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SUMMARY

In this article, an optimizing reduced finite difference scheme (FDS) based on singular value decom-
position (SVD) and proper orthogonal decomposition (POD) for the chemical vapor deposit (CVD)
equations is presented. And the error estimates between the usual finite difference solution and
the reduced POD solution of optimizing FDS are derived. At last, some examples of numer-
ical simulation are given to demonstrate the consistency of the numerical and theoretical results.
It is shown that the optimizing reduced FDS based on POD method is of great feasibility and
efficiency. Copyright q 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The chemical vapor deposit (CVD) reaction processes, which are of extensive application, can
be classified as a mathematical model by the following governing nonlinear partial differential
equations containing velocity vector, temperature field, pressure field and gas mass field.

Problem (I) Find u, p,T,C , and � such that,

∇ ·u= 0 (x, y, t)∈�×(0,T )

�u
�t

+c1u·∇u= −∇ p+∇�+Tgj (x, y, t)∈�×(0,T )

� = 2�T ε(u)− tr�I (x, y, t)∈�×(0,T )

�T
�t

+c2u·∇T = �T∇ ·(∇T ) (x, y, t)∈�×(0,T )
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�C
�t

+u·∇C = DT∇ ·(∇C) (x, y, t)∈�×(0,T )

u(x, y,0) = v(x, y,0)=T (x, y,0)=C(x, y,0)=0 (x, y)∈� (1)

u(x, y, t) = v(x, y, t)=0,T (x, y, t)=T0,C(x, y,T )=C0 (x, y, t)∈��×(0,T )

where u=(u,v) represents the velocity vector, p the pressure, T the temperature, C the mass
fraction of TMGa, g the acceleration of gravity, �T the carrier gas viscosity, �T the thermal
conductivity of the carrier gas, and DT the diffusion coefficient of TMGa in the carrier gas.
� denotes the viscous stress tensor, �=(�i j )2×2. ε(u)=(�i j )2×2, �i j = 1

2 (�ui/�x j +�u j/�xi ), in
which ui =u, u j =v, xi = x , x j = y. c1 represents the density of the carrier gas. And c2=cpc1 in
which cp represents the heat capacity of the carrier gas.

The CVD equations (1) are a system of important physical equations with broad applied back-
grounds. Although the finite difference scheme (FDS) is one of the most effective approaches to
achieve numerical solution for many nonlinear partial equations [1–3], the usual FDS solutions
usually involve many freedom degrees. So, how to simplify the computational load and save time
becomes a key problem considering consuming calculations and resource demands in the actual
computational process guarantees the sufficient accuracy of numerical solutions to some extent.
Proper orthogonal decomposition (POD) is a technique that provides a useful tool for efficiently
approximating a large amount of data and representing fluid flows with reduced number of degrees
of freedom, i.e., with lower dimensional models to alleviate the computational load and memory
requirements and has been successfully used in different fields including signal analysis and pattern
recognition [4, 5], fluid dynamics and coherent structures [6–11], and optimal flow control prob-
lems [12–14]. More recently, some reduced-order finite difference models and MFE formulations
and error estimates for the upper tropical pacific ocean model based on POD are presented [15–18],
and a FDS based on POD for the non-stationary Navier–Stokes equations is established but its
error analysis has not been derived [19]. Kunisch and Volkwein have presented some Galerkin
POD methods for parabolic problems [20] and a general equation in fluid dynamics [21]. The
singular value decomposition (SVD) approach combined with POD technique is used to treat the
Burgers equation [22] and the cavity flow problem [23].

Though CVD equations are also dealt with POD in [13], to the best of our knowledge, there
have been no published results addressing that POD is used to reduce the FDS for CVD equations
and the error estimates between the usual FDS solutions and the reduced FDS solutions based on
POD. In this paper, POD is used to reduce the FDS for CVD equations and the error estimates
between the usual FDS solutions and the reduced FDS solutions are derived. At last, an example of
numerical simulation is given to demonstrate that the errors between the reduced FDS solutions and
the usual FDS solutions are consistent with theoretical results. Moreover, it is also shown that the
reduced FDS based on POD is feasible and efficient in numerical simulations for CVD equations.

2. FDS FOR PROBLEM (I ) AND SNAPSHOTS GENERATION

Let �x and �y be the spatial step increment in the x-direction and y-direction, respectively, and
�t be the time step increment, unj+1/2,k and vnj,k+1/2 denote function values of u and v at point
(x j+1/2, yk, tn) and (x j , yk+1/2, tn)(0� j�J,0�k�K ,0�n�N =T/�t), respectively.

In the following, we apply staggered net (see Figure 1) FDS to dicretize Problem (I).

(1) Discretizing the continuous equation

∇ ·u=0 (2)

yields [
u j+1/2,k−u j−1/2,k

�x
+ v j,k+1/2−v j,k−1/2

�y

]n
=0 (3)
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Figure 1. Staggered mesh graphics.

