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SUMMARY

A new scheme for differentiating complex mesh-based numerical models (e.g. finite element models), the
Independent Set Perturbation Adjoint method (ISP-Adjoint), is presented. Differentiation of the matrices
and source terms making up the discrete forward model is realized by a graph coloring approach
(forming independent sets of variables) combined with a perturbation method to obtain gradients in
numerical discretizations. This information is then convolved with the ‘mathematical adjoint’, which
uses the transpose matrix of the discrete forward model. The adjoint code is simple to implement
even with complex governing equations, discretization methods and non-linear parameterizations. Impor-
tantly, the adjoint code is independent of the implementation of the forward code. This greatly reduces
the effort required to implement the adjoint model and maintain it as the forward model continues
to be developed; as compared with more traditional approaches such as applying automatic differen-
tiation tools. The approach can be readily extended to reduced-order models. The method is applied
to a one-dimensional Burgers’ equation problem, with a highly non-linear high-resolution discretiza-
tion method, and to a two-dimensional, non-linear, reduced-order model of an idealized ocean gyre.
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1. INTRODUCTION

Adjoints to computational codes have been used for diverse applications including data assimilation
[1–4], sensitivity analysis [5, 6], adaptive observations [7] and mesh-based error measures [8, 9].
However, differentiating discrete numerical models is generally impractical to perform by hand
and remains challenging when using automatic differentiation (AD) tools ([10], more details on
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AD are available at http://www.autodiff.org). Automatic differentiation also restricts the use of
many advanced programming features, further increasing the difficulty of developing a forward
and adjoint model. Both approaches often require intimate knowledge of the forward code in order
to design a hand differentiation method or to alter the automatically produced code so that it works
efficiently [11–14]. The time it takes to conduct this task may be greater than writing the forward
model and there may also be computer science-related issues arising from the complexity of the
computation of derivatives and memory usage [10, 15]. These challenges often preclude the use
of gradient or adjoint variational (4D-VAR; three spatial dimensions plus time) data assimilation
methods, sensitivity-based methods or any other method that uses gradients of key functionals with
respect to the control variables (controls), e.g. material properties or initial/boundary conditions
of flow models.

To reduce the computational cost and memory, Coleman and Moré [16] introduced the graph
colouring scheme in the computation of derivatives. This allows for the efficient calculation of
the gradient of a sparse matrix Jacobian (matrix containing key derivatives of the model w.r.t. the
state variables) using AD software [17–19]. Other related research work and applications of graph
coloring approaches in the numerical determination of large sparse derivative matrices (Jacobians)
can be found in [20–24]. An overview of colouring schemes is provided in [22].

A forward model may have an actively developed dynamic core or utilize rapidly changing and
complex parameterizations. Therefore, the application of consistent or exact gradient methods of
differentiation to the discrete problem tends to lag behind developments in the forward model
code. Despite this, there have been major successes in differentiating large models [25–29]. AD
methods have been utilized on stable models at compile time after code modifications [30–33].
In addition, Marta et al. [10] developed a selective AD approach where AD is used to compute
only certain terms of the discrete adjoint equations, and not to differentiate the entire solution
algorithm.

The ISP-Adjoint approach, outlined here, is largely independent of implementation details of the
forward model. The modelling software only needs to be modified so that it can accommodate the
adjoint, i.e. the formation of the ‘mathematical adjoint’ transpose matrices of the forward problem,
as well as the accommodation of the data structures necessary to provide access to the forward
solution when time marching backwards in the gradient calculation. Similar approaches may be
applied to reduced-order models such as proper orthogonal decomposition (POD) surrogates of
full models.

The colouring approach, as shown here, can also be used to help accelerate the matrix
equation assembly process on the assumption that the discretized system of equations has a
polynomial representation and can thus be formed by a summation of pre-formed matrices.
These matrices are formed before time marking or the non-linear iterations are begun and
thus provides very rapid forward model assembly. They also enable differentiation to be easily
performed, but again on the assumption that the discretized system of equations has a polynomial
representation.

The remainder of this paper is set out as follows. The next section outlines the model governing
equations followed by their discretization. Section 4 provides a description of how discrete system
assembly may be performed using graph colouring methods. This is then followed by the extension
to reduced-order POD models and the extension of the method to non-quadratic discrete systems of
equations. In Section 5, the gradient of the discrete system (ISP-Adjoint) method is outlined and this
is followed by an summary of the algorithm for forming the gradient based on the ISP-Adjoint. The
method is applied to two problems: the Burgers’ equation and the Navier–Stokes equations applied
to ocean gyre circulation in Section 7 followed by discussion. Finally, conclusions are drawn.

2. GOVERNING EQUATIONS

Two systems of partial differential equations used to illustrate the application of the method are
the Burgers’ equation and the Navier–Stokes equations.
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The one-dimensional (1D) Burgers’ equation is defined as

�u
�t

+u
�u
�x

−�
�2u
�x2

=0. (1)

where u is the velocity, x is the spatial coordinate, t is the time coordinate and � is the viscosity
coefficient.

The 3D Navier–Stokes continuity and momentum equations are considered in the form

∇ ·v=0, (2)

�u
�t

=−u·∇u− f k×u+∇ ·s−∇ p+su, (3)

where u=(ux ,uy,uz)T is the velocity vector, x=(x, y, z)T are the orthogonal Cartesian coordi-
nates, p̂ is the perturbation pressure (p= p′/�0, �0 is a constant reference density), su contains
the body forces (wind stressed in the applications), f represents the Coriolis inertial force and
k=(0,0,1)T. The stress tensor s is used to represent viscous terms and are expressed in tensor
form. The pressure variable is split into geostrophic and non-geostrophic parts that are solved
separately. This allows for the accurate representation of geostrophic balance (for further details
see [34]).

3. DISCRETE EQUATIONS

The discrete forward model representation of the governing equations above can be expressed in
matrix form

A�=s, (4)

where �=(�1T �2T . . . �Nt
T
)T is the vector of state variables, s=(s1

T
s2

T
. . . sNt

T
)T, A

is the global matrix making up the discretization in the forward model at all the time levels
where Nt is the number of time levels. At each time level n, the state and source vectors are
�n =(�n

1 �n
2 . . . �n

N)T and sn =(sn1 sn2 . . . snN)T, respectively, in which �n
i and sni are scalars. In

addition,N is the number of unknowns solved for at each time level and for steady-state problems
Nt =1.

For the two-level time marching methods used here, the global matrix A has the structure

A=

⎛⎜⎜⎜⎜⎜⎜⎝
P1

H2 P2

. . .
. . .

