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Abstract Hydraulic conductivity distribution and plume

initial source condition are two important factors affecting

solute transport in heterogeneous media. Since hydraulic

conductivity can only be measured at limited locations in a

field, its spatial distribution in a complex heterogeneous

medium is generally uncertain. In many groundwater con-

tamination sites, transport initial conditions are generally

unknown, as plume distributions are available only after the

contaminations occurred. In this study, a data assimilation

method is developed for calibrating a hydraulic conduc-

tivity field and improving solute transport prediction with

unknown initial solute source condition. Ensemble Kalman

filter (EnKF) is used to update the model parameter (i.e.,

hydraulic conductivity) and state variables (hydraulic head

and solute concentration), when data are available. Two-

dimensional numerical experiments are designed to assess

the performance of the EnKF method on data assimilation

for solute transport prediction. The study results indicate

that the EnKF method can significantly improve the esti-

mation of the hydraulic conductivity distribution and solute

transport prediction by assimilating hydraulic head mea-

surements with a known solute initial condition. When

solute source is unknown, solute prediction by assimilating

continuous measurements of solute concentration at a few

points in the plume well captures the plume evolution

downstream of the measurement points.

Keywords Data assimilation � Ensemble Kalman filter �
Solute transport � Hydraulic conductivity �
Steady-state flow

1 Introduction

The effective management of subsurface contamination

requires development and application of groundwater flow

and solute transport models to accurately predict contam-

inant distribution and migration in complex subsurface

environments. Natural media are generally heterogeneous

and hydraulic parameters vary significantly in space.

Characterization of field heterogeneity is always difficult

due to limited project budget, time, and/or available mea-

surement techniques. We always face a problem that

parameter measurements are too sparse to describe spatial

distribution of hydraulic parameters. To resolve this

problem, inverse methods are commonly used to calibrate

parameter distributions and provide more reliable model

predictions, as described in several review articles

(McLaughlin and Townley 1996; Zimmerman et al. 1998;

Carrera et al. 2005). In particular, it is vital to utilize var-

ious kinds of observations, which contain different levels

of signature of site heterogeneity and can help resolve the

non-uniqueness problem of inverse modeling (Poeter and

Hill 1997). Many time-invariant inverse algorithms have

been developed for this purpose using cokriging methods

(Hoeksema and Kitanidis 1984; Sun 1994; Yeh and Zhang

1996; Yeh and Liu 2000; Zhu and Yeh 2005). In the

conventional inverse methods, the calibration data (e.g.,
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measurements of state variables) are commonly used in a

batch, not sequential, mode. This diminishes flexibility of

model calibration and increases computational cost (e.g., in

calculation of the sensitivity matrix). More importantly,

using calibration data in the batch model significantly

reduces potential of eliminating influence of incorrect ini-

tial conditions on model predictions. With improvement of

measurement technology, more and more continuous

groundwater observations become available. Suitable

approaches should be invoked to dynamically reconcile

these temporal observations of different kinds. The data

assimilation method is one of these kind approaches.

Originating from meteorology and oceanography (Daley

1991), data assimilation method has been developed for

improvement of operational weather forecasts and ocean

dynamics prediction (Bennett 1992). In hydrology, data

assimilation methods have been used to incorporate remote

sensing data dynamically to improve estimation of land

surface variables. One primary application is to estimate

soil moisture or soil temperature profile in vertical direc-

tion by assimilating remote sensing data or observation in

situ (Houser et al. 1998; Reichle et al. 2002a, b; Li et al.

2004; Huang et al. 2008a, b). Data assimilation methods

have been applied to assimilate geophysical data to char-

acterize a medium heterogeneity (Christakos 2002, 2005).

The method has also used in hydrodynamic modeling to

deal with nonlinearity and bias (Sorensen et al. 2004). Liu

and Gupta (2007) recently provided a review on applica-

tions of data assimilation in hydrology with a focus on

uncertainty analysis.

Kalman filter (KF) (Kalman 1960) is a method of

sequential data assimilation that recursively assimilates

observations when they become available with time. While

KF was developed for linear systems, Ensemble Kalman

filter (EnKF) (Evensen 2003, 2006) was developed for

nonlinear systems without model linearization as in the

Extended Kalman Filter (EKF) (Jazwinski 1970). The KF

and EKF have been applied to improve the distribution of

soil moisture and other quantities (McLaughlin 1995). The

EnKF was applied to estimate soil moisture profile (Reichle

et al. 2002a) and its advantage over EKF was also assessed

(Reichle et al. 2002b). Margulis et al. (2002) utilized the

EnKF to assimilate land data obtained from field experi-

ments at the Southern Great Plains to estimate soil moisture.