(2) The momentum equations

�u
�t

+c1u·∇u = −∇ p+∇�+Tgj

�+ tr�I = 2�T ε(u)

(4)

can be rewritten into the following equations

�u
�t

+c1

(
u

�u
�x

+v
�u
�y

)
= −�p

�x
+�T

(
4

3

�2u
�x2

+ �2u
�y2

+ 1

3

�2v
�x�y

)

�v

�t
+c1

(
v
�v

�y
+u

�v

�x

)
= −�p

�y
+�T

(
4

3

�2v
�y2

+ �2v
�x2

+ 1

3

�2u
�x�y

)
+Tg

(5)

Discretizing the momentum equation

�u
�t

+c1

(
u

�u
�x

+v
�u
�y

)
=−�p

�x
+�T

(
4

3

�2u
�x2

+ �2u
�y2

+ 1

3

�2v
�x�y

)
(6)

on the x-direction at point (x j+1/2, yk, tn) yields

un+1
j+1/2,k =Fn

j+1/2,k− �t

�x
(pnj+1,k− pnj,k) (7)

where

Fn
j+1/2,k = unj+1/2,k−c1

�t

�x
unj+1/2,k(u

n
j+1,k−unj,k)

−c1
�t

�y
vnj+1/2,k(u

n
j+1/2,k+1/2−unj+1/2,k−1/2)

+�t�T

(
u j+1/2,k−1−2u j+1/2,k+u j+1/2,k+1

�y2
+4

3

u j−1/2,k−2u j+1/2,k+u j+3/2,k

�x2

+1

3

v j+1,k+1/2−v j,k+1/2−v j+1,k−1/2+v j,k−1/2

�x�y

)n

(8)

Discretizing the momentum equation

�v

�t
+c1

(
v
�v

�y
+u

�v

�x

)
=−�p

�y
+�T

(
4

3

�2v
�y2

+ �2v
�x2

+ 1

3

�2u
�x�y

)
+Tg (9)
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on the y-direction at point (x j , yk+1/2, tn) yields

vn+1
j,k+1/2=Gn

j,k+1/2−
�t

�y
(pnj,k+1− pnj,k) (10)

where

Gn
j,k+1/2 = vnj,k+1/2−c1

�t

�x
unj,k+1/2(v

n
j+1/2,k+1/2−vnj−1/2,k+1/2)

−c1
�t

�y
vnj,k+1/2(v

n
j,k+1−vnj,k)

+�t�T

(
v j−1,k+1/2−2v j,k+1/2+v j+1,k+1/2

�x2
+4

3

v j,k−1/2−2v j,k+1/2+v j,k+3/2

�y2

+1

3

u j+1/2,k+1−u j−1/2,k+1−u j+1/2,k+u j−1/2,k

�x�y

)n

+�tgT n
j,k (11)

The stress tensor equation

�=2�T ε(u)− tr�I (12)

can be rewritten as

(
�1 �2
�2 �3

)
=2�T

⎛
⎜⎜⎝

�u
�x

1

2

(
�u
�y

+ �v

�x

)
1

2

(
�u
�y

+ �v

�x

)
�v

�y

⎞
⎟⎟⎠−

(
�1+�3 0

0 �1+�3

)
(13)

such that

�1 = 1

3

(
4�T

�u
�x

−2�T
�v

�y

)

�2 = �T

(
�u
�y

+ �v

�x

)

�3 = 1

3

(
4�T

�v

�y
−2�T

�u
�x

) (14)

at point (x j+1/2, yk, tn) yield

�n1, j,k =
[
4

3
�T

u j+1/2,k−u j−1/2,k

�x
− 2

3
�T

v j,k+1/2−v j,k−1/2

�y

]n

�n2, j,k =
[
�T

u j,k+1/2−u j,k−1/2

�y
+�T

v j+1/2,k−v j−1/2,k

�x

]n

�n3, j,k =
[
4

3
�T

v j,k+1/2−v j,k−1/2

�y
− 2

3
�T

u j+1/2,k−u j−1/2,k

�x

]n
(15)

(3) Expanding the energy equation

�T
�t

+c2u·∇T =�T∇ ·(∇T ) (16)

at point (x j , yk, tn) yields

T n+1
j,k = T n

j,k− c2�t

�x
unj,k(Tj+1/2,k−Tj−1/2,k)

n− c2�t

�y
vnj,k(Tj,k+1/2−Tj,k−1/2)

n

+�T�t

(
Tj−1,k−2Tj,k+Tj+1,k

�x2
+ Tj,k−1−2Tj,k+Tj,k+1

�y2

)n

(17)
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(4) Expanding the mass equation

�C
�t

+u·∇C=DT∇ ·(∇C) (18)

at point (x j , yk, tn) yields

Cn+1
j,k =Cn

j,k− �t

�x
unj,k(C j+1/2,k−C j−1/2,k)

n− �t

�y
vnj,k(C j,k+1/2−C j,k−1/2)

n

+DT�t

(
C j−1,k−2C j,k+C j+1,k

�x2
+C j,k−1−2C j,k+C j,k+1

�y2

)n

(19)

Inserting (7) and (10) into (3) could obtain the Poisson equation for p as follows[
p j−1,k−2p j,k+ p j+1,k

�x2
+ p j,k−1−2p j,k+ p j,k+1

�y2

]n
=RHS (20)

where RHS= 1
�t�x (Fj+1/2,k−Fj−1/2,k)

n+ 1
�t�y (G j,k+1/2−G j,k−1/2)

n .
Using the same approaches as the proof of the convergence and stability of finite difference

equations of the non-stationary Navier–Stokes equation in [1] or [2], it is not difficult to prove the
convergence and stability of usual FDS (3), (7), (10), (15), (17) and (19) for CVD equations, if
0.25(|u|2+|v|2)�t��T , �T�t�0.25�x2, and �t�T�0.25�y2. And we can conclude the following
result using the Taylor expansion.

