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SUMMARY

Following the theory of two-scale convergence method introduced by Nguetseng (SIAM J. Math. Anal.
1989; 20:608–623) and further developed by Allaire (SIAM J. Math. Anal. 1992; 23:1482–1518), we
introduce the chaos two-scale method as a spectral stochastic tool to tackle parabolic partial differential
equations where the material properties are stochastic processes ��(t, x,�) of the form �(t, x, t/��, x/�,�),
oscillating in both space and time variables with different speeds. Periodicity with respect to the fast or
local variables is assumed, and, stationary Gaussian material properties processes are considered. Copyright
� 2010 John Wiley & Sons, Ltd.
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NOTATIONS

The following notations are frequently used:
O : designates an open set of R

Y =]0, l[: denotes the unit cell also referred to as the reference period, here l designates the period.
S2 =]0,T [×O
S2

# = [0,1]×Y
S3 =]0,T [×O×Y
S4 =]0,T [×O×[0,1]×Y
d�=dt dx d�dy: the Lebesgue measure over S4

Ck(O): the space consisting of all functions f which, together with all their partial derivatives �	 f
of orders |	|<k, are continuous on O.
Ck

#(Y ): the space of functions f ∈Ck(Y ) and Y -periodic.
L2(O): the space of measurable functions f :O→R for which {∫O f 2 dx}2<∞
L2

#(Y ): the space of measurable functions f ∈L2(Y ) and Y -periodic
H1(O): the space consisting of all integrable functions f :O→R whose first-order weak derivatives
exist and are square integrable, H1(O)={ f | f,∇ f ∈L2(O)}
H1

#(O)={ f ∈H1(Y ), f is Y -periodic}
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L2(]0,T [;H1(O)): the space of functions that are square-integrable with respect to time and have
square-integrable derivatives with respect to space:

L2(]0,T [;H1(O))={ f | f :]0,T [→H1(O),
∫ T

0
‖ f (t, .)‖2

H1(O)
dt<∞

1. INTRODUCTION

Many problems of fundamental and practical importance exhibit multiscale phenomena, so that
the task of computing or even representing all scales is computationally very expensive unless the
multiscale nature of the problem is exploited in a fundamental way. Some examples of practical
interest include, continuum mechanics of inhomogeneous media, composites, polycrystals and
smart materials, fluid flow in porous media and turbulent transport in high Reynolds number flows,
the deformation of saturated porous medium, the sound propagation through a liquid populated
sparsely by bubbles, linear and non-linear wave propagation problems involving slow modulation
of near periodic waves, terabyte data mining, as well as image processing display behaviors at
different scales.

A detailed analysis of these problems at the smallest relevant scale, while conceptually possible,
is rather prohibitive. For example, in the analysis of turbulent transport problems, the convective
velocity field fluctuates randomly and contains many scales depending on the Reynolds number of
the flow. In composite materials, the dispersed phases, which may be randomly distributed in the
matrix, give rise to fluctuations in the thermal or electrical conductivity; moreover, the conductivity
is usually discontinuous across the phase boundaries. The main difficulty in practical computations
is often the presence of very different scales in the problem. On a grid that must cover the domain
of the independent variables, it may be impossible to resolve highly oscillatory components well
in the solution. A natural question is whether some averaged quantities of the solutions can still
be accurately computed.

A useful and effective approach to the above-mentioned problems has been proposed involving
the notion of homogenization of partial differential equations. One can refer to the pioneering work
of Babuška [1, 2], Bensoussan et al. [3], and Sanchez-Palenchia [4]. More recently, an increasing
number of books have appeared on the subject, Jikov et al. [5], Cioranescu and Donato [6], Pavliotis
and Stuart [7], and Efendiev and Hou [8] to cite but a few.

Roughly speaking, homogenization is a rigorous adaptation, of what is known in physics or
mechanics as averaging, to partial differential equations; it extracts homogeneous effective param-
eters from models of disordered or heterogeneous media through convergence analysis applied to
the equations. Various concepts of convergence, such as G-convergence, �-convergence have been
developed for this purpose.

When the homogenized problem has a non-local structure coupling between micro- and macro-
structures or when the coefficients are of the form �(x, x

� ), the usual homogenization techniques
are somewhat difficult to apply and more elaborate forms of the multiple scale expansions are
needed as described in Bensoussan et al. [3].

The method of two-scale convergence is a powerful one for studying homogenization prob-
lems for partial differential equations with periodically oscillating coefficients. The method was
devised by Nguetseng [9] and further improved by Allaire [10, 11] and E [12, 13]. It was used
to study problems of fluid flow through porous formations in [14]. The method was applied to
transport equations with incompressible velocity field in [12] and [15]. The two-scale convergence
method was extended to the case of non-periodic oscillations by Mascarenhas and Toader [16].
The concept of stochastic two-scale convergence in the mean has been introduced in Bourgeat
et al. [17]. A striking advantage of the two-scale convergence method is that the homogenized and
local problems appear directly as convergence results and do not have to be derived by tedious and
somewhat dubious calculations. In practice, multiplying the global equation, also known as � equa-
tion, by a test function of the type 
(x, x

� ) and applying theorems yields both the local and the
homogenized equations, and the proof of the convergence.
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In this paper, we study the spectral stochastic homogenization of the parabolic partial differential
equation in the presence of random force and/or when the oscillating coefficient representing the
material property is random.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du�

dt
(t, x,�)− �

�x

{
��(t, x,�)

�u�

�x
(t, x,�)

}
= f (t, x,�) ∀(t, x,�)∈]0,T [×O×�,

u�(t, x,�)=0 ∀(t, x,�)∈]0,T [×�O×�,

u�(t =0, x,�)=a(x) ∀(x,�)∈O×�,

where ��(t, x,�) are now stationary Gaussian stochastic processes oscillating in both time and
space with dissimilar speed of the form

��(t, x,�)=�

(
t

��
,

x

�
,�

)
or ��(t, x,�)=�

(
t,

t

��
, x,

x

�
,�

)
,

for �, any positive real number and �, a positive real number with �↘0. In this work, neither �
nor � is assumed random. Consequently, no randomness in the fast variables is considered.

We are interested in the behavior and the numerical computation of the stochastic process
u�(t, x,�) as �↘0. In the absence of �, the above problem is known as the heat equation, since
it models the heat transfer in composite materials when the temperature u� is time-dependent.
The deterministic problem is a particular case of the large class of parabolic partial differential
equations. For homogenization results concerning the heat equation, we refer to Sanchez-Palenchia
[4], Bensoussan et al. [3], Jikov et al. [5], and Cioranescu and Donato [6].

