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NOT to Look for the Keys under the Lamppost

“No,” is the reply, “I do not know where I lost the keys.” “Why look here?” 
asks the surprised and irritated officer. “The light is much better here,” the 
intoxicated man responds with aplomb.

• A police officer sees a drunken man 
intently searching the ground near a 
lamppost and asks him the goal of 
his quest. 

• The inebriate replies that he is 
looking for his car keys.

• The officer helps for a few minutes 
without success then he asks 
whether the man is certain that he 
dropped the keys near the 
lamppost.

Do we do the same in groundwater modeling?



Lamppost in Groundwater Modeling

Bredehoeft (2010): Models and Model Analysis
How do we, as hydrogeologists, use the models today?

• “We collect all the available geologic data and create 
cross sections and isopach maps of various 
hydrostratigraphic layers.

• We decide that the geologic information is incomplete, 
and drill additional test wells. By this time, the project 
is 75% to 80% complete, and now we build ‘the 
groundwater model’.

• We run the model, and we find it is sensitive to data 
that we failed to collect (e.g., the vertical hydraulic 
conductivity of a confining layer). Perhaps even our 
concept of the system is invalid. 

• But there is neither time nor money left in the project 
budget – the model informs us that we need another 
project. As my colleague Ivan Barnes used to say: 
Further work is indicated.”
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Member of National 
Academy of 
Engineering, Elected 
in 1994



“There are a number of things wrong with this approach. 

• Our data collection was based on an implicit (or explicit) 
conceptual model of the system. 

• The last thing we did was test this conceptual model with the 
numerical model, and we found that we failed to collect 
important field data. 

• In the end, we built a complex model that was state of the art 
numerically, calibrating it using optimization techniques. 

• The calibration suggested changes, model revisions, 
different data, but we were out of time and budget. Sound 

familiar?”
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We are looking for the keys under the lamppost!

“I may be like Don Quixote jousting with windmills; but to build 
bigger groundwater models just because it is feasible, or in 
vogue, seems to me meaningless – certainly it does not lead to 
increased understanding.”



The Conceptual Model Problem: Surprise

• “Surprise is defined as the collection of new 
information that renders one’s original conceptual 
model invalid.”

• “Limited empirical data indicate that surprises occur in 
20–30% of model analyses.”

Bredehoeft (2005)



Yu-Feng Lin, Illinois State Water Survey & University of Illinois at Urbana-Champaign
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Chamberlin’s Solution (1890)
• The method of the ruling theory

• The method of the working hypothesis

• The method of multiple working hypothesis
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Chamberlin in the 1870s



Look for the Keys under Multiple Lampposts

• Model Selection
Select one out of multiple 
models (ZERO SUM)

• Model Averaging
Use multiple models for 
making predictions 
(AGREEING ON DISAGREE)
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"All Models Are 
Wrong: How 
Do We Know 
Which Are 
Useful?“  

Eileen Poeter
2006 Darcy 
Lecturer

“Seeing Things 
Differently: 
Rethinking the 
Relationship 
Between Data, 
Models, and 
Decision-Making”

Ty Ferre 2016 
Darcy Lecturer I have been there!



Model Averaging

When we make model 
predictions, we used to 
use only one model 
based on our judgements 
and assumptions.
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However, we are not 
always certain about the 
“right” judgments and 
assumptions to make.
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• Each model alternative has some merit in reproducing 
aspects of the physical system, this merit being quantified 
by each model’s probability.

• The Bayesian model averaging strategy of Neuman
(2002) encourages exploration of varied conceptual 

frameworks and assumptions at all stages of 

hydrogeologic model development. 
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Bayesian Model Averaging:

Posterior Model Probability

Model Evidence
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: multiple-dimensional parameters of model Mk

• Need to calculate the multivariate integration. 
Computationally expensive!!!
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Computational Challenge
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Groundwater Sensitivity Analysis under 

Model and Scenario Uncertainty: 

Not Look for Keys under the Lamppost
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Sea-Level Rise Scenarios
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Projecting Future Sea-Level Rise

Sea-Level Rise Scenarios
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• Empirical equations to 
predict sea-level rise 
given by SERDP

• Predicted sea-level rises 
agree with literature data.  