Theorem 1
Usual FDS (3), (7), (10), (15), (17) and (19) for CVD equations has the following error estimates

|En(u
n
j+1/2,k,v

n
j,k+1/2, p

n
j,k,T

n
j,k,C

n
j,k)|

=‖(u(x j+1/2, yk, tn),v(x j , yk+1/2, tn), p(x j , yk, tn),T (x j , yk, tn),C(x j , yk, tn))

−(unj+1/2,k,v
n
j,k+1/2, p

n
j,k,T

n
j,k,C

n
j,k)‖=O(�t,�x2,�y2), 1�n�N (21)

where ‖·‖ denotes the usual norm of vector.

|En(�
n
j+1/2,k)|=‖(�(x j+1/2, yk, tn)−�nj+1/2,k‖=O(�x2,�y2), 1�n�N (22)

where ‖·‖ denotes the usual norm of matrix.

The procedure to achieve FDS numerical solutions for problem (I) is first to solve (20), then (7)
and (10), and then (15), (17) and (19), from which we obtain a set of discrete numerical solutions.

Thus, if the carrier gas viscosity �T , the thermal conductivity of the carrier gas �T , the diffusion
coefficient DT , time step increment �t , and spacial step increment �x and �y in the x-direction
and y-direction are given, by solving (3), (7), (10), (15), (17) and (19) one could obtain unj+1/2,k ,
vnj,k+1/2, p

n
j,k , T

n
j,k , C

n
j,k , and �nj+1/2,k (0� j�J,0�k�K ,1�n�N ).

Write uni =unj+1/2,k , vni =vnj,k+1/2, pni = pnj,k , T n
i =T n

j,k , and Cn
i =Cn

j,k (i=k(J+1)+ j+1,
m= J K , 1�i�m, 0� j�J , 0�k�K , 1�n�N ). L×m group of values consisting of the ensemble
{unli , v

nl
i , pnli , T nl

i , Cnl
i }Ll=1 (1�i�m) (usually L�N ), known as ‘snapshots’, are chosen from

N×m group of {uni , vni , pni , T n
i , Cn

i }Nn=1(1�i�m).

Remark 1
When one computes actual problems, one may obtain the ensemble of snapshots from physical
system trajectories via drawing samples of experiments and interpolation (or date assimilation). For
example of weather forecast, one can use the previous weather results to structure the ensemble of
snapshots, then restructure the optimal basis for the ensemble of snapshots by the following SVD
and POD, and finally combine with POD projection to derive a reduced optimizing dynamical
system. Thus, the situation of future weather change can be quickly simulated and the future
weather change can be forecasted, which is of major importance for actual real-life applications.
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3. POD REDUCED MODEL FOR CVD EQUATIONS

In the following, we derive POD basis from the snapshots generated above with SVD, and then
use the POD basis to develop a reduced optimizing FDS for CVD equations.

3.1. SVD and POD basis

The ensemble of snapshots {unli , v
nl
i , pnli , T nl

i , Cnl
i }Ll=1(1�i�m) (usually L�N ) can be expressed

as the following m×L matrices Au , Av , Ap, AT , and AC .

Au =

⎛
⎜⎜⎜⎜⎜⎜⎝

un11 un21 · · · unL1

un12 un22 · · · unL2
...

...
...

...

un1m un2m · · · unLm

⎞
⎟⎟⎟⎟⎟⎟⎠

, Av =

⎛
⎜⎜⎜⎜⎜⎜⎝

v
n1
1 v

n2
1 · · · v

nL
1

v
n1
2 v

n2
2 · · · v

nL
2

...
...

...
...

vn1m vn2m · · · vnLm

⎞
⎟⎟⎟⎟⎟⎟⎠

Ap =

⎛
⎜⎜⎜⎜⎜⎜⎝

pn11 pn21 · · · pnL1

pn12 pn22 · · · pnL2
...

...
...

...

pn1m pn2m · · · pnLm

⎞
⎟⎟⎟⎟⎟⎟⎠

, AT =

⎛
⎜⎜⎜⎜⎜⎜⎝

T n1
1 T n2

1 · · · T nL
1

T n1
2 T n2

2 · · · T nL
2

...
...

...
...

T n1
m T n2

m · · · T nL
m

⎞
⎟⎟⎟⎟⎟⎟⎠

AC =

⎛
⎜⎜⎜⎜⎜⎜⎝

Cn1
1 Cn2

1 · · · CnL
1

Cn1
2 Cn2

2 · · · CnL
2

...
...

...
...

Cn1
m Cn2

m · · · CnL
m

⎞
⎟⎟⎟⎟⎟⎟⎠

(23)

In order to obtain optimal representation for Au (Av , Ap, AT , and AC are similar), we employ
SVD to research FDS for CVD equations, which is an important tool to construct optimal basis
of optimization approximation. For matrix Au ∈ Rm×L , there exists the SVD

Au =Uu

(
Su 0

0 0

)
VT
u (24)

where Uu ∈ Rm×m and Vu ∈ RL×L are all orthogonal matrices, Su =diag{�u1,�u2, . . . ,�u�}∈ R�×�

is the diagonal matrix correspondent to Au , and �ui (i=1,2, . . . ,�) are the positive singular values.
The matrices Uu =(/u1,/u2, . . . ,/um)∈ Rm×m and Vu =(uu1,uu2, . . . ,uuL)∈ RL×L contain the
orthogonal eigenvectors to the AuAT

u and AT
uAu , respectively. The columns of these eigenvector

matrices are organized such that corresponding to the singular values �ui are comprised in Su
in a non-increasing order. And the singular values of the decomposition are connected to the
eigenvalues of the matrices AuAT

u and AT
uAu in the manner such that �ui =�2ui (i=1,2, . . . ,�).