HNt PNt

⎞⎟⎟⎟⎟⎟⎟⎠ . (5)

3.1. Burgers’ equation

A backward Euler time stepping method at time level n and centered on control volume (CV) i
for the Burgers’ equation (1) can result in the following schemes (ui is an approximation to u in
CV i):

1. With central differencing in space

un+1
i −uni

�t
+uni

un+1
i+1 −un+1

i−1

2�x
+�

−un+1
i+1 +2un+1

i −un+1
i−1

(�x)2
=0; (6)
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2. With first-order upwind discretization in space:

un+1
i −uni

�t
−max

(
0,

1

2�x
(uni +uni−1)

)
un+1
i−1 −min

(
0,

1

2�x
(uni +uni−1)

)
un+1
i

+max

(
0,

1

2�x
(uni+1+uni )

)
un+1
i +min

(
0,

1

2�x
(uni+1+uni )

)
un+1
i+1

−uni+1−uni−1

2�x
un+1
i +�

−un+1
i+1 +2un+1

i −un+1
i−1

(�x)2
=0, (7)

3. With high-resolution discretization in space:

un+1
i −uni

�t
−uni−1/2(�

n
i−1/2u

n+1
i−1 +(1−�ni−1/2)u

n+1
i )+uni+1/2(�

n
i+1/2u

n+1
i +(1−�ni+1/2)u

n+1
i+1 )

−uni+1−uni−1

2�x
un+1
i +�

−un+1
i+1 +2un+1

i −un+1
i−1

(�x)2
=0, (8)

in which �x is the size of the CV’s.
To determine in the high-resolution method where to apply first-order instead of high-order

fluxes, there is a need to be able to detect an extrema and if there is to be a smooth transition
between the two fluxes then there is a need to quantify how close to an extrema the solution
is. This is achieved here using the normalized variable diagram NVD method [35]. Suppose unu ,
unc , u

n
d are ordered consecutively and unf is the face value between CV’s c and d . If f = i−1/2

and unf >0 then subscripts u= i−2, c= i−1, d= i and if unf <0 then subscripts u= i+1, c= i ,

d= i−1 and uni−1/2= 1
2 (u

n
i−1+uni ). For a monotonic solution,

un
f = unf −unu

und −unu
∈[0,1], (9)

which is the non-dimensional high-order face value. The non-dimensional upwind face value is

un
c = unc −unu

und −unu
. (10)

The idea is to obtain a linear combination ũn
f of un

f and un
c such that ũn

f equals un
c when there

exists an extrema (un
c /∈[0,1] and the scheme becomes first order) and ũn

f moves smoothly between
this and the high-order flux un

f . ũ
n
f is calculated from

ũn
f = ũnf −unu

und −unu
. (11)

The flux limited solution is

ũnf = ũn
f (u

n
d −unu)+unu . (12)

ũn
f in this equation is calculated from the normalized variable diagram, that is

ũn
f =

{
min{1,2un

c ,max{un
c ,u

n
f }} if un

c ∈(0,1);
un
c otherwise.

(13)
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Thus, at an extrema the first-order non-oscillatory method will be applied:

�nf =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

2

(
1− ũnf −unc

unf −unc

)
+ 1

2
if unf >0;

1−
(
1

2

(
1− ũnf −unc

unf −unc

)
+ 1

2

)
otherwise.

3.2. Navier–Stokes equations

The variables (ux ,uy,uz, p) at time level n are approximated with a finite element representation:

unx =
Nu∑
j=1

N jux
n
j , uny =

Nu∑
j=1

N juy
n
j , unz =

Nu∑
j=1

N juz
n
j , pn =

M∑
j=1

Mj p
n
j , (14)

where N j and Mj are finite element basis functions associated with velocity and pressure, respec-
tively, and with corresponding number of basis functions Nu and M. The discrete model for
incompressible fluids’ (Equations (2) and (3)) calculations can be written for finite element methods
as explained in [34] as

Cn+1Tun+1=0, (15)

En+1un+1=Bn+1un+Cn+1pn+1+sn+1, (16)

where n is the time level and s includes the discretized sources, initial and boundary conditions
and body forces. The vector of velocities is defined as

un =(unx
T
,uny

T
,unz

T
)T,

with sub-vectors associated with the velocity components,

unx =(ux
n
1,ux

n
2, . . . ,ux

n
Nu

)T,

uny =(uy
n
1,uy

n
2, . . . ,uy

n
Nu

)T,

unz =(uz
n
1,uz

n
2, . . . ,uz

n
Nu

)T,

where all subscripts indicate nodal values of the associated variables. The pressure vector is

pn+1=(pn+1
1 , pn+1

2 , . . . , pn+1
M )T.

The matrices En+1 and Bn+1 are non-linear in u and Cn+1 is the matrix associated with the
pressure vector.

For the Navier–Stokes discrete equations (15) and (16), the vector of state variables at time
level n is �n =(unT,pnT)T. Given the structure of matrix A Equation (5) the matrix that is solved
at time level n typically has a structure that is a block matrix representation of the discrete
system (15):

Pn =
(

En Cn

CnT 0

)
(17)

and

Hn =
(
Bn 0

0 0

)
. (18)
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4. DISCRETE SYSTEM ASSEMBLY USING GRAPH COLOURING METHODS

This section provides a description of how discrete system assembly can be performed using
graph colouring methods for a discrete polynomial system (polynomial in the state variables). The
matrices associated with the non-linear terms can be expressed by a set of sub-matrices. For time-
dependent problems these sub-matrices are time-independent and can be easily differentiated to
form adjoint systems of equations (this will be discussed in the following section). This approach
is also extended to POD reduced-order modelling and in this case the number of POD bases is
equal to the number of colors used in the graph colouring method.

4.1. Graph colouring

Graph colouring methods are commonly used to model the dependency between different subtasks
or data. Here we define the graph Gr =(Vg,Eg), where the vertex set, Vg, are the nodes or cells
of the finite element or CV mesh (i.e. the rows of a discretization matrix), and the edge set, Eg,
is defined by the connectivity under a given stencil, see below. The chromatic number, �(Gr ), is
bounded by

�(Gr )��(Gr )��(Gr )+1,

where �(Gr ) is the clique number and �(Gr ) is the maximum vertex degree [36]. �(Gr ) is the
minimum number of colors necessary to color a graph. However, the number of colors obtained
by a colouring algorithm Nc might be greater than this minimum.

When forming non-linear discretizations like
∫
� NiqN j d�, for some q=∑Q

k=1 Qkqk and
domain �, it is important to look at the independent sets of basis functions Qk used in∫
� Ni QkN j d� for any nodes i and j . Qk (1�k�Q, Q is the number of basis functions Qk) is
the finite basis function of a variable q . That is for the i th row and j th column of the matrix
associated with

∫
� Ni QkN j d� no two basis functions Qk of the same color contribute a non-zero

value to this row and column. The colouring scheme (dependence) is shown in Figure 1. In
practice for a node-wise Qk shown in Figure 1(b), the graph associated with the non-zeros of the
matrix MTM (for example, the linear matrix that has the element of Mi, j =