Scenario Uncertainty
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IPCC (2000, p.62): “scenarios are images of the future, or alternative futures. 
They are neither predictions nor forecasts. Rather, each scenario is one 
alternative image of how the future might unfold. A set of scenarios assists in 
the understanding of possible future developments of complex systems.”

17



0.10

0.08

0.06

0.04

0.02

0.00

p
(∆

)

806040200

∆ = Peak Dose (mrem/yr)

Scenario 1
 Model 1 (Prob = 0.5)
 Model 2 (Prob = 0.25)
 Model 3 (Prob = 0.25)
 Model-Averaged Result

R
e
g

u
la

to
ry

 T
h

re
sh

o
ld

 

0.10

0.08

0.06

0.04

0.02

0.00

p
(∆

)

806040200

∆ = Peak Dose (mrem/yr)

Scenario 2

 Model 1 (Prob = 0.5)
 Model 2 (Prob = 0.25)

 Model 3 (Prob = 0.25)
 Model-Averaged Result

R
e
g

u
la

to
ry

 T
h
re

sh
o

ld

Scenario Averaging
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• Two scenarios
• The three models are the same

under each scenario.
• The three models have different

predictions under different 
scenarios.
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Uranium Mill Tailing at Naturita, CO

• NATURITA MILL AND DISPOSAL SITE

$86.3 million Cost of cleanup The Vanadium Corp. of 
America began operating the mill in 1939. The mill 
processed 704,000 tons of uranium ore for the 
Manhattan Project from 1942 to 1958. In the late 
1970s, a private corporation bought the tailings pile 
and moved it to another site called Hecla/Durita to 
extract additional uranium and vanadium. 

• Left behind: At and around the original mill, 138 
acres were contaminated. Groundwater beneath the 
site was contaminated.

• The fix: From 1993 to 1997, DOE removed 800,000 
yards of contaminated material and put it in a 
disposal site near Uravan. Contamination was left in 
place on 22 acres. More than one acre was left 
because the radiation levels were so high that 
workers would have been at risk.

http://www.denverpost.com/news/ci_15996355

Toxic legacy of uranium haunts proposed Colorado mill, By 
Nancy Lofholm, The Denver Post, 9/5/2010



Conceptual Model Challenges in 

Groundwater Reactive Transport Modeling

Uncertainty in model parameters, structures, and Scenarios 



Surface Complexation Models

• Seven models (C1-C7) of 
surface complexation 
with different level of 
complexity (numbers of 
functional groups).

• Question: Which model 
to use?

Gary: I do not know. You 
tell me, Ming!  

Kohler et al. (1996, WRR)



Bayesian UQ Framework

System boundary B(t) with 
boundary conditions b(Θ)

Forcing u(Θ,t)
Initial condition 

x0(Θ)
Structure M(t) with 

characteristics 
m(Θ)

State variables x(t)

y(t)

A model is composed of seven different 
components: 
• System boundary (B), 
• Forcing (u), 
• Initial states (x0), 
• Parameters (θ), 
• Structure (M), 
• States (x), and 
• Outputs (y). 

The sources of the predictive uncertainty, from a  system point 
of view, can be categorized into 
(1) Scenario uncertainty in system input (u), 
(2) Model uncertainty in model structure (M), 
(3) Parameter uncertainty in model parameters (θ), and
(4) Data uncertainty in observations. 23



A Comprehensive and Hierarchical Framework

Scenario S1 Scenario S2

Address
Scenario

Uncertainty

Model M1 Model M2

Parameter P1

Address
Model 

Uncertainty

Address
Parametric

Uncertainty

UQ(P2|M2,S1)

UQ(P,M|S1) UQ(P,M|S2)

UQ(P,M,S)

Quantify
Parametric

Uncertainty 

Quantify
Parametric and Model

Uncertainty

Quantify
Parametric, Model, and Scenario

Uncertainty

UQ(P1|M1,S1)