Since the number of mesh points is far larger than that of transient moment points, i.e. m�L , that
is also that the order m for matrix AuAT

u is far larger than the order L for matrix AT
uAu , however,

their null eigenvalues are identical, therefore, we may first solve the eigen equation corresponding
to matrix AT

uAu to find the eigenvectors uu j ( j =1,2, . . . , L), and then by

/u j =
1

�u j
Auuu j , j =1,2, . . . ,� (25)

we may obtain � (��L) eigenvectors corresponding to the non-null eigenvalues for matrix AuAT
u .

Define matrix norm ‖·‖�,� as ‖Au‖�,� =supx �=0 ‖Ax‖�/‖x‖� (where ‖·‖� and ‖·‖� are the norm

of vector). Let AMu =∑Mu
i=1�ui/uiu

T
ui , /ui (i=1,2, . . . ,Mu) and uu j ( j=1,2, . . . ,Mu) are Mu
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first column vectors of matrices Uu and Vu , respectively. Then, by the relationship properties
between spectral radius and ‖·‖2,2 for matrix, if Mu <r = rankAu (r���L), then there is the
following equation

min
rank(B)�Mu

‖Au−B‖2,2=‖Au−AMu‖2,2=�u(Mu+1) (26)

which shows that AMu is an optimal representation of Au , i.e., AMu is an optimal approximation
of Au and the error is �u(Mu+1) =

√
�u(Mu+1).

Denote the L column vectors of matrix Au by alu =(unl1 ,unl2 , . . . ,unlm )T (l=1,2, . . . , L), and
εl(l=1,2, . . . , L) by unit column vectors except that lth component is 1, while the other components
are 0. Then by the compatibility of the norm for matrixes and vectors, we obtain that

‖alu−PMu (a
l
u)‖2=‖(Au−AMu )εl‖2�‖Au−AMu‖2,2‖εl‖2=

√
�u(Mu+1) (27)

where PMu (a
l
u)=

∑Mu
j=1(/u j ,a

l
u)/u j , (/u j ,a

l
u) are the canonical inner products for vector /u j

and vector alu . Inequality (27) shows that PMu (a
l
u) are the optimal approximations to alu , whose

errors are all
√

�u(Mu+1). Thus, a group of optimal basis is found in the construction of AMu .
By the property of eigenvectors, it is well known that Uu =(/u1,/u2, . . . ,/Mu

)(Mu �L) is an

orthonormal matrix and {/u j }Mu
j=1 is a group of POD optimal bases.

By the same approach as the above (27), if alv =(v
nl
1 ,v

nl
2 , . . . ,v

nl
m )T, alp =(pnl1 , pnl2 , . . . , pnlm )T,

alT =(T nl
1 ,T nl

2 , . . . ,T nl
m )T, and alC =(Cnl

1 ,Cnl
2 , . . . ,Cnl

m )T(l=1,2, . . . , L) are the L column

vectors of matrices Av , Ap, AT , and AC , then PMv (a
l
v)=

∑Mv

j=1(/v j ,a
l
v)/v j , PMp (a

l
p)=∑Mp

j=1(/pj ,a
l
p)/pj , PMT (alT )=∑MT

j=1(/T j ,a
l
T )/T j , and PMC (alC )=∑MC

j=1(/C j ,a
l
C )/C j are the

optimal approximations to alv , a
l
p, a

l
T , and alC , whose errors are

‖alv −PMv (a
l
v)‖2 �

√
�v(Mv+1) (28)

‖alp−PMp (a
l
p)‖2 �

√
�p(Mp+1) (29)

‖alT −PMT (alT )‖2 �
√

�T (MT +1) (30)

‖alC −PMC (alC )‖2 �
√

�C(MC+1) (31)

where �v(Mv+1), �p(Mp+1), �T (MT +1), and �C(MC+1) are (Mv +1)th eigenvalue forAvAT
v , (Mp+1)th

eigenvalue for ApAT
p, (MT +1)th eigenvalue for ATAT

T , and (MC +1)th eigenvalue for ACAT
C , and

Uv =(/v1,/v2, . . . ,/vMv
), Up =(/p1,/p2, . . . ,/pMp

), UT =(/T 1,/T 2, . . . ,/T MT
), and UC =

(/C1,/C2, . . . ,/CMC
) are orthonormal matrixes and {/v j }Mv

j=1, {/pj }Mp
j=1, {/T j }MT

j=1, and {/C j }MC
j=1

are three groups of optimal basis corresponding to Av , Ap, AT , and AC , respectively.

3.2. Reduced optimizing FDS based on POD for CVD equations

In the following, we use POD basis to develop a reduced optimizing FDS for CVD equations.
Write

um(t) = (u1(t),u2(t), . . . ,um(t))T

vm(t) = (v1(t),v2(t), . . . ,vm(t))T

pm(t) = (p1(t), p2(t), . . . , pm(t))T

Tm(t) = (T1(t),T2(t), . . . ,Tm(t))T

Cm(t) = (C1(t),C2(t), . . . ,Cm(t))T

(32)
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where ui =u j+1/2,k , vi =v j,k+1/2, pi = p j,k , Ti =Tj,k , and Ci =C j,k(1�i�m, i=k(J+1)+ j+1,
m=K J,0� j�J,0�k�K ). Thus, (3), (7), (10), (13), and (15) are rewritten as the following vector
formulation.