The contribution of this paper consists of two different aspects, an extension and an application
of the two-scale convergence method to the spectral stochastic homogenization. We exploit the
property of separation of deterministic variables from the random ones offered by the spectral
representation of a stochastic process, we introduce the chaos two-scale convergence. We employ
the results of Nguetseng [9] and Allaire [11] in the framework of spectral stochastic formulation.
Then, an application to the aforementioned problems is conducted. The originality of the present
work lies then in incorporating polynomial chaos to account for randomness, which was until
recently handled by the Monte Carlo procedure. Another novelty resides in the numerical treatment,
even at the deterministic level only, of parabolic PDEs where the material properties oscillate in
both space and time variables with different speeds.

The paper is organized as follows: In Section 2, we use the results on the two-scale convergence
method to derive local and global deterministic governing equations essential to the homogeniza-
tion process. Section 3 is devoted to the spectral stochastic formulation. We define first the notion
of the chaos two-scale convergence method and extend the results of Nguetseng [9] and Allaire
[11] in a very natural way consisting in projecting the stochastic processes over an orthonormal
basis known as the Wiener-chaos polynomials. Spectral stochastic formulation for both stochastic
forcing process and stochastic material property process cases are then provided. The numer-
ical procedure used in the paper is detailed in Section 4. The numerical results are presented
and discussed in the same section. Section 5 is reserved for the summary and the concluding
remarks.

2. DETERMINISTIC GOVERNING EQUATIONS

In this section we give the governing equations, their derivation relies heavily on the two-scale
convergence method. The details can be found in the Appendix. We consider the second-order
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parabolic partial differential equation

Pb=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u�(t, x)

du�

dt
(t, x)− �

�x

{
��(t, x)

�u�

�x
(t, x)

}
= f (t, x) ∀(t, x)∈]0,T [×O

u�(t, x)=0 ∀(t, x)∈]0,T [×�O

u�(t =0, x)=a(x) ∀x ∈O

where the function �� is either of the form

��(t, x)=�

(
t

��
,

x

�

)
(1)

or

��(t, x)=�

(
t,

t

��
, x,

x

�

)
(2)

where � is a positive real number, � is also a positive real number with �↘0.
Under the following assumptions

• For T >0, ��(t, x)∈L∞(]0,T [×O) and ∃�>0 such that: ��(t, x)�� ∀t ∈]0,T [ and ∀x ∈O.
• f ∈L2(]0,T [;H−1(O)).
• The initial function a(x)∈L2(O).
• ��(t, x)=�(t, x,�= t

�� , y = x
� ) is periodic with respect to both local variables � and y.

The problem Pb1 admits a unique weak solution u� ∈L2(]0,T [;H1
0(O))∩C([0,T ],L2(O)).

The global or homogenized solution u0(t, x) associated to Pb is

P̃b=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u0(t, x)∈L2(0,T ;H1
0(O)),

du0

dt
(t, x)− �

�x

[{∫∫
S2

#

�(t, x,�, y)

[
1+��

�y
(�, y)

]
d�dy

}
�u0

�x
(t, x)

]
= f (t, x) ∀(t, x)∈S2

u0(t =0, x)=a(x) ∀x ∈O,

when ��(t, x) is of the form ��(t, x)=�(t/��, x/�), P̃b reduces to

˜̃Pb=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u0(t, x)∈L2(]0,T [;H1
0(O)),

du0

dt
(t, x)−

{∫∫
S2

#

�(�, y)

[
1+ ��

�y
(�, y)

]
d�dy

}
�2u0

�x2
(t, x)= f (t, x) ∀(t, x)∈S2,

u0(t =0, x)=a(x) ∀x ∈O.

The periodic function �(�, y) which depends only on the local variables � and y is related to the
correction term u1(t, x,�, y) through the relation

u1(t, x,�, y)= �u0

�x
(t, x)�(�, y), where �∈L2

#(]0,T [;H1
#/R). (3)

To close the homogenized problem P̃b or ˜̃Pb, a relation satisfied by �(�, y) is required. As proved
in the appendix, three cases involving the real parameter � are in order for the closure. It yields
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the following local equations:

• Case 1: 0<c<2 ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�
�y

{
�(t, x,�, y)

[
1+ ��

�y
(�, y)

]}
=0

or

�
�y

{
�(�, y)

[
1+ ��

�y
(�, y)

]}
=0.

(4)

• Case 2: c=2 ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d�

d�
(�, y)− �

�y

{
�(t, x,�, y)

[
1+ ��

�y
(�, y)

]}
=0

or

d�

d�
(�, y)− �

�y

{
�(�, y)

[
1+ ��

�y
(�, y)

]}
=0

(5)

• Case 3: c>2 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
�y

{(∫ 1

0
�(t, x,�, y)d�

)[
1+ �

�y
(y)

]}
=0

or

�
�y

{(∫ 1

0
�(�, y)d�

)[
1+ �

�y
(y)

]}
=0

(6)

3. SPECTRAL STOCHASTIC FORMULATION

Let (�,F,P) be a probability space. As in [18], we denote by H=L2(�,F,P) the Hilbert space
of square integrable functions on � with inner product

E{ f g}=
∫

�
f (�)g(�)P(d�) ∀ f,g ∈H=L2(�,F,P)

and norm {E{ f 2}}1/2. We define the following Hilbert space L2(]0,T [;L2(O;H)) as the space of
functions t �−→v(t) from ]0,T [ �−→L2(O;H), which are measurable and which satisfy

|||u|||L2(]0,T [;L2(O;H)) =
{∫ T

0
‖u(t)‖2

L2(O;H)
dt

}1/2

,

here ‖u( t )‖L2 (O;H ) = { ∫
O |u(t, x) |2H dx

}1/2
and |u( t, x ) |H = [E{u2 ( t, x ) } ]1/2 ={∫

� u2(t, x,�)P(d�)
}1/2

. Similarly, we define L2(]0,T [;H1(O;H)) the Hilbert space endowed
with the inner product

((u,v))= (u,v)+(∇u,∇v)

=
∫∫

S2

[∫
�

u(t, x,�)v(t, x,�)P(d�)

]
dt dx +

∫∫
S2

[∫
�

∇u(t, x,�)∇v(t, x,�)P(d�)

]
dt dx .