∫
� Ni N j d� for nodes

i and j) can be colored to achieve the required independent sets of
∫
� Ni QkN j d�. This is also

known as a distance-2 colouring of the sparsity pattern of matrix M [22]. A typical colouring is
also shown in Figure 1(b). Thus depending on the form of Qk , the matrix stencil and the vertex
degree of the graph will vary. This would be the case for a material property or non-linearity
that would be expanded as q=∑Q

k=1 qkQk where q=(q1,q2, . . . ,qQ)T. For the case where Qk is
constant throughout an element (element-wise) and for the case when Qk has a bi-linear node-wise
variation, the colouring needs to be chosen as shown in Figures 1(a) and (b), respectively.
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Figure 1. Extended colouring for material properties and non-linearities. Left: graph colouring
scheme for an element-wise material property or non-linearity. Four colors are needed for 2D
linear quadrilateral elements. Middle: graph colouring scheme for a node-wise material property
or non-linearity. Nine colors are needed for 2D linear quadrilateral elements with a distance-2
colouring. Right: for the case shown in (b), the dotted line indicates the nodes that are directly
linked to both nodes 1 and 2. These are the nodes for which there needs to be an independent

set and they must be colored with a different number than 1 and 2.
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4.2. Matrix representation of non-linear discrete systems

For a non-linearity with a polynomial representation in the discrete system (e.g. the Navier–Stokes
equations discretized with a continuous Bubnov Galerkin method), the matrix equations can be
formed from a summation of matrices. For illustration, the following are considered here: quadratic
discrete systems, high-order polynomial discrete systems and non-polynomial systems.

4.2.1. Quadratic discrete systems. As discussed above, an example of a quadratic non-linearity in
the can be written in a matrix of the form

Qq i j =
∫

�
NiqN j d�, (19)

where q is a variable, for example, the velocity. The application to other finite element matrices,
such as those formed from inertia or advection terms of the form

∫
� Niunx�N j/�x d�, follows

along similar lines, in which q=unx . The matrix Qq
c
i j in the colouring scheme can be expressed as

Qq
c
i j =

∫
�
Nib

cN j d�, (20)

where

bc=
Q∑

k=1
Qkb

c
k, bck =

{
1 if node k is of colour c,

0 at other nodes.
(21)

Applying the same approach as outlined here for matrix Q to matrices En+1 and Bn+1 in
Equation (16) means that the methods outlined here to efficiently construct the matrix Q may also
be applied to form the matrices En+1 and Bn+1. The matrix Q can be constructed by a set of
sub-matrices using graph colouring,

Qq i j =
Nc∑
c=1

Qc
q i j

qci j =Qq i j +
Nc∑
c=1

Qc
q i j

(qci j − q̄ci j ), (22)

where qci j is the value of q at a node of color c neighboring both nodes i and j (see Figure 1(c)),
Nc is the number of colors. Nc is four for 2D linear element cases, see Figure 1(b). This graph
is colored with nine colors, which are needed to form the independent sets in this work and form a
distance-2 colouring. Note that it is useful to write the matrix (22) as a perturbation from a mean
matrix Qq i j =

∫
� Ni q̄N j d�=∑Nc

c=1Q
c
q i j

q̄ci j in order to linearize about a solution q̄=∑Q
k=1 Qkq̄k ,

e.g. the mean of q or the most recently available value of q .
For a quadratic discrete model like a finite element Bubnov–Galerkin discretization of the

Navier–Stokes equations [37], the matrices Qq , Q
c
q are time-independent. In practice, the matrices

En+1 and Bn+1 in Equation (16) would need to be formed in this way. The matrices Qq , Q
c
q can

be constructed by sending down different values of the non-linear terms into the matrix assembly
routines.

4.2.2. High-order polynomial discrete systems. For a high-order discrete model, e.g. cubic discrete
model, the matrix Quq can be written as

Qrq i j =
∫

�
NirqN j d�, (23)

where the velocity q=∑Q
k=1 Qkqk . The above is repeated but assuming a specified r . That is the

matrix Qr is formed using the colouring method of the previous section applied to Qq . Then the
same method is applied to this matrix as outlined previously to form the Qrq . Thus

Qrq i j =Qrq i j +
Nc∑
c=1

Qc
rq i j

(qci j − q̄ci j ), (24)
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where

Qrq
c
i j =

∫
�
Nirb

cN j d�, Qrq
c
i j =

∫
�
Nirq̄N j d�. (25)

4.2.3. Non-polynomial systems. The extension to non-polynomial discrete systems, which may
be obtained for certain discretization methods (e.g. upwind methods, discontinuous Galerkin, flux
limiting methods, or model parameterizations such as large eddy simulation (LES) methods), is
realized by linearizing the system about q̄ say, if q is the non-linear variable. The linearization
realized through q̄ may have to be re-performed often throughout a time-dependent simulation in
order to achieve accuracy. Thus, the matrices may be formed by a summation of matrices. This
makes the matrices easy to differentiate and fast to assemble, but it involves an approximation.
A similar approach may also be applied to reduced-order models to help in the rapid assembly of
their equations as described below.

4.3. Discrete system of reduced-order model equations

The aim behind reduced-order models is to find a relatively small number of basis functions (few
relative to the full model) that can accurately represent the system dynamics. These basis functions
are often obtained from the full forward model results by applying a singular value decomposition
analysis to a number of snapshots of the forward solution to determine the most energetic modes
of the system and in this way optimally obtain basis functions. This is the approach taken in POD
to obtain the basis functions, see [38]. In this section, the matrices are generated by a summation
of matrices similar to the colouring method used above for the finite element equations.

For the Navier–Stokes model for example, once the reduced-order basis functions are
obtained the velocity variables u can be expressed as an expansion of the POD basis functions
{�ux 1, . . . ,�uxPu

}, {�uy 1, . . . ,�uyPu
} and {�uz 1, . . . ,�uzPu

} (here Pu is the number of POD
bases for velocity): ⎛⎜⎝

ux (t, x, y, z)

uy(t, x, y, z)

uz(t, x, y, z)

⎞⎟⎠=
⎛⎜⎝
ūx

ū y

ūz

⎞⎟⎠+
Pu∑
k=1

NWu
k (x)au k(t), (26)

and pressure is decomposed into p= png+ pg in which png, pg are the non-geostrophic and
geostrophic pressures (see [38] for details associated with pg) and the POD basis functions
{�p1, . . . ,�pPp } (here Pp is the number of POD bases) for non-geostrophic pressure are used to
obtain

png(t, x, y, z)= p̄ng+
Pp∑
k=1

�p k(x)ap k(t), (27)

whereas the geostrophic pressure can be represented by a summation of the two sets of geostrophic
basis functions �gux k and �guy k , which are obtained by �ux k and �uy k

[38]:

pg(t, x, y, z)= p̄g+
Pu∑
k=1

�gux k(x)aux k(t)+
Pu∑
k=1

�guy k(x)auy k(t), (28)

where au k =(aux k,auy k,auz k)
T and ap k are the coefficients to be determined for velocity

(ux ,uy,uz)T and p, respectively, p̄ng, p̄g and (ūx , ū y, ūz)T are the means of the ensemble of

snapshots for the variables png, pg and (ux ,uy,uz)T, respectively, N
Wu
k is a diagonal matrix

including the POD basis for the velocity variable (ux ,uy,uz)T, in the finite element method, the