Andreadis and Lettenmaier (2006) used the EnKF to

assimilate remotely sensed snow observation into a mac-

roscale hydrology model to improve the prediction for snow

cover prediction. Clark et al. (2006) applied the EnKF to

assimilate snow covered area information into hydrologic

and land surface models to improve streamflow simulation.

Huang et al. (2008a, b) adopted the EnKF to assimilate

remote sensing data into land surface model to improve soil

moisture and soil temperature profile estimation. The KF,

EKF, and EnKF have received more and more attention in

groundwater, surface hydrology, and petroleum reservoir

modeling (Van Geer et al. 1991; Yangxiao et al. 1991;

Vrugt et al. 2005a, b; Gu and Oliver 2005, 2006; Drecourt

et al. 2006; Wen and Chen 2005; Chen and Zhang 2006;

Zhang et al. 2007). Recent development of the EnKF is not

limited to updating system state variables, as in conven-

tional data assimilation, but simultaneously updates state

variables and model parameters to yield more accurate

model predictions (Moradkhani et al. 2005).

Current applications of the EnKF in groundwater mod-

eling are limited to flow models. Utilizing the EnKF

method to assimilate concentration data for prediction of

solute transport in groundwater is a new research area.

Vrugt et al. (2005a, b) applied a SODA method to couple

parameter optimization and sequential data assimilation for

estimation of sorption parameters by using Li concentra-

tion at a production well. The SODA method estimates the

parameters in an outer loop using a global optimization

method in a batch mode and then conducts data assimila-

tion in an inner loop using the EnKF. In this study, by using

a synthetic case for demonstration purpose, we apply an

EnKF method jointly, rather than separately, to estimate

model parameters and conduct data assimilation. The study

results demonstrate the feasibility of using the EnKF to

gradually reduce influence of unknown source term on

model prediction. In our best knowledge, it is the first time

to address this issue in groundwater modeling.

Predicting evolution of a solute plume requires knowing

not only the spatial distributions of hydraulic and transport

properties but also solute source such as its location and

solute release function. In many field cases, when

groundwater contamination is found in one or several

locations (e.g., monitoring wells), solute plume has already

formed. The locations of the contaminate sources may be

unknown, or if the source locations are identified, the

solute release functions are generally unknown. Under the

condition of unknown solute source, it is still an open

question that how to use concentration measurements at

limited monitoring wells to improve the prediction of sol-

ute plume distribution in future or solute concentration at

downstream of the monitoring wells. In this study we

address this issue by using the EnKF in a manner similar to

its applications in weather prediction. By assimilating

concentration observations, solute plume distribution will

be adjusted and long-term behavior of the plume can be

accurately simulated. This is a unique property of the data

assimilation method, not shared by conventional inverse

methods that use calibration data in the batch mode. It is

worth mentioning that in this study, we focus on gradually

reduce influence of unknown source term on transport

predictions using the EnKF, do not intend to characterize

the source term as in the backward probability model of
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Neupauer and Wilson (2001) and Neupauer and Lin

(2006).

2 Data assimilation method

A data assimilation system is composed of a model opera-

tor, an observation operator, and a data assimilation

algorithm. For a groundwater transport system, the model

operator is usually a flow-transport model used to simulate

the spatial-temporal evolution of hydraulic head and solute

concentration. In this study, the model operator is a steady-

state flow and a transient transport model. The observation

operator is used to build the relationship between simulated

state variables and observations. In this study, the state

variables and observations are the same, i.e., hydraulic head

and concentration at observation wells. The data assimila-

tion algorithm used in this study is the EnKF, which utilizes

observations of head and concentration to update the state

variables produced by the flow and transport model.

