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NOT to Look for the Keys under the Lamppost

» A police officer sees a drunken man
intently searching the ground near a
lamppost and asks him the goal of
his quest.

* The inebriate replies that he is
looking for his car keys.

» The officer helps for a few minutes
without success then he asks
whether the man is certain that he
dropped the keys near the

TP lamppost.

“No,” is the reply, “I do not know where | lost the keys.” “Why look here?”
asks the surprised and irritated officer. “The light is much better here,” the
intoxicated man responds with aplomb.

Do we do the same in groundwater modeling?



Bredehoeft (2010): Models and Model Analysis

Lamppost in Groundwater Modeling

How do we, as hydrogeologists, use the models today?

“We collect all the available geologic data and create
cross sections and isopach maps of various
hydrostratigraphic layers.

We decide that the geologic information is incomplete,
and drill additional test wells. By this time, the project
is 75% to 80% complete, and now we build ‘the
groundwater model’.

We run the model, and we find it is sensitive to data Member of National
that we failed to collect (e.g., the vertical hydraulic Academy of
conductivity of a confining layer). Perhaps even our Engineering, Elected

concept of the system is invalid. in 1994

But there is neither time nor money left in the project
budget — the model informs us that we need another
project. As my colleague lvan Barnes used to say:
Further work is indicated.”



“There are a number of things wrong with this approach.

« Qur data collection was based on an implicit (or explicit)
conceptual model of the system.

* The last thing we did was test this conceptual model with the
numerical model, and we found that we failed to collect
important field data.

* In the end, we built a complex model that was state of the art
numerically, calibrating it using optimization techniques.

« The calibration suggested changes, model revisions,
different data, but we were out of time and budget. Sound
familiar?”

We are looking for the keys under the lamppost!

“I may be like Don Quixote jousting with windmills; but to build
bigger groundwater models just because it is feasible, or In
vogue, seems to me meaningless - certainly 1t does not lead tos
increased understanding.”



The Conceptual Model Problem: Surprise

“Surprise is defined as the collection of new
information that renders one’s original conceptual
model invalid.”

“Limited empirical data indicate that surprises occur in
20-30% of model analyses.”

Prototype Modeler Model type Surprise  Comments
Arkansas Valley Konikow Transport No Need longer period of calibration
Blue River Emery Flow No Need better parameters
Coachella Valley Swain Flow Yes Recharge events unanticipated
Houston Jorgensen Flow/ ? Iterative modeling
subsidence
HYDROCOIN Konikow Transport Yes Boundary condition modeled poorly
INEL Robertson Transport No Need better parameters
Los Alamos Los Alamos Unsaturated ? Flow through unsaturated zone
flow not understood
Los Angeles area Bredehoeft  Flow Yes Flow vectors 90° off in model
Ontario U tailings  Flavelle Transport Yes Need more than one distribution
coefTicient
Phoenix Anderson Flow No Need better parameters
Summitville Bredehoeft  Flow Yes Seeps on mountain unaccounted for
Santa Barbara Bredehoeft — Transport ? Fault zone flow unaccounted for
WIPP WIPP pro-  Flow Yes Salt had 1-3% interstitial brine
ject
Yucca Mountain YM project  Unsaturated Yes Chlorine 36 indicates fast flow path
flow
Other models 15 Flow/ No Bredehoeft’s consulting—
transport no conceptual problems
Total 29 7 yes
37 Bredehoeft (2005)




Surprise if Using a Wrong Conceptual Model

Yu-Feng Lin, Illinois State Water Survey & University of Illinois at Urbana-Champaign



Chamberlin’s Solution (1890)

ne met
ne met

ne met

nod of the ruling theory
nod of the working hypothesis

nod of multiple working hypothesis

I I Chamberlin in the 1870s

‘) estlmatlnn K‘

Which model is correct?




Look for the Keys under Multiple Lampposts
* Model Selection

Select one out of multiple 3

models (ZERO SUM)
* Model Averaging =

gettyimages

Use multiple models for = “]““ |
making predictions '
(AGREEING ON DISAGREE)

I

s

S0 seE "All Models Are |
2 Wrong: How
. Do We Know
Which Are
Useful?”