POD basis Wu k(x)=
∑Nu

i=1 NiWu k i and �p k(x)=
∑Nu

i=1 Ni�pk i , where Ni is the basis function
in the finite element and Nu is the number of velocity nodes in the computational domain.
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Substituting Equations (26), (27) and (28) into (2) and (3) and taking the POD basis functions
�p andWu as the test function for (2) and (3), respectively, then integrating over the computational
domain �,

∫
�
Np
l Fp

⎛⎜⎝
⎛⎜⎝
ūx

ū y

ūz

⎞⎟⎠+
Pu∑
k=1

NWu
k (x)au k, p, t,x

⎞⎟⎠d�=0, (29)

∫
�
NWu
l

�
�t

⎛⎜⎝
⎛⎜⎝
ūx

ū y

ūz

⎞⎟⎠+
Pu∑
k=1

NWu
k (x)au k,

⎞⎟⎠d�

=
∫

�
NWu
l Fu

⎛⎜⎝
⎛⎜⎝
ūx

ū y

ūz

⎞⎟⎠+
Pu∑
k=1

NWu
k (x)au k, p, t,x

⎞⎟⎠d�, (30)

where Fp is defined as the left-hand side of (2), whereas Fu is defined as the right-hand side of (3),

Np
l =�pl for the continuity Equation (2) and NWu

l =diag(�ux l ,�uy l
,�uz l) for the Navier–Stokes

equation (3).
The POD reduced-order model is then obtained:

〈
N

�p
l ,∇ ·

⎛⎜⎝
⎛⎜⎝
ūx

ū y

ūz

⎞⎟⎠+
Pu∑
k=1

NWu
k (x)au k(t)

⎞⎟⎠〉=0, (31)

and

�aul(t)
�t

+
〈
NWu
l ,

⎛⎜⎝
⎛⎜⎝
⎛⎜⎝
ūx

ū y

ūz

⎞⎟⎠+
Pu∑
k=1

NWu
k (x)au k(t)

⎞⎟⎠·∇
⎛⎜⎝
⎛⎜⎝
ūx

ū y

ūz

⎞⎟⎠+
Pu∑
k=1

NWu
k au k(t)

⎞⎟⎠
⎞⎟⎠〉

+
〈
NWu
l ,

⎛⎜⎝ f k×
⎛⎜⎝
⎛⎜⎝
ūx

ū y

ūz

⎞⎟⎠+
Pu∑
k=1

NWu
k (x)au k(t)

⎞⎟⎠
⎞⎟⎠〉

+
〈
NWu
l ,

⎛⎜⎝∇ p−�∇2

⎛⎜⎝
⎛⎜⎝
ūx

ū y

ūz

⎞⎟⎠+
Pu∑
k=1

NWu
k (x)au k(t)

⎞⎟⎠
⎞⎟⎠〉=0, (32)

subject to the initial condition

au l(0)=
〈⎛⎜⎜⎝

u0x − ūx

u0y− ū y

u0z − ūz

⎞⎟⎟⎠ ,NWu
l

〉
, (33)

where < ·, ·> is the canonical inner product in the L2 norm, a=(aTu,ap)T, 1�l�Pp for the
continuity equation (2) whereas 1�l�Pu for the momentum equation (3).
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The discrete model of (31) and (32) at the time level n+1 can be written in a general form in
a subspace:

Cn+1T
POD an+1

u =0, (34)

and

En+1
PODa

n+1
u =Bn+1

PODa
n
u+Cn+1

PODa
n+1
p +sn+1

POD, (35)

where En+1
POD, B

n+1
POD (associated with the non-linear term) and Cn+1

POD (associated with the pressure
term) are the matrices including all the discretization of (31) and (32), sn+1

POD is a discretized source
term.

The (k, l)th (here 1�k, l�3Pu) entry of the matrices En+1
POD and Bn+1

POD can be constructed by
the entries of the matrices En+1 and Bn+1 in the full model (16):

En+1
POD kl =

3Nu∑
i=1

3Nu∑
j=1

En+1
i j DWu

k i D
Wu
l j , (36)

Bn+1
POD kl =

3Nu∑
i=1

3Nu∑
j=1

Bn+1
i j DWu

k i D
Wu
l j , (37)

and

sn+1
POD k =

3Nu∑
i=1

sn+1
i DWu

k i , (38)

where En+1
i j and Bn+1

i j are the (i, j)th entry of the matrices En+1 and Bn+1, respectively, which in

the colouring scheme can be formed by summation of matrices (see (22)), sn+1
i is the i th entry of

sn+1, DWu
k i and DWu

l j are the i th and j th entries of the diagonal matrices DWu
k and DWu

l , respectively,

D
Wux
k =diag(Wux k 1, . . . ,Wux kNu

), (39)

D
Wuy
k =diag(Wuy k 1, . . . ,Wuy kNu

), (40)

D
Wuz
k =diag(Wuz k 1, . . . ,Wuz kNu

). (41)

For quadratic discrete systems and a large reduction of the model space, the matrices EPOD and
BPOD are most efficiently formed by a summation of matrices in a manner similar to that used
above to form the finite element equations using a colouring method. However, due to the global
nature of the POD basis functions the number of colors is equal to the number of basis functions.
Thus, splitting them into the mean matrices EsubPOD, BsubPOD and matrices perturbing the system
from these EsubPODx k , BsubPODx k (and similarly for y and z) to obtain:

En+1
POD=EsubPOD+

Pu∑
k=1

EsubPODx kaux
n+1
k +

Pu∑
k=1

EsubPODykau y
n+1
k +

Pu∑
k=1

EsubPODzkauz
n+1
k , (42)

Bn+1
POD=BsubPOD+

Pu∑
k=1

BsubPODx kaux
n+1
k +

Pu∑
k=1

BsubPODykau y
n+1
k +

Pu∑
k=1

BsubPODzkauz
n+1
k . (43)

This decomposition enables any differentiation of these matrices to be easily performed as well
as for the reduced model to be rapidly formed every time step.
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5. A PERTURBATION APPROACH FOR FORMING ADJOINT EQUATIONS

This section forms adjoint equations and differentiates mesh/grid-based finite element, spectral
element, finite volume, finite difference and reduced models. In general, the global matrix A (see
Equation (4)) is a function of the controls m=(m1 m2 . . . mC)T (C is the number of controls)
and state variables � that is A=A(m,�). Differentiating (4) with respect to the control variable
ml , the tangent linear model (TLM) can be expressed as

dA
dml

�+A
d�

dml
= ds

dml
. (44)

The gradient of a cost functional J can be expressed as

dJ

dml
=
(
d�

dml

)T �J
��

. (45)

The TLM (44) can be re-expressed as

A
d�

dml
=− dA

dml
�+ ds

dml
. (46)

In addition, it will be convenient to use

�s
�ml

= ds
dml

, (47)

and

dA
dml

�= �A
�ml

�+G
d�

dml
, (48)

in which G=(g1,g2, . . . ,gN) where gk =(�A/��k)�. Also

dA
dml

�= �A
�ml

�+
N∑
k=1

�A
��k

�
d�k

dml
, (49)

where

N∑
k=1

�A
��k

�
d�k

dml
=

N∑
k=1

gk
d�k

dml
=G

d�

dml
. (50)

