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Coupling parameter estimation (CPE) that uses observations to estimate the parameters in a coupled model through error
covariance between variables residing in differentmediamay increase the consistency of estimated parameters in an air-sea coupled
system. However, it is very challenging to accurately evaluate the error covariance between such variables due to the different
characteristic time scales at which flows vary in different media. With a simple Lorenz-atmosphere and slab ocean coupled system
that characterizes the interaction of two-timescale media in a coupled “climate” system, this study explores feasibility of the CPE
with four-dimensional variational analysis and ensemble Kalman filter within a perfect observing system simulation experiment
framework. It is found that both algorithms can improve the representation of air-sea coupling processes through CPE compared to
state estimation only.These simple model studies provide some insights when parameter estimation is implemented with a coupled
general circulation model for improving climate estimation and prediction initialization.

1. Introduction

Due to its potential to reduce initial shocks between different
media in a coupled climate system, coupled data assimilation
(CDA) that uses coupledmodel dynamics to extract observa-
tional information in one or more media is emerging as an
important topic in the climate community ([1–6] the related
discussion at the Sixth World Meteorological Organization
Data Assimilation Symposium (http://das6.cscamm.umd
.edu/)). Based onBayes’ rule, twomain data assimilation algo-
rithms, four-dimensional variational analysis (4D-Var) [7–9],
and ensemble Kalman filter (EnKF) [10] have been used to
develop CDA systems [3, 4]. Many efforts have been made to
compare the performances of 4D-Var and EnKF either under
CDA or not [11–16]. It has been found that 4D-Var and EnKF

have a comparable performance when the former uses an
appropriate minimization time window (MTW) and the
latter adopts a suitable variance inflation scheme [17]. While
4D-Var requires a shorter spin-up time in the weather time-
scale (like days), EnKF can produce a better forecast skill at a
long lead time [18–20] in the season timescale (like months).

To reduce model errors and improve coupled model
predictability, coupled model parameter estimation (also
referred to as parameter optimization in the literature)
has been introduced into CDA [21–27]. However, coupling
parameter estimation (CPE) that uses observations in one
medium to estimate themodel parameters in othermedia has
not yet been studied in 4D-Var and EnKF. In a climate system
that hasmultiple characteristic time scales, model parameters
have remarkable impacts on all model variables. Thus, it
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is expected that CPE may further enhance the consistency
of estimated parameters and model states in a coupled
system. Although data assimilation in a multiple space
and time scale system has been explored [2, 28], the CPE
in such a system has not been fully investigated. Both 4D-Var
and EnKF can be used to implement CPE. It is well known
that although they originated from the same information esti-
mation theory (Bayes’ rule), different numerical implementa-
tions make different performances of 4D-Var and EnKF data
assimilation [17]. On one hand, byminimizing a cost function
that measures the distance between observations and model
states within a specific MTW, 4D-Var CPE seeks a posterior
maximum likelihood solution of model parameters in differ-
ent media in terms of the best fitting of modeling trajectory
to observations. On the other hand, EnKF CPE uses flow-
dependent coupling error covariance (i.e., error covariance
between a model variable in the observational medium and
a parameter in another medium) to project observational
information onto the parameter being estimated, thereby
implementing CPE in a sequential manner.

Since evaluating the error covariance of variables residing
in different media with a finite ensemble is difficult [6] and
a specific MTW is difficult to capture multiple time scales
in minimization, CPE is therefore challenging in both EnKF
and 4D-Var. A fundamental issue is can 4D-Var or EnKF CPE
improve representation of the model air-sea coupling pro-
cess? Based on a conceptual coupled model [25] which cou-
ples a chaotic atmosphere [29] with a slab ocean, we set up an
observing system simulation experiment (OSSE) [30] which
takes a Nature Run as the truth of model states to answer
this question. Within this framework, in both 4D-Var CPE
and EnKF CPE, “observations” drawn from a “truth” model
that uses the default parameter values are assimilated into the
assimilation model which uses erroneously set parameter
values for optimizing the coupling parameters.

The paper is organized as follows. Section 2 describes the
methodology, starting from introducing the simple coupled
model, followed by the OSSE setup as well as implementation
of the 4D-Var CPE and EnKF CPE.This section also presents
the scale analysis of perturbed terms in the model equations
and the sensitivity study of model parameters. Sections 3 and
4 examine the results of 4D-Var CPE and EnKF CPE, respec-
tively. Different performances of EnKF CPE and 4D-Var
CPE are investigated in Section 5. Summary and discussions
are given in Section 6.

2. Methodology

2.1. The Simple Coupled Model. To study coupling parameter
estimation (CPE) implemented by 4D-Var and EnKF so as to
answer the question (i.e., can 4D-Var or EnKF CPE improve
representation of the model air-sea coupling process?) posed
in Section 1, we employ a simple “climate” model [25] which
consists of a chaotic atmosphere model [29] coupled to a
slab ocean model to simulate the interaction of the fast
atmosphere and slow ocean:
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if they are presented together) are
the high-frequency variables of the atmosphere and 𝑤 repre-
sents the slab ocean. (𝑂
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) define the oceanic time scale,
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model seasonal cycle.
While the detailed description of the model construction

can be found in [25], here, we only comment on the setting of
model parameter values. The “atmospheric” parameters 𝜎, 𝜅,
and 𝑏 take their standard values of 9.95, 29, and 8/3. Formain-
taining the chaotic nature of the “atmosphere” and the stabil-
ity of the system, the values of 𝑐

1
and 𝑐
2
are chosen as 0.1 (∘C)−1

and 1.𝑂
𝑚
and𝑂

𝑑
are set to 10 and 1, which defines the oceanic

time scale as 10 times of the atmospheric time scale. The
parameters 𝑆
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and 𝑆
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are set as 10∘C and 1∘C, respectively.The

𝑆

𝑝𝑑
is chosen as 10 Time Units (TU, 1 TU = 100 time steps =

100Δ𝑡) so that the period of the forcing is comparable with
the oceanic time scale, defining the time scale of the model
seasonal cycle. Given the value of 𝑆

𝑝𝑑
, the model calendar

year is defined as 10 TUs. If we assume that one year has 360
model days, Δ𝑡 is equivalent to 0.36 model days.

