~p N~_~Nt 02T(t,~, xk) 9~hkT2" 
2 Ot 2 

k = l , n = 2  

(18) 

The second part of (17) contains unknown parameters a~ belonging to the unit interval a~ E 
(0, 1), so we may obtain a bound of this expression. If only the first-order term over a~-  is 
retained in (17) an upper bound may be obtained of the form, 

N~,Nt a~ "r3 03T~3, N~Nt ~'~ Cp xk)~'~hk < 2 k=l,~== 2 cp  h A sup (19) 
k = l , n = 2  

Using this value, we can determine the upper bound of the functional error (after refining), 

[Test - A T t  c°rr - Texact[ < ATtS,] p. (20) 

oln n Expression (19) is the Holder inequality applied to the scalar product ( k, Oh), 

Nx,Nt 1 1 

k=l ,  n=2 

We consider herein p = cx3 and q = 1. 
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Then, IIOll  = (le l + le21 + . . .  I O N ] ' 0  ~ /q  : E tO l and I1o,11oo = Since e 
(0, 1) this norm of unknown parameters may be easily estimated as equal to unit. 

Expression (20) is correct for exact values of adjoint parameter. In reality, the adjoint prob- 
lem is solved by some finite-difference method, so it contains an approximation error ~(t ,  x) -- 
~ex~ct(t, x) + A~(t ,  x). Hence, the estimation of the functional variation has a component deter- 
mined by the adjoint problem error, 

/ ~  = /~kTes , = f/(~T~X/exac t (~,X) dtdx "~ / / ( ~ T , , ' ~  (t,x) dtdx. (21) 

The second term of (21) corresponds to the remaining error according to [19] and is associated 
to the errors of approximation of both the adjoint and primal equations. It may be expedient 
to construct a mesh for the minimization of this term as in [25-27]. As an alternative, we may 
use the second-order adjoint equations [39,40] for calculating this term. If the primal and adjoint 
problems are solved by methods of order O(h p) and O(h a) correspondingly, this term is of order 
O(hP+a). For schemes of high enough order (p _> 2 or a > 2) this term is asymptotically small 
when compared with the error bounds determined by (19). 

The calculation of error caused by spatial approximation is performed similarly. The error 
correction is as follows, 

Nx,Nt 
)~ " 30aT(t~, xk) qE~T. (22) A~'c°rr ~--- -- 1-- ~ Z hk ~ X  4 

k = l , n = l  

The incomputable error can be bounded (assuming fl~ - 7~ = 1) in a form, 

N f t  {05T(tn'xk)t3~ OST(tn'xk) 7~) qJ~hkT < ' - ' - ' - '=,1 

k=l ,n=2 

Nx,Nt 0ST (t~, xk) 

24 k=l,  n=2 

(23) 

2.2. N u m e r i c a l  Tes ts  

Let us estimate the approximation error using as a test problem the temperature field evolution 
engendered by a pointwise heat source (to, ~ is the initial time and the coordinate of the point 
source), 

Ta.(t,x) = Q exp " ( ( x -  ~)-2 ~ (24) 
2v/TC)~/(Cp)(t - to) 4A/(Cp)(t - to)]" 

We use the data fk = To(xk) calculated by (24) as the initial data when solving (4). The 
length X of the spatial interval is chosen so as to provide a negligible effect of the boundary 
condition compared with the effect of approximation. The round-off errors were estimated by 
comparing calculations with single and double precision, and the difference was found to be 
negligible. We should also ascertain that the error, 

f f   TA (t, dt dx, X) 
Q 

engendered by adjoint equation approximation is sufficiently small. For calculation of AqJ(t, x) 
the following equation was used, 

c 
o &oA ) (25) 
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Figure 1. Initial and final temperature distribution. 1 is initial temperature, 2 is 
final temperature. 

(second-order adjoint equation [39,40]). For ~ = Const and 6T(t, x) C Ca(Q), problem (25) is 
well-posed for A~(t ,  x) e C~(Q) [33]. 

The corresponding error of functional has the form, 

2 k=l, n=2  

As expected, the computations demonstrated that  the part of error related to the adjoint temper- 
ature error (25) is significantly smaller than the main value (related to the adjoint temperature 
itself). 

An implicit method (implemented using the Thomas algorithm) was used for solution of both 
the heat transfer equation and the adjoint equations of first and second orders. The spatial 
grid consisted of 100-1000 nodes, while the temporal integration consisted of 100-10000 steps. 
Thermal conductivity was A = 10 -4 k W / ( m .  K) and the volume heat capacity was equal to 
p = 500 k J / (m  3 • K). The initial and final temperature distributions are presented in Figure 1. 
The temperature errors were estimated via adjoint equations and compared with the deviation 
of the numerical solution from the analytical one (24). 