Therefore, the perturbation of the state variables with respective to the controls can be
calculated as (

d�

dml

)T

=
(

− �A
�ml

�+ �s
�ml

)T

(A+G)−T. (51)

Substituting (51) into (45) yields

dJ

dml
=
(

− �A
�ml

�+ �s
�ml

)T

(A+G)−T �J
��

. (52)

Defining (A+G)−T�J/��=�∗, the adjoint model is

(A+G)T�∗ = �J
��

. (53)

The gradient of the cost function can, therefore, be calculated using

dJ

dml
=
(

− �A
�ml

�+ �s
�ml

)T

�∗. (54)
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Notice that the differentiation of the matrixA is achieved in a particularly simply way if the matrices
are formed for a polynomial system as described in the previous section. Thus for a quadratic
system, since the matrix A can be represented in the same way as matrix Qrq in Equation (24),

�Ai j

�ml
=Ac

uq i j
bcli j , (55)

in which cl is the color of node l and bcli j =1 if nodes i and j are neighbors to node l; otherwise,

bcli j =0, see Figure 1—far right. The equality becomes an approximation when the discrete matrix
A has been approximated by a polynomial system. However, even for more complex problems
the colouring approach can still be used to simplify the differentiation as described in the next
sections.

5.1. Independent Set Perturbation Adjoint (ISP-Adjoint)

The terms (�A/�ml)�, �s/�ml in Equation (54) can be determined by hand or AD in the traditional
approach to forming discrete or exact gradients of the functional of interest, J . An alternative
method for calculating the gradient is to apply a small perturbation, �ml , to each of the controls
ml (see Hoffman [39]—one of the first works to form Jacobian’s using perturbations). In vector
form the perturbation is a vector of length C with only non-zero at the lth entry, i.e. Dml =
(0, . . . ,0,�ml ,0, . . . ,0)T. Using this approach the gradients, for small perturbations, are formed
using the following approximations:

�A
�ml

�≈ A(m+Dml ,�)−A(m,�)

�ml
�= A(m+Dml ,�)�−A(m,�)�

�ml
, (56)

�s
�ml

≈ s(m+Dml)−s(m)

�ml
. (57)

Combining these, the key gradient in (54) can be determined:

− �A
�ml

�+ �s
�ml

≈ (−A(m+Dml ,�)�+s(m+Dml))−(−A(m,�)�+s(m))

�ml
. (58)

Moreover, perturbations of a number of variables ml at a given time can be taken without affecting
the gradients. However, these must form an independent set of variables, i.e. one variable perturba-
tion should not affect the results of perturbing any other variable. This can be done for the source
s and for the matrix A. In fact, the matrix need not be formed as what is required is matrix vector
multiplication:

A(m+Dml)−A(m)

�ml
�.

One can use a higher-order Taylor series expansion than first order to form approximations to

− �A
�ml

�+ �s
�ml

,

from perturbations in ml , but this requires more computational effort. However, as long as �ml
is small enough (ignoring round off errors) it will be accurate enough. A good example is the
use of (A(m+Dml ,�)−A(m−Dml ,�))/(2�ml), which will exactly represent a quadratic A. It
should be noted that for quadratic equations (e.g. Burgers’ and the Navier–Stokes equation) and
with quadratic discretizations, arbitrary large �ml can be taken as the results are independent of
the size of �ml as A and s are linear in m.

The r.h.s of the adjoint equation (53) can be formed algebraically (if it has a simple form as
it does in the examples presented here) or using the same perturbation approach that is used to
differentiate the source, Equation (57). This would enable covariance matrices to be incorporated
into the functional J in data assimilation for example.
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The final aspect of the ISP-Adjoint method is the calculation of the matrix G used in the adjoint
calculation, which is again formed using the independent set colouring approach. Suppose the
perturbation vector is D�k =(0, . . . ,0,��k,0, . . . ,0)

T for a perturbation ��k of the kth entry in
�, then the kth column of G is

gk = �A
��k

�≈ A(m,�+D�k)−A(m,�)

��k
, �= A(m,�+D�k)�−A(m,�)�

��k
. (59)

Notice that this equation has similar form to (56) and thus the same algorithm, and therefore same
source code may be used to evaluate both. Suppose all perturbations are equal to ��k =	, then

G= 1

	
(G′−G), (60)

where G=(A�,A�, . . . ,A�) and G′ =(g′
1,g

′
2, . . . ,g

′
N·Nt

) with

g′
k =A(m,�+D�k)�. (61)

In an implementation of the formation of the matrix G, one needs to perform matrix vector
multiplications involving Nc vectors. Thus, the entire matrix G′ can be stored within Nc vectors
of length N·Nt .

Increasing the efficiency of the implementation of the ISP-Adjoint method can be achieved by
taking one or more of the following steps:

• Using a discretization or assembly subroutine that does not form the matrices but simply
performs matrix vector multiplication while assembling the equations.

• Enabling this subroutine to perform a matrix vector multiplication with a number of solution
perturbations simultaneously; thus, to form G for finite element discretizations one only needs
to integrate across each element once.

• Reducing the number of independent sets or colors by introducing more variables in the
solution �. For example, by severing the link between elements in continuous (C1 continuity)
finite element discretizations and perturbing this new system. We refer to this method as the
Reduced ISP-Adjoint or RISP-Adjoint, which, to round off error, produces identical results
to the ISP-Adjoint method. Moreover, a general finite element code, for example, requires no
modification to the assembly subroutines since a different linked list for the global solution
variables associated with each element is passed to the se subroutines.

• Performing the matrix vector multiplication GT�∗ without storing matrix GT.

5.2. Time dependence and non-linear iteration

The last point in the efficiency list above can be realized because in time marching methods,
typically all of the adjoint solution operates in a lower block structure in which each block is
associated with a solution variable at a particular time step. This means that one can solve the
adjoint equations by marching backwards in time and the matrixG has zeros on the block diagonals
of the matrix. Thus, matrix vector multiplication, GT�∗, can be placed on the r.h.s of the matrix
solution for the adjoint in Equation (53). In this case, the matrix GT need not be formed and the
matrix vector multiplication GT�∗ involving G′T�∗ can be made highly efficient for the kth row
using

(G′T�∗)k =g
′T
k �∗ =�∗T(A(m,�D�k)�). (62)
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The structure of the matrix G in time for the two-level time marching methods is of the general
form:

G=

⎛⎜⎜⎜⎜⎜⎜⎝
L1

K2 L2

. . .
. . .