Using a leap-frog time stepping scheme with a Robert-
Asselin time filter [31, 32] and starting from the initial con-
ditions (𝑥

1
, 𝑥
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, 𝑥

3
, 𝑤) = (0, 1, 0, 0) (note that since the leap-

frog time stepping scheme is applied, initial conditions at
both time 0 and time 1 are set to (0, 1, 0, 0).), the model is first
freely run for 104 TUs by setting the parameters (𝜎, 𝜅, 𝑏, 𝑐
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coefficient, to be the default values as prescribed in Table 1.

2.2. OSSE Setup. OSSE that takes a Nature Run as the “truth”
is an effective way to preliminarily study the validity of data
assimilation algorithm and/or assess the observing system
impact [30]. In this study, we setup an OSSE to study the
EnKF CPE and the 4D-Var CPE. For simplicity, we assume
that themodel error only comes from the errors of the param-
eters to be estimated (see Table 1). The coupled model with
the default parameter values produces the true solution for
the parameter estimation problem.The “observations” are the
samples of the “truth” model states after the spin-up of
104 TUs. A random Gaussian noise is superimposed on the
“truth” values every 5 time steps for 𝑥

1,2,3
and every 20
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Table 1: Default values and values used in OSSE of the model
parameters.

Parameter Default value Value used in OSSE Unit
𝜎 9.95 9.95 —
𝜅 29 29 —
𝑏 8/3 8/3 —
𝑐

1
0.1 0.11 (∘C)−1

𝑐

2
1 1.1 —

𝑂

𝑚
10 10 —

𝑂

𝑑
1 1 1/Δ𝑡

𝑆

𝑚
10 10 ∘C

𝑆

𝑠
1 1 ∘C

𝑆

𝑝𝑑
10 10 Δ𝑡

𝛾 0.25 0.25 —

time steps for 𝑤, respectively, to produce the corresponding
observations. Note that, to simulate the real world sampling
frequency, the atmospheric observations are taken more
frequently (4 times) than the oceanic observations. The
standard deviations of observational errors are 2 for 𝑥

1,2,3
and

0.2 for 𝑤, respectively.
The parameters to be estimated are 𝑐

1
and 𝑐

2
that are the

coupling parameters between the ocean and the atmosphere.
Through examining the estimation of 𝑐

1
and 𝑐

2
, we can

directly study the impact of coupling parameter estimation
on the representation of coupling processes. First guess of the
parameters 𝑐

1
and 𝑐

2
is 0.11 (the “truth” is 0.1) and 1.1 (the

“truth” is 1.0), respectively. From the initial condition (𝑥

1
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,
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3
, 𝑤) = (0, 1, 0, 0), the assimilationmodel with the first guess

of 𝑐
1
and 𝑐
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is spun up for 104 TUs to produce the assimilation

initial conditions of 𝑥
1,2,3

and 𝑤 (denote as Π). Continuous
integrations from these initial values of the assimilation
model serve as a control run without any observational
constraint.Therefore, this is a free model run, that is, without
data assimilation.

To study the 4D-Var CPE and EnKF CPE, we design four
experiments for each algorithm: (1) EXP-1: the atmospheric
and oceanic observations are used to estimate the states of the
atmosphere and the ocean while keeping 𝑐

1
and 𝑐

2
constant;

(2)EXP-2: the atmospheric and oceanic observations are used
to estimate the states of the atmosphere and the ocean as
well as 𝑐

2
while keeping 𝑐

1
constant; (3) EXP-3: the atmo-

spheric and oceanic observations are used to estimate the
states of the atmosphere and the ocean as well as 𝑐

1
while

keeping 𝑐

2
constant; (4) EXP-4: the atmospheric and oceanic

observations are used to estimate the states of the atmosphere
and the ocean, 𝑐

1
and 𝑐

2
. Table 2 gives the details of assim-

ilation schemes of these four experiments. The data assim-
ilation period is set to be 100 TUs. Parameter estimation is
activated after 10 TUs of state estimationwhich reaches quasi-
equilibrium so that the state-parameter covariance used for
parameter estimation is signal-dominated [25]. In addition,
the leap-frog time stepping requires two time-level adjust-
ments [33] (i.e., observations at time 𝑡 are used to adjust the
model states at time 𝑡 and time 𝑡 − 1). And also, to investigate
the sensitivity of the 4D-Var CPE and the EnKF CPE with

Table 2: The instantaneous state and parameter estimations in four
data assimilation experiments.

Experiment Observations Adjusted variables and parameters
EXP-1 𝑥

𝑜

1,2,3
, 𝑤𝑜 x1,2,3, 𝑤

EXP-2 𝑥

𝑜

1,2,3
, 𝑤𝑜 x1,2,3, 𝑤, 𝑐2

EXP-3 𝑥

𝑜

1,2,3
, 𝑤𝑜 x1,2,3, 𝑤, 𝑐1

EXP-4 𝑥

𝑜

1,2,3
, 𝑤𝑜 x1,2,3, 𝑤, 𝑐1, 𝑐2

respect to the observational interval, four pairs of (atmo-
sphere and ocean) observational intervals: (0.05, 0.2), (0.1,
0.4), (0.2, 0.8), and (0.5, 2.0) TUs are examined. Finally, the
results of the last 50 TUs are used for CPE evaluation. Note
that, given the low-order model and the scalar nature of
parameters, the absolute error of the estimated parameter or
the air-sea coupling processes which refer to the truth is the
main criterion of the CPE evaluation.