Let V be a closed subset of H1(O;H) containing H1
0(O;H). For T >0 fixed, t ∈]0,T [a.e., let

b(t;u,v) :V×V �−→R the bilinear form defined by

b(t;u,v)=
∫∫

S2

[∫
�

��(t, x,�)
�u

�x
(t, x,�)

�v
�x

(t, x,�)P(d�)

]
dt dx .
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Under the assumptions

• ∀t ∈]0,T [ and ∀�∈�,��(t, x,�)∈L∞(]0;T [;L2(O;H))∀x ∈O

• ∀t ∈]0,T [∀x ∈O,∃�>0, such that ��(t, x,�)>� almost surely

the bilinear form b(t;u,v) satisfies the following properties:

• the function t �−→b(t;u,v) is measurable ∀u,v∈V,

• |b(t;u,v)|�c1‖u‖‖v‖ t ∈]0,T [ a.e. ∀u,v∈V,

• b(t;v,v)�c2‖v‖2 −c3|v|2 t ∈]0,T [ a.e. ∀v∈V,

where c1, c2, and c3 are constants. Furthermore, for a given f ∈L2(]0,T [;V′), V′ being the dual
space of V, the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

find u� ∈L2(]0,T [;V)

∫∫
S2

∫
�

du�

dt
(t, x,�)vP(d�)dt dx+b(t;u�,v)=

∫∫
S2

∫
�

f (t, x)vP(d�)dt dx, t ∈]0,T [a.e.

∀v∈V,

u�(t=0, x,�)=a(x),

admits a unique solution u� ∈L2(]0,T [;V). Note that the above problem is the weak formulation of⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

du�

dt
(t, x,�)− �

�x

{
��(t, x,�)

�u�

�x
(t, x,�)

}
= f (t, x) ∀(t, x,�)∈]0,T [×O×�,

u�(t, x,�)=0 ∀(t, x,�)∈]0,T [×�O×�,

u�(t =0, x,�)=a(x) ∀(x,�)∈O×�.

Following the Cameron & Martin theorem [19], any stochastic process u(t, x,�)∈L2(]0,

T [;L2(O;H)) or L2(]0,T [;H1(O;H)) can be represented as

u(t, x,�)=
∞∑

i=0
ui (t, x)�i (�), (7)

where the functionals {�i (�)}i=0,1,... are the generalized Hermite polynomials also known as
Weiner-chaos polynomials [20, 21]. We exploit the spectral stochastic representation (7) to introduce
the chaos two-scale convergence.

Definition 1
A sequence of stochastic processes u�(x,�) which is said to chaos two-scale converges to a
stochastic process u(x, y,�) if

lim
�↘0

∫∫
O×�

u�(x,�)�
(

x,
x

�
,�
)
P(d�)dx =

∫∫∫
O×Y×�

u(x, y,�)�(x, y,�)P(d�)dy dx

∀�∈D(O;C∞
# (Y ;H))
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By virtue of the stochastic representation (7), the above definition can be formally justified as
follows:

lim
N→∞

lim
�↘0

∫∫
O×�

{
N∑

i=0
u�

i (x)�i (�)

}
�
(

x,
x

�
,�
)
P(d�)dx

= lim
N→∞

N∑
i=0

{
lim
�↘0

∫∫
O×�

u�
i (x)�(x,

x

�
,�)P(d�)dx

}
�i (�)

= lim
N→∞

N∑
i=0

{∫∫∫
O×Y×�

ui (x, y)�(x, y,�)P(d�)dy dx

}
�i (�)

=
∫∫

O×Y×�
lim

N→∞

{
N∑

i=0
ui (x, y)�i (�)

}
�(x, y,�)P(d�)dy dx

=
∫∫∫

O×Y×�
u(x, y,�)�(x, y,�)P(d�)dy dx .

It should be pointed out that the limN→∞ has to be taken with respect to the topology described
by Holden et al. [22].

The theorems of Nguetseng [9] and Allaire [11] can then be extended to the stochastic case by
using the polynomial chaos framework; it results in the following two claims:

Claim 1
Let u� be a uniformly bounded sequence in L2(O;H). Then there exist a subsequence from �,
still denoted by �, and a stochastic process u0(x, y,�)∈L2(O;L2

#(Y ;H)), such that u�(x,�) chaos
two-scale converges to u0(x, y,�) almost surely.

Claim 2
Let u� be a sequence of functions uniformly bounded in H1(O;H). Then there exists a subsequence
from �, still denoted by �, such that,

u�(x,�)⇀u0(x,�) weakly in H1(O;H), almost surely as �↘0,

and there exists a stochastic process u1 =u1(x, y,�)∈L2(O; H1
# (Y ;H)), such that,

∇u�(x,�) chaos two-scale converges to ∇x u0(x,�)+∇yu1(x, y,�), almost surely as �↘0.

3.1. Random forcing

We consider the stochastic homogenization problem

P̃b2:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

du�

dt
(t, x,�)− �

�x

[
��(t, x)

�u�

�x
(t, x,�)

]
= f (x,�) ∀(t, x,�)∈]0,T [×O×�,

u�(t, x,�)=0 ∀(t, x,�)∈]0,T [×�O×�,

u�(t =0, x,�)=a(x) ∀(x,�)∈O×�,

where the randomness is introduced into the problem through the stochastic process f (x,�).
We assume that the covariance kernel K(x, y) of f (x,�) is known, and that the random process
f (x,�) has a mean f̄ (x) and a finite variance, E[ f (x,�)− f̄ (x)]2, that is bounded for all x ∈O.
According to Van Trees [23], the process can then be expressed as

f (x,�)= f̄ (x)+
∞∑

i=1

√
�i gi (x)�i (�), (8)
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in which �i and gi (x) are the eigenvalues and eigenfunctions of the covariance function K(x, y),
i.e. the solution of the homogeneous Fredholm integral equation of the second kind∫

O
K(x, y)gi (x)dx =�i gi (y). (9)

For practical implementation, the sum in (8) can be approximated by a finite number of terms that
is optimal; that is, the mean square approximation error is minimized as shown in [21, 24]. The
Karhunen–Loève decomposition (8) becomes

f (x,�)= f̄ (x)+
KL∑
i=1

√
�i gi (x)�i (�). (10)

The covariance function of the solution process u�(t, x,�) being not known a priori, a Karhunen–
Loève expansion cannot be used to represent it. A truncated polynomial chaos expansion can be
used to represent the solution process.

u�(t, x,�)=
P∑

j=0
u�

j (t, x)� j (�). (11)

The spectral stochastic formulation of problem P̃b2 is then⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P∑
j=0

du�
j

dt
(t, x)− �

�x

[
��(t, x)

�u�
j

�x
(t, x)

]
� j (�)= f̄ (x)+

KL∑
i=1

√
�i gi (x)�i (�),

u�(t, x,�)=0 ∀(t, x,�)∈]0,T [×�O×�,

u�(t =0, x,�)=a(x) ∀(x,�)∈O×�,

which can be reduced to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for k =0, . . . , P,

du�
k

dt
(t, x)− �

�x

[
��(t, x)

�u�
k

�x
(t, x)

]
= 〈 f̄ (x)�k(�)〉

〈�k(�)�k(�)〉 +
KL∑
i=1

√
�i gi (x)

〈�i (�)�k(�)〉
〈�k(�)�k(�)〉 ,

u�(t, x,�)=0 ∀(t, x,�)∈]0,T [×�O×�,

u�(t =0, x,�)=a(x) ∀(x,�)∈O×�.