Same or Different 
Models and Model 

Parameters

Parameter P2

24



Bayesian UQ Framework: Scenario, 
Model, and Parametric Uncertainty

• Scenario uncertainty
( ) ( | ) ( | )s sVar E Var S Var E S∆ = ∆ + ∆

| |( | )= ( | , ) ( | , )M S M SVar S E Var M S Var E M S∆ ∆ + ∆

• Model uncertainty of a given scenario

• Parametric uncertainty of a given scenario 
and a given model

| , | ,( | , ) ( | , , ) ( | , , )M S M SVar M S E Var M S Var E M Sθ θθ θ∆ = ∆ + ∆

Within-scenario Between-scenario

Within-model Between-model

Data Parametric 25



Uncertainty Decomposition

Parametric uncertainty in θ
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Groundwater Sensitivity Analysis under 

Model and Scenario Uncertainty: 

Not Look for Keys under the Lamppost
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Sensitivity Analysis

• Sensitivity analysis describes different ‘‘intuitive’’ 
understandings of the sensitivity of one or more model 
responses to different factors such as model parameters 
or forcings.

• Objectives of sensitivity analysis:
– Assessment of Similarity

– Factor Importance and Function

– Regions of Sensitivity

– Factor Interdependence

– Factor and Model Reduction

– Uncertainty Apportionment: Quantitative attribution of the 
uncertainty in model response to different factors (sources of 
uncertainty), with the goal of identifying where best to focus 
efforts at improved factor characterization so as to achieve 
reductions in total uncertainty 28

Razavi and Gupta (2015, WRR)



Global Sensitivity Analysis for a Single Model

Simulation 

Model

Parameter θC

Parameter θD

Model Outputs

Parameter θBParameter θA

Feedback for model development and data collectionFeedback for model development and data collection

Parameter A

Parameter B

Parameter C

Parameter D

Interaction

Question: If we are not certain about what model parameter values to use,
can we identify the important parameters?
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Challenges of Global Sensitivity 
Analysis under Model Uncertainty

Parameter A

Parameter B

Parameter C

Parameter D

Interaction
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( , , , )A B C Df∆ = θ θ θ θ

What if there is another plausible 
model/scenario?

Are the parameters important to one 
model/scenario also important to 
another model/scenario?



Challenges of Global Sensitivity 
Analysis under Model Uncertainty

SA
SB SC SD

Model M1 10% 20% 20% 50%

Model M2 50% 20% 10% N/A

Dai and Ye (2015, Journal of Hydrology)

SB = 20% for models M1 and M2.

M1: 20% of the variance of 100, V1(Δ).

M2: 20% of the variance of 10,000, V1(Δ).  
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• Different models may have different parameters
• Sensitivity index is not comparable cross models. 



Parametric Uncertainty Under 
Model and Scenario Uncertainty

32
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avoid wrong identification of important parameters given the uncertainty.



33

New Sensitivity Index 
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New Sensitivity Index 

For multiple models but a single scenario 

(model uncertainty and no scenario uncertainty)
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New Sensitivity Index 

For multiple models and multiple scenarios 

(model uncertainty and scenario uncertainty)
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Global Sensitivity Analysis for Identifying 
Important Parameters of 
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Chen et al. (2017, WRR, Under Revision, RRR)



Nitrogen Contamination due to Fertilizer Use
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Nitrogen Cycle
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Nitrogen Reactive Transport Modeling

ADE (for transport)

+ODE (for reactions)
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Tallahassee Wastewater Treatment Plant ($270M)
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Model Uncertainty in Literature

• Hansen et al. [1995] compared five models (ANIMO, 
SOILN, OMNI, NLEAP, and DAISY). 

• Frolking et al. [1998] described four models 
(CENTURY, DNDC, Expert-N, and NASA-CASA) for 
simulating nitrous oxide (N2O) emissions. 

• Wu and McGechan. [1998] compared four models 
(ANIMO, SUNDIAL, SOILN, and DAISY).

• Heinen [2006] reviewed more than fifty models. 

