
Chapter 1

Introduction to
Discretization

We begin the journey to understand numerical methods for differential equations
by concentrating on a specific type of ordinary differential equation (ODE) which
describes how some function will evolve in time given its initial configuration.
This type of problem is called an initial value problem (IVP) for obvious reasons.
An example of this type of problem is modeling the growth of a population
when we know the initial size and have information on how the population
grows with time, i.e., we have information on the first derivative. In addition
to being important in its own right, our understanding of this problem will
form a foundation for our study of time dependent partial differential equations
(PDEs).

We begin this chapter by looking at the prototype IVP that we will consider
initially. The differential equation in this IVP is first order and gives infor-
mation on the rate of change of our unknown; in addition, an initial value of
the unknown is specified. Later, in Chapter 3 we will consider higher order
IVPs. Before proceeding to approximating the solution of this prototype IVP
we will investigate conditions which guarantee the solution exists, is unique and
depends continuously on the data. In the sequel we will only be interested in
approximating the solution to such problems.

Once we have specified our prototype IVP we introduce the idea of approx-
imating its solution using a difference equation. In general, we have to give
up the notion of finding an analytic solution which gives an expression for the
solution at any time and instead find a discrete solution which is an approxi-
mation to the exact solution at a set of finite times. The basic idea is that we
discretize our domain, in this case a time interval, and then derive a difference
equation which approximates the differential equation in some sense. The dif-
ference equation is in terms of a discrete function and only involves differences
in the function values; that is, it does not contain any derivatives. Our hope is
that as our discrete solution includes more and more points then it will approach

1

2 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

the exact solution to the IVP.
The simplest method for approximating the solution to our prototype IVP

is the Euler method which we derive by approximating the derivative in the
differential equation by the slope of a secant line. In § 1.3.1 we demonstrate the
linear convergence of the method by introducing the concepts of local truncation
error and global error. The important concepts of explicit and implicit methods
are illustrated by comparing the forward and backward Euler methods. In
§ 1.3.2 we present two models of growth/decay which fit into our prototype IVP
and give results of numerical simulations for specific problems. In addition,
we demonstrate that our numerical rate of convergence matches our theoretical
rate.

We conclude this chapter by demonstrating several approaches to deriving
the Euler method. The reason for doing this is that the Euler method converges
linearly and computationally we need methods which converge faster. In addi-
tion, we will see an example where the forward Euler method fails to converge
at all so clearly other methods are needed.

1.1 Prototype Initial Value Problem

One of the first differential equations encountered in modeling is an initial value
problem where we seek a function whose value is known at some initial time and
whose derivative is specified for subsequent times. For example, the following
represent three IVPs for y(t):

dy

dt
= sinπt

dy

dt
= −y + t2

dy

dt
= e−.1ty

y(0) = 0 y(2) = 1 y(0) = 4

These differential equations are called first order because the highest derivative
appearing in the equation is the first derivative of y(t). All of these problems
are special cases of the following general IVP; find y(t) satisfying

dy

dt
= f(t, y) t0 < t ≤ T (1.1a)

y(t0) = y0 , (1.1b)

where f(t, y) is the given derivative of y(t) and y0 is the known value at the
initial time t0.

One of the simplest occurrences of this differential equation is when f = f(t),
i.e., f is a function of t and not both t and y. In this case we can often find the
antiderivative1 of f(t) by integrating both sides of the equation. As an example
consider the specific f(t) = sin(πt). Then integrating both sides of the equation
with respect to t gives ∫

dy

dt
dt =

∫
sin(πt) dt

1The antiderivative of f(t) is a function y(t) whose derivative is f(t).

1.1. PROTOTYPE INITIAL VALUE PROBLEM 3

and using our knowledge from calculus we have

y(t) + C1 = − 1

π
cos(πt) + C2 ⇒ y(t) = − 1

π
cos(πt) + C

for arbitrary constants C1, C2. Note that our general solution to this differential
equation involves an arbitrary constant which we can determine by imposing
the initial condition (1.1b). For example, if we impose y(0) = 0 we have y(t) =
− 1
π cos(πt) + 1

π because C is determined by

y(0) = 0, y(t) = − 1

π
cos(πt) + C ⇒ y(0) = − 1

π
cos(0) + C = 0⇒ C =

1

π
.

For this choice of f(t, y) = sin(πt) we are able to find the analytic solution
to the IVP; that is, an explicit function which gives the solution for any time
t. However, even for the simplified case of f(t, y) = f(t) this is not always
possible For example, consider f(t) = sin(t2) which has no explicit formula for
its antiderivative; in fact, a symbolic algebra software package like Mathematica
will give the answer in terms of the Fresnel Integral which can be represented
by an infinite power series near the origin; consequently there is no closed form
solution to the problem. Also when f(t, y) is a function of both y and t our
technique of integrating the equation often fails to work. Although there are
many other techniques for finding the analytic solution of first order differential
equations, we are unable to easily obtain closed form analytic solutions for many
equations. When this is the case, we must turn to a numerical approximation
to the solution; that is, we have to give up finding a formula for the solution at
all times and instead find an approximation at a set of distinct times.

Before we discuss the concept of discretizing the IVP (1.1) we first need to
ask ourselves if our prototype IVP actually has an analytic solution, even if we
are unable to find it. We are only interested in approximating the solution to
IVPs which have a unique solution. However, even if we know that a unique
solution exists, we may still have unreliable numerical results if the solution of
the IVP does not depend continuously on the data. If this is the case, then
small changes in the data can cause large changes in the solution and thus
roundoff error in our calculations could produce meaningless results. In this
situation we say the IVP is ill-posed or ill-conditioned, a condition we would
like to avoid. Most differential equations that arise from modeling real-world
phenomena are well-posed so it is reasonable to assume that we only want to
approximate solutions of well-posed problems.

Definition 1. The IVP (1.1) is well-posed if the solution exists, is unique and
depends continuously on the data y0 and f(t, y). Otherwise it is called ill-posed.

The conditions that guarantee well-posedness of a solution to (1.1) are well
known and are presented in Theorem 1. Basically the theorem requires that the
derivative of y(t) (given by f(t, y)) be continuous and that this derivative is not
allowed to change too quickly as y changes. The precise requirement on f(t, y)
is that it is Lipschitz2 continuous in y. To understand this concept first think

2Named after the German mathematician Rudolf Lipschitz (1832-1903)

4 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

of a function g(x) of one variable defined on an interval I. Lipschitz continuity
requires that the magnitude of the slope of the line joining any two points x1

and x2 in I must be bounded by a real number; this can be summarized in the
following definition.

Definition 2. A function g(x) defined on a domain D ⊂ R1 is Lipschitz con-
tinuous on D if for any x1, x2 ∈ D there is a constant L such that

|g(x1)− g(x2)| ≤ L|x1 − x2| ,

where L is called the Lipschitz constant.

This condition says that we must find one constant L which works for all
points in the domain. Clearly the Lipschitz constant is not unique; for example
if L = 5, then L = 5.1, 6, 10, 100, etc. also satisfy the condition. Lipschitz
continuity is a stronger condition than merely saying the function is continuous
so a Lipschitz continuous function is always continuous but the converse is not
true; for example the function g(x) =

√
x is continuous on D = [0, 1] but is not

Lipschitz continuous on D . The following example illustrates how to determine
the Lipschitz constant for a differentiable function.