In the light of Section 2, and by employing the chaos two-scale convergence, the stochastic
homogenized problem to P̃b2 is

P̃b2=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∀(t, x,�)∈]0,T [×O×�, and for k =0, . . . , P,

du0,k

dt
(t, x)− �

�x

[
�̃

�u0,k

�x
(t, x)

]
= 〈 f̄ (x)�k(�)〉

〈�k(�)�k(�)〉 +
KL∑
i=1

√
�i gi (x)

〈�i (�)�k(�)〉
〈�k(�)�k(�)〉 ,

u0(t =0, x)=a(x) ∀x ∈O,

where �̃ is given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�̃= �̃(t, x)=

∫∫
S2

#

�(t, x,�, y)

[
1+ ��

�y
(�, y)

]
d�dy if 0<��2,

�̃= �̃(t, x)=
∫

Y

(∫ 1

0
�(t, x,�, y)d�

)[
1+ �

�y
(y)

]
dy if �>2.
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The periodic correction functions �(�, y) and (y) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
�y

{
�(t, x,�, y)

[
1+ ��

�y
(�, y)

]}
=0 if 0<�<2,

d�

d�
(�, y)− �

�y

{
�(t, x,�, y)

[
1+ ��

�y
(�, y)

]}
=0 if �=2,

�
�y

{(∫ 1

0
�(t, x,�, y)d�

)[
1+ �

�y
(y)

]}
=0 if �>2.

3.2. Random material property

We turn our attention now to the case where the material property �� is a stochastic process,

�� =��(t, x,�) for (t, x,�)∈]0,T [×O×�.

The stochastic homogenization problem to be solved is

P̃b3:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
du�

dt
(t, x,�)− �

�x

(
��(t, x,�)

�u�

�x
(t, x,�)

)
= f (t, x) ∀(t, x,�)∈]0,T [×O×�,

u�(t, x,�)=0 ∀(t, x,�)∈]0,T [×�O×�,

u�(t =0, x,�)=a(x) ∀(x,�)∈O×�.

We make the assumption that ��(t, x,�) is of the form

��(t, x,�)=	�(x)��(t,�)=	
( x

�

)
�

(
t

��
,�

)
=	(y)�(�,�),

and that the random process �(�,�) is defined on the probability space (�,F, P) and indexed on
[0,1]. Let R(�1,�2) be the covariance kernel of �(�,�), then the process can be expressed as

�(�,�)= �̄(�)+
∞∑

i=1

√
�i hi (�)�i (�), (12)

where �i and hi are solutions to the eigenvalue problem∫ 1

0
R(�1,�2)hi (�1)d�=�i hi (�2).

Subsequently, the stochastic process ��(t, x,�) becomes

��(t, x,�)=�(�, y,�)=	(y)

{
�̄(�)+

∞∑
i=1

√
�i hi (�)�i (�)

}
. (13)

The spectral stochastic formulation of P̃b3 reads as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P∑
j=0

du�
j

dt
(t, x)� j (�)− �

�x

[
P∑

j=0

KL∑
i=0

√
�i	(y)hi (�)

�u�
j

�x
(t, x)�i (�)� j (�)

]
= f (t, x),

u�(t, x,�)=0 ∀(t, x,�)∈]0,T [×�O×�,

u�(t =0, x,�)=a(x) ∀(x,�)∈O×�,

where �0 and h�
0(t) have been set to 1 and �̄

�
(t), respectively, and where only a finite number, KL,

of Gaussian random variables have been employed.
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We multiply the first equation of the above formulation by �k(�), and take the average; it
results as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

for k =0,1, . . . , P,

du�
k

dt
(t, x)−

P∑
j=0

KL∑
i=0

√
�i hi (�)

�
�x

[
	(y)

�u�
j

�x
(t, x)

]
〈�i (�)� j (�)�k(�)〉

〈�k(�)�k(�)〉 = 〈 f (t, x)�k(�)〉
〈�k(�)�k(�)〉 ,

u�(t, x,�)=0 ∀(t, x,�)∈]0,T [×�O×�,

u�(t =0, x,�)=a(x) ∀(x,�)∈O×�.

From the chaos two-scale convergence, we derive the stochastic homogenized problem of P̃b3.

P̃b3=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

for k =0, . . . , P,

du0,k

dt
(t, x)− �

�x

[
P∑

i=0

P∑
j=0

�̃ j (t, x)

{
�ui

0

�x
(t, x)

}
〈�i (�)� j (�)�k(�)〉

〈�k(�)�k(�)〉

]
=〈 f (t, x)�k(�)〉

〈�k(�)�k(�)〉 ,

{uk
0(t =0, x)}=a(x) ∀x ∈O if k =0,

{uk
0(t =0, x)}=0 ∀x ∈O if k �=0.

The chaos component �̃k(t, x) of the stochastic process �̃(t, x,�) satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
�̃k(t, x)=

KL∑
i=0

√
�i

∫∫
S2

#

	(y)hi (�)

[
〈�i�k〉+

P∑
j=0

�� j

�y
(�, y)〈�i� j�k〉

]
d�dy if 0<��2,

�̃k(t, x)=
KL∑
i=0

√
�i

∫
Y

	(y)

(∫ 1

0
hi (�)d�

)[
〈�i�k〉+

P∑
j=0

� j

�y
(y)〈�i� j�k〉

]
dy if �>2.

The stochastic processes �(�, y,�) and (y,�) are solutions to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KL∑
i=0

P∑
j=0

hi (�)
�
�y

{
	(y)

�� j

�y
(�, y)

}
〈�i� j�k〉=−

KL∑
i=0

�	

�y
(y)hi (�)〈�i�k〉 if 0<�<2,

d�k

d�
(�, y)−

KL∑
i=0

P∑
j=0

√
�i hi(�)

�
�y

{
	(y)

�� j

�y
(�, y)

}
〈�i� j�k〉
〈�k�k〉 =−

KL∑
i=0

√
�i

�	

�y
(y)hi(�)

〈�i�k〉
〈�k�k〉

if �=2,

KL∑
i=0

P∑
j=0

�
�y

[
	(y)

� j

�y
(y)

]
〈�i� j�k〉=−

KL∑
i=0

�	

�y
(y)〈�i�k〉 if �>2.

4. NUMERICAL PROCEDURE AND RESULTS

We present the numerical algorithm for the random material property case. The computational
approach follows Jardak and Ghanem [25] and Jardak et al. [26]; it is based on the spectral
collocation method for the spatial discretization [27, 28]. As observed by Engquist and Luo [29]
and also pointed out in E [13], numerical dissipations tend to damp out the small scales, and the
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numerical dispersions tend to move the small scales to wrong locations and incorrectly account
for their effects on the large scales. As numerical dissipation and dispersions are inherent to
finite difference and finite element methods, the decision to employ the spectral method is then
justified.