(un+1
m ,vn+1

m ,pn+1
m ,Tn+1

m ,Cn+1
m )T = (unm,vnm,pnm,Tn

m,Cn
m)T

+�tF̃(unm,vnm,pnm,Tn
m,Cn

m), 0�n�N (33)

where F̃(unm,vnm,pnm,Tn
m,Cn

m)=(F̃1(unm,vnm,pnm,Tn
m,Cn

m), . . . , F̃5(unm,vnm,pnm,Tn
m,Cn

m), )T is the
vector function obtained from (3), (7), (10), (13), and (15). Put

(unm,vnm,pnm,Tn
m,Cn

m)T=(Uua
u,n
Mu

,Uva
v,n
Mv

,Upa
p,n
Mp

,UTa
T,n
MT

,UCa
C,n
MC

)T (34)

where unm =(un1,u
n
2, . . . ,u

n
m)T, vnm =(vn1 ,v

n
2 , . . . ,v

n
m)T and pnm,Tn

m,Cn
m likewise. Inserting (34) into

(33) and noting that Uu , Uv , Up, UT , UC are orthogonal matrices, we may obtain a reduced
optimizing model that has Mu+Mv +Mp+MT +MC (Mu,Mv,Mp,MT ,MC �L�m) unknown
values: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

au,n+1
Mu

av,n+1
Mv

ap,n+1
Mp

aT,n+1
MT

aC,n+1
MC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

au,n
Mu

av,n
Mv

ap,nMp

aT,n
MT

aC,n
MC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+�t

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

UT
u F̃1(Uua

u,n
Mu

, . . . ,UCa
C,n
MC

)

UT
v F̃2(Uva

u,n
Mu

, . . . ,UCa
C,n
MC

)

UT
p F̃3(Upa

u,n
Mu

, . . . ,UCa
C,n
MC

)

UT
T F̃4(UTa

u,n
Mu

, . . . ,UCa
C,n
MC

)

UT
C F̃5(UCa

u,n
Mu

, . . . ,UCa
C,n
MC

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35)

where n=0,1,2, . . . ,N , initial values are au,0
Mu

=UT
uu

0
m , a

v,0
Mv

=UT
vv

0
m and ap,0Mp

, aT,0
MT

, aC,0
MC

respectively.
After one has obtained au,n

Mu
, av,n

Mv
, ap,nMp

, aT,n
MT

, and aC,n
MC

from (35), one obtains the POD

optimal solutions, which are written as u∗n
i =Uua

u,n
Mu

, v∗n
i =Uva

v,n
Mv

, p∗n
i =Upa

p,n
Mp

, T ∗n
i =UTa

T,n
MT

,

and C∗n
i =UCa

C,n
MC

for Problem (I) by (34). Thus, we get the optimal numerical solutions,
which are written as (u∗n

j+1/2,k,v
∗n
j,k+1/2, p

∗n
j,k,T

∗n
j,k,C

∗n
j,k)(0� j�J−1,0�k�K −1,0�n�N ) for

Problem (I), where u∗n
j+1/2,k =u∗n

i , v∗n
j,k+1/2=v∗n

i , p∗n
j,k = p∗n

i , T ∗n
j,k =T ∗n

i , and C∗n
j,k =C∗n

i ( j = i−
1−k(J+1)�0,1�i�m=K J,0�k�K −1,0�n�N ).

Remark 2
Formula (35) with (34) and (50) is the reduced optimizing FDS based on SVD and POD for
Problem (I), because it only involves (Mu+Mv +Mp+MT +MC )×N (Mu,Mv,Mp,MT ,MC �
L�m) freedom degrees while usual FDS (3), (7), (10), (13), and (15) involves 5m×N . When it
comes to actual problems, the POD basis can be structured by the known ensemble of snapshots,
and then combine it with POD projection to derive a reduced optimizing FDS, i.e. one needs only
to solve the above formula (35) with (34) and (50) which has much fewer degrees of freedom
instead of the usual FDS (3), (7), (10), (13), and (15). Thus, the computational load and memory
requirements can be saved greatly.

4. ERROR ANALYSIS OF POD REDUCED FDS

In this part, the error estimates of reduced optimizing FDS (34), (35), and (50) for Problem (I) are
discussed.
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Let

Xu = span{/u1,/u2, . . . ,/uMu
}

Xv = span{/v1,/v2, . . . ,/vMv
}

Xp = span{/p1,/p2, . . . ,/pMp
}

XT = span{/T 1,/T 2, . . . ,/T MT
}

XC = span{/C1,/C2, . . . ,/CMC
}

(36)

Then, for column vectors alu(1�l�L) of Au , by (27) we have alu =unlm , and there is a PMu (u
nl
m )=

PMu (a
l
u)=

∑Mu
j=1(/u j ,a

l
u)/u j =

∑Mu
j=1(/u j ,u

nl
m )/u j ∈Xu such that

‖unlm −PMu (u
nl
m )‖2�

√
�u(Mu+1), 1�l�L (37)

while n∈{n1,n2, . . . ,nL}, u∗n
m = PMu (u

n
m)=∑Mu

j=1(/u j ,u
n
m)/u j is obtained by (34) and (35),

therefore, we obtain that

‖unm−u∗n
m ‖2�

√
�u(Mu+1), n∈{n1,n2, . . . ,nL} (38)

Using the same approach as (38), we could obtain that

‖vnm−v∗n
m ‖2 �

√
�v(Mv+1), n∈{n1,n2, . . . ,nL} (39)

‖pnm−p∗n
m ‖2 �

√
�p(Mp+1), n∈{n1,n2, . . . ,nL} (40)