Example 1. Consider the function g(x) = x2 where we first choose D = [0, 4].
We know that g(x) is continuous but we want to determine if it is Lipschitz con-
tinuous on D and if it is, find the Lipschitz constant. Note that from Definition 2
we can write the condition as

|g(x1)− g(x2)|
|x1 − x2|

≤ L

and we note that this is just the slope of the secant line joining (x1, g(x1))
and (x2, g(x2)). An easy way to determine the Lipschitz constant if g(x) is
differentiable is to find a constant such that |g′(x)| ≤ L for all x ∈ D. This is
because a bounded first derivative on D implies that the function is Lipschitz
continuous there; the proof of this follows from the Mean Value Theorem of
calculus. In our case g′(x) = 2x which is an increasing function on D whose
maximum value is attained at x = 4 so L = 8 is a Lipschitz constant for
g(x) = x2 on [0, 4].

However, if we take D = [0,∞) then g(x) is not Lipschitz continuous on D
because the derivative g′(x) becomes arbitrarily large. We say that g(x) = x2

is locally Lipschitz but not globally Lipschitz.

We said the function g(x) =
√
x was not Lipschitz continuous on [0, 1]. This is

because the derivative g′(x) = 1/(2
√
x) becomes arbitrarily large as x→ 0 and

thus we can find no L which satisfies Definition 2.

There are functions which are Lipschitz continuous but not differentiable.
For example, consider the continuous function g(x) = |x| on D = [−1, 1].
Clearly it is not differentiable on D because it is not differentiable at x = 0.

1.2. DISCRETIZATION 5

However, it is Lipschitz continuous with L = 1 because the magnitude of the
slope of the secant line between any two points is always less than or equal to
one.

For our existence and uniqueness result, we need f(t, y) to be Lipschitz
continuous in y so we need to extend our definition because f is now a function
of two variables.

Definition 3. A function g(x, y) defined on a domain D ⊂ R2 is Lipschitz
continuous in D for the variable y if for any (x, y1), (x, y2) ∈ D there is a
constant L such that

|g(x, y1)− g(x, y2)| ≤ L|y1 − y2| . (1.2)

L is called the Lipschitz constant.

We are now ready to state the theorem which guarantees existence and
uniqueness of a solution to (1.1) as well as guaranteeing that the solution de-
pends continuously on the data; i.e., the problem is well-posed. Note that
y(t) is defined on [t0, T] whereas f(t, y) must be defined on a domain in R2.
Specifically the first argument t ∈ [t0, T] and y can be any real number so
that D = {(t, y) | t ∈ [t0, T], y ∈ R1}; a shorter notation for expressing D is
D = [t0, T]× R1 which we will employ in the sequel.

Theorem 1. Let D = [t0, T] × R1 and assume that f(t, y) is continuous on
D and is Lipschitz continuous in y on D; i.e., it satisfies (1.2). Then the IVP
(1.1) has a unique solution in D and moreover, the problem is well-posed.

In the sequel we will only consider IVPs which have a unique solution which
depends continuously on the data.

1.2 Discretization

Our goal is to derive a difference equation which is an approximation to the
differential equation (1.1a) that involves only differences in function values, i.e.,
there are no derivatives in the equation. The solution to the difference equation
will not be a continuous function but rather a discrete function which is defined
over a set of points. If the solution is needed at some other point, interpolation
is often used.

To determine a discrete solution to the IVP (1.1) we first discretize the time
domain [t0, T]. For now we use N + 1 evenly spaced points ti, i = 0, 1, 2, . . . , N

t1 = t0 + ∆t, t2 = t0 + 2∆t, · · · , tN = t0 +N∆t = T ,

where ∆t = (T − t0)/N and is called the step size or time step. Our task
is to find a means for approximating the solution at each of these discrete
values and our hope is that as we perform more and more calculations with N
getting larger, or equivalently ∆t→ 0, our approximate solution will approach
the exact solution in some sense. In Figure 1.1 we plot an exact solution and

6 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

three discrete solutions using ∆t = 0.5, 0.25 and ∆t = 0.125. By observing
the plot and using the “eyeball norm” we believe that as ∆t → 0 our discrete
solution is approaching the analytic solution. One of our goals is to make this
statement precise and to determine the rate at which our approximate solution
is converging to the exact solution.

æ

æ

æ

æ

æ

à

à

à

à

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

ì

 exact solution ->

Dt = 0.5

Dt = 0.25

Dt = 0.125

0.5 1.0 1.5 2.0

1

2

3

4

5

Figure 1.1: The exact solution to an IVP is shown as a solid line because it is
continuous; three approximations using decreasing values of the step size ∆t are
plotted. Note that these approximations are discrete functions because they are
only known at specific values of t

We now want to obtain discrete methods for approximating the solution to
the IVP (1.1). Once we derive a method, we need to see how to analyze it to
determine its theoretical accuracy; then we will look at implementation issues.
For now, we assume that the methods converge to the solution of the IVP but
in Chapter 3 we will address the issue of convergence. When we have a working
code for the method we will demonstrate that the discrete solution converges at
the predicted analytic rate for a problem whose exact solution is known. This is
accomplished by approximating the solution for decreasing values of ∆t. Once
this is done, we will have confidence in applying our algorithm to problems for
which an exact solution is not known.

We will see that there are many approaches to deriving discrete methods for
our IVP. The most obvious approach is to approximate the derivative appearing
in the equation. In the following section we consider such a method.

1.3 Euler Method

The simplest method for approximating the solution of (1.1) is called the Euler
Method named after Leonhard Euler who wrote about the method in the latter

1.3. EULER METHOD 7

half of the eighteenth century. The basic idea is to obtain a difference equation
which involves differences of approximations to y(t) at certain points ti. For
example, if our difference equation at t1 involves our initial value y0 = y(t0),
our approximation at t1 plus the known function f at (t0, y0) then we can solve
for our approximation to y(t1). Once this is done, we use this value and repeat
the process at t2 to obtain an approximation there; we continue in this manner
until we have reached the final time T .

The Euler method can be derived from several different viewpoints; initially
we take the approach of replacing the derivative with an approximation but in
§ 1.4 we look at other approaches which lead to ways of obtaining more accurate
methods.

From calculus, we know that the definition of the derivative of a function
y(t) at a point t = a is

y′(a) = lim
h→0

y(a+ h)− y(a)

h
. (1.3)

Graphically this just says that we take the slope of the secant line joining(
a, y(a)

)
and

(
a + h, y(a + h)

)
and as a + h gets closer to a the slope of the

secant line gets closer to the slope of the tangent line at a which is given by
y′(a). If we compute the quotient in (1.3) for a small fixed h, then we have an
approximation to y′(a). We know that for the limit to exist, both the limit as
h→ 0 from the right and from the left must agree. Initially we fix h > 0 and in
the quotient in (1.3) we set h = ∆t, a = t0 and let t1 = t0 + ∆t. The difference
quotient

y′(t0) ≈ y(t1)− y(t0)

∆t

represents an approximation to y′(t0). To write a difference equation we let Yi
denote our approximation to y(ti); clearly Y0 = y0 which is the given initial
condition (1.1b). To obtain the Euler method at t1 we use our differential
equation y′(t) = f(t, y(t)) evaluated at t0 along with our approximation to
y′(t0) to get

Y1 − Y0

∆t
= f(t0, Y0) .