We see from time series of 𝑥

2
(Figure 1(a)) and 𝑤

(Figure 1(b)) in the truth, model control, and “observations”
that the erroneous parameters can lead themodel states of the
free run to depart far away from the truth and observations.
According to the governing equation (Equation (1)) of the
simple coupled model, the Lorenz-atmosphere is forced by
the term 𝑐

1
𝑤 from the slab ocean while the slab ocean couples

with the atmosphere via the term 𝑐
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. Thus, we examine the
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errors to study the representation of the air-sea

coupling processes in this study.

2.3. Scale Analysis of the Perturbed Terms in the Model
Equations. Within the OSSE framework, here, we make a
scale analysis of the size of the perturbed terms in the model
equations. Since the model error is assumed to arise from the
uncertainties of 𝑐

2
and 𝑐

1
, in the ocean, the impact of an

erroneous parameter 𝑐
2
and an erroneous atmosphere 𝑥
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2
, the scale

[i.e., the term 𝑥

2
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) which is about 1.0] of correction of the

oceanic parameter 𝑐
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would be one order smaller than the

scale [i.e., the term 𝑐
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) which is about 10] of correction

of the atmospheric state 𝑥
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.

Similarly, in the atmosphere, the impact of an erroneous
parameter 𝑐

1
and an erroneous ocean 𝑤 is contained in the

term 𝑐

1
𝑤. The error is 𝛿(𝑐

1
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) and 𝛿(𝑤) are 0.01 and 1.0, respec-

tively. Thus, given the default value (i.e., 0.1) of 𝑐
1
and the

characteristic scale (i.e., 10) of 𝑤, the scale [i.e., the term
𝑤𝛿(𝑐
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) which is about 0.1] of correction of the atmospheric

parameter 𝑐

1
would be the same as the scale [i.e., the term

𝑐

1
𝛿(𝑤) which is about 0.1] of correction of the oceanic state

𝑤.
To summarize, the error of the oceanic state is one order

smaller than the error of the atmospheric state. Thus, esti-
mating the oceanic parameter 𝑐

2
will be more difficult than

estimating the atmospheric parameter 𝑐
1
.
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Figure 1: Time series of (a) 𝑥

2
for the first 10 TUs and (b) 𝑤 for

100 TUs of the assimilation period derived from the truth (red),
model control run (blue), and observations (black solid circle),
respectively.

2.4. Model Sensitivities with respect to Parameters. We per-
form a sensitivity study for seven empirical parameters (𝜎, 𝜅,
𝑏, 𝑂
𝑚
, 𝑂
𝑑
, 𝑐
1
, and 𝑐

2
) using the same strategy as [26]. Each

examined parameter is perturbed through adding a Gaussian
noise to its default value (a percentage of the default value as
the standard deviation of the noise) while other parameters
remain unperturbed. With an ensemble size of 20, the model
is freely run for 20 TUs. It is found that, as long as the per-
turbed parameter values can maintain the stochastic nature
of the “atmosphere,” the examined ensemble spread does
not have much dependence on the perturbation amplitude
(i.e., the standard deviation of the above Gaussian noise) but
the spin-up time is a little longer for a small perturbation.
For a 5% perturbation (i.e., the standard deviation of the
Gaussian noise is 5% of the default value), Figure 2 shows the
time series of the ensemble spreads of 𝑥

2
(Figure 2(a)) and

𝑤 (Figure 2(b)), where the black, blue, red, green, yellow,
dashed-black, and pink curves, respectively, represent the
results of 𝑏, 𝑐

1
, 𝑐
2
, 𝜅,𝑂
𝑑
,𝑂
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, and𝜎. Here, the ensemble spreads

of𝑥
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and𝑤 have been normalized by their own climatological

standard deviations (14.5 for 𝑥

2
and 1.5 for 𝑤). We can see

that different variables have different response times (defined
as the spin-up period of ensemble spread) with regard to
various parameters. For the four atmospheric parameters,
the response times of 𝑥

2
and 𝑤 are about 3 TUs and 6TUs,
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Figure 2: Time series of sensitivities of (a) 𝑥

2
and (b) 𝑤 with

respect to 𝜎 (pink), 𝜅 (green), 𝑏 (black), 𝑂
𝑚
(dashed-black), 𝑂

𝑑

(yellow), 𝑐
1
(blue), and 𝑐

2
(red). Note that here the sensitivities of

𝑥

2
and𝑤 are computed as the ensemble spreads normalized by their

climatological standard deviations (i.e., 14.5 and 1.5). Parameters 𝜎,
𝜅, 𝑏, 𝑂

𝑚
, and 𝑐

2
are dimensionless while the units of 𝑂

𝑑
and 𝑐
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are

1/Δ𝑡 and (∘C)−1, where Δ𝑡 is the dimensionless time step.

respectively. For the three oceanic parameters, the response
times of 𝑥

2
and 𝑤 are about 5 TUs and 10 TUs, respectively.

Therefore, if 4D-Var is used to perform CPE of the oceanic
parameters, the typical lengths of MTWs for 𝑥

2
and 𝑤 could,

respectively, be 5 TUs and 10 TUs. For example, for 𝑥

2
, an

MTW less than 5 TUs is regarded as a short window while
an MTW greater than 5 TUs is regarded as a long window.

From Figure 2, we can see that, among four atmospheric
parameters (𝜎, 𝜅, 𝑏 and 𝑐

1
), both 𝑥

2
and 𝑤 have the largest

sensitivities with respect to 𝜅 (green) and 𝑐

1
(blue) during the

spin-up period. Similarly, for the three oceanic parameters
(𝑂
𝑑
, 𝑂
𝑚
, and 𝑐

2
), 𝑥
2
and 𝑤 are most sensitive to the coupling

parameter 𝑐

2
(red). Combining the question presented in

Section 1, two coupling parameters 𝑐
1
and 𝑐

2
are chosen as the

parameters to be estimated in the followingCPE experiments.