2.3. T h e  E r r o r  C a u s e d  by  t h e  T r u n c a t i o n  E r r o r  of  T i m e  A p p r o x i m a t i o n  

Estimates of temperature calculation error as a function of the time step are presented in 
Figure 2 (central point at the final moment). The spatial step is chosen to be enough small 
(h = 0.0001 m) so as to provide a small impact of the spatial discretization error in comparison 
with the temporal one. The error caused by adjolnt temperature approximation was calculated 
using equation (25) and was significantly smaller then the temporal one. 

The correction term is of first-order accuracy and successfully eliminated most of the ap- 
proximation error. The bounding term is of second order and is significantly greater than the 
remaining error (discrepancy of refined solution and analytical value). The observable orders of 
both correction and bounding terms are in a good agreement with expressions (18),(19). 
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Figure 2. Variation of errors as a function of temporal  s tep (in decimal logar i thm 
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Figure 3. The  comparison of numerical  and refined solutions (all divided by analytical  
value), a is numerical ,  b is refined solution, c is lower bound,  d is upper  bound.  

550 

Figure 3 illustrates the comparison between initial finite-difference and corrected finite-dif- 
ference solutions and the error bounds (all normalized by analytic value), (h = 0.0001 m, T = 
1.0 sec) related with results of Figure 1. 

2.4. T h e  E r r o r  o f  T e m p e r a t u r e  Ca lcu la t ion  E n g e n d e r e d  by  t he  Spat ia l  Disc re t i za t ion  

Let us consider the error caused by the truncation error of the spatial approximation. In order 
to observe this error, we should provide a small contribution of truncation error of the temporal 
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approximation. With this purpose the following second-order time approximation scheme was 
used. 

T -1/2 - T : - I  - - 2 7 ; - 1  + = 0 ;  
Cp k r 2 h~ 

(26) 
T" - T: -1/~ 1~T~+1 - 2T: + T~ I = O. Cp k 

r 2 h~ 

It  may be demonstrated in a manner similar to previous treatments that  the error caused by 
the temporal approximation is of second order in r.  

Nx,Nt 
AE(hTt) = CP12 ~ c93T~t~ xk)~hkra" (27) 

k=l,n----2 

A bound on the incomputable error caused by temporal step is 

Cp NfiNt 
AT: up = AE(hT) = 7 ] °4T(t~' xk) ~ - ~  k hk T4. (28) 

k=l, 

The error caused by the spatial approximation retains its previous form (22),(23). 
Numerical tests demonstrated that  the error caused by the time step (27) was not greater than 

2 .10  - s  and was significantly smaller than the error caused by the spatial approximation. The 
error caused by the adjoint equation approximation, 

/ /  hTA~ t) dt dx, (x, 
Q 

was even smaller by several orders of magnitude. The temperature error estimations as a function 
of the spatial step size are presented in Figure 4 (for central point at the final time). 

The comparison of deviations of the solution from the analytical one and the correcting term 
demonstrates that  the refinement by AT c°rr (22) enables us to eliminate a significant part of 

Arpsup the error. Comparison of the remaining error ~2orr _ Tan and ~ , 1  demonstrates a reliable 
bounding by expression (23). The remaining error T~ °rr - Tan contains all uncontrolled errors 
including those caused by boundary terms, errors of upper orders, etc., so it exhibits a slightly 

irregular behavior. 
The quadratic character of AT~ °rr and the third order of AT~ ~p should be noted as coinciding 

with the formal order of (22),(23). The convergence rate of AT c°rr and A T  sup demonstrates 

that  the discontinuities of high-order derivatives for equation (1) under initial conditions (24) 
and boundary conditions (3) did not engender any visible effect (they are located in zones of 

small 9) .  

2.5 T h e  Effec t  of  Discon t inu i t i e s  of  t h e  De r iva t i ve s  

The above considered solutions possessed an infinite number of bounded derivatives which was 
the reason for good agreement between observed and nominal convergence rates. If the physical 
field is specified by small number of bounded derivatives, the order of convergence may differ 

from the nominal one. 
Let us consider this problem at a heuristic level for some function p(t, x) having m bounded 

spatial derivatives (the derivative of mth-order has a finite number of jump discontinuities). 
We consider an approximation of the derivative of the order p by finite differences of a formal 

order of accuracy j .  We denote the finite-difference scheme as 

DPp(t,x) 
DxP 
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Figure 4. Variation of errors as a function of spatial step (in logarithm scale), a is 
deviation of calculated temperature from analytical value (T - Tan), b is correction 

corr of temperature AT c , c is refined solution error bound Aysup d is deviation of 

refined solution from analytical value (T c°rr - Tan). 