~ “Seeing Things

. Differently:
Rethinking the

& Relationship
Between Data,
Models, and
Decision-Making”

: I\ Ty Ferre 2016
(il Darcy Lecturer

Eileen Poeter
B 2006 Darcy
{8 Lecturer

| have been there!



we are not

always certain about the
“right” judgments and
assumptions to make.

based on our judgements

predictions, we used to
and assumptions.

When we make model
use only one model

However

Model 1
Model 2
Model 3

80

Model Averaging
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Model Averaging

(Draper, 1995; Hoeting et al., 1999; Neuman, 2002; Ye et al., 2004)
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« Each model alternative has some merit in reproducing
aspects of the physical system, this merit being quantified
by each model’s probability.

« The Bayesian model averaging strategy of Neuman
(2002) encourages exploration of varied conceptual
frameworks and assumptions at all stages of
hydrogeologic model development.

p(a10) =3 p(alm,.Dfp(v, o)

Posterior model
probability

Member of National
Academy of
Engineering, Elected
in 1998



Bayesian Model Averaging:
Posterior Model Probability

Posterior DAIA: D Prior

p\D\M, )p\M

Mcl):’drgll:)abilit- p(M,|D)= K( M, )p(M,)
Y ZP(D‘MI)I’(MI)

/=1
Model Evidence p (D‘Mk) = jp (D‘Gk’Mk ) p (Ok M, ) do,

* 0,: multiple-dimensional parameters of model M,
* Need to calculate the multivariate integration.
Computationally expensive!!!



Computational Challenge

p(p|M)=[ p(D]6.01) p(0]21)de

Arithmetic mean p,,(D|M)=1>" p(D|0,,M)

1
p(D|6,,M)

Harmonic mean 5, (D|M)= Y/Z;

Straightforward MC implementation, but do not work well.

Nested sampling p(D|M) :j;L(X|D,M)dX

Thermodynamic  ,(p|ar) =exp IOI E, [In p(D|0,M)]d 3

Integration

Steppingstone p(D‘M)Zé: Z, Zg, 23
Sampling Z, \Z, )\ Z, ) | Z,

Liu et al. (2016, WRR), Zeng et al. (2017, WRR), Elshall et al. (2017, WRR)

13



Groundwater Sensitivity Analysis under
Model and Scenario Uncertainty:
Not Look for Keys under the Lamppost
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Sea-Level Rise Scenarios
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Sea-Level Rise Scenarios

Projecting Future Sea-Level Rise
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S-S, = a (Y-Y,) + b (Y-Y,)2

S =Sea level at year Y (taken to be 2100)
S,=Sea level at year Y, (taken to be 2000)
a = Initial rate of SLR

b = Rate of increase in rate of rise

« Empirical equations to
predict sea-level rise
given by SERDP

* Predicted sea-level rises
agree with literature data.
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Scenario

Uncertainty

IPCC (2000, p.62): “scenarios are images of the future, or alternative futures.
They are neither predictions nor forecasts. Rather, each scenario is one
alternative image of how the future might unfold. A set of scenarios assists in
the understanding of possible future developments of complex systems.”

Decision variable

Model simulation

Growing demand

Present day

?

Climate change

Time

>
Forecast Horizon

17
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p(d)
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* The three models are the same
under each scenario.

 The three models have different
predictions under different

scenarios.
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My Experience

« 2002-2004 (PNNL): Hanford Site, WA

Nuclear Regulatory Commission

« 2004-2006 (DRI): Death Valley Regional Flow System, NV
Department of Energy

« 2009-2012 (FSU)Z Death Valley Regional Flow System, NV
National Science Foundation

« 2009-2012 (FSU): Naturita Site, CO

Department of Energy

« 2009-2012 (FSU): Eglin Air Force Base, FL
Department of Defense

o 2012 — 2018 (FSU): Naturita Site, CO, and Oak Ridge Site, TN
Department of Energy

Early Career Award: $750,000
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Uranium Mill Tailing at Naturita, CO