2.5. Implementation of 4D-Var CPE. Consistent with Table 2,
the formulas of the cost functions for four experiments are
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2

[X (𝑡

0
) − X
𝑏
]

𝑇 B−1 [X (𝑡

0
) − X
𝑏
]

+

1

2

𝑁

∑

𝑖=1

{H [X (𝑡

𝑖
)] − Y𝑜 (𝑡

𝑖
)}

𝑇

⋅ R−1 {H [X (𝑡

𝑖
)] − Y𝑜 (𝑡

𝑖
)} ,

(5)

where X = (𝑥

0

1
, 𝑥

0

2
, 𝑥

0

3
, 𝑤

0
, 𝑥

1

1
, 𝑥

1

2
, 𝑥

1

3
, 𝑤

1
)

𝑇 represents the
initial 𝑥

1,2,3
and 𝑤 at two time levels whose background

values are denoted as X
𝑏
. The superscript “𝑇” denotes

the transpose. The background error covariance matrix is
simply set as the observational error covariance matrix R =

diag{4.0, 4.0, 4.0, 0.04, 4.0, 4.0, 4.0, 0.04}. 𝑡
0
is the initial time

within an MTW. 𝑁 represents the number of observations
within the MTW. H is the linearized observation opera-
tor which is diag{1, 1, 1, 1, 0, 0, 0, 0} in this study. Y𝑜 =

(𝑥

𝑜

1
, 𝑥

𝑜

2
, 𝑥

𝑜

3
, 𝑤

𝑜
)

𝑇 is the observation vector in which 𝑥

𝑜

1,2,3
and

𝑤

𝑜, respectively, represent the observations of 𝑥
1,2,3

and 𝑤.
𝑐

𝑏

1
and 𝑐

𝑏

2
indicate the background values of 𝑐

1
and 𝑐

2
, respec-

tively. The background error variances of 𝑐
1
and 𝑐

2
, that is,

𝑉

𝑐
1

and 𝑉

𝑐
2

, are set to 0.00552 and 0.0552.
The gradient of the cost function with respect to the

parameter can be obtained using the adjoint method [34].
Due to the nonlinearity of the Lorenz-63 model, many local
minima of the cost function exist in the space of parameter
values when the MTW is relatively long, which may cause
the standard quasi-Newtonmethod (e.g., L-BGFS) [35] fail to
find the optimal solution. In this study, we employ a limited

memory bundle method (LMBM) [16, 36, 37] to implement
the minimization of 4D-Var. Different from other methods
[17, 38] for solving the multiple minima issue, LMBM is a
hybrid of the variable metric bundle methods [39] and the
limited memory variable metric methods [40]. This method
is a solver of large-scale nonsmooth global optimization
which neither needs to solve the time-consuming direction-
finding issue in the standard bundle method nor needs to
increase the number of stored subgradients when the dimen-
sion of the problem grows. The necessary input for LMBM
algorithm includes the number of control variables, the max-
imumbundle dimension, the upper limit formaximumnum-
ber of stored corrections, the maximum number of stored
corrections, the first guess of control variables, the cost func-
tion value, the tolerance for the first or second termination
criterion, and the maximum number of iterations [41]. Trial
and error tests suggest that the last two inputs should be set
to 10−5 and 200.

In addition to the observational interval, the sensitivity
of the 4D-Var CPE with respect to the length of MTW is
also studied. We examined five MTWs: 0.5, 1.0, 2.0, 5.0, and
10 TUs. For all four data assimilation experiments, 4D-Var
optimizes the initial fields when observations are available;
that is, the analysis interval is the same as the observational
interval. The absolute error of the optimized initial field
relative to the truth is used to assess the quality of the 4D-Var
CPE.

2.6. Implementation of EnKF CPE. In this study, a derivative
of deterministic EnKF which does not need to perturb obser-
vations, the ensemble adjustment Kalman filter (EAKF) [11],
is employed to implement the EnKF CPE.

For an EnKF algorithm, the analysis solution includes
the following two parts. One is the updated ensemble mean
formulated as

X𝑎 = X𝑏 + K [Y𝑜 −HX𝑏] , (6)

whereX𝑎 andX𝑏 are the analysis and backgroundof ensemble
mean (X) of state vector X and K is the Kalman-gain matrix
sampled by a finite ensemble. The other is the analysis solu-
tion of ensemble perturbations, which depends on the version
of EnKF.

When observation errors are assumed to be uncorrelated,
EAKF can sequentially assimilate observations with the
following two steps. First, the observational increment in one
medium is computed as follows:

Δ𝑦

𝑖
= (

√

𝑟

2

𝑟

2
+ (𝜎

𝑝

𝑦)

2
− 1)(𝑦

𝑝

𝑖
− 𝑦

𝑝
)

+

(𝜎

𝑝

𝑦
)

2

𝑟

2
+ (𝜎

𝑝

𝑦)

2
(𝑦 − 𝑦

𝑝
) ,

(7)

where 𝑦𝑝 represents the prior ensemble mean (i.e., the model
estimate) of observation 𝑦; 𝑟 and 𝜎

𝑝

𝑦
denote the standard
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deviation of observational errors and the prior standard
deviation of 𝑦. The 𝑖th prior ensemble of 𝑦, 𝑦𝑝

𝑖
, is usually

obtained through applying a linear interpolation to the prior
ensemble of state variable. In this study, 𝑦 represents one of
(𝑥

𝑜

1
, 𝑥

𝑜

2
, 𝑥

𝑜

3
, 𝑤

𝑜
).