40



Alternative Models for Reduction Factors

T1 and M1 from SOILN [Johnsson et al., 1987] 

T2 and M2 from DAISY [Hansen et al., 1991]
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Nitrification Denitrification

T1 �� = ������� ��⁄ �� = ������� ��⁄

T2 �� =
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.��.�/.�0�.���12�3 , (20℃ < # ≤ 405 �� = 1
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� − �6�78 − �6
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�< , � > ��

M2 �� =
pF1.5 , pF < 1.51,1.5 ≤ pF < 2.52 − 2pF5 , 2.5 ≤ pF < 50, pF > 5

�� = @ 0, �6 < 0.82(�6 − 0.8', 0.8 < �6 ≤ 0.90.2 + 8(�6 − 0.9', 0.9 < �6 ≤ 1



Impacts of T/P Scenarios

• Temperature scenarios: 

S15, S5, and S25 for 
three yearly-average 
temperatures, affecting 
fT directly 

• Precipitation Scenarios: 
Present-day (13mm) 
and Wet (26mm), 
affecting moisture 
content (θ) directly and  
fm indirectly. 
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Nitrification

T1 �� = ������� ��⁄

T2 �� =
0, (# ≤ 2℃'0.15(# − 2', (2℃ < # ≤ 6℃'0.1#, (6℃ < # ≤ 20℃'- �.
.��.�/.�0�.���12�3 , (20℃ < # ≤ 405

M1 �� =
� − �6�78 − �6

� , �6 ≤ � < �781, �78 ≤ � < �9�-: + 1 − -: �: − ��: − �9�
� , �9� ≤ � < �:

M2 �� =
pF1.5 , pF < 1.51,1.5 ≤ pF < 2.52 − 2pF5 , 2.5 ≤ pF < 50, pF > 5



Model Parameters and Parameter Importance
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Nitrification

T1 �� = ������� ��⁄

T2 �� =
0, (# ≤ 2℃'0.15(# − 2', (2℃ < # ≤ 6℃'0.1#, (6℃ < # ≤ 20℃'- �.
.��.�/.�0�.���12�3 , (20℃ < # ≤ 405

M1 �� =
� − �6�78 − �6

� , �6 ≤ � < �781, �78 ≤ � < �9�-: + 1 − -: �: − ��: − �9�
� , �9� ≤ � < �:

M2 �� =
pF1.5 , pF < 1.51,1.5 ≤ pF < 2.52 − 2pF5 , 2.5 ≤ pF < 50, pF > 5

���� = ����� = −���� � + ��� �����Parameters:����, ��C�, #D, ���, and E
Scientific Questions:

• If a parameter (e.g., K
nit

) is 

important in one model 

and/or scenario, will it be 

also important in another 

model and/or scenario?

• If not, how to identify 

important parameters 

under model and scenario 

uncertainty? 



Nitrification and Denitrification Parameters

• Lysimeter-scale, 2-D 
flow and nitrogen 
reactive transport 

• Parameters����, ��C�, #D, ���, 
and E

• Parameter 
distributions are 
based on literature 
data.
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Model and Scenario Uncertainty

• For a given model, simulated nitrate concentration 
varies dramatically under different scenarios.

• For a given scenario, simulated nitrate concentration 
varies significantly under different models.
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Sensitivity Index for 
Individual Models and Scenarios

• Under scenario S5P, the total sensitivity index of parameter ��C� changes from 63.3% for model T1M1 to 5.91% for 
model T2M2

• For model T2M2, the index of parameter ��C� changes from 
5.71% under Scenario S5W to 99.2% under Scenario S25W46

Scenario 1 (S15P) Scenario 2 (S5P) Scenario 3 (S25P)

T1
M1

T2
M1

T1
M2

T2
M2

T1
M1

T2
M1

T1
M2

T2
M2

T1
M1

T2
M1

T1
M2

T2
M2��C� 76.2 98.4 55.1 91.5 63.3 48.4 27.5 5.91 75.9 99.0 60.8 97.7���� 4.25 1.35 25.5 9.09 9.97 53.6 47.2 94.5 1.08 0.32 3.73 1.64#D 23.5 0.00 21.5 0.00 10.5 0.00 14.3 0.00 27.7 0.00 41.5 0.00��� 8.05 0.00 5.89 0.00 30.2 0.00 28.2 0.00 9.31 0.00 10.0 0.00E 0.01 0.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.00 0.00 0.00

