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The uncertainty of flow parameters depending on the error of input data (initial, boundary conditions,
coefficients) may be efficiently calculated using adjoint equations. This approach is extremely effective
for uncertainty estimation at certain checkpoints because it requires only a single (adjoint) system
of equations to be solved in addition to the system describing the flow-field. The fields of adjoint
“temperature”, adjoint “density”, etc. are then used to calculate the transfer of uncertainty from all
input data.
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INTRODUCTION

The uncertainty of flow-field parameters depending on the

error of initial conditions, boundary conditions, and

coefficients may be calculated by a number of approaches

such as Monte-Carlo methods or sensitivity equations.

Unfortunately, the algorithms that estimate both the flow

parameters and their uncertainty are very rare because

they usually require an extensive amount of computation

time. For example, the dispersion of a result 1 may be

calculated from the input data fi dispersion using the

sensitivity coefficients ›1=›f i (Putko et al., 2001).
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i¼1
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The time required for ›1=›f i calculation using either

sensitivity equations or the direct numerical differen-

tiation of 1 is proportional to the time required for

the 1 calculation multiplied by the number N of input

parameters. The total time required for ›1=›f i calculation

is practically unacceptable if the computational effort of

1 calculation is high and N is large.

The present paper addresses the issue of estimation

of uncertainty using coefficients ›1=›f i calculated via

adjoint equations. If the uncertainty is estimated with

a single checkpoint, this approach requires minimal

computational resources since only one adjoint

system should be solved independently on number N.

The time for ›1=›f i calculation is approximately equal

to double the time required for 1 computation in this

event.

The fields of adjoint “temperature”, adjoint “density”,

etc. depend on the flow-field, estimated parameters and

checkpoint location and do not depend on the set of input

data, which have an uncertainty. So, they are universal and

allow for the calculation of uncertainty caused by any

parameter of the system of equations.

The adjoint approach is illustrated herein for

the parabolized Navier–Stokes. See also Putko et al.

(2001); Alekseev (2001); Alekseev and Navon

(2001; 2002).

FLOW PARAMETER UNCERTAINTY

ESTIMATION

We consider the uncertainty estimation in supersonic

viscous flow, Fig. 1. The flow parameters are calculated

by the finite-difference approximation of parabolized
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Navier–Stokes (Alekseev, 2001; Alekseev and Navon,

2001). The march along X coordinate was used.
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P ¼ rRT; e ¼ CvT ; ðX; YÞ [ V

¼ ð0 , X , Xmax; 0 , Y , 1Þ:

The entrance boundary ðAðX ¼ 0Þ; Fig. 1) conditions

follow:

eð0; YÞ ¼ e1ðYÞ; rð0;YÞ ¼ r1ðYÞÞ;

Uð0; YÞ ¼ U1ðYÞ; Vð0; YÞ ¼ V1ðYÞ;
ð6Þ

while outflow conditions ›f=›Y ¼ 0 are used on B;
DðY ¼ 0; Y ¼ 1Þ:

Let the inflow parameters contain the uncertainty.

We assume the discrete analogues of these parameters

contain a normally distributed error ðsr;sU ;sV ;seÞ:
Let us seek for the total flow-field and the accuracy of a

certain parameter (let it be the temperature) at some check

point Tðtest; xestÞ; more precisely: a dependence of the

temperature standard deviation from the input data

deviations sT ¼ f ðsr;sU ;sV · · ·Þ:
Let us denote TðX est; Y estÞ as 1ð f 1ðYÞ;ReÞ: If the

estimated parameter is located on the outflow boundary

we may express it as

1ð f1ðYÞÞ ¼

ð
TðXmax; YÞdðY 2 Y estÞdy ð7Þ

If TðX est; Y estÞ is located within the field we write

1ð f1ðYÞÞ ¼

V

ð
TðX; YÞ d ðY 2 Y estÞd ðX 2 X estÞdxdy: ð8Þ

The input data dispersion is transformed to the result

dispersion by gradients (Putko et al., 2001), in our case
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The most efficient way for gradient calculation is based

on adjoint equations. For these equations’ derivation we

introduce the Lagrangian Lð f1ðYÞ;CÞ; composed of the

estimated value and the weak statement of problems (2–5).
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Consider the influence of inflow data variation Df1ðXÞ

and coefficient variation Dð1=ReÞ: By subtracting the

undisturbed solution we get the linear tangent model:
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FIGURE 1
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On the boundaries the variations of Dr;DU;DV ;De

should satisfy inflow boundary conditions:

Deð0; YÞ ¼ De1ðYÞ; Drð0; YÞ ¼ Dr1ðYÞ;

Drð0; YÞ ¼ Dr1ðYÞ; DVð0; YÞ ¼ DV1ðYÞ

ð15Þ

and lateral boundary conditions:

BðY ¼ 1Þ : DeðX; 1Þ ¼ 0; DrðX; 1Þ ¼ 0; DUðX; 1Þ

¼ 0; DVðX; 1Þ ¼ 0:

DðY ¼ 0Þ : DeðX; 0Þ ¼ 0; DrðX; 0Þ ¼ 0; DUðX; 0Þ

¼ 0; DVðX; 0Þ ¼ 0:

We use equations (11–15) for Lagrangian (10)

variation statement.

D1ðQwðtÞÞ ¼

V

ð
DTdðt 2 testÞdðx 2 xestÞdtdx þ . . . ð16Þ

Integrating the Lagrangian variation (16) by parts

taking into account Eqs. (11–15) allows estimation of

the variation of the target parameter as a function of

the disturbed parameters (17).
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Equation (17) is valid if the remaining terms of

DLð f1ðYÞf ;CÞ equal zero, i.e. on the solution of

the adjoint problem provided by the following equations

(18–22).

ADJOINT PROBLEM
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The source term in Eq. (21) describing Ce

corresponds to the checkpoint location within the flow-

field.

Initial conditions are

CðX ¼ XmaxÞ : Cr;U;V j
X¼Xmax ¼ 0;

UCe þ ðk2 1ÞCU þ dðY 2 Y estÞ ¼ 0:
ð22Þ

The expression for Ce in Eq. (22) corres-

ponds to the checkpoint location on the inflow

boundary Xmax.

Boundary conditions for B and D are:

B;DðY ¼ 0; Y ¼ 1Þ :
›Cf

›Y
¼ 0: ð23Þ

The statement (18–23) differs from the adjoint

equations used in inverse CFD problems by the form of

the target functional and, respectively, by the source term

form in Eqs. (21) and (22). The adjoint problem is solved

in the reverse direction along X. Its statement is

determined by the forward problem, checkpoint position,

and the choice of the estimated parameter. The adjoint

problem does not depend on the choice of parameters

containing the uncertainty. So, the same field of adjoint

parameters may be used for the calculation of uncertainty

propagation from any parameters (initial, boundary

conditions, coefficients, sources). The gradients used

for the uncertainty propagation (see, Eq. (9)) assume the

following form:
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The calculation of the gradient implies the consequent

solution of the direct and adjoint problems. So, the time

required for uncertainty calculation of the single

parameter in the single checkpoint equals approximately

twice that required for the flow-field calculation. The

uncertainty estimation of every additional parameter

needs the solution of additional adjoint equation.

TEST RESULTS

The singular source in Eq. (21) is integrated over the cell

and thus transformed to the finite source term dij=ðDXDYÞ;
if the checkpoint is located within flow-field, and to

dij=DY if the checkpoint is on the boundary (22), where dij

is the unit matrix.

The uncertainty propagation is calculated by the adjoint

equations and Monte-Carlo method (averaged over 100

trials) for the comparison. The inflow parameters contain

the normally distributed error with the standard deviation

in the range of 0.01–0.1. The standard deviations of

temperature at the middle point ðN ¼ 50Þ on the outflow

boundary calculated by both methods are presented in

Table I for the case of uniform flow.

Adjoint “density” field is presented in Fig. 2, adjoint

“temperature” is presented in Fig. 3.