Second step projects the observational increment onto
related model variables and parameters. Realizations of this
step for four EnKF CPE experiments are different. Similar to
(2)–(5), here, we also give the linear regression formulas for
four experiments as follows:

EXP-1: Δ𝑥
𝑖
=

cov (𝑥, 𝑦)

(𝜎

𝑝

𝑦)

2
Δ𝑦

𝑖
, (8)

EXP-2: Δ𝑥
𝑖
=

cov (𝑥, 𝑦)

(𝜎

𝑝

𝑦)

2
Δ𝑦

𝑖
, Δ𝑐

2,𝑖
=

cov (𝑐
2
, 𝑦)

(𝜎

𝑝

𝑦)

2
Δ𝑦

𝑖
,

(9)

EXP-3: Δ𝑥
𝑖
=

cov (𝑥, 𝑦)

(𝜎

𝑝

𝑦)

2
Δ𝑦

𝑖
, Δ𝑐

1,𝑖
=

cov (𝑐
1
, 𝑦)

(𝜎

𝑝

𝑦)

2
Δ𝑦

𝑖
,

(10)

EXP-4: Δ𝑥
𝑖
=

cov (𝑥, 𝑦)

(𝜎

𝑝

𝑦)

2
Δ𝑦

𝑖
, Δ𝑐

1,𝑖
=

cov (𝑐
1
, 𝑦)

(𝜎

𝑝

𝑦)

2
Δ𝑦

𝑖
,

Δ𝑐

2,𝑖
=

cov (𝑐
2
, 𝑦)

(𝜎

𝑝

𝑦)

2
Δ𝑦

𝑖
,

(11)

where Δ𝑥

𝑖
is the contribution of 𝑦 to the model variable

𝑥 for the 𝑖th ensemble member. In this study, 𝑥 represents
one of (𝑥0

1
, 𝑥

0

2
, 𝑥

0

3
, 𝑤

0
, 𝑥

1

1
, 𝑥

1

2
, 𝑥

1

3
, 𝑤

1
)with superscripts “0” and

“1” indicating time 𝑡 − 1 and time 𝑡. cov(𝑥, 𝑦) denotes the
error covariance between the prior ensemble of 𝑥 and the
model-estimated ensemble of 𝑦. It is worth mentioning that
all experiments adopt the same observational increments and
(8)–(11) are the main analysis equations of four experiments.

Coupling parameter estimation in EnKF is a process
similar to multivariate adjustment in state estimation for a
nonobservable variable. Without dynamical support, the
model parameter ensemble is easier to suffer the filter diver-
gence than the model state. Thus, variance inflation is nec-
essary for parameter estimations. The parameter variance
inflation scheme adopted in this study is the same as that in
the previous studies [23, 24, 26, 27, 42]; that is, when the cur-
rent spread of the parameter ensemble is less than one-tenth
of the initial spread, it will be inflated to this amount. For
the state inflation scheme, althoughmany sophisticated adap-
tively multiplicative inflation schemes are available [43–46],
due to the low dimension of the simple coupled model and
the perfect OSSE configuration here, we apply the static-
multiplicative inflation scheme [47] that inflates the pertur-
bations of model states with a constant factor. Since the
coupled system has two characteristic time scales, two inde-
pendent inflation factors are, respectively, applied to the
chaotic atmospheric variables 𝑥

1,2,3
and the slab oceanic

variable 𝑤. Through repeating the EnKF CPE experiment in

the 2-dimensional space ([1, 1.2]×[1, 1.2]) of the two inflation
factors with the interval of 0.01, the inflation factors that
minimize the time-averaged (last 50 TUs) absolute errors of
ensemble means of model states are chosen as the best pair to
perform the state inflation.

The ensemble initial conditions of model states are
generated through adding a Gaussian noise to the initial field
Π.The initial ensembles of 𝑐

2
and 𝑐

1
are generated by adding a

Gaussian noise with standard deviations of 0.055 and 0.0055
to the biased values 1.1 and 0.11. All four data assimilation
experiments in the EnKF CPE start from the same ensemble
initial conditions.The observations used in the EnKFCPE are
the same as those used in the 4D-Var CPE.The absolute error
of ensemble mean relative to the truth is used to evaluate the
quality of the EnKF CPE. To investigate the dependence of
the EnKF CPE on ensemble size, four ensemble sizes (10, 20,
50, and 100) are examined.

3. Results of 4D-Var CPE

In this section, we first evaluate the quality of the 4D-
Var-estimated coupling parameters and then investigate the
impact of the estimated-parameters on the representation of
coupling processes.

3.1. Coupling Parameters. Figure 3 shows the dependence of
time mean normalized absolute errors of 𝑐

2
(Figures 3(a) and

3(b)) and 𝑐
1
(Figures 3(c) and 3(d)) on the observational inter-

val and the length of MTW for EXP-2 (Figure 3(a)), EXP-3
(Figure 3(c)), and EXP-4 (Figures 3(b) and 3(d)). Note that
the absolute errors of 𝑐

2
and 𝑐

1
here are normalized by their

initial errors (0.1 and 0.01). Note that we use observational
interval instead of atmospheric observational interval in the
following text. In EXP-4, 4D-Var can well estimate 𝑐

1
for all

observational intervals andMTWs. For short MTWs (like 50
and 100 time steps), 4D-Var cannot effectively estimate 𝑐

2
with

too small (like 5 and 10 time steps) or too large (like 50 time
steps) observational intervals. According to the analysis in
Section 2.3, it is more difficult to estimate 𝑐

2
than 𝑐

1
. For

shortMTWs, no sufficient signals of 𝑐
2
are implied in the cost

function of 4D-Var, which may increase the possibility of the
failure of parameter estimation. In EXP-2 that only estimates
𝑐

2
, we can see that 4D-Var fails in most cases except the

situationswith shortMTWs (like 50 and 100 time steps) and a
moderate observational interval (like 20 time steps). Since the
model error ismainly caused by the error of 𝑐

1
, 4D-Var cannot

accurately estimate 𝑐

2
without estimation of 𝑐

1
. In contrast,

4D-Var can effectively estimate 𝑐

1
in most cases in EXP-3.

Once 𝑐
1
is estimated, the signal-to-noise ratio of 𝑐

2
in the cost

function is correspondingly enhanced, which accordingly
improves the quality of the estimated 𝑐

2
(see Figures 3(a) and

3(b)). Additionally, although contribution of 𝑐
2
to the model

error is much less than 𝑐

1
, introducing the estimation of 𝑐

2
to

EXP-3 still can more or less further improve the accuracy of
the estimated 𝑐

1
(see Figures 3(c) and 3(d)).