Scenario 4 (S15W) Scenario 5 (S5W) Scenario 6 (S25W)

T1
M1

T2
M1

T1
M2

T2
M2

T1
M1

T2
M1

T1
M2

T2
M2

T1
M1

T2
M1

T1
M2

T2
M2��C� 78.0 100 63.0 96.6 60.1 49.2 49.4 5.71 68.5 99.0 75.5 99.2���� 2.93 1.39 6.12 1.57 7.64 52.4 18.2 100 0.79 0.29 2.29 0.32#D 23.2 0.00 26.1 0.00 11.4 0.00 11.0 0.00 36.1 0.00 31.1 0.00��� 7.55 0.00 7.73 0.00 29.6 0.00 29.5 0.00 10.8 0.00 9.79 0.00E 0.01 0.00 0.00 0.00 0.02 0.06 0.00 0.00 0.00 0.00 0.00 0.00



Sensitivity Index for 
Multiple Models and Scenarios 

• The multi-model sensitivity index still varies considerably 
under different scenarios.

• Therefore, it is necessary to evaluate the sensitivity index 
for multiple models and multiple scenarios.

• The multi-model, multi-scenario sensitivity index gives the 
composite evaluation of parameter importance.

• The relative importance of the parameters is physically 
reasonable. 

47

S15P S5P S25P S15W S5W S25W SFGHI 88.17 49.68 90.84 92.68 68.39 86.03 87.01FIJK 5.14 28.79 1.07 3.34 12.85 1.26 3.20LM 7.68 8.84 9.70 8.08 6.39 15.24 10.86NOP 3.12 26.22 2.97 3.06 18.74 4.35 4.85Q 0.01 0.04 0.00 0.01 0.03 0.00 0.01



Global Sensitivity Analysis for 

Process Identification under 

Model Uncertainty

Heng Dai, Pacific Northwest National Laboratory
Ming Ye (mye@fsu.edu), Florida State University
Anthony Walker, Oak Ridge National Laboratory

Xingyuan Chen, Pacific Northwest National Laboratory

Dai et al. (2017, WRR)



Identify Controlling Processes

• Identify the controlling processes that determine 
system dynamics at various scales, because

� It is difficult, if not impossible, to model everything.

� Only a few dominant processes control system 
dynamics.

� Numerical models including the dominant processes 
could capture system dynamics.

• Many methods for identifying dominant processes:

� Model-driven/Data-driven/Hybrid methods

� Statistical analysis (PCA, FFT, information criteria, 
Sensitivity analysis)



Potential Problem with a Single Model

Building a process-based system model with 
a single representation of each process  

System process A

System process B

Other system processes and components 

Process model MB

A system

Corresponding model representation

A system model

Process model MA



Global Sensitivity Analysis for Process Identification

Simulation 

Model

Parameter θC

Parameter θD

Model Outputs

Parameter θBParameter θA

Feedback for model development and data collectionFeedback for model development and data collection

Parameter A

Parameter B

Parameter C

Parameter D

Interaction

Process Model MA

• Develop a single model for each process
• Conduct sensitivity analysis for the process model parameters 
• Identify dominant processes, if their parameters are influential to model outputs

Process Model MB

Process Model MC Process Model MD

~
( ( | ))

( )

i i i

i

V E
S

V

θ θ∆
=

∆
θ

Sobol’ first-order effect sensitivity index



Uncertainty in Process Models
Death Valley Regional Flow System (DVRFS) Model
• Recharge process: six alternative recharge models
• Geological process: six hydrostratigraphic frameworks

Net infiltration model (NIM1) Chloride mass balance model (CMB2)

Base Model CP Thrust Alternative



Scientific Question
If we are not certain about the choice of process models 
and model parameters, can we correctly identify the 
controlling processes of a complex system?