‖Tn
m−T∗n

m ‖2 �
√

�T (MT +1), n∈{n1,n2, . . . ,nL} (41)

‖Cn
m−C∗n

m ‖2 �
√

�C(MC+1), n∈{n1,n2, . . . ,nL} (42)

When n �∈ {n1,n2, . . . ,nL}, we may as well let tn ∈(tnl , tnl+1) and tn be the nearest point to tnl .
Comparing (34)–(35) with (33), (34)–(35) can be written in similar forms as (3), (7), (10), (13),
and (15) as follows.

u∗n+1
j+1/2,k =F∗n

j+1/2,k− �t

�x
(p∗n

j+1,k− p∗n
j,k) (43)

where

F∗n
j+1/2,k = u∗n

j+1/2,k−c1
�t

�x
u∗n
j+1/2,k(u

∗n
j+1,k−u∗n

j,k)−c1
�t

�y
v∗n
j+1/2,k(u

∗n
j+1/2,k+1/2−u∗n

j+1/2,k−1/2)

+�t�T

(
u j+1/2,k−1−2u j+1/2,k+u j+1/2,k+1

�y2
+ 4

3

u j−1/2,k−2u j+1/2,k+u j+3/2,k

�x2

+1

3

v j+1,k+1/2−v j,k+1/2−v j+1,k−1/2+v j,k−1/2

�x�y

)∗n
(44)

v∗n+1
j,k+1/2 = G∗n

j,k+1/2−
�t

�y
(p∗n

j,k+1− p∗n
j,k) (45)

where

G∗n
j,k+1/2 = v∗n

j,k+1/2−c1
�t

�x
u∗n
j,k+1/2(v

∗n
j+1/2,k+1/2−v∗n

j−1/2,k+1/2)−c1
�t

�y
v∗n
j,k+1/2(v

∗n
j,k+1−v∗n

j,k)

+�t�T

(
v j−1,k+1/2−2v j,k+1/2+v j+1,k+1/2

�x2
+ 4

3

v j,k−1/2−2v j,k+1/2+v j,k+3/2

�y2
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+1

3

u j+1/2,k+1−u j−1/2,k+1−u j+1/2,k+u j−1/2,k

�x�y

)∗n
+�tgT ∗n

j,k (46)

T ∗n+1
j,k = T ∗n

j,k− c2�t

�x
u∗n
j,k(Tj+1/2,k−Tj−1/2,k)

∗n− c2�t

�y
v∗n
j,k(Tj,k+1/2−Tj,k−1/2)

∗n

+�T�t

(
Tj−1,k−2Tj,k+Tj+1,k

�x2
+ Tj,k−1−2Tj,k+Tj,k+1

�y2

)∗n
(47)

C∗n+1
j,k =C∗n

j,k− �t

�x
u∗n
j,k(C j+1/2,k−C j−1/2,k)

∗n− �t

�y
v∗n
j,k(C j,k+1/2−C j,k−1/2)

∗n

+DT�t

(
C j−1,k−2C j,k+C j+1,k

�x2
+C j,k−1−2C j,k+C j,k+1

�y2

)∗n
(48)

[
p j−1,k−2p j,k+ p j+1,k

�x2
+ p j,k−1−2p j,k+ p j,k+1

�y2

]∗n
=RHS (49)

where RHS=(Fj+1/2,k−Fj−1/2,k)
∗n/(�t�x)+(G j,k+1/2−G j,k−1/2)

∗n/(�t�y), and

�∗n
1, j,k =

[
4

3
�T

u j+1/2,k−u j−1/2,k

�x
− 2

3
�T

v j,k+1/2−v j,k−1/2

�y

]∗n

�∗n
2, j,k =

[
�T

u j,k+1/2−u j,k−1/2

�y
+�T

v j+1/2,k−v j−1/2,k

�x

]∗n

�∗n
3, j,k =

[
4

3
�T

v j,k+1/2−v j,k−1/2

�y
− 2

3
�T

u j+1/2,k−u j−1/2,k

�x

]∗n

(50)

If |unj+1/2,k |, |vnj+1/2,k |, |unj,k+1/2|, |vnj,k+1/2|,|u∗n
j+1/2,k |, |v∗n

j+1/2,k |, |u∗n
j,k+1/2|, and |v∗n

j,k+1/2| are
all bounded, by subtracting (43)–(50) from (3), (7), (10), (15), (17), and (19), respectively, and
using (3) and [

u j+1/2,k−u j−1/2,k

�x
+ v j,k+1/2−v j,k−1/2

�y

]∗n
=0 (51)

we can obtain that

‖un+1
m −u∗n+1

m ‖2+‖vn+1
m −v∗n+1

m ‖2+‖Tn+1
m −T∗n+1

m ‖2+‖Cn+1
m −C∗n+1

m ‖2
�M(‖unm−u∗n

m ‖2+‖vnm−v∗n
m ‖2+‖Tn

m−T∗n
m ‖2+‖Cn

m−C∗n
m ‖2) (52)

‖pnm−p∗n
m ‖2�M0(‖unm−u∗n

m ‖2+‖vnm−v∗n
m ‖2+‖Tn

m−T∗n
m ‖2) (53)

and

‖rnim−r∗nim‖2�M0(‖unm−u∗n
m ‖2+‖vnm−v∗n

m ‖2), i=1,2,3 (54)

where M=1+M0, M0=C�t/min(�x,�y,�−1
T �x−2,�−1

T �y−2,�−1
T �x−1�y−1), C is a constant

independent of �t , �x2, and �y2. Summing (52) from nl ,nl +1, . . . ,n−1 can yield that