From Figures 3(b) and 3(d), we can also see that the
analysis accuracies of two parameters (especially for 𝑐

2
)

strongly depend on both MTW and observational intervals
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Figure 3: Time-averaged normalized absolute errors of (a) 𝑐
2
in EXP-2, (b) 𝑐

2
in EXP-4, (c) 𝑐

1
in EXP-3, and (d) 𝑐

1
in EXP-4 of the 4D-Var

CPE. The absolute errors of 𝑐
2
and 𝑐

1
are normalized by their initial errors, that is, 0.1 and 0.01, respectively. The 𝑥-axis is the atmospheric

observational interval while the 𝑦-axis denotes the minimization time window (MTW) in 4D-Var.The black solid circles stand for the scatter
points used to create the contours. The dashed curve represents the 1.0 contour. Panels (a) and (b) use the upper shade scale while panels
(c) and (d) use the lower shade scale. Note that 1 Time Unit = 100 time steps. EXP-1 only performs state estimation. EXP-2 instantaneously
conducts state estimation and parameter estimation of 𝑐

2
. EXP-3 instantaneously conducts state estimation and parameter estimation of 𝑐

1
.

EXP-4 instantaneously conducts state estimation and parameter estimations of 𝑐
1
and 𝑐

2
.

when MTW is less than 500 time steps. This means that, to
obtain good analysis solutions of both 𝑐

1
and 𝑐

2
, an appro-

priate MTW (about 500 time steps here) should be used.
Note that, due to the limited number of experiments per-
formed in this study, for example, no experiment with MTW
between 200 and 500 time steps is conducted; here, the
appropriate MTW is an approximation.

3.2. Coupling Processes. Figure 4 displays the time-averaged
normalized absolute errors of the sea-to-air coupling

process (represented by 𝑐

1
𝑤) for EXP-1 (Figure 4(a)), EXP-2

(Figure 4(b)), EXP-3 (Figure 4(c)), and EXP4 (Figure 4(d)).
Here, the absolute error is normalized by the climatological
standard deviation (0.15) of 𝑐

1
𝑤. Compared to EXP-1,

estimating 𝑐

2
obtains nearly the same analysis of 𝑐

1
𝑤 (see

Figure 4(b)). However, once 𝑐

1
is estimated, the sea-to-

air coupling process is significantly improved (compare
Figure 4(a) with Figure 4(c)). The given parameter 𝑐

1
has

been suitably corrected (see Figure 3(c)) in EXP-3, further
estimating that 𝑐

2
can also partly improve the sea-to-air

coupling process (compare Figure 4(c) with Figure 4(d)).
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Figure 4: Time-averaged normalized absolute errors of 𝑐
1
𝑤 in (a) EXP-1, (b) EXP-2, (c) EXP-3, and (d) EXP-4 of the 4D-Var CPE.The absolute

error of 𝑐
1
𝑤 is normalized by its climatological standard deviation (0.15). All panels use the same shade scale.

Figure 5 shows the same results as Figure 4 but for the air-
to-sea coupling process (represented by 𝑐

2
𝑥

2
). Based on EXP-

1, estimating 𝑐

2
cannot significantly improve the quality of

𝑐

2
𝑥

2
(compare Figure 5(b) with Figure 5(a)). However, when

𝑐

1
is further estimated, the quality of the air-to-sea coupling

processes is greatly enhanced, especially for long MTWs. In
addition, comparison between Figure 5(c) and Figure 5(d)
justifies that given 𝑐

1
has been corrected and the quality of the

air-to-sea coupling processes can also be somehow enhanced
by estimating 𝑐

2
. Thus, unlike the sea-to-air coupling process

(𝑐
1
𝑤) which is governed by the 𝑐

1
accuracy, the air-to-sea

coupling process (𝑐
2
𝑥

2
) is affected by both 𝑐

1
and 𝑐

2
greatly.

To look into the detailed performance of 4D-Var CPE,
we choose an appropriate MTW (i.e., 500 time steps) and
a moderate observational interval (i.e., 10 time steps) to
examine the time series of the absolute errors of the air-to-sea
(Figure 6(b)) and the sea-to-air (Figure 6(a)) coupling pro-
cesses for EXP-1 (red) and EXP-4 (blue). Relative to the state

estimation, coupling parameter estimation of 𝑐

1
and 𝑐

2

can markedly enhance the accuracy of coupling processes.
According to Section 2.4, model states are more sensitive to
𝑐

1
than 𝑐

2
. Scale analysis (Section 2.3) also justifies that esti-

mating 𝑐
2
is more difficult than estimating 𝑐

1
.Thus, themodel

error in this study ismainly attributed to the bias of 𝑐
1
, causing

that the improvement of the air-to-sea coupling process is less
than that of the sea-to-air coupling process.

Analyses above show that, compared to traditional state
estimation, 4D-Var CPE can improve the representation of
air-sea coupling processes through coupling parameter esti-
mation.

4. Results of EnKF CPE

In this section, same as in the 4D-Var case, we first assess
the quality of EnKF-estimated coupling parameters and then
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Figure 5: Same as Figure 4 but for 𝑐
2
𝑥

2
. The absolute error of 𝑐

2
𝑥

2
is normalized by its climatological standard deviation (14.5).

investigate the impact of the estimated-parameters on the
representation of coupling processes.

4.1. Coupling Parameters. Figure 7 gives the same results
as Figure 3 but for EnKF CPE. Here, the 𝑦-axis represents
ensemble size. Different from4D-Var (Figure 3(a)), EnKF can
effectively estimate 𝑐

2
in EXP-2 (Figure 7(a)). Based on EXP-

2, EXP-4 can further reduce the error of estimated 𝑐

2
through

adjusting 𝑐
1
. Both EXP-3 and EXP-4 can do a good job for the

estimation of 𝑐
1
.Thus, it is not so necessary that EnKF should

firstly estimate 𝑐
1
rather than 𝑐

2
. This may be attributed to the

high signal-to-noise ratios of 𝑐
2
implied in the error covari-

ance between observations and 𝑐

2
.