System process A

System process B

Other system processes and components 

System

Model representation of other 

system processes and components 

System models M1, M2, …

Process models MA1, MA2, …

Process models MB1, MB2, …

SA SB SC SD

Model M1 50% 20% 20% 10%
Model M2 10% 20% 20% 50%



Process Sensitivity Index: Basic Idea

Uncertainty of Δ: V(Δ)

Uncertainty of model simulation Δ involves two uncertain processes: A and B

A B

Uncertainty of Δ: V(Δ|A)

A B

Reduction: V(Δ) - V(Δ|A)

A B

Reduction: V(Δ) - V(Δ|B)

Uncertainty of Δ: V(Δ|B)

An important process 
corresponds to larger 
uncertainty reduction.

Due to process model uncertainty, use 
the average over all process models, 
i.e., using EAV(Δ|A) and EBV(Δ|B).  



• Variance decomposition (law of total variance)

• Process sensitivity indices 

Variance reduction after fixing models of KVariance after fixing models of K 

• Variance reduction: Var(X)=E(X2)-(EX)2

• Model averaging 

Model probability

~ ~

~ ~

( ) ( [ | ]) ( [ | ])

        ( [ | ]) ( [ | ])
K K K KK K

V E V K V E K

E V M V E M

∆ = ∆ + ∆
= ∆ + ∆

K K K K

M M M M

~( [ | ])

( )

K K K

K

V E M
PS

V

∆
=

∆
M M

2 2

~ ~ ~( [ | ]) ( [ | ]) ( [ | ])
K K K K K KK K KV E M E E M E E M∆ = ∆ − ∆

M M M M M M

( ) ( )
K K K

K

M M K

M

E X X P M=∑M

Mathematical Formulation



Method Illustration

Recharge process (R)

PCE TCE DCE VC ETH

• Groundwater flow in 
an unconfined aquifer

• Multispecies reactive 
transport 

Model R1 has random parameter, a

Model R2 has random parameter, b

0.50

1

2

: ( 355.6)

: ( 399.80)

R w a P

R w b P

= −
= −

Geology process (G)

1

1

2

2

:  for any 

 for 7000
:

 for 7000

G K x

K x
G K

K x

<
=  ≥

Model G1 has random parameter K

Model G2 has random parameters 
K1 and K2



Scientific Question: 
Which process (recharge or geology) is more important to the 

state variables (head and concentration)? 

• Biased process identification may be resulted, because the 
identified important process changes for different models.

• The new process sensitivity index is able to avoid the 
biased identification. 

NOT considering model uncertainty

Si R1G1 R1G2 R2G1 R2G2

R G R G R G R G

Head (x=6,000m) 94.9 4.78 88.7 10.6 61.5 37.8 6.51 93.2

Conc. (x=5,500m) 21.3 78.5 1.48 98.5 67.7 25.5 16.5 81.0

Considering model uncertainty

PSK Recharge Geology

Head 28.43 67.94

Conc. (x=5,500m) 0.11 90.99



Conclusions 

• Old Question: If we are not certain about what model 
parameter values to use, can we identify the important 
parameters/processes?

• Model uncertainty and scenario uncertainty force us to 
answer a new question: If we are not certain about 
� not only what model parameter values to use
� but also what models and what model scenarios to use 

can we identify the important parameters and processes?
• The answer is yes, as along as we know what we are 

uncertain about and know how to quantify the 
corresponding uncertainty.

• The new sensitivity index is mathematically/statistically 
general, and can be used to a wide range of problems.

• The method implementation is computationally expensive, 
but the computational barrier can be broken.



How many lampposts do we need?

Developing 
conceptual models 
is more like an art!

59

What if the keys are not under any lampposts? 



Start with a lamppost, 

but may go elsewhere 

Error modelR(S, T'

Data-driven

= +

ObservationsU Physical model
M V Observation erroc

U = d � + e = d � + R(S, T' + fU = d � + e = d � + R(S, T' + f

+
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Xu, Valocchi, Ye, et al. (2017a, WRR)
Xu, Valocchi, Ye, et al. (2017b, WRR)