0ld uranium sites

in Colorado

Several uranium mill and uranium
processing and disposal sites have been
cleanad up and are now beng monitoned
by the Department of Energy's Office of
Legacy Management 2t substantial cost

B Processing site & Dsposal site

LI oo
= Maybell
=5
Map
darea
11 Colorado
e
A
Rifle mm
Grand
junction
|
r
FUnTESon
Uravan
5 ] ‘. -
'= Slick Rock
T
LR
'Y
N
BUFAnGD - o mikes
Cimprre: wiwia Pl oe (oIt (Y [P i
,l-i"'_l,:'.||.\,'||'|-r',' .I'.‘IJI"|1"'¢'-'|'; LT

The Denver Posg

Toxic legacy of uranium haunts proposed Colorado mill, By
Nancy Lofholm, The Denver Post, 9/6/2010

NATURITA MILL AND DISPOSAL SITE

$86.3 million Cost of cleanup The Vanadium Corp. of
America began operating the mill in 1939. The mill
processed 704,000 tons of uranium ore for the
Manhattan Project from 1942 to 1958. In the late
1970s, a private corporation bought the tailings pile
and moved it to another site called Hecla/Durita to
extract additional uranium and vanadium.

Left behind: At and around the original mill, 138
acres were contaminated. Groundwater beneath the
site was contaminated.

The fix: From 1993 to 1997, DOE removed 800,000
yards of contaminated material and putitin a
disposal site near Uravan. Contamination was left in
place on 22 acres. More than one acre was left
because the radiation levels were so high that
workers would have been at risk.

http://www.denverpost.com/news/ci_15996355




Conceptual Model Challenges in
Groundwater Reactive Transport Modeling

Uncertainty in model parameters,

Darcy's Law:
q =- Keff dh/dX

structures, and Scenarios

Adsorption:
>SOH + Hy0 + U012 © >S0UO0,0H + 2H*

Coprecipitation:
(1-x)Ca*2 + xU0+2 + CO32 © Ca(q.x)(U02)xCO3

Keff = f(K1,K2,K3)

. -
- e
i B

_- lon Exchange:
Cat2+ 2NaX © CaX, +2Na*t

— |ntraparticle Diffusion:

Flux=-D dC/dr

= :--I‘J =
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» grid scale it pore scale
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Speciation:
Cat2+U05+2 +3C032 © Cal05(CO3)372

Uranium(IV) Oxidative Dissolution (post remediation):
UOy +H* +1/202=U07%2 +Hy0

Microbial Growth / Uranium Reduction:

CH3CO0™ +6.2U0512 +2.8H20 +.1NH4 -
6.2U0(s) + .1 bacteria + 6.8 H + 1.6HCO3"



Surface Complexation Models

Kohler et al. (1996, WRR)

» Seven models (C1-C7) of mocel Reactions
surface complexation C1 [S:0HI+ UOs? + HiO = S,0UO,0H + 2H
with different level of C2  SOH +UO,? + H0 = S;0U0,0H + 2H"
Complexity (numbers of S,0H + UQ,” + H,0 = S,0UQ,0H + 2H"
functional groups). O SOHRIeR Do
* Question: Which model C4  [SiOH[+ U0, +H,O = $,0U0,0H +2H"
to use? SOH UG 12 2 Sustn
Gary: | dO_ not know. You C5 | S1OH[+UO,” + H,O = $410UO,0H +2H
tell me, Ming SOOI T 3e0en
S:0H|+ UO, + H)O = S;0U0,0H + 2H*

C6  S,0H+UO,2+ H,0
S,OH + U0, + H,0

S,OH + UQ,*

S,0H + UO,™

S,0UO,0OH + 2H"
S,0UQ,0H + 2H*
S,0U0,? + HY
S,0U0,"? +H*

S,0UO,OH + 2H"
S,OUO,OH + 2H"
S;0UO0,0OH + 2H"

C7  S;0OH+UO,"™ + H,0
S,OH + U0, + H,0O
S;0H + UO," + H,0O




Bayesian UQ Framework

System boundary B(t) with A model is composed of seven different
boundary conditions b(©) components:

System boundary (B),
Forcing (u),

Initial states (x,),
Parameters (0),
Structure (M),

States (x), and
Outputs (y).