We have a starting point Y0 from our initial condition and thus we can solve for
our approximation to y(t1) from

Y1 = Y0 + ∆tf(t0, Y0)

which is a difference equation for Y1. Once Y1 is obtained we can repeat the
process to obtain a difference equation for Y2. In general we have

Yi+1 = Yi + ∆tf(ti, Yi) . (1.4)

This method is called the forward Euler method and can be written as the
following general algorithm. The term “forward” is used in the name because
we write the equation at the point ti and difference forward in time to ti+1.

8 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

Algorithm 1. The Forward Euler Method
Given t0, T , y0, N , f(t, y);
Initialize: set ∆t = (T − t0)/N , t = t0 and Y = y0

For i = 1, 2, . . . , N
evaluate f(t, Y)
set Y = Y + ∆tf(t, Y)
increment t: t = t+ ∆t

The forward Euler method is straightforward to program and only involves
a single loop and a single evaluation of f(t, y) per step; in addition, only one
value Yi must be stored at any time because we can overwrite Yi with Yi+1 as
we indicated in Algorithm 1. If we need to save the values for plotting, then
Yi+1 can simply be written to a file once it is computed. The numerical results
in Figure 1.1 were obtained using the forward Euler method. In § 1.3.2 we will
approximate the solution for several IVPs using this difference scheme.

The forward Euler scheme was derived by using the definition of the deriva-
tive at a point a where we let h→ 0+, i.e., h approached zero through positive
values. We now want to see if we get the same difference equation when we let
h→ 0 through values less than zero in (1.3); in this case a+ h lies to the left of
a, that is, we will use a secant line passing through (a, y(a)) and a point to its
left to approximate y′(a). In the quotient in (1.3) we set a+ h = t0 and a = t1
to get

y′(t1) ≈ y(t0)− y(t1)

t0 − t1
which leads to the approximation

Y1 − Y0

∆t
= f(t1, Y1) ,

where we have used the fact that t0 − t1 < 0. For a general point i, we have

Yi+1 = Yi + ∆tf(ti+1, Yi+1) . (1.5)

This method is called the backward Euler method because we are writing the
equation at ti+1 and differencing backwards in time. It is important to realize
that this method is inherently different from (1.4) because we must evaluate
f(t, y) at the unknown point (ti+1, Yi+1). In general, this leads to a nonlinear
equation to solve for each Yi+1 which can be computationally expensive. For
example, if we have f(t, y) = ety then the equation for Y1 is

Y1 = Y0 + ∆tet1Y1

which is a nonlinear equation in the unknown Y1. We distinguish between these
two types of methods. The forward Euler scheme given in Algorithm 1 is called
an explicit scheme because we can write the unknown explicitly in terms of
known values whereas the backward Euler method in (1.5) is called an implicit
scheme because the unknown is written implicitly in terms of known values and
itself. So if we were to modify Algorithm 1 for the forward Euler method to

1.3. EULER METHOD 9

incorporate the backward Euler scheme then we would have to add an interior
loop to solve the resulting nonlinear equation with a method such as Newton’s
Method. In § 1.3.2 we look at examples where we employ both the forward and
backward Euler methods. However, in practice we will use implicit methods with
a different strategy because a straightforward approach leads to the necessity of
solving nonlinear equations for each ti. In the exercises you will get practice in
identifying schemes as explicit or implicit.

1.3.1 Discretization errors

When we implement the forward or backward Euler method on a computer the
error we make is due to both round-off and discretization error. Rounding
error is due to using a machine which has finite precision. First of all, we may
not be able to represent a number exactly; this is part of round-off error and
is usually called representation error. Even if we use numbers which can be
represented exactly on the computer, we encounter rounding errors when these
numbers are manipulated such as when we divide two integers like 3 and 7. In
some problems, round-off error can accumulate in such a way as to make our
results meaningless; this often happens in ill-conditioned problems.

We are mainly concerned with discretization error here and when we derive
error estimates we will assume that no rounding error exists. In Figure 1.1
we illustrate approximations to a known exact solution. As you can see from
the plot, the approximate solution agrees with the exact solution at t0; at t1
there is an error in our approximation due to the fact that we have used an
approximation to y′(t); i.e., we have solved a difference equation rather than
the differential equation. However at t2 and subsequent points the discretization
error comes from two sources; the first is our approximation to y′(t) and the
second is because we have started from the incorrect point, i.e., we did not start
on the solution curve as we did in calculating Y1. The global discretization error
at a point ti is the magnitude of the actual error at the point whereas the local
truncation error or local discretization error in the Euler method is the error
made in approximating the derivative by the difference quotient.

Definition 4. The global discretization error at a point ti is the magnitude
of the difference in the exact solution and its approximation; i.e., |y(ti)− Yi|.

Definition 5. The local truncation error at a point ti is the error made it
taking one step of a discrete method assuming that the exact solution at ti−1 is
used as a starting value. Ignoring round-off errors, the local truncation error is
solely due to the error in approximating the differential equation by a difference
equation.

A comparison of the global error and the truncation error for the forward
Euler method is illustrated in Figure 1.3. The figure on the left demonstrates
the global error at t2 while the figure on the right illustrates the local truncation
error at t2 because the approximation uses y(t1) instead of Y1.

10 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

-

6

t
t0 t1 t2 t3

y(t)

�
�
�
�
�
�
�

qY0

qY1

qY2�
�
�

qY3

y(t0)

y(t1)a
y(t2)a y(t3)a

Figure 1.2: The exact solution and the discrete solution agree at t0. At t1
the error |Y1 − y(t1)| is due to approximating the derivative in the ODE by a
difference quotient. At t2 the error |Y2 − y(t2)| is due to approximating the
derivative in the ODE and the fact that the starting value, Y1 does not lie on
the solution curve as Y0 did.

1.3. EULER METHOD 11

-

6

t
t0 t1 t2

y(t)

�
�
�
�
�
�
�

qY0

qY1

qY2�
�
�

q
global error

Y2 = Y1 + ∆tf(t1, Y1)

y(t2)a

-

6

t
t0 t1 t2

qY0

y(t1)a
y(t2)a

�
�
�
�
qỸ2 local error

Ỹ2 = y(t1) + ∆tf
(
t1, y(t1)

)

Figure 1.3: A comparison of the global error and the local truncation error at
t2. The global error is the total error made whereas the local truncation error
is the error due to the discretization of the differential equation.