2.1 Flow and transport models

The classical convection-dispersion equation is adopted as

the governing equation for the nonreactive chemical

transport (Zheng and Wang 1999; Zheng and Bennett

2002), which is expressed as

oðhCkÞ
ot

¼ oC

oxi
hDij

oCk

oxj

� �
� o

oxi
hviC

k
� �

þ qsC
k
s þ

X
Rn

ð1Þ

where Ck (M L-3) is dissolved concentration, Dij (L2 T-1)

is hydrodynamic dispersion coefficient tensor, vi ¼ qi

h
(L T-1) is seepage or average linear pore water velocity,

h (–) and qi (L T-1) being porosity and Darcy velocity, qs

(T-1) is volumetric flow rate per unit volume of aquifer due

to fluid sources and sinks, and Ck
s (M L-3) is concentration

of the source or sink flux.
P

Rn (M L-3 T-1) is chemical

reaction term. Here, L, T and M denote any consistent unit

of length, time and mass. The Darcy velocity, qi, is

estimated via the Darcy’s law

qi ¼ �Kij
oh

oxj
ð2Þ

where Kij (L T-1) is the hydraulic conductivity tensor and

for an isotropic medium, Kij = 0 (i = j), and h (L) is

hydraulic head. The groundwater seepage velocity, vi, is

related to the specific discharge as

vi ¼
qi

h
¼ �Kij

h
oh

oxj
ð3Þ

where h (L3/L3) is the medium’s porosity. Hydraulic head

is obtained by solving the groundwater flow equation

o

oxi
Kij

oh

oxj

� �
¼ Ss

oh

ot
ð4Þ

where Ss (L-1) is specific storage of the aquifer. If the flow

is in steady state, the term on right-hand side will be zero.

This study focus on groundwater flow and non-reactive

transport modeling, chemical reactions are not considered,

but can be integrated in future study.

2.2 Ensemble Kalman filter

To make this paper self-contained, we briefly introduce the

EnKF method with perturbed observation proposed by

Burgers et al. (1998). In this algorithm, predictions of state

variables are given by their ensembles. Assuming normal

distribution of model predictions, the ensemble mean is

supposed to be the best estimate of the true state, and

prediction error around the mean is measured by covari-

ance of the ensemble (Evensen 2003). The covariance, P,

of forecast and analysis error of a random variable x are

defined as

Pf ffi Pf
e ¼ xf � �xfð Þ xf � �xfð ÞT ð5Þ

Pa ffi Pa
e ¼ xa � �xað Þ xa � �xað ÞT ð6Þ

where the overbar denotes the ensemble mean, and the

superscripts a and f refer to analysis and forecast,

respectively, the two necessary steps of the EnKF. In the

forecast step, forecasted state variables of each ensemble

member is updated according to

Xf
i;tþ1 ¼ M Xa

i;t

� �
þ ui ui�N 0;Qð Þ ð7Þ

where Xf
i;tþ1 is the forecasted state variable of the ith

ensemble member at time t ? 1; Xa
i;t is analyzed state

variable of the ith ensemble member at time t; M(�) is

model operator, which is the flow or/and transport model in

groundwater modeling; ui is model error vector, which is

assumed to satisfy Gaussian distribution with zero mean

and covariance matrix Q.

In the analysis step, the observation data are perturbed

by adding random observation errors. The forecast of each

ensemble member is updated as follows (Burgers et al.

1998):

Xa
i;tþ1 ¼ Xf

i;tþ1 þ Pf
tþ1HT HPf

tþ1HT þ R
� ��1

Ytþ1 þ eið Þ � H Xf
i;tþ1

� �h i
ei�N 0;Rð Þ ð8Þ

where H(�) is observation operator used to convert the

model state variables to observations; Yt?1 is observation

data at time t ? 1; ei is random error vector of observation

with zero mean and covariance matrix R; Pf
tþ1 is forecast

background covariance matrix at time t ? 1. Based on

Eq. (5), replacing the ensemble covariance by sample
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covariance of N ensemble members, Pf
tþ1HT and HPf

tþ1HT

in Eq. (8) can be calculated via (Burgers et al. 1998)

Pf
tþ1HT¼ 1

N�1

XN

i¼1

Xf
i;tþ1�Xf

tþ1

h i
H Xf

i;tþ1

� �
�H Xf

tþ1

� �h iT

ð9Þ

HPf
tþ1HT ¼ 1

N � 1

XN

i¼1

H Xf
i;tþ1

� �h

�H Xf
tþ1

� �i
H Xf

i;tþ1

� �
� H Xf

tþ1

� �h iT

ð10Þ

The analysis state estimate at time t ? 1 is given by the

mean of the ensemble members. The analyzed ensemble is

then integrated forward until the next observation is

available and the process is repeated. In comparison with

commonly used inverse methods (e.g., general least square

and maximum likelihood methods), the EnKF can

dynamically adjust system estimates, without reprocessing

existing data when new observations become available.