Forcing u(O,t)
Initial condition

Xo(©

Structure M(ty with| ¥(t)

characteristics
m(©)
State variables x(t)

The sources of the predictive uncertainty, from a system point
of view, can be categorized into

(1) Scenario uncertainty in system input (u),

(2) Model uncertainty in model structure (M),

(3) Parameter uncertainty in model parameters (6), and

(4) Data uncertainty in observations. 23



A Comprehensive and Hierarchical Framework

Scenario S,

Address

Scenario S,

Scenario

Same or Different
Models and Model
Parameters

UQ(P,M,S)

Uncertainty

Address
arametric
Uncertainty

Quantify
Parametric
Uncertainty

o

Quantify

Parametric and Model

Quantify

Parametric, Model, and Scenﬂ'io
Uncertainty



Bayesian UQ Framework: Scenario,
Model, and Parametric Uncertainty

e Scenario uncertainty
Var(B) = Ear(A| S)+Var E(A| S)

Within-se€nario  Between-scenario
* Model uncertainty of a given scenario
Var(A|S)=E, Var(A| M, S)+Var, E(A|M,S)
Withi

-model Between-model

« Parametric uhcertainty of a given scenario
and a gi¥én model
Var(A| M, S) = By, Var(D| 6,M,S) +Var,, (E(A]G,M,S)

Data Parametric 25



Uncertainty Decomposition

Data uncertainty in A

T

Var(A) EE, s Eq. SVar(AH—) M,S)
L EM|S|Va Yo, SE('A"OFMTS)
+EJar, gEgy sE(A]0,M,S)

hVardE, | s Egy sE(A]0,M,S)

4

Scenario uncertainty in S

\ 4

¥ Parametric uncertainty in 6

Model uncertainty in M
26




Groundwater Sensitivity Analysis under
Model and Scenario Uncertainty:
Not Look for Keys under the Lamppost
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Sensitivity Analysis

Razavi and Gupta (2015, WRR)

» Sensitivity analysis describes different “intuitive”
understandings of the sensitivity of one or more model
responses to different factors such as model parameters
or forcings.

* QObjectives of sensitivity analysis:

Assessment of Similarity

Factor Importance and Function
Regions of Sensitivity

Factor Interdependence

Factor and Model Reduction

Uncertainty Apportionment: Quantitative attribution of the
uncertainty in model response to different factors (sources of
uncertainty), with the goal of identifying where best to focus
efforts at improved factor characterization so as to achieve
reductions in total uncertainty 28



Global Sensitivity Analysis for a Single Model

Question: If we are not certain about what model parameter values to use,
can we identify the important parameters?

A — f(OA , OB , OC , OD) Sobol’ first-order effect sensitivity index

/|\ m o Ve (E, (A]6))

Parametgr 0, Parameter 65 V(A)

nteraction |

Model Outputs
—

Simulation

Model

Parameter 0,

AN

Parameter 0. ‘

Feedback for model development and data collection



Challenges of Global Sensitivity
Analysis under Model Uncertainty
A=1(0,,0;,0.0,)

_Va(E, (818))
SN

S\ Sg Sc S,
10% 20% 20% 50%

What if there is another plausible
model/scenario?

Are the parameters important to one
model/scenario also important to
another model/scenario?




Challenges of Global Sensitivity
Analysis under Model Uncertainty

A=M 0,0,,0.0,) A=M,0,0,0.)
V, (E, (A]6)) _ Ve (£, (A]G))
S, =—7 5; =
V(D) V(D)
S, Sc Sy
Model M, 10% 20%  50%
Model M, 50% 10% N/A

 Different models may have different parameters
« Sensitivity index is not comparable cross models.

Sg = 20% for models M, and M.

M,: 20% of the variance of 100, V,(A).