12 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

To determine the local truncation error for the forward Euler method we
compute the error made in taking one step where we start on the solution
curve, i.e., we compute the difference in the exact solution at ti+1 and the result
of applying the Euler method where we use y(ti) instead of Yi. Specifically we
calculate

τi+1 = |y(ti+1)− Ỹi+1| where Ỹi+1 = y(ti) + ∆tf
(
ti, y(ti)

)
. (1.6)

Our strategy is to first quantify the local truncation error in terms of ∆t; i.e.,
determine τi+1 = |y(ti+1)−Ỹi+1| and then use the result to determine the global
error. We consider the expression for the local truncation error

τi+1 =
∣∣y(ti+1)− Ỹi+1

∣∣ =
∣∣y(ti+1)− y(ti)−∆tf

(
ti, y(ti)

)∣∣ .
In order to to simplify this expression so we get some cancellation of terms, we
use a Taylor Series with remainder for the exact solution y(ti+1) because the
expansion is in terms of y(ti) and its derivatives. Recall that the Taylor series
expansion with remainder for a differentiable function g(x) in the neighborhood
of x = a is

g(x) = g(a) + g′(a)(x− a) +
g′′(a)

2!
(x− a)2 +

g′′′(a)

3!
(x− a)3 + · · ·

+
g[n](a)

n!
(x− a)n +

g[n+1](ξ)

(n+ 1)!
(x− a)n+1 ξ ∈ (a, x)

but we will typically use it in the form

g(t+ ∆t) = g(t) + g′(t)∆t+
g′′(t)

2!
(∆t)2 +

g′′′(t)

3!
(∆t)3 + · · ·

+
g[n](t)

n!
(∆t)n +

g[n+1](ξ)

(n+ 1)!
(∆t)n+1 ξ ∈ (t, t+ ∆t)

(1.7)

where we have set t+ ∆t = x and t = a so x− a = ∆t. Setting t = ti and n = 1
in (1.7) gives an expansion for y(ti + ∆t) = y(ti+1)

y(ti+1) = y(t) + ∆ty′(t) +
(∆t)2

2!
y′′(ξ) ξ ∈ (ti, ti+1) .

so substitution into our expression for y(ti+1)− Ỹi+1 yields

y(ti+1)− Ỹi+1 =
[
y(ti) + ∆tf

(
ti, y(ti)

)
+

(∆t)2

2!
y′′(ξi)

]
− y(ti)−∆tf

(
ti, y(ti)

)
=

(∆t)2

2!
y′′(ξi)

where we have used the differential equation y′(ti) = f(ti, y(ti)). Thus we have
the local truncation error τi+1 at the point ti+1 given by

τi+1 =
∣∣y(ti+1)− Ỹi+1

∣∣ =
(∆t)2

2!

∣∣y′′(ξi)∣∣ . (1.8)

1.3. EULER METHOD 13

If y′′(t) is bounded on [0, T], say |y′′(t)| ≤ M , then τi+1 ≤ (∆t)2M
2 . We say

that the local truncation error for Euler’s method is order (∆t)2 which we write
as O

(
(∆t)2

)
. This says that the local error is proportional to the square of the

step size; i.e., it is a constant times the square of the step size. Remember,
however, that this is not the global error but rather the error made because we
have used a finite difference quotient to approximate y′(t).

We now turn to estimating the global error in the forward Euler method. We
should expect to only be able to find an upper bound for the error because if we
could find a formula for the exact error, then we could determine this and add it
to the approximation to get the exact solution. Our goal now is to demonstrate
that the global discretization error for the forward Euler method is O(∆t) which
says that the method is first order, i.e., linear in ∆t. At each step we make a
local error of O

(
(∆t)2

)
due to approximating the derivative in the differential

equation; at each fixed time we have the accumulated errors of all previous steps
and we want to demonstrate that this error does not exceed a constant times
∆t. We can intuitively see why this should be the case. Assume that we are
taking N steps of length ∆t = (T − t0)/N ; at each step we make an error of
order ∆t2 so for N steps we have NC(∆t)2 = [(T − t0)/∆t]C∆t2 = O(∆t). The
following result makes this argument precise. Later we will see that, in general,
if the local truncation error is O((∆t)r) then we expect the global error to be
one power of ∆t less, i.e., O((∆t)r−1). Theorem 2 provides a formal statement
and proof for the global error of the forward Euler method. Note that one
hypothesis of Theorem 2 is that f(t, y) is Lipschitz continuous in y which is also
the hypothesis of Theorem 1 which guarantees existence and uniqueness of the
solution to the IVP (1.1) so it is a natural assumption. We also assume that y(t)
possesses a bounded second derivative; however, this condition can be relaxed
but it is adequate for our needs.

Theorem 2. Let D = {(t, y) | t ∈ [t0, T], y ∈ R1} and assume that f(t, y) is
continuous on D and is Lipschitz continuous in y on D; i.e., it satisfies (1.2)
with Lipschitz constant L. Also assume that there is a constant M such that

|y′′(t)| ≤M for all t ∈ [t0, T] .

Let τi represent the local truncation error of the forward Euler method given in
(1.8). Then the global error at each point ti satisfies

|y(ti)− Yi| ≤ C∆t where C =
MeTL

2L
(eTL − 1)

so that the forward Euler method converges linearly.

Proof. Let En represent the global discretization error at time tn, i.e., En =
|y(tn)− Yn|. We want to demonstrate that

En ≤ KEn−1 + τ (1.9)

where K is the constant K = 1 + ∆tL and τ = maxi τi, i.e., the largest value
that τi given in (1.8) takes on. If we can do this, then the proof follows easily.

14 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

To see this note that a common approach in error analysis is to apply a formula
recursively; in our case we obtain

En ≤ KEn−1 + τ ≤ K[KEn−2 + τ] + τ
≤ K3En−3 + (K2 +K + 1)τ
≤ · · ·

≤ KnE0 + τ

n−1∑
i=0

Ki .

Because we assume for the analysis that there are no roundoff errors, E0 =
|y0 − Y0| = 0 so we are left with τ

∑n−1
i=0 K

i. To simplify the sum we note that

it is simply a geometric series of the form
∑n−1
k=0 ar

k with a = 1 and r = K.
From calculus we know that the sum is given by a(1 − rn)/(1 − r). Also from
the Taylor series expansion of ez near zero we have that 1 + z ≤ ez so if we use
the fact that K = 1 + ∆tL we arrive at

En ≤ τ
(
Kn − 1

K − 1

)
=

τ

∆tL
[(1 + ∆tL)n − 1] ≤ τ

∆tL
(en∆tL − 1)

where we have used K = 1 + ∆tL. Now n is the number of steps from t0 so
n∆t = tn ≤ T where T is our final time. Also for each i

τi+1 =
∆t2

2

∣∣y′′(ξi)∣∣ ≤M∆t2

2

where we have used the bound on y′′(t) given in the hypothesis of the theorem.
Combining these gives the final result that the global error is linear in ∆t

En ≤
M∆t2

2∆tL
(eTL − 1) = C∆t C =

M

2L
(eTL − 1) .

All that is left for the proof is to to demonstrate that (1.9) holds with K =
1 + ∆tL. To show this we substitute the expression for the local truncation
error given in (1.8) and the forward Euler formula for Yn into the expression for
En to get

En =
∣∣y(tn)− Yn

∣∣ =
∣∣[y(tn−1) + ∆ty′(tn−1) + τn−1

]
−
[
Yn−1 + ∆tf(tn−1, Yn−1)

]∣∣
≤

∣∣y(tn−1)− Yn−1

∣∣+ ∆t
∣∣f(tn−1, y(tn−1)− f(tn−1, Yn−1)

∣∣+ τ

≤ En−1 + ∆t
∣∣f(tn−1, y(tn−1)− f(tn−1, Yn−1)

∣∣+ τ ,

where we have used the differential equation y′(t) = f(t, y) evaluated at the
point (tn−1, y(tn−1)) in the second step. To estimate the second term on the
right hand side recall that f(t, y) satisfies a Lipschitz condition on y so that

|f
(
tn−1, y(tn−1)

)
− f

(
tn−1, Yn−1

)
| ≤ L

∣∣y(tn−1)− Yn−1

∣∣
and thus we have the final result

En ≤ En−1 + ∆tLEn−1 + τ = (1 + ∆tL)En−1 + τ .