2.3 Experimental design

In this study, the EnKF algorithm is implemented in a

heterogeneous saturated medium with two-dimensional

steady-state flow and transient-state solute transport. As

shown in Fig. 1, the flow domain is a square and discret-

ized into 20 9 20 square cells. Each cell is of one unit

area. For simplicity and generality, the units of length,

mass, and time are not specified in this study. The flow

field is surrounded by Dirichlet boundaries on the left and

right sides and Neumann boundaries on the top and bottom

borders. A point source is located at point (5, 10) and a

nonreactive solute is continuously injected into the medium

at an injection rate of 50 M L-3 T-1. The parameters

required by flow-transport model are listed in Table 1. The

statistical distribution of the log hydraulic conductivity

field (lnK) is assumed to be statistically stationary with the

exponential covariance function, C(h),

CðhÞ ¼ r2 exp � h2
x

k2
x

þ
h2

y

k2
y

" #1
2

0
@

1
A ð11Þ

where hx and hy are the lags in the horizontal and vertical

directions and h = (hx, hy); kx and ky are correlation

lengths (integral scale) along horizontal and vertical

directions, respectively. In our study, we choose kx = 4,

ky = 2. Furthermore, we assume that the lnK values are

known at the locations of 16 hydraulic head observation

wells marked by crosses in Fig. 1. Then a certain amount

of realizations of lnK fields are generated using the

sequential Gaussian simulation (SGSIM) modular in

GSLIB software (Deutsch and Journel 1998) and are used

in our data assimilation experiment.

Two case studies are used to demonstrate EnKF’s

capacity of improving solute concentration prediction

through assimilating hydraulic head, and concentration

data. The first one (referred to as Case 1 hereinafter) is to

assimilate hydraulic head measurements to identify con-

ductivity field and update flow and transport predictions.

As shown in Fig. 1a, there are 16 hydraulic head obser-

vations wells that are distributed uniformly in study

domain. Additionally, the wells, A1, A2, A3, and A4,

located at downstream are used to validate the study

results. In this case, we assumed that the concentration

source is known and is released continuously. The

hydraulic conductivity and hydraulic head fields are con-

sidered as the state variables (i.e., variable X in Sect. 2.2).

Procedure of the data assimilation using the EnKF is shown

in the flowchart of Fig. 2a. First, ensemble of initial

Fig. 1 The domain of the case

study field and distribution of

wells. a The case of assimilating

hydraulic head data, b the case

of assimilating concentration

data
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hydraulic conductivity fields are generated using the

SGSIM, and the generated hydraulic conductivity fields are

used in flow model to calculate hydraulic head in the study

area. These hydraulic conductivity fields and heads are

served as the first-step forecast results. When there are the

hydraulic head measurements at the observation wells in

current time step, which are used to update the hydraulic

conductivity and hydraulic head distributions through

EnKF algorithm. The updated conductivity and head values

are applied to calculate groundwater flow velocity, which is

used, in turn, to calculate solute concentration based on

transport model. Finally, the updated hydraulic conduc-

tivity, hydraulic head, and concentration are then used to

reinitialize the flow and transport models at next time step.

The second experiment (referred to as Case 2 herein-

after) is to assimilate concentration data to improve solute

transport prediction with unknown contamination source.