M,: 20% of the variance of 10,000, V,(A).
? ’ il I?)ai and Ye (2015, Journal of Hydrology)



Parametric Uncertainty Under
Model and Scenario Uncertainty

Var(A) = E¢E, s Ey,, Var(A|0,M,S)
WEE, Jary, ;E(AO,M,S)
+EVar, g Eqgy sE(A]0,M,S)
tVargE,, sEgy sE(A0,M,S)

Basic ldea:

Important parameters are identified

« Not for a single model/scenario

* Dbut for multiple models/scenarios on the average sense.

This new sensitivity index copes with model/scenario uncertainty, and can
avoid wrong identification of important parameters given the uncertainty.
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New Sensitivity Index

Var(A) = E¢E,, s Ey,, Var(A|0,M,S)
WEE, Jary, E(AO,M,S)
+EVar, Egy sE(A]0,M,S)
tVargE,, sEgy sE(A0,M,S)

For a single model and a single scenario
(no model and scenario uncertainty)

EE, JVary, E(A|0,M,S)=Vary, ;E(A[0,M,S)

Ey sV s(E(D]6,M,5)]0_,)
Vonr sE(Q]0,M,S) 33

Sobol’ method: STi =



New Sensitivity Index

For multiple models but a single scenario
(model uncertainty and no scenario uncertainty)

EE, Vary, (E(A|O,M,8)=E Jar,, E(A|0,M,S)

S = EMISFHN,-IM,SV‘W@W,S(E(A | HaMa S) | ‘9~i)
’ E, Vary, E(B]6.M.5)

D> P(M |S)E, y Vary, (E(A]6,M,8)]6.)
M

> P(M | S)‘VargM,SE(A 16,M,S)
M

34



New Sensitivity Index

For multiple models and multiple scenarios
(model uncertainty and scenario uncertainty)

EE, Vary, E(A|0,M,S)

¢ = EE, |SE6? |MSVarH|MS(E(A|9 M,S)|8.)
’ MlSVarﬂM JED|G,M,S)

@:P(S)P(M |S)Eg sV ary, s(E(A|6,M,S)]6.,)

Z;P(S)P(M | S)‘VargM,SE(A 10,M,S)
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Global Sensitivity Analysis for Identifying
Important Parameters of
Nitrogen Nitrification and Denitrification Under
Model and Scenario Uncertainty

Ming Ye (mye@fsu.edu)

Department of Scientific Computing, Florida State University

Zhuowei Chen, Liangsheng Shi,
Yan Zhu, and Jinzhong Yang

State Key Laboratory of Water Resources and Hydropower
Engineering Sciences, Wuhan University

36
Chen et al. (2017, WRR, Under Revision, RRR)



Nitrogen Contamination due to Fertilizer Use
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Nitrogen Cycle

C.6 5.1 Drawing and labelling a diagram of the nitrogen cycle.
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Nitrogen Reactive Transport Modeling

CONCEPT OF NITROGEN REMovAL Tallahassee Wastewater Treatment Plant ($270M)
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ADE (for transport)

+ODE (for reactions)

ad aCNH4‘ aCNH4‘ aCNH4-
— (oD, —2) — g, — K — —

90N ,
Ryit = W = AKnit[0 + pKglfim fT

K,,;; Optimal nitrification rate
fm Reduction factors of soil moisture (m)
fr Reduction factors of soil temperature (T)




Model Uncertainty in Literature

* Hansen et al. [1995] compared five models (ANIMO,
SOILN, OMNI, NLEAP, and DAISY).

* Frolking et al. [1998] described four models
(CENTURY, DNDC, Expert-N, and NASA-CASA) for
simulating nitrous oxide (N,O) emissions.

* Wu and McGechan. [1998] compared four models
(ANIMO, SUNDIAL, SOILN, and DAISY).