We start by solving for the chaos components of the processes �(�, y,�) and (y,�). As each
of them is periodic with respect to the spatial direction y, a Fourier collocation method Canuto
et al. [27] and Peyret [28] is employed.

For � fixed, for each �, and for 0<�<2 the vector form of the equation

KL∑
i=0

P∑
j=0

hi (�)
�
�y

{
	(y)

�� j

�y
(�, y)

}
〈�i� j�k〉=−

KL∑
i=0

�	

�y
(y)hi (�)〈�i�k〉

is given by ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[A00] · · · [A0 j ] · · · [A0P ]

...
...

...

[Ak0] · · · [Akj] · · · [AkP]

...
...

...

[AP0] · · · [APj] · · · [APP]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[��0]

...

[��k]

...

[��P ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[�c0]

...

[�ck]

...

[�cP ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

Here the vector

[��k]=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�k(�1, y1)

�k(�1, y2)

...

�k(�1, yn)

�k(�2, y1)

�k(�2, y2)

...

�k(�2, yn)

...

�k(�m, y1)

�k(�m, y2)

...

�k(�m, yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

is an approximation of the k-th chaos component as represented by its values at the collocation
points,

�m = 2�(m−1)

��M
, m =1, . . . , M and yn = 2�(n−1)

�N
, n =1, . . . , N .

Let D�
M and Dy

N denote the Fourier collocation differentiation matrices in the � and y directions,
respectively. We denote by

Dy = IM×M ⊗ Dy
N and D� = D�

M ⊗ IN×N (16)
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Figure 1. Material property for different � and �.

the tensor or kronecker products, the block matrix [Akj] can then be expressed as

[Akj] j,k=0,...,P =
KL∑
i=0

hi (�){�′
Dy +� (Dy)2}〈�i� j�k〉, (17)

� and �
′

are the diagonal matrices defined by �i,i =	(yi ) and �
′
i,i = (�	/�y)(yi ), respectively.

For �=2, the integration of

d�k

d�
(�, y)=

KL∑
i=0

√
�i hi (�)

[
�	

�y
(y)

〈�i�k〉
〈�k�k〉 +

P∑
j=0

�
�y

{
	(y)

�� j

�y
(�, y)

}
〈�i� j�k〉
〈�k�k〉

]
(18)

requires a time discretization. As � is periodic in the � direction, the numerical treatment of (18)
is similar to the case where 0<�<2 with a change in [Akj]. Now, the block matrix [Akj] is a
follows:

[Akj] j,k=0,...,P =D�−
KL∑
i=0

P∑
j=0

√
�i hi (�){�′

Dy +� (Dy)2} 〈�i� j�k〉
〈�k�k〉 . (19)

The k-th right-hand side block [�ck] is given by

[�ck]k=0,...,P =
KL∑
i=0

√
�i hi (�)

[
�	

�y
(y)

〈�i�k〉
〈�k�k〉

]
.

The numerical calculation of the homogenized chaos component �̃k(t, x) of the process �̃(t, x,�)
involves a numerical integration. To that end, a composite numerical quadrature of order 2 is
employed in approximating the integrals.
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Figure 2. Deterministic homogenization for different �, �, and time t .

The numerical treatment of P̃b3 utilizes the Chebyshev collocation method, see Canuto et al.
[27] to discretize the spatial global variable x along with the implicit Adams Moulton two-step
method to advance in global time t .

Therefore, the approximation of the equation

duk
0

dt
(t, x)− �

�x

[
P∑

i=0

P∑
j=0

�̃ j (t, x)
�ui

0

�x
(t, x)

〈�i (�)� j (�)�k(�)〉
〈�k(�)�k(�)〉

]
= 〈 f (t, x)�k(�)〉

〈�k(�)�k(�)〉
is then

{uk
0}n+1 −{uk

0}n = �t

12
[5L(tn+1, x,uk

0(tn+1, x))+8L(tn, x,uk
0(tn, x))−L(tn−1, x,uk

0(tn−1, x))]

(20)

with

L(t, x,uk
0(t, x))=

P∑
i=0

P∑
j=0

�
�x

[
�̃ j (t, x)

�ui
0

�x
(t, x)

]
〈�i (�)� j (�)�k(�)〉

〈�k(�)�k(�)〉 .

The Chebyshev–Gauss–Labatto (CGL) interpolation points

x(m)=cos

(
(m−1)�

N

)
for 1�m�N +1

have been used. along with the Chebyshev collocation derivative matrix DN described in
Trefethen [30].
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Figure 3. Eigenspectra and contours of the exact and the reconstructed
of the Brown–Bridge covariance kernel.
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Figure 8. Spectral decomposition of an auto-regressive process of order 1.

Copyright � 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2011; 85:847–873
DOI: 10.1002/nme



CHAOS TWO-SCALE HOMOGENIZATION 863

Figure 9. Space–time eigenfunctions after t =1.

We employ the following material property:

��(t, x)=�

(
t

��
,

x

�

)
=
(

2.1+2cos
(

2�
x

�

))(
2.1+2sin

(
2�

t

��

))
∀ x ∈ [0,1] and 0<t�1

and the initial solution u�(t =0, x)=a(x)=sin(2�x) ∀x ∈ [0,1]. Neither � nor � is assumed random.
For three different values of � and for � fixed, Figure 1 represents the deterministic material property
��(t, x) for different values of � and �. The contours present an insight into the complex structure
of the material as � decreases and � increases.

Figure 2 presents the essentials of periodic deterministic homogenization. From the same figure
one observes that for fixed values of �=0.05, �=2.0 and as time t increases from t =1 to t =7 the
homogenized solution is diffusing. For a fixed time t =2 and fixed value of �=2.0 the homogenized
solution is again diffusing as the value of � increases. The calculated homogenized solutions
converge toward a numerical solution that will be taken as the effective or homogenized solution
as � decreases. In the meanwhile, for t =2 and �=0.05 the homogenized solution is less diffusing
as the time oscillating speed � increases from �=1.3 to �=3.3. as the oscillating time speed
increases. For the case of a random forcing, the non-stationary Brown-Bridge process is considered
to represent f (t, x,�). The Brown-Bridge process given by its covariance function

B(x, y)=min(x, y)− xy

a
∀x, y ∈ [0,a] (21)

has been used. In Figure 3 we provide the eigenvalues and the corresponding eigenfunctions of
the Karhunen–Loeve decomposition. The contour plots of the theoretical (solid lines) and the
reconstructed (dashed lines) covariance kernels are also shown in the same figure. It is worth noting
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Figure 10. Stochastic random material property case: chaos components and variance, after t =1,
t =3, and t =5, and �=0.005, �=2.0.

the good agreement between both kernels after a 12 terms truncation has been made. Now that

f (t, x,�)= f (x,�)= f̄ (x,�)︸ ︷︷ ︸
=0

+
3∑

i=1

√
�i gi (x)�i (22)

the solution to the homogenization problem is a stochastic process. In Figure 4, we present some of
the chaos components including the mean. Here the values of � and � have been fixed whereas the
time t varied. The mean solutions exhibit the same behavior as in the deterministic case. Indeed, as
t increases, the mean solutions are more diffused. This behavior is not followed by the other chaos
components as shown in the same figure. The variances are added to support the last statement.