The distribution of observation wells is shown in Fig. 1b. It

is assumed that the conductivity field is fixed, but the

concentration source is unknown. Time-series concentra-

tion data are available at four observation wells, B1, B2, B3,

and B4. The concentration is considered as the state vari-

able and concentration data at the four wells are

assimilated into the transport model to improve the con-

centration prediction at downstream of the observation

wells. The concentration observations in wells, C1, C2, C3,

and C4, are used to validate the assimilation results. Pro-

cedure of the data assimilation is shown in Fig. 2b. As

shown in the figure, first, based on the given hydraulic head

boundary condition and hydraulic conductivity field, we

use the steady-state flow model to calculate hydraulic head

and flow velocity in the study domain. Then, when the

concentration data are larger than 0.1, about 3% of the peak

concentration value, the data are assimilated into calcula-

tion to update the concentration field, which is then used to

reinitialize the transport model at next time step. We have

tested that assimilation of the large amount of low

Table 1 Summary of parameter required by flow-transport model

Parameter Value Unit

Cell width along rows 20 L

Cell width along columns 20 L

Hydraulic conductivity [e-4, e4] L T-1

Saturated thickness 1 L

Longitudinal dispersivity 20 L

Transverse dispersivity 4 L

Porosity 0.3 –

Concentration injection rate 50 M L-3 T-1

Simulation time (t) 200 T

Ensemble 
Kalman filter

Head Observation 
Forecast  ensemble of 
hydraulic conductivity 

Forecast ensemble of 
head 

Flow model

Initial ensemble of 
hydraulic conductivity 

Initial ensemble of 
head 

Initial ensemble of 
concentration

Transport model

Ensemble of flow 
velocity

Updated ensemble of 
hydraulic conductivity 

Updated ensemble of 
head 

Updated ensemble of 
concentration

t = t + 1

t = t + 1(a)

Initial ensemble of 
concentration

Transport model
Ensemble Kalman 

filter
Updated ensemble of 

concentration

Concentration 
Observation

Initial head

Steady-state flow 
model

t = t + 1

Constant hydraulic 
conductivity 

Fixed flow velocity

Forecast ensemble of 
concentration

Fixed head

>0.1

(b) 

Fig. 2 The flowchart of data

assimilation scheme for

groundwater. a Flowchart of

hydraulic head assimilation. b
Flowchart of assimilating

concentration measurements

Stoch Environ Res Risk Assess (2009) 23:1155–1167 1159

123



concentration data, less than 0.1, into concentration cal-

culation will hardly affect the updating results, but

significantly increase computation.

For the proposed two cases, we conduct two numerical

experiments to demonstrate the method of assimilating

hydraulic head and concentration data, respectively. The

observations and validation data used in this study are

obtained from the synthetic ‘‘true’’ data. The availability of

the ‘‘true’’ data allows us to determine the feasibility of the

assimilation approach under known conditions. We adopt

one of the multiple realizations of lnK field as the reference

field to run flow and transport model under given boundary

and initial conditions to obtain hydraulic head distribution

and temporal–spatial propagation of solute plume. At

measurement locations, the hydraulic head and concentra-

tion observations are extracted then are artificially added

stochastic noise with zero mean and variance 0.01 to

generate a set of new observations series which were used

to perform our assimilation experiments. Additionally, we

assume the state model is perfect, thus the system is free of

model error. As commonly adopted in groundwater mod-

eling, we also assume that the observation errors are

unbiased (the mean is aero) and independent (the obser-

vation error covariance is diagonal). The observation error

standard deviation is set to be 0.1 for both the hydraulic

head and concentration measurements.

3 Results and analysis

3.1 Influence of ensemble size

In the EnKF algorithm, the underlying statistics of a ran-

dom field are estimated from a limited set of ensemble

Fig. 3 The influence of ensemble size on the results of hydraulic

head and conductivity fields

Fig. 4 Comparison of lnK
fields in Case 1: a reference

field of lnK; b ensemble mean

of initial lnK field; c ensemble

mean of lnK field at the 5th

assimilation step; d ensemble

mean of lnK field at the 50th

assimilation step

1160 Stoch Environ Res Risk Assess (2009) 23:1155–1167

123



members. It is expected that the estimation will improve as

the ensemble size (or number of realizations) increases, so

better results may be achieved by enlarging the ensemble

size. On the other hand, the increase of the ensemble size

will increase the computation. Therefore, it is required to

find an optimal way to balance the calculation accuracy

and efficiency. For the specific case we propose in this

study, we also need to address the issue of ensemble size or

the realization number before we do other studies. For case

1, based on 200 realizations of the lnK field, we use various

realization numbers, from 10 to 200, to conduct flow cal-

culation, then compare the root mean square error (RMSE)

results of lnK and hydraulic head from different realization

sizes to seek the influence of realization size on calculation

results. The RMSE is used as a criterion to indicate the

goodness of the results, which is defined as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