The value, 

lim E (hj DP+J P(t'x) ) h~, 
h-,O ~ DxP+J 

corresponds to the correction term. Consider its asymptotic form. The derivative of order m + 1 
has an asymptotic (p(+m) _ p(m))/h ,, A /h  for the jump discontinuity, while the derivative of 
order m + 2 has the asymptotic (A/h - O/h)/h ~ A/h  2, correspondingly the derivative of the 
order p + j has the asymptotic 

A 
h p + j - m "  

Thus, 

l i m ( j D P + J P ( t ' x ) ) ~ l i m ( M  A ) 
h-~O h ~ h-,O hv+J-m " 

Only a limited number of nodes participate in the summation in the vicinity of discontinuity, so 
the multiplier h (appearing during summation) should be taken into account, yielding 

k=Nx, n=nrq-ns ( • j DP+Jp (t, x) ~ hm_p+l. 
E . t "  ) ~ 

Thus, the terms of the jth formal order of accuracy contain a component of jth order (ap- 
pearing due to integration over the smooth part of the solution) and a component having the 
order i = m - p + 1 (engendered by the jump discontinuity of the mth-order derivative). The 
picture is complicated by the dipole nature of the error caused by the discontinuity that may be 
compensated by summation. If we have a stepwise discontinuity of the first derivative at point k 
(Pk-1 = 0, Pk = A, Pk+l = A), then we obtain mutually compensated singularities. 

At point k: 
02p  ,.~ h P k + l  -- 2pk + Pk -1  A 

h-ff~x2 h2 = --~.  
At point k -  1: 

02P ~.~ hPk - 2 p k - 1  ~- Pk -2  A 
h-ff~x2 h 2 = +-~. 
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Figure 6. Initial and final temperature distribution. 1 is initial temperature, 2 is 
final temperature, A is point of estimation. 

The behavior of observable convergence rate of these terms may be more complicated since 

they are calculated as terms of the numerical solution that only asymptotically approximate the 
exact values. Under these conditions, we cannot have an expectation of obtaining similar results 
to Figures 2 and 4 for situations where discontinuous derivatives are present. 

For example, let us carry out numerical tests to study the asymptotic dependence of the 
error on the space step size for a temperature gradient discontinuity. In order to deal with the 
discontinuity, we used a divergent integro-interpolation method [41] well suited for the calculation 
of temperature gradient discontinuities. 
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Figure 5 presents temperature error estimates (for central point at the final moment) depending 
on the spatial step for the thermal conductivity coefficient having a 10% jump at the center of the 
grid and initial temperature of Figure 1 (unfortunately, an analytical solution is not available). 

As another test we consider the evolution of the initial temperature distribution of a step 
shape. The initial, the final distribution of temperature and the location of estimated points 
are presented in Figure 6. The break of thermal conductivity is located at the center point 
(xs = X/2) and coincides with a stepwise discontinuity in the initial temperature. 

Figure 7 presents the temperature error estimates depending on the spatial step. The rate of 
convergence of Test - T a n  and AT c°rr is close to second order despite the influence of discontinuity. 
This is caused by a mutual compensation of errors (dipole nature of error) in the vicinity of the 
discontinuity as confirmed by an analysis of local distribution of error density, 

)~ ha OaT (t~, xk) .T.~ 
k Oz4 ~kr ,  

(engendering A~ -c°rr in accordance with (22)). The order o~ ~ ~z=,l--"sup is close to one (slightly below), 

which corresponds to the expected influence of the temperature gradient discontinuity and is in 
contrast with the formal third order expected from (23)). Thus, the calculation of approximation 
errors by the method considered is strongly affected by the number of bounded derivatives of the 
solution. 