KNt LNt

⎞⎟⎟⎟⎟⎟⎟⎠ . (63)

If, instead of linearizing the previous time level value of the solution, one has to iterate to
convergence within a time step in order to calculate the non-linear terms at the future time level then
the matrices Ln appearing on the block diagonal of the system of equations occupying the same
place as Pn in the system of adjoint equations would be non-zero. The use of these submatrices Ln

on the block diagonal of G distinguishes the current approach from that described in [40, 41] for
steady-state problems in which a second-order perturbation approach to forming adjoint equations,
similar to that used here, is applied using a novel complex variable formulation. Within [40, 41]
they maintain the explicit off block diagonal nature of the Gn matrices (that is Ln =0), which
means that the adjoint solution has to follow backwards the non-linear iteration trajectory through
the iterative process, which is expensive in terms of memory and computation. Placing non-zero
Ln matrices on the block diagonals of G means that for steady-state problems, in which non-linear
convergence has been achieved, a single linear steady-state adjoint solution is all that is required to
form the sensitivities. A second aspect that distinguishes the current approach from that of [40, 41]
as well as others is that colouring is not applied to the full sparse Jacobian (A+G)T but only to
G. G may have a smaller stencil than (A+G)T and therefore needs fewer or equal number of
colors than (A+G)T, which can improve the computational efficiency. For example, the central
difference scheme (Equation 6) has matrices Pn (used to form matrix A) with three non-zeros per
row, yet Kn (used to form G) only has one non-zero per row.

5.3. Simultaneously performing perturbations using graph-colouring methods

In practice, the perturbations associated with each node or variable k say are grouped in terms of
colors and in this way a number of these matrix vector multiplications in (62) can be calculated
concurrently, i.e. form the dot product of ĝ′

c with the part of �∗ associated with node k and form
(G′T�∗)k for each row k and for colour c in which ĝ′

c=∑k∈colour c g
′
k .

The sparse Jacobian matrix �(A�−s)/��=(A+G)T can be efficiently computed using graph
or matrix colouring. Since the matrix A is known, the remaining part of this is the formation of
the matrix G (Equation 48) and in particular the formation of the part of G associated with a given
time level n say, i.e. Kn (similar issues will apply to Ln if it is no-zero). Once the Kn sparsity
pattern is determined, Kn and therefore G and the sparse Jacobian can be computed efficiently.
Curtis et al. [42] were the first to observe that an orthogonal partition of a Jacobian matrix partition
of its columns in which no two columns in a group share a non-zero at the same row index could
be used to efficiently determine sparse Jacobian matrices. An orthogonal partition of a Jacobian
(or Kn in this case) can be represented as a distance-2 coloring of the graph representation of
the structure of the matrix Kn . Two column vertices that receive the same color in a distance-2
colouring are at a distance greater than two edges from each other (in the graph associated with
Kn) and hence are orthogonal. Thus, a distance-2 colouring is a partitioning of the columns of the
matrix Kn into groups of orthogonal columns.

As an example of the structure of the matrix Kn for a single time step, the sparsity and
corresponding graphs for three cases each with five CV cells are shown in Figure 2. These are
used by the three schemes that solve Burgers’ equation in the applications section. Figure 2 shows
from top to bottom the three cases:

(1) A diagonal Kn matrix (part of the Jacobian matrix) of order 5. The corresponding graph
has just vertices (cells) ordered 1 to 5 in 1D with no edges between the vertices although
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Figure 2. Sparse part of Jacobian matrices Kn (left panel, X represents the non-zeros in the matrices) and
their corresponding bi-partite (middle) and bi-directional (right) graphs. Top panel: a diagonal Kn matrix
is used to determine the sparse Jacobian matrix where one colour is used: rows 1–4 are assigned the first
colour; middle panel: a Kn matrix with 3 non-zeros per row where three colors are used: rows 1 and 4
are assigned the first colour, rows 2 and 5 are assigned the second colour and row 3 is assigned the third
colour; bottom panel: a Kn matrix with 5 non-zeros per row where five colors are used: rows 1, 2, 3, 4

and 5 are assigned one, two, three, four and five colors, respectively.

each vertex is connected to itself (the loop connecting a vertex to itself is not shown in the
graph for simplicity).

(2) A Kn matrix with three non-zeros per row. The graph has links between the cells so that
cell i is linked to i−1, itself and i+1.

(3) A Kn matrix with five non-zeros per row. The graph has links between the cells so that cell
i is linked to i−2, i−1, itself and i+1, i+2.

The pictures in Figure 2 of the matrix structures use ‘X’ to mark the potentially non-zeros in
the Kn matrices for the three cases. The graphs have a series of five vertices along a line and
have lines (graph edges) below these linking the vertices. Also a line or edge linking each vertex
(representing a CV cell and shown on the right) shows the non-zeros in the matrices (on the left).
For completeness the bi-partite graph is also shown between bi-directional graph, on the right,
and the matrix structure, on the left. It is worth noting that some colouring methods, like the
mean field theorem neural network method of obtaining an optimal colouring [43], use matrix
vector multiplication as the central part of the approach. This means that matrix equation solver
technology (often readily available in FEM and CV codes) may be used to extract parallelization
as well as efficiency of the colouring code.
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6. SUMMARY OF THE ALGORITHM FOR FORMING THE GRADIENT
BASED ON THE ISP-ADJOINT

• Solve Equation (4) for the forward solution �;
• Determine the two vectors A(m)� and s(m);
• Form the vectors A(�,m+Dml)� and s(m+Dml) for all variables l with colour c simulta-
neously, and repeat ∀c such that 1�c�Nc;

• Form the vectors A(�+D�l ,m)� for all variables l with colour c simultaneously, and repeat
∀c such that 1�c�Nc;

• Form the matrix G in Equation (59) from the vectors calculated in the previous step;
• Solve adjoint equations (53): (A+G)T�∗ =�J/�� for the adjoint �∗;
• Determine the gradient using Equation (51).

7. ISP-ADJOINT APPLIED TO BURGERS’ EQUATION

For the solution of the Burgers’ equation, the global matrix A (see Equation 4) has the structure
with the number of time level Nt =3:

A=

⎛⎜⎜⎜⎝
P1 0 0

− 1

�t
I P2 0

0 − 1

�t
I P3

⎞⎟⎟⎟⎠ , (64)

whereas the matrix Pn at time level n (here, the number of nodes N=11) is

Pn =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Pn
1 1 Pn

1 2
Pn
2 1 Pn

2 2 Pn
2 3

. . .
. . .

. . .

Pn
i i−1 Pn

i i Pn
i i+1

. . .
. . .

. . .

Pn
10 9 Pn

10 10 Pn
10 11

Pn
11 10 Pn

11 11

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (65)

Using the upwind scheme (7) as an example, the matrix contributions are

Pn
i i−1 = −max

(
0,

1

2�x
(uni +uni−1)

)
−�

1

(�x)2
,

Pn
i i = 1

�t
+max

(
0,

1

2�x
(uni+1+uni )

)
−min

(
0,

1

2�x
(uni+1+uni )

)

−uni+1−uni−1

2�x
+2�

1

(�x)2
,

Pn
i i+1 = min

(
0,

1

2�x
(uni+1+uni )

)
−�

1

(�x)2
.

(66)

The matrix G used in the adjoint calculation has the structure

G=
⎛⎝ 0 0 0
K2 0 0
0 K3 0

⎞⎠ (67)
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Thus, the matrix equation (53) can be solved by time marching backwards. For all the discretiza-
tion of Burgers’ equation, Kn is sparse with potentially non-zero values of Kn

i i−2,K
n
i i−1,K

n
i i ,

Kn
i i+1,K

n
i i+2 taken from the coefficients of uni−2, u

n
i−1, u

n
i , u

n
i+1, u

n
i+2, respectively, of the advec-

tion terms in Equations (6), (7) and (8). The central and upwind discretizations in addition have
only the diagonal Kn

ii and tri-diagonals Kn
i i−1,K

n
i i , K

n
i i+1 being potentially non-zero, respectively.