St
i � �Sf

ið Þ2
vuut ð12Þ

Here, N is cells number in experimental domain, St
i and �Sf

i

stands for the true and estimated lnK fields or hydraulic

head fields, respectively. Since this is a synthetic case the

Table 2 The statistics of mean and variance of lnK fields

Reference

field

Initial

ensemble

mean field

Assimilated

ensemble mean

field

5th step 50th step

Mean -0.03402 0.44596 0.31168 0.22018

Variance 1.8546 0.37937 1.18776 1.20037

Fig. 5 Comparison of hydraulic head field for Case 1: a reference field; b ensemble mean field of simulation; c ensemble mean field of

assimilation

Fig. 6 Comparison of hydraulic head variation at observation wells for Case 1
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true field is known. The calculated RMSE results of lnK

and hydraulic head with different realization numbers are

shown in Fig. 3. One can see from the figure that when the

ensemble size is small, the RMSE values of lnK and

hydraulic head generally decrease with the increase of the

realizations. However, when the realization number

reaches 60–80, the RMSE values almost keep unchanged

with the increase of the realizations. Therefore, the

ensemble size is chosen to be 100 realizations.

3.2 Assimilation of hydraulic head

The reference lnK field, the sample mean of the initial lnK

realizations and the updated lnK fields at the 5th and 50th

assimilation step are plotted in Fig. 4. The figures depict

significant difference between the reference and the sample

mean of the initial lnK realizations. Although only 16

hydraulic head observations are assimilated at every time

step in Case 1, the updated mean lnK field is closer to the

reference field after 50 assimilation steps than the initial

field. The statistics of mean and variance of lnK field are

summarized in Table 2. From the table one can see that

updated mean lnK value decreases from the initial value of

0.45–0.22 while the ‘‘true’’ value is -0.03, and the vari-

ance increases from 0.38 to 1.20, while the ‘‘true’’ value is

1.85. Therefore, the improvement is significant, but there

still exists a gap between the ‘‘true’’ values and the updated

values, which indicates that there is an efficiency limit to

use steady-state hydraulic head data to calibrate conduc-

tivity field. Further, in comparison of the 5th and 50th step

Fig. 7 The concentration field propagation by observed, simulated, and assimilated at the 1st, 50th, and 100th assimilation steps in Case 1
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results, one can tell that improvement of the updating

results decreases with the assimilation step increases.

The improvement of hydraulic conductivity field is also

reflected by hydraulic head variation, which is shown in

Fig. 5. After 50 assimilation steps, the spatial pattern of the

ensemble mean head of assimilation results becomes closer

to that of the reference field than the initial simulation

results. The time-series of hydraulic head at four mea-

surement wells are also shown in Fig. 6. The assimilated

hydraulic head is close to the ‘‘true’’ measurements,

although white noise is added in the hydraulic head mea-

surements. The reason is that the hydraulic head and

conductivity are adjusted at every assimilation step. It

should be pointed out that the hydraulic head measurement

is much more accurate than conductivity measurement in

field. The measurement error can be limited to 5 cm.

However, since the conductivity calibration is very sensi-

tive to the head value, especially locally, the measurement

error can lead to significant change of local conductivity

field.

Based on the assimilated hydraulic conductivity and

head results, we also calculate the solute transport process,

which is called assimilated transport results. The variation

of concentration field by observed, simulated, and assimi-

lated is shown in Fig. 7. The simulated solute plume

propagates more quickly than ‘‘true’’ field and the plume

distribution is significantly different from the ‘‘true’’ one.

After 50 simulation time steps, the assimilated concentra-

tion plume is much closer to the ‘‘true’’ one: the plume

mean movement is roughly same and plume shape is also

similar. We also calculate the concentration breakthrough

curves at four observation wells, and the results are shown

in Fig. 8. These results also indicate the data assimilation

will improve the calculation results, despite that the

improvement is not very significant for this case.

3.3 Assimilation of concentration data

In this case study, we use the concentration data collected at

monitoring wells to update the prediction for solute plume

evolution. As shown in Fig. 1b, there are four observation

wells, B1–B4, located at the downstream of the plume. The

breakthrough curves obtained from the wells are used in the

data assimilation to update the solute calculation results.