In Figure 5, we fix the time t to 2 and � to 0.05 and let � vary. Again, similar to the deterministic
case the means of the stochastic homogenized solutions are less diffusing as � increases. The chaos
components of the stochastic homogenized solutions and the variances all follow the same trend.
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Figure 11. Stochastic random material property case: chaos components and variance, after t =1,
t =3, and t =5, and �=0.005, �=3.5.

As � increases whereas time t and the time oscillating speed � are kept constant, the means of the
stochastic homogenized solutions are more diffused and this is followed by the chaos components
and the variances. This is depicted in Figure 6.

Finally, we present in Figure 7 the behavior of the variances as the degrees of the chaos
polynomials are varied whereas the number of stochastic dimensions is kept equal to 3. The
expected conclusion namely that the variance decreases with higher polynomial chaos degrees is
well supported.

Following Section 3, we consider the stochastic material property of the form

��(t, x)=	
( x

�

)
�

(
t

��
,�

)
with 	(x/�)=2.1+2cos(2�x/�). No randomness in � is assumed.
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Figure 12. Stochastic random material property case: chaos components
and variance after t =3, and �=0.001, �=2.

To represent the stochastic input �((t/��),�), we consider a different way for correlations.
Specifically, we use a discrete stationary input. We use the process

uk =cuk−1 +a f �k . (23)

The process (23) is auto-regressive of order 1 and corresponds to the Markov process [31]. The
constant c is assumed to satisfy |c|�1 to ensure that the process is of finite variance. Here, �k
is a random variable of mean zero and variance one, and f is a constant to be determined such
that for the given values of a and c the variance of the process is equal to a2. Using Monte Carlo
simulations we construct numerically the variance kernel and subsequently extract the eigenvalues
and eigenfunctions required for the input. The covariance kernel and the eigenspectrum are depicted
in Figure 8. We set the mean value of �(�) to �̄(�)=2.1+2sin(2�(t/��)), and multiply each
eigenfunction of the Markov process by 2.1+2cos(2� x

� ). It results in the space–time eigenfunctions
shown in Figure 9.

Figures 10–12 regroup chaos components of the stochastic homogenized process and variances
for different setups. In Figure 10 the � and � are fixed and the time t varies. The setup for Figure 11
is similar to the one presented in (10) with the exception of �=3.5 instead of �=2.0. In Figure 12
the time is now fixed to t =3, �=0.01, and �=2. In all the above configurations, the amplitudes
of the chaos components of the stochastic homogenized process are smaller but the trends are in
agreement with those of the stochastic forcing case.

5. CONCLUSION

The present work dealt with random homogenization. A time evolution problem with a coefficient
oscillating in both time and space with dissimilar speeds has been studied. Owing to the assumption
of periodicity of �(t, (t/��), x, (x/�)) with respect to the fast variables, t/�� and x/� the two-
scale convergence method of Nguetseng [9] and Allaire [10] has been employed to derive the
homogenized problem instead of the laborious reiteration homogenization method of Bensoussan
et al. [3]. Owing to the spectral stochastic decomposition’s capability of separating the deterministic
and random parts of a stochastic process, we extended the two-scale convergence to the stochastic
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case. A derivation of the spectral stochastic homogenization random forcing and random material
have been achieved. Suitable numerical procedures have been devised and numerical results have
been obtained and validated.

In the present work we have restricted our investigations to periodic homogenization, several
theoretical extensions like the H and G convergence of Murat and Tartar [32] are available and
have never been implemented in the framework of the present work. This opens new avenues for
future research. We also envision extending the present work to the case where the scale � is a
random variable.

APPENDIX A

Nguetseng [9] presented a new concept of how to homogenize scales of partial differential equations,
the so-called two-scale convergence method.

Definition 2
Let u� be a sequence of functions in L2(O). u� two-scale converges to u0 =u0(x, y) with u0 ∈
L2(O,Y ) if for any test function 
=
(x, y)∈D(O,C∞

# (Y ))

lim
�↘0

∫
�

u�(x)

(

x,
x

�

)
dx = 1

|Y |
∫

�

∫
Y

u0(x, y)
(x, y)dy dx .

The two-scale convergence method is an alternative to the so-called energy method of Tartar [33]
for proving convergence in the case of periodic homogenization. It deals with convergence of
integrals of the form ∫

O
u�(x)


(
x,

x

�

)
dx,

where u� ∈L2(O) and 
(x, y) is a smooth function periodic with respect to y. For the problem
studied here, the following and more convenient versions of Nguetseng’s theorems will be used in
the sequel of the paper.

Theorem 1
Let u�(t, x) be a uniformly bounded sequence in L2(]0,T [;L2

loc(O)). Then, there exist a sub-
sequence of � and a function u0(t, x,�, y)∈L2(]0,T [×O;L2

#[0,1]×L2
#(Y )) such that u� two-scale

converges to u0.

The above theorem is a compactness result. It states that the two-scale limit u0 is essentially the
first term in the multiple scale expansion. The dependence of u0 on the oscillations is granted
through the auxiliary variables � and y. In order to obtain more detailed information about the
two-scale limit, uniform boundedness over the gradient of u� is required.

Theorem 2
Let u�(t, x) be a uniformly bounded sequence in L2(]0,T [;H1(O)). Then u�(t, x) two-scale
converges to a function u0(t, x)∈L2(]0,T [;H1(O)) and there exists a function u1(t, x,�, y)∈
L2(]0,T [×O;L2

#[0,1]×H1
#(O)/R) such that, up to a sub sequence, ∇x u�(t, x) two-scale converges

to ∇x u0(t, x)+∇yu1(t, x,�, y). Moreover, u0(t, x) is the strong L2(]0,T [×O) limit of u�(t, x).

We consider the second order parabolic partial differential equation

Pb=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find u�(t, x)

du�

dt
(t, x)− �

�x

{
��(t, x)

�u�

�x
(t, x)

}
= f (t, x) ∀(t, x)∈ ]0,T [×O

u�(t, x)=0 ∀(t, x)∈ ]0,T [×�O

u�(t =0, x)=a(x) ∀x ∈O.
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Under the following assumptions:

1. For T >0, ��(t, x)∈L∞(]0,T [×O), and, ∃�>0, such that, ��(t, x)��,
for a.e. t ∈]0,T [, and x ∈O.

2. f ∈L2(]0,T [;H−1(O)).
3. The initial function a(x)∈L2(O).
5. ��(t, x)=�(t, x,�= t/��, y = x/�) is periodic with respect to both local variables � and y.