* Heinen [2006] reviewed more than fifty models.
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Alternative Models for Reduction Factors

T1 and M1 from SOILN [Johnsson et al., 1987]
T2 and M2 from DAISY [Hansen et al., 1991]

Nitrification Denitrification
T1 fr= g—n)/w fr= g—TT)/m
( 0, (T < 2°C)
0.15(T — 2), (2°C < T < 6°C)
T2 fr=1 0.1T, (6°C < T < 20°C) fr=1
\e(0.47—0.027T+0.00193T2), (20°C< T < 40)

( 6—6,\"
o —p,) 'Iw=0<b 0,0 <8,
o w
d
M1 £, = 1,61 < 6 < Oy fm={<9_9d>19>9
o, —0\" 0;—04) ¢
Les+(1_83)(—95 0 > ,0n < 0 <6 s d
s~ Yhi
F
( f—s,pF<1.5
: 0,x, < 0.8
M2 po= 1’21'5FSPF<2'5 £o={ 2(x,—08),08<ux, <09
2_%’2.53pp<5 0.2+ 8(x,, — 0.9),09 < x, < 1
L 0,pF >5 4



Impacts of T/P Scenarios

 Temperature scenarios:

S15, S5, and S25 for
three yearly-average
temperatures, affecting
fr directly

* Precipitation Scenarios:

Present-day (13mm)
and Wet (26mm),
affecting moisture
content (0) directly and
f indirectly.

T1

T2 fr=H

M1 fm =4

\

Nitrification

(T-Ty)/10

fT = Q10

( 0, (T < 2°C)

0.15(T — 2),(2°C < T < 6°C)
0.1T, (6°C < T < 20°C)

(0.47-0.027T+0.00193T?) (20°C< T < 40)

( O~ bw me <6<0
b —6w) T T

1,6,, <0 < 0y

M2

9 m
es+(1—es)(‘95_t9 > ,O0pi < 0 <6
\ s hi

F
( i pF < 1.5

1.5’
1,1.5 < pF < 2.5
2pF
Z—T,Z.S SpF< 5

L 0,pF>5
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Model Parameters and Parameter Importance

Parameters:
Knits Kdens T’rs QlOs and m

Scientific Questions:

* If a parameter (e.g., K,;,) is
important in one model
and/or scenario, will it be
also important in another
model and/or scenario?

e |f not, how to identify
Important parameters
under model and scenario
uncertainty?

06N
Rpit =——= _Knit(g + pKd)fmeN

dt

T1

T2 £ =+

M1 fm:<

M2

Nitrification
fr =g
0, (T < 2°C)
0.15(T — 2), (2°C < T < 6°C)
0.1T,(6°C < T < 20°C)

ke(0.47—0.027T+0.00193T2) (20°C< T < 40)

1,1.5 <pF <25

2pF
2—?,25SPF<5

L 0,pF>5
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Nitrification and Denitrification Parameters

 Lysimeter-scale, 2-D
flow and nitrogen
reactive transport

e Parameters

Knit’ Kden’ TT, QlO’
and m

 Parameter
distributions are
based on literature
data.

Rain Soil evaporation

3 meters : A
. 11 observation points

No-flow boundary
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Model and Scenario Uncertainty

Model T1M1 Model T2M1
T T 0.09F T T T T
003
—GI5E 0.08r A &
SEP
0.025 — 325p 0.07 .
—S1EW
—_— 0.06 .
aE S25W
=  005F &
a =
a, 00151 & ool Al
001 - . 0.03 il
' 002 ! .
0,005 ' | .
; 0.0t .
D 1 1 T 1 \_ = k: D I_// _/ 1 j r \.I
0 5 10 15 20 25 0 5 10 15 20 25
Nitrate concentration (img/L) Nitrate concentration (img/L)

* For a given model, simulated nitrate concentration
varies dramatically under different scenarios.