3. E R R O R  C O R R E C T I O N  A N D  
B O U N D I N G  F O R  V I S C O U S  F L O W  

The heat transfer equation is providing a favorable example for our approach due to the great 
smoothness of the solutions. Let us consider the method discussed above for the pointwise error 
in a two-dimensional supersonic viscous flow. The nondivergent form of the parabolized Navier- 
Stokes equations (PNS) is used. The flow is calculated by marching along the X axis, 

O(pU) O(pV) 
+ - -  -- O, (29) 

OX OY 
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OU OU 10P 1 02 U 
u-sx + v-dv -~ p OX Rep 0 y2 0, (30) 

u-~OV + v-~OV + 10P 4 02 V - O, (31) 
p OY 3pRe 0 y2 

U~-~ + V~-~ + (3' - 1)e + = 0, (32) 
~ p Re Pr OY 2 p 3Re O-Y 

RT 
P = pRT; e = CvT = - - ;  (X, Y) e f~ = (0 < X < Xmax; 0 <: Y (Ymax) .  

3'- '1  

On Fin, we have ff  = f(n(X,Y), on Fout, we have ~ = 0, (ff = (p,U,V,e)). The boundary 
F ---- Fin U lPout, Fin is the inflow boundary, I~outis the outflow boundary. 

The density at some point is considered as an estimated parameter. Let us write the estimated 
value p(X est, yest) in the form of a functional, 

pest ---- z ~-- f p(Z, Y)5(Y - yest)5(X - Zest) dX dY. (33) 
~ t  

f~ 

We calculate the variation of the functional with respect to local disturbances (truncation 
error) 5f i using the adjoint equations in the form described in [31,42]. 

3.1. Adjo in t  P r o b l e m  

o~. o% ,, O(~velp) i) O(@ou--~/P) 
U-El + V EF + ( ~ - ~) EF + ( ~ - 

P ~-~@v+~--~@u +\p20 X p2ReOy2j@u+-~ ~ 3ReOy2) @v (34) 

i ( v 0% 4 (OU'~2~@ _5(x_xest )5(y_yest )=o.  
p2 RePr OY ----5 + ~ \ OY ] ] 

The source in (34) corresponds to the location of the estimated parameter. 

T OqJ U O(KI'uV ) +p-ffXOqJP- (OV + Oe ) ~0 (P  ) (35) 

+ ~ - 5  ~ u  - ~ - ~  3Re0--Y ~re = 0 '  

OU Oe 
O(U~V)ox + V'-o~" O~v - ("~qJu +'-~qJe) (36) 

+ p - ~ -  + ~ ~e + 3R'-'-~ OY - - ~  = O, 

a---X - +  a---U- p b - ~ , ~ v + ~ , ~  - ( -y - l )  b-X+b--~ ~e (3Z) 
O'~V . a ' U  "Y 0 2 (_~ ) 

+(3`-  1 ) ~  + ( 7 -  1 ) - ~ -  q Re p ~  Oy---- 5 

The parameters (k~p, @u, @v, @e) are the adjoint analogs of density, velocity components, and 
energy, respectively. 

On boundary Pout: @p,u,v,e ro,t = O, on Pin: ~ y  = O, 
The adjoint problem is calculated in the reverse direction along X. 
Using the solution of above adjoint problem, we may express the variation of the target func- 

tional as a function of the truncation error in the following form, 

= j/(sp   + 5u u + 5. v + dX dY. (38) 
f l  

Here, 5p, etc., are the truncation errors. 
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3.2. Tak ing  in to  Accoun t  the  Viscos i ty  I m p a c t  

In the tests presented below, we should compare the results of finite-difference calculations of 
parabolized Navier Stokes equations with the analytical solutions available for inviscid gas flows. 
These numerical results contain the influence of viscosity in addition to the impact of truncation 
error. On the other hand, some considered solutions contain shock waves, so using a viscous 
statement may be necessary from a computational point of view [24]. 

In this context, the influence of viscous terms in equations (29)-(32) on an estimated parameter 
is of interest. We will consider the solution of equations without viscosity as a nonperturbed one. 
Let the viscous terms disturb this solution. For example, for the longitudinal velocity undisturbed 
values are governed by equation U ~  + V ~  = 0, while the disturbed ones are governed by 

V °fj - ( 1 / R e p ) o ~  f = 0. Then, the variation of the target functional due to viscous U ~  + ~-g 
terms assumes the form, 

6¢ = - ~-V-~kOu + . . .  df~. (39) 
f l  

In contrast to (34)-(37), the corresponding adjoint equations have no viscous terms. This 
approach may be viewed as some variant of the estimation of model error [4] caused by the 
difference between two models. Certainly, this approach is valid only when the influence of 
viscous terms is small enough, i.e., when they do not cause a radical change of the flow structure. 