Moreover, the point of the ISP-Adjoint method is that the Kn are formed using a perturba-
tion and colouring method.

The upwind difference scheme (7) has a lower bi-diagonal matrices Kn for positive advection
that is when uni+1/2>0 (assuming the cells are ordered consecutively from left to right) and two
colors (Nc=2) are needed to form the matrices Kn . When there is a mixed sign , the matrix has
a bandwidth of three with a maximum of three non-zeros per row and in this case three colors
(Nc=3) are needed. Owing to the use of the far field upwind values in the flux limiting calculation
of the high-resolution method (8), its matrices Kn have a bandwidth of five with five non-zeros
per row and thus five colors (Nc=5) are necessary and are used here to form the matrices Kn .

The problem solved here has a unit 1D domain and zero boundary conditions at both ends
and space and time steps of �t=0.01, �x=0.1 (11 cells) and a functional J = 1

2�x
∑N

i=1(u
Nt
i )2

whose sensitivity with respect to the initial conditions (u0j =exp(−(x j −0.5)2/0.12) for all CV
center positions x j ∈[0,1], see Figure 3(a)) is sought and x is the 1D spatial variable. The number
of time steps for the 11 cell mesh is Nt =50. As with all calculations presented in this paper,
they are performed in double precision unless otherwise stated. The value of �u=10−6 is used in
the ISP-Adjoint sensitivity calculation. There is also a fine mesh with 100 cells and �t=0.001,
�x=0.01,Nt =500. The initial and final solutions at the final time level are shown in Figures 3(a)
and (b) along with the adjoint at the start of time n=1 in Figure 3(c) and the sensitivity �J/�u0i
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Figure 3. Burgers’ equation solution. Top-left: initial conditions for a coarse (11 cells) and fine (101 cells)
mesh. Top-right: the forward solution at the end of time t=0.5 and for the central difference method, the
upwind method and the high-resolution methods along with a fine mesh high-resolution result. Bottom-left:

corresponding adjoint and bottom-right: sensitivities for the four simulations shown in top-right.
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Figure 4. The normalized maximum error in the sensitivity for the coarse mesh calculation against
varying �u in the ISP-Adjoint calculation. The error is normalized with the maximum magni-
tude of the sensitivity/gradient and the error is determined for both single and double precision.
The central scheme has an exact gradient (ignoring round off error) and thus its minimum value
yields the best error achievable using single precision. Also shown are the normalized errors in the
high-resolution gradients for single and double precisions when a second-order finite difference method
is used—that is (A(m+�ml)−A(m−�ml))/(2�ml), (A(m+��k)−A(m−��k))/(2��k) instead of

(A(m+�ml)−A(m))/�ml , (A(m+��k)−A(m))/��k .

in Figure 3(d). The adjoint solution advects from its source,

�J

�uNt
i

=�xuNt
i ,

(which mirrors the forward solution at adjoint time level Nt ) backwards through the domain. This
propagates the kinetic energy information at the final time level to the initial conditions where the
importance of the initial conditions contribution to J can be determined.

It should be noted that the accuracy of the sensitivity/gradient is such that no difference
can be observed visually between the exact gradient (obtained by taking perturbations of the
individual variables in the initial conditions with a perturbation of 10−10) and the gradients shown
in Figure 3(d). The maximum error in the sensitivity �J/�u0i , which is normalized by the maximum
value of �J/�u0k,∀k, is shown for the high-resolution method versus the perturbation �u used in
the ISP-Adjoint calculation in Figure 4. The sensitivity calculated by the ISP-Adjoint becomes
more accurate as �u is reduced until it gets to the point where round off error interferes with its
accuracy and its rate of decrease slows and eventually the error starts to increase. It should be borne
in mind that due to the highly non-linear nature of the high-resolution method, the matrix A is not
linear in un ∀n and thus the perturbation used in the ISP-Adjoint calculation is an approximation.
The central difference method (6) has a linear A in un ∀n and thus the ISP-Adjoint is exact to
computer round off error. In addition, the first-order upwind scheme in (7) is ‘mostly’ exact. It
is only non-exact and non-linear when a face value of the advection velocity (used to advect the
velocity un+1) switches sign on application of the perturbation �u, which is not very likely to
happen at least for small �u relative to the size of u. In addition, when it does happen the advection
velocity will be small and will thus contribute little to the gradient calculation.

The accuracy of the adjoint code can be ascertained through a gradient test [44], where the
quantity w(
) is calculated and it is verified that it satisfies w(
)=1+O(
). The quantity w is
defined as

w(a)= J (u0+ah)− J (u0)
ahT∇ J (u0)

, (68)
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Figure 5. The accuracy of the adjoint model. Left: first-order unwinding; right: flux limiting. Equation (68):
w(a)=(J (u0+ah)− J (u0))/ahT∇ J (u0) (here h=∇ J/‖∇ J‖2) is used. The cost function J is defined

as the kinematic energy at t=0.5 and the control variables are the initial velocities u0.

where the cost function J = 1
2�x

∑N
i=1(u

Nt
i )2, ∇ J (u0)=�J (u0)/�u0 and h is an arbitrary vector

of unit length (here h=∇ J/‖∇ J‖2). The vector u0=(u01,u
0
2, . . . ,u

0
N)T of initial CV values of

velocity represents the control variables. Here, the initial velocity u0=∑N
j=1 Mju0j with basis

function Mj unity in j and zero elsewhere. For values of a that are small, but not too close
to the machine zero, it is expected that w(a) should be close to unity. To quantify the gradient
accuracy, Figure 5 shows the variation of the function w with respect to a. It can be seen that,
as required, the function w(a) is close to unity when a varies between 10−3 and 10−12. Notice
that the gradient of the first-order upwind scheme seems independent of the perturbation, which
is because it is ‘mostly’ independent of the size of the perturbation �u. This property may also
be shared with other schemes that have a switch in the discretization depending on if information
is going into or out of a cell or element, e.g. Discontinuous Galerkin methods, see [45]. It can
thus be concluded, at least for this model problem set-up, that the adjoint model developed here
is correct and accurate.

8. ISP-ADJOINT APPLIED TO THE MUNK GYRE

The approach for sensitivity analysis is applied to an idealized ocean gyre problem discretized
with a reduced-order model. The sensitivity of the kinetic energy at the end of the simulation with
respect to the initial conditions will be sought. Although this is a relatively easily differentiated
problem because the discrete system of reduced equations is quadratic and the matrices that change
every time step are given by Equations (42) and (43), it does demonstrate how easily applied the
ISP-Adjoint algorithm is.

8.1. Discrete adjoint model

For the Navier–Stokes equations, the adjoint model of (4) is written as

(AT+GT)U∗ =

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
P1T H2T

P2T . . .