1.3. EULER METHOD 15

In the following section we look at some specific examples of the IVP (1.1)
and use both forward and backward Euler methods; we will demonstrate that
our numerical rate of convergence agrees with the theoretical rate. However, we
should keep in mind thatO(∆t) is a very slow rate of convergence and ultimately
we need to derive methods which converge more quickly to the solution.

1.3.2 Numerical examples

A common problem that arises in modeling is an IVP whose solution obeys
exponential growth or decay. Exponential behavior just means that the solution
can be represented by the function Ceαt where α > 0 for growth and α < 0
for decay. First we look at a description of an IVP whose solution is this type
of exponential growth or decay. Then we look at the slightly more complicated
model of logistic growth. We will then apply our forward Euler method to
approximate the solutions of each type of problem. Lastly we will look at an
example of exponential growth and apply both the forward and backward Euler
methods. For this example, we will see that the backward Euler performs well
but the forward Euler method does not converge. Reasons for this will be
discussed in Chapter 3.

Exponential growth and decay. Suppose you are interested in modeling
the growth of some quantity and your initial hypothesis is that the growth rate
is proportional to the amount present at any time. To write an IVP for this
model we have to translate this expression into mathematical terms. We know
that the derivative represents the instantaneous rate of growth and the phrase
“proportional to” just means a constant times the given quantity. So if p(t)
represents the population at time t and p0 represents the initial population at
time t = 0 we express the hypothesis that the growth rate is proportional to the
amount present at any time as

p′(t) = r0p(t) t ∈ (t0, T] (1.10)

along with the initial condition

p(0) = p0

where r0 is the given proportionality constant. This is one of those differential
equations that we can solve exactly by integration. We first separate the vari-
ables (i.e., move all terms involving p to one side of the equation and all terms
involving t to the other) to obtain

dp

dt
= r0p⇒

dp

p
= r0 dt⇒

∫ t

0

dp

p
= r0

∫ t

0

dt

and perform the integration to get

ln p(t)|t0 = r0(t− 0)⇒ ln p(t)− ln p0 = r0t⇒ eln p = er0teln p0 ⇒ p(t) = p0e
r0t ,

16 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

where we have used the fact that exponentiation and the natural log are inverse
functions and that p(t) ≥ 0 for all t. Thus we see that if the population at
any time t is proportional to the amount present at that time, then it behaves
exponentially where the initial population is a multiplicative constant and the
proportionality constant r0 is the rate of growth if it is positive; otherwise it
is the rate of decay. In the exercises you are asked to explore an exponential
growth model for bread mold.

Logistic growth and decay The previous model of population growth as-
sumes there is an endless supply of resources and no predators. Logistic growth
of a population attempts to incorporate resource availability by making the as-
sumption that the rate of population growth (i.e., the proportionality constant)
is dependent on the population density. Figure 1.4 demonstrates exponential
growth and logistic growth; clearly exponential growth allows the population to
grow in an unbounded manner whereas logistic growth requires the population
to stay below a fixed amount K which is called the carrying capacity of the
population. When the population is considerably below this threshold amount
the two models produce similar results. The logistic model we consider restricts
the growth rate in the following way

r = r0

(
1− p

K

)
(1.11)

where K is the maximum allowable population and r0 is a given growth rate
for small values of the population. As the population p increases to near the
threshold value K then p

K becomes closer to one (but less than one) and so
the term (1 − p

K) gets closer to zero and the growth rate decreases because of
fewer resources; the limiting value is when p = K and the growth rate is zero.
However when p is small compared with K, the term (1 − p

K) is near one and
it behaves like exponential growth with a rate of r0. Assuming the population
at any time is proportional to the current population using the proportionality
constant (1.11); our differential equation becomes

p′(t) = r0

(
1− p(t)

K

)
p(t) = r0p(t)−

r0

K
p2(t)

along with p(t0) = p0. This equation is nonlinear in the unknown p(t) due
to the p2(t) term and is more difficult to solve than the exponential growth
equation. However, it can be shown that the solution is

p(t) =
Kp0

(K − p0)e−r0t + p0
(1.12)

which can be verified by substitution into the differential equation. We would
expect that as we take the limt→∞ p(t) we should get the threshold value K.
Clearly this is true because limt→∞ e−r0t = 0.

We now turn to approximating the solution to both exponential and logistic
growth/decay problems using both the forward and backward Euler method.

1.3. EULER METHOD 17

Out[28]=

5 10 15 20 25 30
t

20

40

60

80

100

pHtL

Figure 1.4: A comparison of exponential growth and logistic growth. The pop-
ulation in the logistic model never reaches the threshold value which in this
case is 50 while exponential growth is unbounded. For values of the population
much less than the threshold value, logistic growth is very similar to exponential
growth.

In the examples we plot the exact solution and several approximations so we
can see that as ∆t → 0 the discrete solution appears to be approaching the
exact solution. Then we will compute our numerical rate of convergence and
compare this with the linear rate that is predicted by Theorem ??. If we tabulate
the errors at a point for a sequence of step sizes where ∆t is cut in half each
time (for example, ∆t = 0.4, 0.2, 0.1, . . .) then we expect that the error should
be approximately halved at each step. To see this let Ei denote the error
using (∆t)i; then E1 ≈ C(∆t)1 and E2 ≈ C(∆t)2 where (∆t)2 = .5(∆t)1 then
E2 ≈ .5C(∆t)1 ≈ 1

2E1.
To determine the actual numerical rate we assume that the numerical error

using step size ∆t at any point is E = C(∆t)r and we want to compute r. For
the Euler method we expect to show that r → 1 as ∆t→ 0. Now when we use
this formula at a fixed value of the step size we have two unknowns C and r.
To solve for r we look at two calculations

E1 = C(∆t)r1 and E2 = C(∆t)r2

and solve for r from these. We have

E1

(∆t)r1
=

E2

(∆t)r2
⇒ E1

E2
=

(
(∆t)1

(∆t)2

)r
.

Using properties of logarithms we get

r =
ln E1

E2

ln (∆t)1
(∆t)2

. (1.13)

Example 2. The first example we use the forward Euler method for is the
specific exponential growth problem

p′(t) = 0.8p(t) 0 < t ≤ 10, p(0) = 2

18 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

whose exact solution is p(t) = 2e.8t. We implement Algorithm 1.4 for the for-
ward Euler method and code a separate function for f(t, p) = 0.8p because this
will change for each IVP. The exact solution along with three Euler approxima-
tions using uniform step sizes of ∆t = 0.5, 0.25, 0.125 are plotted in Figure 1.5.
The discrete solution appears to be approaching the exact solution as the step
size is reduced but we would also like to verify that the global error is O(∆t).
We compare the discrete solution to the exact solution at the point t = 1 where
we know that the exact solution is e.8=4.45108; we tabulate our approximations
Pn to p(t) at t = 1, the actual errors at this point and the computed numer-
ical rates for a sequence of decreasing values of the step size. The numerical
rates were computed using (1.13) for successive errors. Note that the numerical
rate is approaching one as ∆t decreases so we are confident that the results are
converging linearly.

æ

æ

æ

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ì

ì

ì

 exact solution ->

0.2 0.4 0.6 0.8 1.0
t

2.5

3.0

3.5

4.0

4.5

pHtL
Forward Euler Approximations for p'= .8p, pH0L=2

Figure 1.5: The exact solution and three approximations using Forward Euler’s
Method with ∆t = 0.5,−.25 and 0.125 for Example 2 .