Another reason for this technique development arises from discontinuities that are typical of 
supersonic flows described by Euler equations, for example. The approach based on differential 
approximation is not formally applicable for supersonic Euler equations due to unbounded deriva- 
tives. Nevertheless, we may use the parabolized Navier-Stokes for basic flow calculation, consider 
viscous terms as a perturbation, and calculate the effect of this perturbation on the solution. 
This may enable us to expand the applicability of the differential approximation approach to 
discontinuous flows as described by the Euler equations. 

3.3 .  Fin i t e -Di f fe rence  Scheme  

Herein, we use a first-order finite-difference scheme based on upwind differences [43]. It contains 
two steps, predictor and corrector. Both steps are calculated implicitly, using the three-point 
Thomas algorithm. The tilde marks parameters computed at the first step. This scheme is 
rather simple, has a large enough truncation error, and is monotonic. The last feature is very 
important for calculation of derivatives that approximate the truncation terms. The scheme (for 
Vk ~ > 0 option) is presented below. 

P R E D I C T O R .  

- - n + l  ~ n + l  
3+I _ p~ + P~ U~ - U~-I + Vk ~ Pk -- Pk-I V;n+1 - V;~-I (40) 

u~ "~ ~: h~ h~ + p~ -2-~ - o, 

- k n /']'n+l __ 2 ~ + 1  __ 0"~+~ (41) n ~ r n + l  _ ~ ' ~ : t  P]~ - /E:--I 1 ~ k + l  v ~  U ' ~ + l - U ~  + v~ n + - -  =o,  
hx h v h ~ Re p~ xpk h~ 

~; v;+~ - ~ ~ ; ~ + ~ -  2 v ; + ~ -  v;+,~ = o, (42) - V :  + V :  ~.~+lk - 12:2,1 + P~+l - P;-1 _ 4 "k+l 

hx h u 2hup' ~ 3Re p~" h~ 

- n + l  ~ n  - __ ~ - n + l  n V n __ v k n  1 u;ek h:--°k +v:e~+~G~k-i +(.y_l)e~G -Ut -ih~ +(v-1)e~ k+i2h ~ 

~k+l - = O. 
Re Pr p~ h~ 

(43) 
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CORRECTOR. 

(,.7",+1 _ U~ 17zk n+l  p~,+l ,.,n+l l~'kn_t_+ll _ ~knA1 ~ + 1  p~,+l -- p~, + ~ + 1  k + -- t 'k-1 + pk=n+l ----" O, (44) 
hx h~ h~ 2hv 

(.7].~,+1 U~ '-I-1 -- e~  -[- ' ~ f+ l  U :  +1 -- U~-+t al~,'+l _ p~  

h~ h v + h~tS~ +1 
1 U:+: _ 2U;+ , _ U~+_ ~ (45) 

Re ~+1 h~ = O, 

v :  - v :  + v ;  + '  - v $  + '  " 

h~ h~ - + ~  ~+~ - p :+~  2hyp~ 
4 Vkn+ 1 _ 2Vkn+l _ Vkn+ 1 (46) 

3Re p~ h~ = O, 

0,.~,+1 e~ '+1 -- e~ -]- T~:+I e'~'+l -- e~t~ [7/"~ '+1 -- U ;  
h~ hv + ('7 -- I ) ' ~  +1 hx 

(VO 
~ . + ~  _ ¢2+~ ~.+~ _ 2e~+ ~ ~+~ +(7 - 1)e~" k+i - 7 %+i - %-1 = O. 

2hv Re Pr fi~+~ h 2 

For the adjoint system, a similar finite-difference scheme was used. The main numerical feature 
of this system is engendered by the presence of a singular source term 6(X - X~ t )5 (Y  - year), 
which is related to the location of the estimated point. A mollification (smooth approximation 
of &function) was used for the approximation of this term in part of the calculations in the form 
of (~(x) ~ exp( -X2/o  "2 - Y2/0"2). 