‖unm−u∗n
m ‖2+‖vnm−v∗n

m ‖2+‖Tn
m−T∗n

m ‖2+‖Cn
m−C∗n

m ‖2
�‖unlm −u∗nl

m ‖2+‖vnlm −v∗nl
m ‖2+‖Tnl

m −T∗nl
m ‖2+‖Cnl

m −C∗nl
m ‖2

+M0

n−1∑
j=nl

(‖u j
m−u∗ j

m ‖2+‖v j
m−v∗ j

m ‖2+‖T j
m−T∗ j

m ‖2+‖C j
m−C∗ j

m ‖2) (55)
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If �t=O(�x2,�y2), (�T )2��t , by discrete Gronwall Lemma (see [24]), we get that

‖unm−u∗n
m ‖2+‖vnm−v∗n

m ‖2+‖Tn
m−T∗n

m ‖2+‖Cn
m−C∗n

m ‖2
�(‖unlm−u∗nl

m ‖2+‖vnlm−v∗nl
m ‖2+‖Tnl

m−T∗nl
m ‖2+‖Cnl

m−C∗nl
m ‖2)exp[C�t1/2(n−nl)] (56)

If tl(1�l�L) are uniformly chosen from tn(1�l�N ), then (n−nl)�N/(2L). If L2=O(N ),
we obtain from (56) and (38)–(42) that

‖unm−u∗n
m ‖2+‖vnm−v∗n

m ‖2+‖Tn
m−T∗n

m ‖2+‖Cn
m−C∗n

m ‖2
�C0(

√
�u(Mu+1)+

√
�v(Mv+1)+

√
�T (MT +1)+

√
�C(MC+1)) (57)

in which C0 represents a constant.
Then the error estimates including u, v, p, T , and C can be put as follows.

Theorem 2
Let (unm,vnm,pnm,Tn

m,Cn
m) (n=1,2, . . . ,N ) be vectors constituted with solutions of usual FDS (3),

(7), (10), (15), (17), and (19), (u∗n
m ,v∗n

m ,p∗n
m ,T∗n

m ,T∗n
m ) be the vectors of the reduced optimizing

FDS (34), (35), and (50), if n∈{n1,n2, . . . ,nL}, then the following error estimates exist

‖unm−u∗n
m ‖2 �

√
�u(Mu+1), ‖vnm−v∗n

m ‖2�
√

�v(Mv+1), ‖pnm−p∗n
m ‖2�

√
�p(Mp+1)

‖Tn
m−T∗n

m ‖2 �
√

�T (MT +1), ‖Cn
m−C∗n

m ‖2�
√

�C(MC+1)

‖rnim−r∗nim‖2 � C(

√
�u(Mu+1)+

√
�v(Mv+1)), i=1,2,3

(58)

Moreover, if n �∈ {n1,n2, . . . ,nL}, �t=O(�x2,�y2), (�T )2��t , |unj+1/2,k |, |vnj,k+1/2|, |pnj,k |, |T n
j,k |,

|Cn
j,k |, |u∗n

j+1/2,k |, |v∗n
j,k+1/2|, |p∗n

j,k |, |T ∗n
j,k |, |C∗n

j,k | are all bounded, snapshots {unlj+1/2,k,v
nl
j+1/2,k, p

nl
j,k,

T nl
j,k,C

nl
j,k}Ll=1 are uniformly chosen from {unj+1/2,k,v

n
j+1/2,k, p

n
j,k,T

n
j,k,C

n
j,k}Nn=1, L

2=O(N ), then
the following error estimates hold:

‖unm−u∗n
m ‖2+‖vnm−v∗n

m ‖2+|pnm−p∗n
m ‖2+|Tn

m−T∗n
m ‖2+|Cn

m−C∗n
m ‖2

�C(

√
�u(Mu+1)+

√
�v(Mv+1)+

√
�p(Mp+1)+

√
�T (MT +1)+

√
�C(MC+1)) (59)

‖rnim−r∗nim‖2 �C(

√
�u(Mu+1)+

√
�v(Mv+1)+

√
�p(Mp+1)+

√
�T (MT +1)

+
√

�C(MC+1)), i=1,2,3 (60)

where N =T/�t and L is the number of snapshots.

Given that the absolute value of each component of a vector is not more than its any norm, the
following result could be achieved by combining Theorems 1 and 2.

Theorem 3
Under the assumptions of Theorem 2, the following error estimate holds

|u(x j+1/2, yk, tn)−u∗n
j+1/2,k |+|v(x j , yk+1/2, tn)−v∗n

j,k+1/2|+|p(x j , yk, tn)− p∗n
j,k |

+|T (x j , yk, tn)−T ∗n
j,k |+|C(x j , yk, tn)−C∗n

j,k |+|�1(x j+1/2, yk, tn)−�∗n
1 j+1/2,k |

+|�2(x j+1/2, yk, tn)−�∗n
2 j+1/2,k |+|�3(x j+1/2, yk, tn)−�∗n

3 j+1/2,k |

�O(

√
�u(Mu+1)+

√
�v(Mv+1)+

√
�p(Mp+1)+

√
�T (MT +1)+

√
�C(MC+1),�t,�x

2,�y2)