∆t 1/2 1/4 1/8 1/16 1/64 1/128
Pn 3.92 4.1472 4.28718 4.36575 4.40751 4.42906
|p(1)− Pn| 0.53108 0.30388 0.16390 0.08533 0.043568 0.022017
num. rate 0.805 0.891 0.942 0.970 0.985

Example 3. We now use the forward Euler method to approximate the solution
to the logistic model

p′(t) = 2

(
1− p(t)

100

)
p(t) 0 < t ≤ 5 p(0) = 2 .

To obtain approximations to p(t) using the forward Euler method code we used
in Example 2 all we have to do is modify the routines defining f(t, p) and the
exact solution for the error calculation; the initial condition p0 is the same.
The exact solution to this problem is given by (1.12). Before generating any
simulations we should think about what we expect the behavior of this solution
to be compared with the exponential growth solution in Example 2. Initially the
population should grow faster because here r0 = 2 and in the previous example
the growth rate is 0.8. However, the solution should not grow unbounded but
rather always stay below p = 100. We first compute approximations at t = 1.0

1.3. EULER METHOD 19

Logistic growth model

Exponential
growth model

1 2 3 4 5 6

20

40

60

80

100

120

140

Figure 1.6: A comparison of exponential growth and logistic growth for Exam-
ples 2 and 3. The population in the logistic model never reaches the threshold
value of 100 while the exponential growth is unbounded.

as we did in Example 2. The approximations at a sequence of decreasing values
of ∆t are presented in the table along with the calculated numerical rates. The
exact value at t = 1 is 13.1037059. We also plot the approximate solution for a
longer time for the exponential growth problem in Example 2 and this logistic
growth problem. Note that the exponential growth solution increases without
bound whereas the logistic growth solution never exceeds the carrying capacity
of K = 100.

If we compare the size of the errors in each example using say ∆t = 1/64
we see that the errors for the logistic model are about a factor of ten larger.
How do we know if this is correct and what makes one error so much larger
than the other? When we calculate the numerical rate of convergence for both
problems we see that the rate is one which was the theoretical rate we proved
so we have confidence that the results are correct. Remember that when we
say the convergence is linear we mean that it is a constant times ∆t where for
the Euler method the constant depends on the second derivative of the exact
solution. The exact solution p(t) = 2e.8t to the exponential growth function has
an increasing second derivative on [0, 1] whose maximum value is 2.849 whereas
the exact solution to the logistic equation has an increasing second derivative
on [0, 1] but its maximum value is almost 34 so this accounts for the difference.

∆t 1/8 1/16 1/32 1/64 1/128 1/256
Pn 11.03459 11.96945 12.50836 12.79851 12.949168 13.02594
|p(1)− Pn| 2.06911 1.13426 0.59535 0.305193 0.1545388 0.07762
num. rate 0.867 0.9301 0.964 0.982 0.991

Example 4. The example we consider now is exponential decay where we use
both the forward and backward Euler methods to approximate the solution. We
seek y(t) such that

y′(t) = −20y(t) 0 < t ≤ 0.25, y(0) = 1

20 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

Dt=0.25
Dt=0.125

0.5 1.0 1.5 2.0

-600

-400

-200

200

400

600

800

Figure 1.7: The forward Euler approximations to the IVP of Example 4 are
oscillating and growing in an unbounded fashion. We say that these approxi-
mations are numerically unstable.

Dt=1/4Dt=1/8

Dt=1/32

Dt=1/16

exact
solution ->

0.5 1.0 1.5 2.0

0.0005

0.0010

0.0015

0.0020

Figure 1.8: A comparison of the exact solution for Example 4 with three approx-
imations using the implicit backward Euler method with ∆t = 1/4, 1/8, 1/16
and 1/32.

which has an exact solution of y(t) = e−20t. In Figure 1.7 we plot the ap-
proximate solutions on [0, 2] using the forward Euler method with ∆t = 1

4 ,
1
8 .

Note that for this problem the approximate solution is oscillating and becoming
unbounded. In Figure 1.8 we plot approximations using the backward Euler
method and the exact solution. As can be seen from the plot, it appears that
the discrete solution is approaching the exact solution as ∆t → 0. Recall that
the backward Euler method is an implicit scheme but due to the specific f(t, y)
in this example we don’t have to solve a nonlinear equation. At each time we
solve Yi+1 = Yi + ∆t20Yi+1 which happens to be linear for this problem so we
can solve for Yi+1 to get Yi+1 = Yi/(1 + 20∆t).

Why are the results for the forward Euler method not reliable for this problem
whereas they were for Example 2? In this example the numerical approximations
are not converging as ∆t → 0; the reason for this is a stability issue which we

1.4. OTHER APPROACHES TO DERIVING THE EULER METHOD 21

address in Chapter 3. When we determined the theoretical rate of convergence
we tacitly assumed that the method converged; which of course in this method
it does not. The implicit backward Euler method provided convergent results
but remember that, in general, we have to solve a nonlinear equation at each
time; in § 2.6 we will investigate efficient approaches to implementing an implicit
method.

1.4 Other approaches to deriving the Euler method

We obtained the backward or forward Euler method by looking at the definition
of the derivative and realizing that we could use the slope of a secant line
to approximate the derivative. We can also view the derivation of the Euler
method in other ways which will be helpful in deriving more accurate methods.
Remember that the Euler method is only first order accurate and typically we
need schemes that converge at a faster rate. In addition, we saw in Exercise 4
that the forward Euler method does not always converge. We consider methods
derived using Taylor series, numerical quadrature formulas, and interpolating
polynomials. In Chapter 2 we will investigate these approaches in more detail.

The first approach we consider is using a Taylor series expansion for y(ti+∆t)
when we know y(ti). From (1.7) we have

y(ti + ∆t) = y(ti) + ∆ty′(ti) +
(∆t)2

2!
y′′(ti) + · · ·+ (∆t)k

2!
y[k](ti) + · · · .

This is an infinite series so if we truncate it then we have an approximation
to y(ti + ∆t). For example, if we truncation the series at the term which is
O(∆t) we have y(ti + ∆t) ≈ y(ti) + ∆ty′(ti) = y(ti) + ∆tf(ti, y(ti)) which
leads to our difference equation for Euler’s Method Yi+1 = Yi + ∆tf(ti, Yi). So
theoretically, if we keep additional terms in the series then we get a higher order
approximation to y′(t). This approach is explored in § 2.1.

Another approach is to use numerical integration rules to approximate the
integrals obtained when we integrate (1.1a) from ti to ti+1. Formally we have∫ ti+1

ti

y′(t) dt =

∫ ti+1

ti

f(t, y) dt

and we note that the left hand side can be evaluated exactly by the Fundamental
Theorem of Calculus to get y(ti+1) − y(ti); however, in general, we must use
numerical quadrature to approximate the integral on the right hand side. Recall
from calculus that one of the simplest approximations to an integral is to use
either a left or right Riemann sum. If we use a left sum for the integral of f(t, y)
we approximate the integral by a rectangle whose base is ∆t and whose height
is determined by the function at the left endpoint of the interval; i.e., we use
the formula ∫ b

a

g(x) ≈ g(a)(b− a) .

22 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

Using the left Riemann sum to approximate the integral of f(t, y) gives

y(ti+1)− y(ti) =

∫ ti+1

ti

f(t, y) dt ≈ ∆tf(ti, y(ti))

which once again leads us to the difference equation for forward Euler. In the
exercises you will explore the implications of using a left Riemann sum. Clearly
different approximations to the integral of f(t, y) yield different methods; we
consider these in § 2.2.