* For a given scenario, simulated nitrate concentration

varies significantly under different models.
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Sensitivity Index for
Individual Models and Scenarios

Scenario 1 (S15P) Scenario 2 (S5P) Scenario 3 (S25P)
T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
M1 M1 M2 M2 M1 M1 M2 M2 M1 M1 M2 M2

Kgen 76.2 98.4 55.1 91.5 63.3 48.4 27.5 5.91 75.9 99.0 60.8 97.7

Knit 4.25 1.35 25.5 9.09 9.97 53.6 47.2 94.5 1.08 0.32 3.73 1.64

1 23.5 0.00 21.5 0.00 10.5 0.00 14.3 0.00 27.7 0.00 41.5 0.00

Q10 8.05 0.00 5.89 0.00 30.2 0.00 28.2 0.00 9.31 0.00 10.0 0.00

m 0.01 0.00 0.00 0.00 0.02 0.07 0.00 0.00 0.00 0.00 0.00 0.00

Scenario 4 (S15W) Scenario 5 (S5W) Scenario 6 (S25W

T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
M1 M1 M2 M2 M1 M1 M2 M2 M1 M1 M2 M2

Kaen 78.0 100 63.0 96.6 60.1 49.2 49.4 5.71 68.5 99.0 75.5 99.2

Knit 2.93 1.39 6.12 1.57 7.64 52.4 18.2 100 0.79 0.29 2.29 0.32

T, 23.2 0.00 26.1 0.00 11.4 0.00 11.0 0.00 36.1 0.00 31.1 0.00

Q10 7.55 0.00 7.73 0.00 29.6 0.00 29.5 0.00 10.8 0.00 9.79 0.00

m 0.01 0.00 0.00 0.00 0.02 0.06 0.00 0.00 0.00 0.00 0.00 0.00

« Under scenario S5P, the total sensitivity index of parameter
K,.., changes from 63.3% for model T1M1 to 5.91% for
model T2M2

* For model T2M2, the index of parameter K,,,, changes from
5.71% under Scenario S5W to 99.2% under Scenario S25W°



Sensitivity Index for
Multiple Models and Scenarios

S15P S5P S25P S15W S5W S25W S
Kgen 88.17 49.68 90.84 92.68 68.39 86.03 87.01
Kt 5.14 28.79 1.07 3.34 12.85 1.26 3.20

T, 7.68 8.84 9.70 8.08 6.39 15.24 10.86
Q10 3.12 26.22 2.97 3.06 18.74 4.35 4.85
m 0.01 0.04 0.00 0.01 0.03 0.00 0.01

* The multi-model sensitivity index still varies considerably
under different scenarios.

« Therefore, it is necessary to evaluate the sensitivity index
for multiple models and multiple scenarios.

« The multi-model, multi-scenario sensitivity index gives the
composite evaluation of parameter importance.

* The relative importance of the parameters is physically
reasonable.



Global Sensitivity Analysis for
Process ldentification under
Model Uncertainty

Heng Dai, Pacific Northwest National Laboratory

Ming Ye (mye@fsu.edu), Florida State University

Anthony Walker, Oak Ridge National Laboratory
Xingyuan Chen, Pacific Northwest National Laboratory

Dai et al. (2017, WRR)



Identify Controlling Processes

* |dentify the controlling processes that determine
system dynamics at various scales, because
> It is difficult, if not impossible, to model everything.

» Only a few dominant processes control system
dynamics.

» Numerical models including the dominant processes
could capture system dynamics.

 Many methods for identifying dominant processes:

» Model-driven/Data-driven/Hybrid methods

» Statistical analysis (PCA, FFT, information criteria,
Sensitivity analysis)



Potential Problem with a Single Model

Building a process-based system model with
a single representation of each process

System process 4 |pmummmnd Process model M,
System process 5 foumummmnd Process model M,

Other system processes and components e Corresponding model representation

A system model



Global Sensitivity Analysis for Process Identification

* Develop a single model for each process
« Conduct sensitivity analysis for the process model parameters
 ldentify dominant processes, if their parameters are influential to model outputs

Process Model M, Process Model Mg Sobol’ first-order effect sensitivity index

-/|\- m g = Ve,. (Eewl. (A 9,))

Parametar 0, Parameter 65 V(A)

Interaction i

[Paramerer 2]

b e

.
|
=
v

Model Outputs

—

Simulation
Model

’rocess Moadgl M.