4.2. Coupling Processes. Figure 8 plots the same results as
Figure 4 but for EnKF CPE. From Figures 8(a) and 8(b), we

can see that estimation of 𝑐

2
cannot significantly improve

the representation of the sea-to-air coupling process. This is
because the term 𝑐

1
𝑤 is directly controlled by 𝑐

1
and𝑤 rather

than 𝑐

2
. If we compare Figure 8(c) to Figure 8(a), we can see

that estimating 𝑐

1
can substantially enhance the accuracy of

𝑐

1
𝑤. When 𝑐

2
is further estimated based on EXP-3, the error

of 𝑐
1
𝑤 is also further reduced.
Figure 9 shows the same results as Figure 8 but for the air-

to-sea coupling process. Relative to EXP-1, both EXP-2 and
EXP-3 can reduce the error of 𝑐

2
𝑥

2
while simultaneously esti-

mating 𝑐

1
and 𝑐

2
produces the best results. Additionally, due

to the low-order model in this study, the dependence of the
quality of estimated air-to-sea coupling process on observa-
tional interval is stronger than that on ensemble size.

To look into the detailed performance of EnKF CPE, we
set observational interval as 10 time steps and ensemble size
as 20 to examine the time series of absolute errors of the
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Figure 6: Time series (20–90 TUs) of the absolute errors of (a) 𝑐
1
𝑤

and (b) 𝑐
2
𝑥

2
in the 4D-Var CPE with the observational interval and

the minimization time window being 10 and 500 time steps. Here,
the red and blue curves represent the results in EXP-1 and EXP-4,
respectively.

air-to-sea (Figure 10(b)) and the sea-to-air (Figure 10(a))
coupling processes for EXP-1 (red) and EXP-4 (blue). Com-
pared to the air-to-sea coupling process, the improvement of
the sea-to-air coupling process from EXP-1 to EXP-4 is more
significant (i.e., the error of 𝑐

1
𝑤 is reduced by 92%, from 0.53

to 0.04).
Analyses above show that EnKF CPE can also enhance

the representation of the air-sea coupling processes through
coupling parameter estimation relative to traditional state
estimation.

5. Different Performances of EnKF CPE and
4D-Var CPE

Although both 4D-Var and EnKF are derived from Bayes’
rule, their implementations are different. In practice, 4D-
Var attempts to obtain an optimal initial condition using
the observational information within a specific MTW for
each analysis step. The length of MTW is usually longer
than the analysis interval, leading the observations being
used more than once. In contrast, EnKF does not repeatedly

use observations in this study (although it could do so in
practice). From this point, it seems unfair to compare the
performances of two algorithms. However, additional exper-
iments for 4D-Var which only uses each observation for one
time obtain worse results. Thus, we still can roughly compare
the performances of EnKF CPE and 4D-Var CPE in this
section.

5.1. Coupling Parameters. Comparison between Figure 3(a)
and Figure 7(a) demonstrates that EnKF-estimated 𝑐

2
is more

accurate than that estimated by 4D-Var. Without estimat-
ing 𝑐

1
, the signal implied in the error covariance between

observation and 𝑐

2
is stronger than that implied in the cost

function of 4D-Var. Since themodel error ismainly attributed
to the bias of 𝑐

1
, the signal in the cost function of 4D-Var is

dominated by 𝑐
1
rather than 𝑐

2
. Under this circumstance, it is

hard for 4D-Var to correctly estimate 𝑐
2
. In EXP-3, results of

EnKF CPE are still better than those for 4D-Var CPE which
reduces the initial error of 𝑐

1
by 74% on average. In EXP-4,

to facilitate the comparison, we use the same shade scale for
Figure 3(b) and Figure 7(b) and Figure 3(d) and Figure 7(d).
For both parameters, the performance of EnKF CPE with a
moderate ensemble size (like 50) is comparable to that of 4D-
Var CPE with an appropriate MTW (like 500 time steps).

To summarize, EnKF is better than 4D-Var when a
single parameter is estimated. The ensemble-evaluated error
covariance is more effective than the cost function of 4D-Var.

5.2. Coupling Processes. We first attempt to compare the
results of EXP-1 for 4D-Var CPE and EnKF CPE. For the
sea-to-air coupling process represented by 𝑐

1
𝑤, the quality of

the estimated 𝑐

1
𝑤 is determined by the quality of 𝑤 since 𝑐

1

is not estimated. From Figures 4(a) and 8(a), it seems that 𝑐
1
𝑤

produced by 4D-Var CPE is much better than that generated
by EnKF CPE. Thus, we may speculate that the 4D-Var-
estimated 𝑤 is also better than EnKF-estimated 𝑤. However,
results (not shown) demonstrate that the EnKF-produced 𝑤

is much better than that produced by 4D-Var.
To understand why a good EnKF-produced 𝑤 leads a

bad 𝑐

1
𝑤, we examine an experiment for details with the

observational interval, ensemble size, andMTWbeing 5 time
steps, 50 time steps, and 500 time steps. Figure 11 plots the
time series of 𝑤 (Figure 11(a)) and 𝑐

1
𝑤 (Figure 11(b)) for 4D-

Var CPE (black), truth (red), and EnKF CPE (blue) in EXP-1.
Obviously, the EnKF-produced 𝑤 is better than 4D-Var-
produced 𝑤. We start from the following formulation of the
absolute error of 𝑐

1
𝑤 to answer the question at the beginning

of this paragraph:











𝑐

est
1
𝑤

est
− 𝑐

tru
1

𝑤

tru








, (12)

where the superscripts “est” and “tru” indicate the estimation
and truth of 𝑐

1
and 𝑤. As we stated in Section 2.2, the truth

value of 𝑐
1
is 0.1 while the initial biased value of 𝑐

1
in 4D-Var

CPE is 0.11 and ensemble means of 𝑐
1
for all ensemble sizes

in EnKF CPE also approximate 0.11. Therefore, the computa-
tional process of (12) can be described as first scaling the truth
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Figure 7: Same as Figure 3 but for the EnKF CPE. Note that panels (a) and (b) use the upper shade scale while panels (c) and (d) use the
lower shade scale.

value of 𝑤 by 0.1 and the values of estimated 𝑤 values by 0.11,
then computing the absolute value of the difference. From
Figure 11, it happens that the first step converts the worse
4D-Var-produced 𝑤 to the appearing better 𝑐

1
𝑤. Therefore,

it is difficult to determine which algorithm produces better
coupling processes without parameter estimation.