Still another way to derive the Euler method is to use interpolation. There
are basically two choices for how one can use an interpolating polynomial to
derive other schemes. One choice is to use an interpolating polynomial for y(t)
through grid points such as ti+1, ti, ti−1, etc., then differentiate it and substitute
the derivative for y′(t). Another option is to use an interpolating polynomial for
f(t, y) and then integrate the differential equation; the integral of f(t, y) is now
trivial to integrate because f is approximated by a polynomial. Both approaches
yield difference equations to approximate the solution to y′(t) = f(t, y).

We first look at the approach of representing y(t) by an interpolating poly-
nomial. The Lagrange form of the unique linear polynomial that passes through
the points

(
ti, y(ti)

)
and

(
ti+1, y(ti+1)

)
is

p1(t) = y(ti)
t− ti+1

−∆t
+ y(ti+1)

t− ti
∆t

.

If we use this linear interpolant to represent an approximation to y(t) at any
point between ti and ti+1 then differentiating with respect to t gives

p′1(t) =
−1

∆t
y(ti) +

1

∆t
y(ti+1)

which leads to the approximation

y′(t) ≈ y(ti+1)− y(ti)

∆t
.

Using this expression for y′(t) in the differential equation y′(t) = f(t, y) at ti
yields the forward Euler Method and at ti+1 gives the implicit backward Euler
method.

The second choice for deriving schemes using an interpolating polynomial
is to use an interpolating polynomial for f(t, y). For example, suppose we ap-
proximate f(t, y) by a polynomial of degree zero, i.e., a constant in the interval
[ti, ti+1]. If use the approximation f(t, y) ≈ f

(
ti, y(ti)

)
in [ti, ti+1] then inte-

grating the differential equation yields

y(ti+1)− y(ti) =

∫ ti+1

ti

f(t, y) dt ≈
∫ ti+1

ti

f
(
ti, y(ti)

)
dt = f

(
ti, y(ti)

)
∆t

which leads to the forward Euler method. If we choose to approximate f(t, y)
in [ti, ti+1] by f(ti+1, y(ti+1)) then we get the backward Euler method. We will
investigate methods derived using interpolating polynomials in § 2.3.

1.4. OTHER APPROACHES TO DERIVING THE EULER METHOD 23

EXERCISES

1. Classify each difference equation as explicit or implicit. Justify your an-
swer.

a. Yi+1 = Yi−1 + 2∆tf(ti, Yi)

b. Yi+1 = Yi−1 + ∆t
3

[
f(ti+1, Yi+1) + 4f(ti, Yi) + f(ti−1, Yi−1)

]
c. Yi+1 = Yi+

∆t
2

[
f
(
ti, Yi+

∆t
2 f(ti, Yi)− ∆t

2 f(ti, Yi+1)
)]

+ ∆t
2

[
f
(
ti+1, Yi+

∆t
2 f(ti+1, Yi+1)

)]
d. Yi+1 = Yi + ∆t

4

[
f(ti, Yi) + 3f

(
ti + 2

3∆t, Yi + 2
3∆tf(ti + ∆t

3 , Yi +
∆t
3 f(ti, Yi)

)]
2. Assume that the following set of errors were obtained from three different

methods for approximating the solution of an IVP of the form (1.1) at
a specific time. First look at the errors and try to decide the accuracy
of the method. Then use the result (1.13) to determine a sequence of
approximate numerical rates for each method using successive pairs of
errors. Use these results to state whether the accuracy of the method is
linear, quadratic, cubic or quartic.

∆t Errors Errors Errors
Method I Method II Method III

1/4 0.23426×10−2 0.27688 0.71889×10−5

1/8 0.64406×10−3 0.15249 0.49840×10−6

1/16 0.16883×10−3 0.80353×10−1 0.32812×10−7

1/32 0.43215×10−4 0.41292×10−1 0.21048×10−8

3. Show that if we integrate the IVP (1.1a) from ti to ti+1 and use a right
Riemann sum to approximate the integral of f(t, y) then we obtain the
backward Euler method.

4. We showed that if we use a linear interpolating polynomial to approximate
y(t) on [ti, ti+1] then we obtain the Euler method. What happens if you
use a constant polynomial on [ti, ti+1] which interpolates y(ti)?

5. Write a code which implements the forward Euler method to solve an IVP
of the form (1.1). Use your code to approximate the solution of the IVP

y′(t) = 1− y2 y(0) = 0

which has an exact solution y(t) = (e2t−1)/(e2x+1). Compute the errors
at t = 1 using ∆t = 1/4, 1/8, 1/16, 1/32, 1/64.

24 CHAPTER 1. INTRODUCTION TO DISCRETIZATION

a. Tabulate the global error at t = 1 for each value of ∆t and demonstrate
that your method converges with accuracy O(∆t); justify your answer by
calculating the numerical rate of convergence for successive pairs of errors.

b. Tabulate the local error at t = 1 for each value of ∆t and determine
the rate of convergence of the local error; justify your answer by calculating
the numerical rate of convergence for successive pairs of errors.

6. Suppose you are interested in modeling the growth of the Bread Mold
Fungus, Rhizopus stolonifer and comparing your numerical results to ex-
perimental data that is taken by measuring the number of square inches
of mold on a slice of bread over a period of several days. Assume that the
slice of bread is a square of side 5 inches.

a. To obtain a model describing the growth of the mold you first make the
hypothesis that the growth rate of the fungus is proportional to the
amount of mold present at any time with a proportionality constant
of k. Assume that the initial amount of mold present is 0.25 square
inches. Let p(t) denote the number of square inches of mold present
on day t. Write an initial value problem for the growth of the mold.

b. Assume that the following data is collected over a period of ten days.
Assuming that k is a constant, use the data at day one to determine
k. Then using the forward Euler method with ∆t a fourth and an
eight of a day, obtain numerical estimates for each day of the ten
day period; tabulate your results and compare with the experimental
data. When do the results become physically unreasonable?

t = 0 p =0.25 t = 1 p =0.55
t = 2 p =1.1 t = 3 p =2.25
t = 5 p =7.5 t = 7 p =16.25
t = 8 p =19.5 t = 10 p =22.75

c. The difficulty with the exponential growth model is that the bread
model grows in an unbounded way as you saw in (b). To improve the
model for the growth of bread mold, we want to incorporate the fact
that the number of square inches of mold can’t exceed the number of
square inches in a slice of bread. Write a logistic differential equation
which models this growth using the same initial condition and growth
rate as before.

d. Use the forward Euler method with ∆t a fourth and an eighth of a day
to obtain numerical estimates for the amount of mold present on each
of the ten days using your logistic model. Tabulate your results as in
(b) and compare your results to those from the exponential growth
model.

Chapter 2

Higher order accurate
methods

In the last chapter we looked at the Euler method for approximating the solution
to the first order IVP (1.1). Although it is simple to understand and program,
the method converges at a linear rate which is quite slow. In addition, we saw
an example in which the forward Euler failed to converge as ∆t→ 0. For these
reasons, it is worthwhile to investigate schemes with a higher order of accuracy
and which have better convergence properties. Also, not all problems can be
solved efficiently with a uniform time step so we would like to develop methods
which allow us to determine if the current choice of ∆t is acceptable.