AN

Parameter 0. ‘

Process Model M,

Parameter 6,

Feedback for model development and data collection



Northing (meters, UTM Zone 11, NAD27)

Uncertainty in Process Models

Death Valley Regional Flow System (DVRFS) Model
» Recharge process: six alternative recharge models
» Geological process: six hydrostratigraphic frameworks

Net infiltration model (NIM1) Chloride mass balance model (CMB2)
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Scientific Question

If we are not certain about the choice of process models
and model parameters, can we correctly identify the
controlling processes of a complex system?

Sa. Sg  S¢ Sp
Model M, 50% 20% 20% 10%
Model M, 10% 20% 20% 50%

System process 4 Process models M,,, M, ...

System process B g Process models My, My, ...

Model representation of other
system processes and components

Other system processes and components

System models M, M,, ...



Process Sensitivity Index: Basic Idea

Uncertainty of model simulation A involves two uncertain processes: A and B

Uncertainty of A: V(A|A)
Reduction: V(A) - V(A|A)

Uncertainty of A: V(A < AisK knoW"
V
@ Uncertainty of A: V(A|B)
If Reduction: V(A) - V(A|B)
Dl'oce
SS B is P :
nOWn

An important process e to process model uncertainty, use
corresppnds to Iarger the average over all process models,
uncertainty reduction. i.e., using E V(AJA) and EV(A|B).




Mathematical Formulation

« Variance decomposition (law of total variance)

V(B)=Ex(VkI[AIK])

Variance after fixing models of K

+Vk (Ex[A[K])
=Ly, (V~MK [A[ M ])+ Vm, (E~MK [A[M ]

Variance reduction after fixing models of K

* Process sensitivity indices

oV (B (811, D]

) V(D)
* Variance reduction: Var(X)=E(X?)-(EX)?

Vi (Ey [DIM DEIE, (E.y,

P [A | MK])2 _(EMKENMK [A | MK])2

* Model averaging

Ey (X))

=D X, P(M)

Model probability



Method lllustration
N P N TCEHDCEHVC e |

M. K, =K,* Groundwater flow in
MKk an unconfined aquifer

100 * Multispecies reactive
h,=
meters transport

€

< L7 TX

) L = 10000 mcters i
Recharge process (R) Geology process (G)
R :w=a(P-355.6)"" G, : K for any x

K, for x <7000
R, :w=b(P—399.80) GZ:K:{ , forx

K, for x 27000
Model R, has random parameter, a Model G, has random parameter K

Model R, has random parameter, b Model G, has random parameters
K, and !32



Scientific Question:

Which process (recharge or geology) is more important to the
state variables (head and concentration)?

NOT considering model uncertainty
Si R1G1 R1GZ R2(?"1 R2GZ
R G R G R G R G
Head (x=6,000m) 949 478 88.7 10.6 61.5 37.8 6.51 93.2
Conc. (x=5,500m) 21.3 785 148 985 67.7 255 16.5 81.0

Considering model uncertainty

PSy Recharge Geology
Head 28.43 67.94
Conc. (x=5,500m) 0.11 90.99

» Biased process identification may be resulted, because the
identified important process changes for different models.

* The new process sensitivity index is able to avoid the
biased identification.



Conclusions

Old Question: If we are not certain about what model
parameter values to use, can we identify the important
parameters/processes?

Model uncertainty and scenario uncertainty force us to
answer a new question: If we are not certain about

» not only what model parameter values to use

» but also what models and what model scenarios to use

can we identify the important parameters and processes?

The answer is yes, as along as we know what we are
uncertain about and know how to quantify the
corresponding uncertainty.

The new sensitivity index is mathematically/statistically
general, and can be used to a wide range of problems.

The method implementation is computationally expensive,
but the computational barrier can be broken.



How many lampposts do we need?

Developing
conceptual models
IS more like an art!

What if the keys are not under any lampposts?
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Start with a lamppost,
but may go elsewhere

[y =M@O)+r=M()+ bx,¢) + e]

“I'm searching for my Reys.

Observations Physical model Error model Observation
_ y M(B) b(x, P) €rro

Data-driven

Xu, Valocchi, Ye, et al. (2017a, WRR)

Xu, Valocchi, Ye, et al. (2017b, WRR) 60