The problem Pb admits a unique weak solution u� ∈L2(]0,T [;H1
0(O))∩C([0,T ],L2(O)). This is

achieved by applying the theorem of Lions [34], Brezis [35], and Evans [36]. Furthermore, we
have the following estimates:

‖u�‖L2(]0,T [;H1
0(O)) +‖u�‖C([0,T ],L2(O))�C[‖a‖L2(O) +‖ f ‖L2(]0,T [;H−1(O))], (A1)

where the constant C>0 depends only on the diameter of O. From the energy inequality (A1), we
in particular deduce the uniform boundedness of u�(t, x) in L2(]0,T [;H1(O)) which enables us
the use of Theorem 2.

In order to perform a homogenization procedure for Pb, we multiply the equation of Pb1 by
a test function 
(t, x)∈L2

loc(]0,T [;D(O)),∫∫
S2

{
du�

dt
(t, x)− �

�x

[
�

(
t, x,

t

��
,

x

�

)
�u�

�x
(t, x)

]}

(t, x)dt dx =

∫∫
S2

f (t, x)
(t, x)dt dx,

since 
 has a compact support, an integration by parts in both time and space yields

−
∫∫

S2
u�(t, x)

d


dt
(t, x)dt dx +

∫∫
S2

�

(
t, x,

t

��
,

x

�

)
�u�

�x
(t, x)

�

�x

(t, x)dt dx

=
∫∫

S2
f (t, x)
(t, x)dt dx +

∫
O

a(x)
(0, x)dx . (A2)

As �↘0, the application of Theorem 2 yields

−
∫∫

S2
u0(t, x)

d


dt
(t, x)dt dx +

∫∫∫∫
S4

�(t, x,�, y)

{
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

}
�


�x
(t, x)d�

=
∫∫

S2
f (t, x)
(t, x)dt dx +

∫
O

a(x)
(0, x)dx . (A3)

Following Bensoussan et al. [3] and Cioranescu and Donato [6], the correction term u1(t, x,�, y)
is then factorized using the separation of variables

u1(t, x,�, y)= �u0

�x
(t, x)�(�, y) where �∈L2

#(]0,T [;H1
#/R). (A4)

Equation (A3) yields∫∫
S2

[
−u0(t, x)

d


dt
(t, x)+

{∫∫
S2

#

�(t, x,�, y)

[
1+ ��

�y
(�, y)

]
d�dy

}
�u0

�x
(t, x)

�


�x
(t, x)

]
dt dx

=
∫∫

S2
f (t, x)
(t, x)dt dx +

∫
O

a(x)
(0, x)dx . (A5)

As a result of integration by parts of (A5), we obtain∫∫
S2

{
du0

dt
(t, x)− �

�x

[{∫∫
S2

#

�(t, x,�, y)

[
1+ ��

�y
(�, y)

]
d�dy

}
�u0

�x
(t, x)

]}

(t, x)dt dx

=
∫∫

S2
f (t, x)
(t, x)dt dx ∀
∈L2

loc(]0,T [;D(O)). (A6)
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Because 
 is arbitrary, the global or homogenized solution u0(t, x) of (A6) is

P̃b=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0(t, x)∈L2(0,T ;H1
0(O)),

du0

dt
(t, x)− �

�x

[{∫∫
S2

#

�(t, x,�, y)

[
1+ ��

�y
(�, y)

]
d�dy

}
�u0

�x
(t, x)

]
= f (t, x)∀(t, x)∈S2,

u0(t =0, x)=a(x) ∀x ∈O.

In the case where ��(t, x) is of the form ��(t, x)=�( t
�� ,

x
� ), P̃b reduces to

˜̃Pb=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0(t, x)∈L2(]0,T [;H1
0(O)),

du0

dt
(t, x)−

{∫∫
S2

#

�(�, y)

[
1+ ��

�y
(�, y)

]
d�dy

}
�2u0

�x2
(t, x)= f (t, x) ∀(t, x)∈S2,

u0(t =0, x)=a(x) ∀x ∈O.

It is worth noting that in both cases, the local and global variables appear together in the homog-
enized equations.

To close the homogenized problem P̃b, a relation satisfied by u1(t, x,�, y) and subsequently by
�(�, y) is required. To this end, we consider the following form of the test function 
(t, x)


(t, x)=


(
t, x,

t

��
,

x

�

)
=��−1
1

(
t,

t

��

)

2

(
x,

x

�

)
, (A7)

where 
1 ∈L2(]0,T [;L2
#[0,1]), 
2 ∈H1

0(O,H1
#(Y )). This choice is suggested by Tartar’s method of

oscillating test functions see Murat and Tartar [32]. Equation (A2) then becomes∫∫
S2

f (t, x)
(t, x)dt dx =−��−1
∫∫

S2
u�(t, x)

{
�
1

�t

(
t,

t

��

)
+ 1

��
�
1

��

(
t,

t

��

)}

2

(
x,

x

�

)
dt dx

+��−1
∫∫

S2
�

(
t, x,

t

��
,

x

�

)
�u�

�x
(t, x)

{
�
2

�x

(
x,

x

�

)
+ 1

�

�
2

�y

(
x,

x

�

)}

1

(
t,

t

��

)
dt dx . (A8)

Similarly, (A3) becomes∫∫
S2

f (t, x)
(t, x)dt dx .=−��−1
∫∫

S2
u0(t, x)

{
�
1

�t
(t,�)+ 1

��
�
1

��
(t,�)

}

2(x, y)dt dx

+��−1
∫∫∫∫

S4
�(t, x,�, y)

[
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

]{
�
2

�x
(x, y)+ 1

�

�
2

�y
(x, y)

}

1(t,�)d�.

(A9)

Subtracting Equation (A9) from Equation (A8) yields

��−2
[∫∫

S2
�

(
t, x,

t

��
,

x

�

)
�u�

�x

�
2

�y

1 dt dx −

∫∫∫∫
S4

�(t, x,�, y)

{
�u0

�x
+ �u1

�y

}
�
2

�y

1 d�

]

+��−1
[∫∫

S2
�

(
t, x,

t

��
,

x

�

)
�u�

�x

�
2

�x

1 dt dx −

∫∫∫∫
S4

�(t, x,�, y)

{
�u0

�x
+ �u1

�y

}
�
2

�x

1 d�

]

+��
[∫∫

S2

{
u�(t, x)−u0(t, x)

�

}{
�
1

�t
(t,�)+ 1

��
�
1

��
(t,�)

}

2(x, y)dt dx

]
=0. (A10)

From (A10), local equations will be derived by examining the three cases �−2<0, �−2=0,
and, �−2>0, respectively.
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Case 1: 0<c<2
The passage to the two-scale limit in (A10) gives∫∫∫∫

S4
�(t, x,�, y)

[
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

]
�
2

�y
(x, y)
1(t,�)d�

−
∫∫∫∫

S4

{∫∫
S2

#

�(t, x,�, y)

[
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

]
�
2

�y
(x, y)
1(t,�)d�dy

}
d�=0.