3.4. Refining and Bounding  the Error 

Total expression for refinement of the functional determined by all first-order terms of finite- 
difference scheme is derived using above discussed method and follows, 

N,Nx 
Apcorr 1 02P(Xn, Yk) n n 2 

= --~ E OX 2 U[~ ~.,khy,khz, n 
k=l, n=2 

N, Nx 
1 02p(Xn, gk) 1 Y , Y ~  0 2 U ( X .  ' Yk)  ~nl j j .  h , h 2 

k=l, .=2 k=l, n=2 

N , N x  
1 o 2 u ( x , ~ ,  Yk) ~ . 2 1 

k=l, n=2 

N, Nx 
7 -  1 02p(Xr"Yk)  e"q2" h k h  2 - -  
- - , (  ~ ~ ~ u,k y, ~,n 
2Pk k=l, .=2 

O W ( X , ~ , Y k ) . . ~ . . . n  ~ ~2 1 
1 N,Nx 

k=l, n=2 

1 N,Nx 

-5 E 
k=l,n=2 

O % ( X . , Y k )  . . 2 1 
OX 2 U~ qQ,khy,khz,n -- -~ 

Y £ • :  02U(X,~, Yk) ...n ,. h 2 
O y  2 IV:l ~u,k,,~,k ~,. 

k=l, n=2 

N,Nx 
7 -- 1 0 2 e ( X n , Y k )  ~ n  h k h  2 

N,N~ O 2 V ( X .  ,Yk) . . 2 

k=l~ n=2 

N,N~ O % ( X . ,  Yk) 

k=l,n=2 

7 -1  N,Nx 

E 
k=l, n=2 

o2u(x,. Yk) ,~ ,~ 2 
OX 2 %~¢,khy,kh~,~ ' 

(48) 
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Total expression for error bound has the form, 

N,Nx -3 " " I 
1 V" 1o p(x,~, Yk) 

1 N, Nx  n n 3 [ n n 3 +_~ k_l~n_210ap(Xn,Yk)v a ~o,khx,khy,n +-21 N~_ x ] 03U(Xn, Yk) pkk~p, s hu,kh~,,~ 
-- , -- k=l ,n=2 

+ 2 N ~  o3 u ( xn , yk ) Oa 
k=l, n--~.2 OX3  U ~ l ~ ' k  hy'kh3x'r~ "~ k=l,  n=2 U ( O @  gl¢) V~k~Y'k  hx 'kh3 'n  

" 7 - 1  N ~ x  [03p(X,~,yk) e,~ff2, ~ 3 7 - 1  N~__ff ]Oae(X,~,yk)kg,~ I 3 
2p~ k=1,,~=2 ~ k u,k hv,khz,n + ~ OX a u,k hu,khz,,~ 

k=l~n=2 

N Nx 3 

+~ z.., OX 3 
k=l ,n=2 

N Nx -3 "" 1 ~ iOe(X~, 
+~ ~:~:~I ox~ 

1 N,N~ 

Yk ) 1 V" ]o~(x . ,  
+ -~ z_., Oy3 hx,khv,~ 

k=l, n=2 

k=l, n=2 

A bound on the refined functional error may be determined by these expressions as 
(49) 

]P -- A P  c°rr --/)exact[ < AP  sup- (5o) 

Tiffs bound does not account for errors of adjoint problem solution, errors caused by boundary 
condition approximation, etc. It  also uses derivatives whose boundedness cannot be proven at 
present. So, it shouM be investigated by means of numerical tests. 

3.5. N u m e r i c a l  Tes t s  

First, we consider a smooth flow. The error of flow density past the expansion fan (Prandtl- 
Mayer flow) is addressed (freestream Mach number M = 4, angle of flow deflection a = 10°). 
Let us consider the related results for inviscid flow. 

Figure 8 presents the deviation of the finite-difference solution (density) from the analytic one 
and the correction of error in accordance with (48) (all divided by analytical value of the density). 
The refinement of the solution using adjoint parameters according to (48) enables the elimination 
of a major part  of the discretization error. The first order of computable error may be detected 
if we analyze Figure 8. Calculations demonstrated a good agreement of the refined solution with 
the analytical one and reliability of the error bound estimate. However, the order of the bound 

is slightly smaller then the second order of accuracy provided by (49). This is due to the slow 
growth of third derivatives of the calculated flow parameters as the step size decreases. I t  may 
be caused either by some properties of the finite-difference scheme or by the formation of weak 
discontinuities in the flowfield. 

For comparison, let us consider the residual based approach closely related to [19] for an 
estimation of computable error without explicitly using the differential approximation. The 
truncation source term driving the error estimation has a formal appearance 5p = L(hl)Ph --Lph if 
we use the differentiM approximation. It  may be estimated in other fashion as the residual 5p = 
-Lp' h engendered by action of the differential operator on some extrapolation of the numerical 

solution [19]. Herein, we use a different approach and estimate it as 5p' = --L(h2)ph. Here, L(hl)is 
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Figure 8. The errors as functions of the reciprocal of mesh step (Logarithm scale). 

a is deviation of finite-difference solution from analytical one~ b is error correction 
according (48), c is error of refined solution, d is bound of refined solution error. 
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Figure 9. The errors as functions of the reciprocal of mesh step (inviscid flow)~ 
a is deviation of finite-difference solution from analytical one, b is error of refined 
solution, c is residual based error estimation. 
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3 

the finite-difference operator of basic (low) precision, L~ z) is the finite-difference operator of high 
precision and L is the differential operator. The main difference between this approach and the 
one in [19] is in the residual calculation. We do not use an interpolation of flow parameters from 
grid points to total domain. Instead, we apply a higher-order scheme on the same numerical 
solution. 