The flow-field parameters and their gradients form the

sources and coefficients of the adjoint equations. So,

the following tests are conducted for non-uniform

flow corresponding to an underexpanded jet with the

temperature ratio Tj=T ¼ 3 (density isolines are provided

in Fig. 4). The coincidence of adjoint and Monte-Carlo

approaches is of the same quality. The temperature

TABLE I Uniform flow-field ðNest ¼ 50Þ

sf1
sT, adjoint approach sT, averaged over 100 runs

0.01 0.0024 0.002613
0.05 0.012 0.0144
0.1 0.024 0.03
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uncertainty estimations are presented in Tables II and III for

different checkpoint locations (Nest ¼ 50 and Nest ¼ 20).

By comparing Figs. 5 and 6 we may see the difference of

regions from which the main part of uncertainty is

propagated.

Figures 2, 3, 5 and 6 correspond to the checkpoint

located on the boundary, (Eq. (22)); Fig. 7 corresponds to

the checkpoint within the flow-field (Eq. (21)). Generally,

the results of both approaches (namely Monte-Carlo and

adjoint) correlate, while the required computer time

differs by two orders of magnitude for these tests,

respectively.

The computation of the single parameter (T) at the

single check point requires the calculation of the flow-field

and the adjoint field. The estimation of another parameter

(or the same one but at another check point) requires

calculation of the new adjoint field with the same flow-

field.

DISCUSSION

Let’s compare the different approaches for the uncertainty

calculation from the viewpoint of necessary computer

resources.

FIGURE 2

FIGURE 3

FIGURE 4

TABLE II Underexpanded jet ðNest ¼ 50Þ

sf1
sT, adjoint approach sT, averaged over 100 runs

0.01 0.0029 0.0029
0.05 0.0145 0.0152
0.1 0.029 0.03

TABLE III Underexpanded jet, ðNest ¼ 20Þ

sf1
sT, adjoint approach sT averaged over 100 runs

0.01 0.00284 0.00304
0.05 0.0142 0.0148
0.1 0.0284 0.034

FIGURE 5
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The temperature dispersion for total flow-field may be

calculated by the sensitivity equations written for values

SkðX; Y ;XkÞ ¼ ›TðX; YÞ=›f i
1ðXkÞ: This approach implies

the solution of the system of equations of higher

dimension (by the dimension of the space of control

parameters) in comparison with the system (2–5). For the

problem under consideration it may mean 4Ny calculations

of Eqs. (2–5). The adjoint equations require NxNy þ 1

calculations of Eqs. (2–5) for the temperature dispersion

in the total flow-field. Thus, the sensitivity equations are

less expensive if the total field of dispersion is calculated.

Nevertheless, the adjoint equations are far more efficient

from a computational time viewpoint for a relatively small

set of estimated parameters.

Another approach to the uncertainty estimation based

on the adjoint equations of the second order is described

by Alekseev and Navon (2002). The target functional for

this approach has a form:

1ðdf1ðYÞÞ ¼

X

ð
Texact

Yest
ðXÞ2 Terror

Yest
ðXÞ

� 	2

dX:

The second-order adjoint approach uses calculation of

Hessian (or part of its spectrum) and requires a

computational time proportional to the number of

parameters containing error, which is for the considered

problem of the order of Ny. In general, the second-order

approach seems to be most suitable for the calculation of

the uncertainty in the inverse CFD problem.

Monte-Carlo methods are also expensive from the

computational time standpoint, although they may be

implemented much more simply since they do not need

the solution of any auxiliary problem.

In general, the considered adjoint method is the most

efficient from a computational time viewpoint if we

calculate the uncertainty of parameters at a small set of

checkpoints.

The adjoint approach implies the simultaneous solution

of the set of adjoint equations having the slightest

differences. So, the computation of the uncertainty may

easily be parallelized.

CONCLUSION

The uncertainty of the flow parameter in the checkpoint

from input data error may be calculated using adjoint

equations under a total computer time consumption

corresponding to the double calculation of the flow-field.

The calculation of the uncertainty of n parameters

needs the calculation of n þ 1 fields (flow-field þ n

adjoint fields).
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