1�n�N (61)
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Remark 3
The condition L2=O(N ) in Theorem 2 shows the relation between the number L of snapshots
and the number N of all time instances in fact. Therefore, it is unnecessary to take total transient
solutions at all time instances tn as snapshots (see [20, 21]). Theorems 2 and 3 have presented the
error estimate between the solution of the reduced optimizing FDS (34), (35), and (50) and the
solution of usual FDS (3), (7), (10), (15), (17), and (19), and the error estimate between the solution
of the reduced FDS and Problem (I), respectively. Because our method employs the computed
FDS solutions (unj+1/2,k,v

n
j,k+1/2, p

n
j,k,T

n
j,k,C

n
j,k) (n=1,2, . . . ,N ) for Problem (I) as initial data

for the reduced model, the error estimates in Theorem 3 are correlated to the gridding scale �x and
�y, and time step size �t . However, when it comes to actual problems, the ensemble of snapshots
could be obtained from physical system trajectories by drawing samples from experiments and
interpolation (or data assimilation). Thus, the assistant data (unj+1/2,k,v

n
j,k+1/2, p

n
j,k,T

n
j,k,C

n
j,k)

(n=1,2, . . . ,N ) could be replaced by the interpolation functions of experimental or previous
results.

5. NUMERICAL SIMULATIONS

In this section, some numerical examples of the physical model of the cavity flows with the POD
reduced FDS (34)–(35), and (50) are presented to demonstrate the feasibility and efficiency of the
POD method.

Let the side length of the cavity be 1 (see Figure 2). We take spatial step increments as
�x=�y= 1

32 and time step increment as �t=0.0001. Except that

T =4y(1− y) and
�p
�y

∣∣∣∣∣�� =�T

(
4

3

�2v
�y2

)∣∣∣∣∣
��

on the right boundary, other initial and boundary values are all taken as 0. Take the constants
c1=c2=0.05, the viscosity �T =0.01, the thermal conductivity �T =1, and the diffusion coefficient
DT =0.5.
We obtain 20 discrete values (i.e. snapshots) at time t=10,20,30 , . . . ,200 by solving usual

FDS (3), (7), (10), (15), (17), and (19). And it is shown by computing the eigenvalues that√
�u6+√

�v6+√�p8+√
�T 8+√

�C8=O(10−3).
When t=200, we obtain the solutions of the POD reduced FDS (34)–(35), and (50)

depicted in Figure 3 and 4 on the right-hand side used Mu =Mv =5, Mp =MT =MC =7

Figure 2. Physics model of the transport gas: t=0, i.e. n=0 initial values on boundary.
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Figure 3. Velocity (u,v) stream line figure for usual FDS solution (on left-hand side figure) and when
Mu =Mv =5, solutions of the reduced FDS based on POD (on right-hand side figure).

optimal POD basis, respectively, and the solutions of usual FDS, i.e. (3), (7), (10), (15), (17),
and (19) are depicted in Figures 3 and 4 on the left-hand side (because these figures are
equal to solutions obtained with 20 bases, they are also known as the figures of full basis
solution).

Figure 5 shows the errors between solutions obtained with different numbers of optimizing
POD bases and solutions with full basis. Comparing the usual FDS with the POD reduced FDS by
implementing 3000 times numerical simulation computations, we find that time-consuming calcu-
lations with usual FDS are 5min, while those with the reduced optimizing FDS time-consuming
expend only 3 s, i.e. the running time with usual FDS, i.e. (3), (7), (10), (15), (17), and (19) is
almost as 100 multiples as that with the POD reduced FDS (34), (35), and (50) with POD optimal
basis and the errors between the solutions are not more than 8×10−3. Although what we have
done here is a kind of recomputing what we have already computed by usual FDS, when it comes
to actual problems, we may structure the snapshots and POD basis with interpolation or data
assimilation by drawing samples from experiments, then solve directly the reduced optimizing FDS
(35) with (34) and (50). Thus, the calculating time and memory demands in the computational
process will be greatly saved. It is also shown that the POD approach in solving the CVD equa-
tions is very effective and the consistency of the numerical and theoretical results is demonstrated
(Figure 6).
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Figure 4. Temperature figure, mass figure, and pressure figure for usual FDS solution (on
left-hand side figure) and when Mp =MT =MC =7 solutions of the reduced FDS based on

POD (on right-hand side figure).

6. CONCLUSIONS

In this paper, the SVD and POD methods are applied to derive a reduced optimizing FDS for
CVD equations. First, ensembles of data are compiled from transient solutions obtained with usual
FDS, and this process can be omitted in actual applications where the ensemble of snapshots
can be obtained from physical system trajectories by drawing samples from experiments and
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Figure 5. Stress tensor �=(�i j )2×2 for usual FDS solutions (on left-hand side figure) and when
Mu =Mv =5, POD reduced FDS solutions (on right-hand side figure). From top to bottom, figure of �11,

figure of �12(=�21) and figure of �22.

interpolation (or data assimilation). Then we employ SVD to derive POD basis from the ensembles
of data and substitute the unknowns of usual FDS with the linear combinations of POD basis to
develop the reduced optimizing FDS for CVD equations, in which the much fewer basis make
the POD reduced FDS optimal in a sense. Finally, we have analyzed the errors between the POD
reduced FDS approximate solutions and the usual finite difference solutions, which are consistent
with the theoretical results of error estimate and validating the feasibility and efficiency of our
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Figure 6. Error estimate.

reduced optimizing FDS at the same time. The theoretical and numerical results in this article also
demonstrate that the POD method has extensive applications in complicated nonlinear PDEs, which
makes it more feasible to be applied in some other complicated PDEs and some actual problems
such as the atmosphere quality forecast system, the ocean fluid forecast system and so on.
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