The concentration breakthrough curves collected from

wells, C1–C4, are used to check the assimilation results. In

this case, the hydraulic conductivity field is supposed to be

known, but the plume source is unknown. The data assim-

ilation is used to improve forecast of concentration by

assimilating limited concentration observations in wells

B1–B4 under the condition of unknown contamination

source. The concentration propagation by observed and

assimilated fields at the 150th, 200th, and 300th time steps

are shown in Fig. 9. It is clearly shown from the figure that

Fig. 8 The comparison of the

observed, assimilated, and

ensemble simulated

concentration at A1, A2, A3 and

A4 wells in Case 1
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although only concentration observations in four wells are

assimilated into our scheme in every time step, the

improvement for plume prediction is significant. After the

assimilation, the spatial pattern of concentration at the down

gradient area becomes significantly closer to the ‘‘true’’

field. Additionally, the comparison of the observed and

assimilated concentrations at C1, C2, C3 and C4 wells are

plotted and shown in Fig. 10. When more and more con-

centration data collected at B1, B2, B3 and B4 wells are

assimilated into calculation, the assimilation results at C1,

C2, C3 and C4 wells become more and more similar to the

‘‘true’’ values. The study results indicate that when the

Fig. 9 Evolution of contaminant plume in the ‘‘true’’ and assimilated fields at the 150th, 200th, and 300th assimilation steps in Case 2
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conductivity field is known, but the solute source is

unknown, the concentration data assimilation can make the

concentration plume distribution and breakthrough curves

in the observation wells in the downstream of the obser-

vation wells almost match the ‘‘true’’ ones. It should be

pointed out that when the conductivity is unknown, but the

solute source is known, the concentration data can also be

applied to update the conductivity field. However, if both

the solute source and conductivity field are unknown, we

cannot use concentration data to update the two quantities.

In this condition, we have to use other data, such as

hydraulic head data, to do the calibration, hydraulic data for

conductivity and concentration for unknown source.

4 Summary and conclusions

In this study, the EnKF is used to estimate heterogeneous

hydraulic conductivity field by assimilating hydraulic head

measurements, and to improve prediction of solute plume

with unknown solute source condition by assimilating

concentration measurements at monitoring wells. Two

synthetic cases are designed to demonstrate applicability

and effectiveness of the data assimilation method proposed

in this study for parameter estimation and improvement of

solute transport predictions. The developed method is

general and applicable to transient flow and transport in a

three-dimensional domain. In the first case study, we

consider to use head measurements to identify a hetero-

geneous hydraulic conductivity field. The lnK and

hydraulic head fields are supposed to be state variables and

the hydraulic head measurements in limited wells are

assimilated to calibrate the conductivity field. In the second

case study, the data assimilation improves solute transport

prediction in a known conductivity field, but unknown

solute source location and solute release function. By using

the EnKF method developed in this study, we assimilate

the concentration data obtained at monitoring wells to

examine how effective we can improve the concentration

prediction at the downstream of the monitoring wells.

Based on the study results, the following conclusions are

obtained.

1. The EnKF can be used to effectively calibrate a

heterogeneous conductivity field by assimilation of

hydraulic head measurements. After the assimilation,

the spatial distributions of hydraulic head, hydraulic

conductivity, and concentration fields become signif-

icantly closer to reference fields than those without

data assimilation.

2. The EnKF can be also used to assimilate concentration

measurements obtained at limited monitoring wells to

improve concentration prediction. The second case

study results indicate that by locating the concentration

monitoring wells in the downstream of the

Fig. 10 The comparison of the

observed and assimilated

concentration at C1, C2, C3 and

C4 wells in Case 2
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contamination source, the solute transport process in

the downstream of the monitoring wells can be

accurately predicted by continuously assimilating the

concentration data obtained in the monitoring wells

even though the solute source location and solute

release function are unknown. The EnKF method

developed here provides an approach for many envi-

ronmental projects to design concentration monitoring

wells for prediction of solute transport.

3. In this study, the forecast model is assumed known and

effect of measurement and model error is not studied.

Therefore, identifying spatial distribution of model

error and quantifying model error is still an issue

needed to study.

4. The model predictability depends on ensemble size

and the complexity of a medium heterogeneity char-

acteristics and hydraulic conditions. In this study, we

analyze the influence of ensemble size and conclude

that 100 realizations will be accurate enough for flow

calculation based on the specific conductivity field.

However, the influence of the observation locations,

and the measurement timings and types, and develop

methods of jointly estimating flow and transport

parameters need to be studied in future.
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