Thus, the lower term of differential approximation may be estimated via the residual obtained 
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F i g u r e  10. T h e  e r r o r s  as  f u n c t i o n s  o f  t h e  n u m b e r  of  g r i d  p o i n t s  (v i scous  flow, R e  = 
1000).  a - d e v i a t i o n  o n  n u m e r i c a l  f r o m  e x a c t  va lue ,  b - e r r o r  d u e  to  v i s c o u s  t e r m s ,  

c - d e v i a t i o n  o f  r e f ined  s o l u t i o n  f r o m  a n a l y t i c a l  one,  d - u p p e r  b o u n d  of  r e f ined  

s o l u t i o n  e r ro r ,  e - low b o u n d  of  r e f ined  s o l u t i o n  e r ro r .  
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F i g u r e  11. T h e  e r r o r s  as  f u n c t i o n s  of  t h e  r e c i p r o c a l  o f  m e s h  s t e p  (v i scous  flow, 
R e  = 1000).  a - e r r o r  c o r r e c t i o n ,  b - b o u n d  of  e r ro r .  

from using a high-order stencil on the solution calculated via main finite-difference scheme. Fig- 
ure 9 presents the deviation of the finite-difference solution from the analytic one, residual based 
correction of error and the error of refined solution. 

The comparison of Figures 8 and 9 demonstrates these two approaches to be very similar in 
as far as correction of numerical error is concerned. However, the differential approximation 
approach additionally yields an upper bound of the refined solution error. 
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Figure 13. Isolines of error bound  densi ty  (36). 
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Figure 14. The errors as functions of the reciprocal of mesh step (viscous shocked 

flow), a is deviation of refined solution from ~nalytical one, b is error correction term 
(48), e is error bound  (49). 
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Let us consider results corresponding to calculations taking into account the viscosity. Figure 10 
presents the relative error of flow density calculation via PNS for Re -- 1000 as a function of the 
number of nodes in Y direction. The part of error caused by viscous terms (39), relative deviation, 

P - -  A P  c° r r  - -  A p v i s c  - -  Pexact  

of refined solution from the analytical one, and bound of refined solution error (49) are presented. 
It  can be seen that  the main part of error is determined by viscosity and it may be computed 
and eliminated. Figure 10 demonstrates that  the estimation of viscosity impact using adjoint 
equations enables us to obtain a result close to the inviscid computation as far as accuracy is 
concerned. Thus, there exists the feasibility for calculation of inviscid flow (Euler equations) and 
a posteriori error estimation on the basis of PNS equations. This extends the applicability of the 
considered method which is not directly applicable to the supersonic Euler equations due to the 
existence of discontinuous solutions. In general, for a smooth flow the errors for both inviscid 
flow and for viscous flow (refined via adjoint parameters) are close. 

As can be seen from Figures 10 and 11 the correction term has a first order of accuracy, the 
bound order is slightly less then two, however, the error remaining after taking into account 
the viscous term is greater than the bound for fine enough meshes. So, the account of viscosity 
impact is not accurate enough in that  it is limiting the comparison of calculations and analytical 
data for viscous flowfield. 

As another test, the error of the density past crossing shocks (~ = ±22.23 °, M = 4, Re = 1000) 
is evaluated. Figure 12 presents the density isolines within flowfield, Figure 13 shows the spatial 
distribution of error bound according (49). This information may be considered as the spatial 
distribution of the incomputable numerical error and used as guidance for choice of mesh refining. 

This test is more complicated due to presence of unbounded derivatives of gasdynamics pa- 
rameters for inviscid flow. The presence of viscosity enables us to calculate flows with shocks, 
while at the same time it introduces an error proportional to 1/Re. 

Figure 14 presents results for Re = 1000 as a function of the spatial step size. The adjoint 
correction and the deviation of numerical solution from exact one has an order less 0.5 that 
provides restrictions for adjoint bounding. So, the calculation of errors for shocked flows poses a 
significant challenge for further analysis. 