. . . HNt
T

PNt
T

⎞⎟⎟⎟⎟⎟⎠+GT

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

�∗1
�∗2
...

�∗Nt

⎞⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�J

��1

�J

��2

...

�J

��Nt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (69)

in which the adjoint solution is �∗n =(u∗nT,p∗nT)T.
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8.2. Application to the Munk gyre

The ISP-Adjoint approach has been applied to 2D gyre flows in a computational domain, 1000 km
by 1000 km with a depth of H =500m. The underlying model equations consist of the 3D incom-
pressible Navier–Stokes equations (for 2D flow cases, one element in the vertical). The wind
forcing on the free surface is given by

�y =�0 cos(�y/L), �x =0.0, (70)

where �x and �y are the wind stresses on the free surface along the x and y directions, respectively,
and L=1000km. A maximum zonal wind stress of �0=0.1Nm−1 is applied in the latitudinal (y)
direction. The Coriolis terms are taken into account using the beta-plane approximation ( f =y),
where =1.8×10−11 and the reference density is �0=1000kgm−1.

The problem is non-dimensionalized with the maximum Sverdrup balance velocity

H�0v= ��

�y
��0�

L
⇒v�3.5×10−2ms−1, (71)

(and so the velocity scale U =3.5×10−2ms−1 is used here) and the length scale is L=1000km.
Time is non-dimensionalized with T = L/U . The spin-up period is 0.1512 (50 days). The equi-
librium state at 50 days is taken as the initial state for both the full and the reduced models.
The snapshots are collected from the results obtained in the full model during the simulation
period [50,150] days. The time step is 3.78×10−4, equivalent to 3 h. Incorporating the beta-plane
approximation yields a non-dimensional ∗ = L2/U =514.3. The non-dimensional wind stress
(applied as a body force here averaged over the depth of the domain) takes the same cosine of
latitude profile with �∗

0=�0L/(U 2�0H)=163.3. No-slip boundary conditions are applied to the
lateral boundaries. The Reynolds number is defined as Re=UL/� (here the kinematic viscosity
is 140m2 s−1). It should be pointed out that since the discrete system of equations is quadratic,
application of the ISP-Adjoint is exact (to computational round off) for both the reduced order
and the full system of finite element equations.

The POD bases are constructed by the snapshots that are obtained from the numerical solutions
by forcing the full forward model with the initial velocity (the background flow). Forty snapshots
with 35 POD bases for each component of the velocity field ux , uy , uz and pressure are chosen to
capture more than 99.5% of energy (calculated by the first 35 leading eigenvalues). The effect of
the number of POD bases on the accuracy of the POD results and the energy percentage captured
by the POD bases have been discussed in detail in [38, 46].

In ocean modelling, the pressure term also plays an important role in the geostrophic balance.
In this study, taking into account the role of the pressure term in both the POD-Galerkin model
and the geostrophic balance, the pressure in the momentum equations is divided into two parts:
p= png+ pg. To accurately represent geostrophic pressure, its basis functions are split into two sets:
�ngux and �nguy , which are associated with the ux - and uy-velocity components. The geostrophic
pressure can be obtained from a quadratic finite element representation while linear finite element
representations are used for the velocity components. Furthermore, the geostrophic pressure can
be represented by a summation of the two sets of geostrophic basis functions, which are calculated
by solving the resulting elliptic equations using a conjugate gradient iterative method (for details
see [38]).

In this experiment, the cost function J is defined as the kinematic energy at the final time level
(n=Nt or 200 days):

J = 1

2

∫
�
((uNt

x )2+(uNt
y )2+(uNt

z )2)d�. (72)

The sensitivity analysis of J with respect to the initial velocity (u0x ,u
0
y,u

0
z )

T has been carried out,
and the corresponding results are shown in Figure 6. The result of applying the ISP-adjoint method
to the POD model is similar to that described in Vermeulen and Heemink [47]. This is because in
this example the number of colors is equal to the number of POD basis functions used.
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Figure 6. (a) Initial velocity vector (t=100 days); (b) the velocity vector at t=200 days
on a regular mesh; and (c) adjoint sensitivity/gradient of the final kinetic energy at t=200

days with respect to the initial velocity.

9. DISCUSSION

This section speculates on the main advantages of the ISP-Adjoint method as well as the problems
it is best and worst suited too. Although the method has been applied to fluid-related problems
within the current work, it may be applied to any grid-based differential equation, for example
finance, solids mechanics or Boltzmann particle transport. The biggest advantages are realized
using mesh/grid-based finite element, spectral element, CV or finite difference methods that result
in global matrix stencils that have compact support and thus lend themselves to matrix coloring
methods in order to extract the efficiencies described here. The approach outlined here would
perform poorly for large number of controls or solution variables that have global support, examples
of which are provided by full spectral methods of discretizing the differential equations.

The approach may be applied to linear (with or without non-linear discretization methods like
flux limiting methods, see application section) or non-linear problems. It may be applied to steady-
state or time-dependent problems and is perhaps most simply applied to steady-state problems
in which any non-linearities are converged. The latter leads to a rather simple adjoint system
of equations that is linear and does not have to follow the trajectory of the forward solution
backwards through the non-linear iteration. This advantage is also realized, to some extent, in
non-linear time-dependent problems as long as convergence of the solution is realized within the
time step. If these solutions are not converged then the only way to form a consistent adjoint is to
follow the trajectory of the iteration backwards in the adjoint equations, which can be a lengthy
process. Following the forward solution trajectory backwards is effectively what is required, within
the adjoint equations, for time-dependent problems and is impossible to avoid. The integration
backwards in time aims to obtain, in as efficient manner as possible, the gradient of the cost w.r.t.
the control variables. This enables, for example, gradient-based minimization of the functional J .

The ISP-Adjoint method is designed as an alternative to AD methods and thus like AD methods
needs further work to deal with situations where the functional that is differentiated has disconti-
nuities (or is non-smooth) for example.

10. CONCLUSIONS

A new method of differentiating potentially complex mesh-based numerical models is presented
and applied to simple Burgers’ equation and ocean gyre example problems. This method is referred
to here as the ISP-Adjoint since differentiation of the matrices and sources of the discrete forward
finite element or CV model is realized by colouring variables to form a number of independent
sets of variables.
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Three discretization methods namely central difference, first-order upwind and for instance high-
resolution schemes were applied to discretize Burgers’ equation to demonstrate that exactly the
same ISP-Adjoint code can switch between discretizations or parameterizations without changing
anything associated with the adjoint or gradient calculations—high-resolution methods are often
used for parameterizations or models e.g. for turbulence. A reduced-order Monk gyre problem is
solved here to demonstrate the application of the ISP-Adjoint to more complex fluid flow problems.

The ISP-Adjoint method could make more tractable the formation of arbitrarily complex multi-
physics mesh-based (4D-VAR) models. It can enable low- and high-order adjoints of models to be
manipulated much more freely so that quicker progress can be made in data assimilation, sensitivity
and uncertainty analysis, error analysis, adaptive observations and a whole host of other adjoint
applications.
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