To fairly compare the performances of two algorithms, we
focus on the results in EXP-4. From Figures 4(d) and 8(d), we
find that the representation of the sea-to-air coupling process
produced by 4D-Var CPE with a MTW over 500 time steps
is comparable to EnKF CPE. However, the EnKF CPE with
ensemble size less than 50 improves the assimilation quality of
4D-Var CPE with aMTW shorter than 500 time steps by 59%
(from 0.157 to 0.065) on average. Here, we choose an extreme
case (i.e., the observational interval, ensemble size, andMTW
being 50 time steps, 10 time steps, and 50 time steps) to

compare the performance of two algorithms. Figure 12 shows
time series of absolute errors of 𝑐

1
𝑤 for 4D-Var CPE (blue)

and EnKF CPE (red) in EXP-4. The EnKF CPE is better than
the 4D-Var CPE. According to Figures 3(d) and 7(d), in the
above parameter setting, the EnKF-estimated 𝑐

1
is much bet-

ter than the 4D-Var-estimated 𝑐

1
, since the MTW is too short

to exactly retrieve 𝑐

1
for 4D-Var. In addition, we found that

the 4D-Var-produced 𝑤 is comparable to that produced by
EnKF (not shown). Thus, the superiority of EnKF CPE over
4D-Var CPE is mainly attributed to the estimation of 𝑐

1
.

For the air-to-sea coupling process, comparison between
Figure 5(d) and Figure 9(d) reveals that 4D-Var CPE outper-
forms EnKF CPEwhenMTW exceeds a critical value (here is
about 500 time steps) while EnKF CPE has advantages over
4D-Var CPE with a short MTW for a small observational
interval. Here, we take two extreme cases to compare the
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Figure 8: Same as Figure 4 but for the EnKF CPE.

performances of 4D-Var CPE and EnKF CPE. First, we check
the results of two methods for the observational interval,
ensemble size, and MTW being 50 time steps, 100 time
steps, and 1000 time steps. Figure 13(a) plots time series of
absolute errors of 𝑐

2
𝑥

2
for 4D-Var CPE (blue) and EnKF CPE

(red) in EXP-4. After the spin-up period (about 40 TUs), the
air-to-sea coupling process represented by 4D-Var CPE is
better than that produced by EnKF CPE. Although the
observational interval is very large and both 4D-Var CPE and
EnKF CPE can effectively estimate 𝑐

2
(see Figures 3(b) and

7(b)), 4D-VarCPE can produce better𝑥
2
than EnKFCPE (not

shown). Second, we check the results (Figure 13(b)) of two
methods for the observational interval, ensemble size, and
MTW being 5 time steps, 10 time steps, and 50 time steps.
According to Figures 3(b) and 7(b), it is difficult for 4D-Var
CPE to estimate 𝑐

2
with a short MTW while EnKF CPE can

well estimate 𝑐

2
with an ensemble size of 10. For 𝑥

2
, 4D-Var

CPE can produce similar results as EnKF CPE (not shown).
Therefore, the EnKF CPE-produced 𝑐

2
𝑥

2
is better than that

produced by 4D-Var CPE.

6. Summary and Discussions

A simple coupled model that characterizes the interaction of
media with two different time scales is used to study the feasi-
bility of the 4D-Var and EnKF coupling parameter estimation
(CPE). Within a perfect OSSE framework which assumes
that model errors only arise from the erroneously-set cou-
pling parameters, the results demonstrate that, compared to
traditional state estimation, both 4D-Var CPE and EnKFCPE
algorithms can greatly improve the representation of air-sea
coupling processes. An appropriate MTW exists in the 4D-
Var CPE. Thus, if 4D-Var is used to implement CPE, the cost
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Figure 9: Same as Figure 5 but for the EnKF CPE.

function should include observations from both the atmo-
sphere and ocean, and an appropriate MTW should also be
chosen. A roughly comparison between two assimilation
methods demonstrates that EnKF CPE outperforms 4D-Var
CPE with a MTW shorter than 5 TUs (i.e., 180 model days)
for the sea-to-air coupling process. For the air-to-sea coupling
process, 4D-Var CPE with aMTW longer than 5 TUs is better
than EnKF CPE. The EnKF CPE is better than the 4D-Var
CPE with a MTW shorter than 5 TUs for short observational
intervals.

Many challenges remain before CPE can be applied to a
coupled general circulationmodel (CGCM). First, the perfect
OSSE that uses the samemodel to setup the Truth (also called
the Nature Run) and the assimilation experiments can be
overoptimistic in the results. Thus, the perfect OSSE should

be first extended to a biasedOSSE and then put forward to the
real world. Second, some of the above conclusions depend on
the sensitivities of the coupling parameters andmodel errors.
Thus, the conclusions should be further validated under
more complicated model errors in CGCMs.Third, the static-
multiplicative inflation scheme in the EnKF CPE should be
updated to an adaptive inflation scheme [44]. Last, the impact
of the observing system on the CPE should be examined with
a GCMor a CGCM through varying the temporal and spatial
densities of different observation variables or types.
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