3.6. Divergent Euler Equations 

A common way to handle discontinuous flows is the use of conservative form of equations 
and divergent finite-difference scheme. Unfortunately, the differential approximation based error 
correction and bounds converges only in the one-dimensional case. Let us now consider a two- 
dimensional problem. 

The following systems of divergent Euler equations (steady, two-dimensional) and related ad- 
joint equations were used in numerical tests, 

a (pu ) 
O X  k - O, 

0 (pUkU ~ + P~k) 
O X  k = O, 

° (P kh°) - 0  
O X  k 

(38) 

(39) 

(40) 

Here, U 1 = U ,  U 2 = V ,  h ( p , P )  = 7 e  is the enthalpy, ho = (U 2 + V2)/2 + h is the total 
enthalpy. 
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Figure 15. The error of calculation as a function of the reciprocal of mesh step 
(viscous flow, divergent scheme), a - error bound, b - deviation of refined solution 
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Adjoint equations: 

uk COg2p k i OgJ~ V - 1 0 k O k  
+ U U ~ + (ho - UnUn/2) OX k (41) 

+ u k  ho-ff~--~Off2h _ (~(X - xest)5(Y - yest) = 0, 

0 ~  _ i O~k OkOp 7 - 1 0~,~ _ O k ~  h 
k uk + h0b-  = o, (42) 

k 0q~h ~ - 1 0~k 
U O X  k = 0 .  (43) 

Equations (41)-(43) do not contain any derivatives of the field parameters, in contrast to 
system (34)-(37) and thus, should provide for a better performance for discontinuous solutions. 

Two dimensional first-order finite-difference schemes were used namely ("donor cells" [43] and 
a scheme of Courant-Isaacson-Rees [44]) with practically identical results. The expressions for 
truncation error are obtained in a way similar to (48),(49) and are omitted herein due to their 
very bulky form. As expected, the deviation of the finite-difference solution from the analytic 
one for divergent scheme is significantly smaller compared with the nondivergent one and the 
solution is monotonic enough. Nevertheless, the error estimates do not converge. This is caused 
by the fact that the error estimates use derivatives that are also unbounded in the divergent case 
(excluding one-dimensional flow). 

If we introduce viscosity terms into the systems (38)-(40) and (41)-(43), we can obtain con- 
vergent estimates of the error for the divergent scheme too (Figure 15). The comparison of 
Figures 14 and 15 demonstrates the improved behavior of the divergent system when compared 
with (29)-(32) and (34)-(37). 

4 .  D I S C U S S I O N  

The calculation of discretization errors using differential approximation and adjoint equations 
requires the existence of bounded derivatives of a relatively high order. They do not always exist, 
so, for supersonic Euler equations, these estimates may be calculated only for smooth solutions. 
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The second-order convergence predicted by formal analysis was found in numerical tests only 
for inviscid continuous flows. This may be related to the lack of solution smoothness for both the 
PNS and Euler equations. For solutions with an infinite number of bounded derivatives (heat 
conduction) similar error estimates exhibited the predicted order of convergence. 

For discontinuous flow, the use of viscosity enables us to carry out these error estimates, 

al though numerical  tests revealed a very small order of convergence. The viscosity engenders its 

own component  of error, which may also be eliminated using adjoint equations. 

In  general, the calculation of error for discontinuous flows poses a significant challenge and 

requires further research and analysis. 

For justification of error estimates, we should verify tha t  the unaccounted error component 

induced by approximation error of adjoint equations is small enough. This condit ion is satisfied 

asymptotically if the order of approximation of both primal and adjoint problem is high enough. 

On other hand, we can solve second-order adjoint equations [39] for calculation of this component  

in a manner  similar to [30]. 

The computed fields used for error estimations may have numerical  oscillations providing the 

growth of norm of high-order derivatives. Thus, for nonmonotonic  finite-difference schemes the 

error bounds may be too large. 

5. C O N C L U S I O N  

The presentation of the truncation error in Lagrange form provides an opportunity for sub- 
division of approximation error into computable and incomputable parts. The computable part 
enables refinement of the solution using adjoint equations. The asymptotic bound of the refined 
solution error may be determined simultaneously using Holder inequality. 

The method is directly applicable for continuous solutions and monotonic finite-difference 
schemes. 

Numerical tests demonstrated the efficiency of this method for pointwise error estimation on 
examples of heat conduction equation and parabolized Navier-Stokes. 
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