(A11)

As
{∫∫

S2
#
�(t, x,�, y)

[
�u0
�x

(t, x)+ �u1
�y

(t, x,�, y)
]

�
2
�y

(x, y)
1(t,�)d�dy
}

depends only on the global

variables t , x , and, because of the periodicity over Y ×[0,1],∫∫∫∫
S4

{∫∫
S2

#

�(t, x,�, y)

[
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

]
�
2

�y
(x, y)
1(t,�)d�dy

}
d�=0.

Therefore (A11) reduces to∫∫∫∫
S4

�(t, x,�, y)

[
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

]
�
2

�y
(x, y)
1(t,�)d�=0.

The use of the separation of variables (A4), and the integration by parts with respect to the local
variable y imply∫∫

S2

[∫∫
S2

#

�
�y

[
�(t, x,�, y)

{
1+ ��

�y
(�, y)

}]

2(x, y)
1(t,�)d�dy

]
�u0

�x
(t, x)dt dx =0 ∀
1,
2.

Hence, for 0<�<2, the local equation is:

�
�y

{
�(t, x,�, y)

[
1+ ��

�y
(�, y)

]}
=0. (A12)

Case 2: c=2
We replace � by 2 in (A10). The dependency of{∫∫

S2
#

�(t, x,�, y)

[
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

]
�
2

�y
(x, y)
1(t,�)d�dy

}
on the global variables t , x only, implies∫∫

S2

{
u�(t, x)−u0(t, x)

�

}
�
1

��
(t,�)
2(x, y)dt dx

+
∫∫∫∫

S4
�(t, x,�, y)

[
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

]
�
2

�y
(x, y)
1(t,�)d�=0. (A13)

As u� is uniformly bounded in L2(0,T ;H1
0(O)), we deduce from Theorem 2 that u� converges

weakly in L2(0,T ;H1
0(O)) to u0(t, x), therefore

lim
�↘0

∫∫
S2

{
u�(t, x)−u0(t, x)

�

}
�
1

��
(t,�)
2(x, y)dt dx =

∫∫∫∫
S4

u1(t, x,�, y)
�
1

��
(t,�)
2(x, y)d�.

As �↘0, Equation (A13) becomes∫∫∫∫
S4

[
u1(t, x,�, y)

�
1

��

2 −�(t, x,�, y)

{
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

}
�
2

�y

1

]
d�=0. (A14)
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By integrating by parts (A14) and using the separation of variables (A4) we obtain the local
equation:

d�

d�
(�, y)− �

�y

{
�(t, x,�, y)

[
1+ ��

�y
(�, y)

]}
=0. (A15)

Case 3: c>2
As � goes to zero, it follows from the two-scale convergence method applied to (A10) that∫∫∫∫

S4
u1(t, x,�, y)

�
1

��
(t,�)
2(x, y)d�=0 ∀
1 ∈L2(0,T ),
2 ∈ H1

0 (O,H1
#(Y ))

which is equivalent to∫∫∫∫
S4

�u1

��
(t, x,�, y)
1(t,�)
2(x, y)d�=0 ∀
1 ∈L2(0,T ),
2 ∈ H1

0 (O,H1
#(Y )).

Therefore, u1(t, x,�, y) is constant in �: u1(t, x,�, y)=u1(t, x, y). The test function 
(t, x) has then
to be constant in the � direction. For 
(t, x)=��−1
1(x, x/�)
2(t), Equation (A10) is replaced by

��−2
[∫∫

S2
�

(
t, x,

t

��
,

x

�

)
�u�

�x

�
2

�y

1(t)dt dx−

∫∫∫
S3

�(t, x,�, y)

{
�u0

�x
+ �u1

�y

}
�
2

�y

1(t)dt dx dy

]

+��−1
[∫∫

S2
�

(
t, x,

t

��
,

x

�

)
�u�

�x

�
2

�x

1(t)dt dx+

∫∫
S2

{u�(t, x)−u0(t, x)}�
1

�t
(t)
2(x, y)dt dx

]

−��−1
[∫∫∫

S3
�(t, x,�, y)

{
�u0

�x
+ �u1

�y

}
�
2

�x

1(t)dt dx dy

]
=0. (A16)

As �↘0, the two-scale limit of the Equation (A16) is∫∫∫
S3

(∫ 1

0
�(t, x,�, y)d�

)[
�u0

�x
(t, x)+ �u1

�y
(t, x, y)

]
�
2

�y
(x, y)
1(t)dt dx dy

−
∫∫∫

S3

{∫
Y

(∫ 1

0
�(t, x, y)d�

)[
�u0

�x
(t, x)+ �u1

�y
(t, x, y)

]
�
2

�y
(x, y)
1(t)dy

}
dt dx dy =0.

(A17)

As ∫
Y

(∫ 1

0
�(t, x, y)d�

)[
�u0

�x
(t, x)+ �u1

�y
(t, x, y)

]
�
2

�y
(x, y)
1(t)dy

is independent of the local variable y, then∫∫∫
S3

{∫
Y

(∫ 1

0
�(t, x, y)d�

)[
�u0

�x
(t, x)+ �u1

�y
(t, x, y)

]
�
2

�y
(x, y)
1(t)dy

}
dt dx dy =0.

Consequently, (A17) reduces to∫∫∫
S3

(∫ 1

0
�(t, x,�, y)d�

)[
�u0

�x
(t, x)+ �u1

�y
(t, x,�, y)

]
�
2

�y
(x, y)
1(t)dt dx dy =0.

Similar to the separation of variables (A4), assuming u1(t, x, y)= (�u0/�x)(t, x)(y) and integrating
by parts with respect to y, the local equation results as

�
�y

{(∫ 1

0
�(t, x,�, y)d�

)[
1+ �

�y
(y)

]}
=0. (A18)
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In light of the derivation of the local equation, it is worth noting that the global problem P̃b in
the case where �>2 is

P̃pb=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0(t, x)∈L2(0,T ;H1
0(O)),

du0

dt
(t, x)− �

�x

[{∫
Y

(∫ 1

0
�(t, x,�, y)d�

)[
1+�

�y
(y)

]
dy

}
�u0

�x
(t, x)

]
= f (t, x) ∀(t, x)∈S2,

u0(t =0, x)=a(x) ∀x ∈O.
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