In § 1.4 we demonstrated that the Euler method can be derived from several
different viewpoints. In particular we used Taylor series expansions, quadrature
rules, and interpolating polynomials to obtain the forward or backward Euler
method. We investigate these approaches in more detail in this chapter. We
will see that using Taylor series expansions is a straightforward approach to
deriving higher order schemes but it requires the repeated differentiation of
y(t) which makes the methods impractical. Integrating the differential equation

(1.1a) requires approximating the integral
∫ ti+1

ti
f(t, y) dt which can be done

by using a quadrature rule. This leads to families of methods called Runge-
Kutta methods. Another approach to approximating this integral is to use
an interpolating polynomial for f(t, y) so that the resulting integral can be
determined exactly. This approximation leads to families of methods called
multistep methods. Still another use of an interpolating polynomial to derive
methods is to represent y(t); then differentiation of the interpolating polynomial
gives a difference equation.

In Chapter 1 we saw that implicit methods were inherently more costly to
implement than explicit methods due to the fact that they typically require the
solution of a nonlinear equation at each time step. In this chapter we see an
efficient way to implement an implicit method by pairing it with an explicit
method to yield the so-called Predictor-Corrector methods.

25

26 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

2.1 Taylor Series Methods

Taylor Series is an extremely useful tool in numerical analysis and especially in
deriving and analyzing difference methods. Previously we saw that it can be
used to derive the Euler method by dropping all terms of O((∆t)2) and higher;
thus a natural approach to obtaining higher order methods is to retain more
terms in the expansion. To see how this approach works, we now drop all terms
of O(∆t3) and higher in (1.7) to obtain

y(ti + ∆t) = y(ti) + ∆ty′(ti) +
(∆t)2

2!
y′′(ti) +

(∆t)3

3!
y′′′(ξi) ,

so we expect a local n error of O((∆t)3) and thus expect a global error of
O((∆t)2). Now the problem we have to address when we implement this is
what to do with y′′(ti) because we only know y′(t) = f(t, y). If our function is
smooth enough, we can differentiate this equation with respect to t to get y′′(t)
but we have to use the chain rule because f is a function of t and y where y is
also a function t. Specifically, we have

y′(t) = f(t, y)⇒ y′′(t) =
∂f

∂t

dt

dt
+
∂f

∂y

dy

dt
= ft + fyf .

We then substitute this into the Taylor series expansion and solve for y′(ti) to
obtain

y′(ti) ≈
y(ti + ∆t)− y(ti)

∆t
− ∆t

2!

[
ft(ti, y(ti)) + f(ti, y(ti))fy(ti, y(ti))

]
.

Using the differential equation we get the difference equation

Yi+1 − Yi
∆t

− ∆t

2
[ft(ti, Yi) + f(ti, Yi)fy(ti, Yi)] = f(ti, Yi)

and solving for Yi+1 gives

Yi+1 = Yi + ∆tf(ti, Yi) +
(∆t)2

2
[ft(ti, Yi) + f(ti, Yi)fy(ti, Yi)] . (2.1)

If we neglect the last terms on the right-hand side of this method which are
O((∆t)2) then we just have forward Euler so we can view these terms as cor-
rections to the first order Euler method.

To implement this method, we must provide function routines not only for
f(t, y) but also ft(t, y) and fy(t, y). In some cases this will be easy, but in others
it can be tedious or even not possible. For these reasons, higher order Taylor
series are not often used in practice; in the sequel we will discuss other higher
order methods which are much more tractable. The following example applies
the second order Taylor scheme to a specific IVP and in the exercises we will
explore a third order Taylor series method.

2.1. TAYLOR SERIES METHODS 27

Example 5. We want to approximate the solution to

y′(t) = 3yt2 y(0) =
1

3

using a second order Taylor series scheme. The exact solution to the IVP is
y = 1

3e
t3 . Before writing a code for a particular method, it is helpful to first

perform some calculations by hand so one can make sure that the method is
completely understood and also to have some results to compare the numerical
simulation with. To this end, we first calculate Y2 using ∆t = 0.1. Then we
provide numerical results at t = 1 for several choices of ∆t and compare with a
first order Taylor series method, i.e., with the forward Euler method.

From the discussion above, we know that we need ft and fy so

f(t, y) = 3yt2 ⇒ ft = 6ty and fy = 3t2 .

Substitution into (2.1) gives the expression

Yi+1 = Yi + 3∆tYit
2
i +

(∆t)2

2

(
6tiYi + 9t4iYi

)
. (2.2)

For Y0 = 1/3 we have

Y1 =
1

3
+ 0.1(3)

(
1

3

)
0 +

(.1)2

2
(0) =

1

3

Y2 =
1

3
+ 0.1(3)

(
1

3

)
(.1)2 +

(.1)2

2

(
6(.1)

1

3
+ 9(.1)4 1

3

)
= 0.335335

The exact solution at t = 0.2 is 0.336011 which gives an error of 0.675862×10−3.
To implement this method in a computer code we modify our program for the
forward Euler method to include the O((∆t)2) terms in (2.1). In addition to a
function for f(t, y) we also need to provide function routines for its first partial
derivatives fy and ft; note that in our program we code (2.1), not the equation
(2.2). We perform calculations with decreasing values of ∆t and compare with
results using the forward Euler method. When we compute the numerical rate
of convergence we see that the accuracy is O(∆t2), as expected.

28 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

∆t Error in Numerical Error in Numerical
Euler rate (2.1) rate

1
4 0.31689 0.12328

1
8 0.20007 0.663 0.41143×10−1 1.58

1
16 0.11521 0.796 0.11932×10−2 1.79

1
32 0.62350×10−2 0.886 0.32091×10−3 1.89

1
64 0.32516×10−2 0.939 0.83150×10−4 1.95

1
128 0.16615×10−2 0.969 0.21157×10−4 1.97

Although using Taylor series results in methods with higher order accuracy
than the Euler method, they are not considered practical because of the require-
ment of repeated differentiation of f(t, y). For example, the first full derivative
has two terms and the second has five terms. So even if f(t, y) can be dif-
ferentiated, the methods become unwieldy. For this reason we look at other
approaches to derive higher order schemes.

2.2 Methods from Integration Formulas

Another approach we used to obtain the Euler method was to integrate the
differential equation with respect to t from ti to ti+1 and use the Fundamental
Theorem of calculus to evaluate the left-hand side and a numerical quadrature
rule to evaluate the right hand side. We saw that a choice of the left Riemann
sum resulted in the forward Euler method and a choice of the right Riemann
sum resulted in the backward Euler method. Clearly there are many other
choices for quadrature rules.

One common numerical integration rule is the midpoint rule, where as the
name indicates we evaluate the integrand at the midpoint of the interval; specif-
ically the midpoint quadrature rule is∫ b

a

g(t) dt ≈ (b− a)g

(
a+ b

2

)
.

Integrating the differential equation (1.1a) from ti to ti+1 and using the midpoint
quadrature rule to integrate f(t, y) over the domain gives

y(ti+1)− y(ti) ≈ ∆tf
(
ti +

∆t

2
, y(ti +

∆t

2
)
)
.

The problem with this approximation is that we don’t know y evaluated at
the midpoint so our only recourse is to use an approximation. If we use for-
ward Euler starting at ti and take a step of length ∆t/2 then this produces an

2.2. METHODS FROM INTEGRATION FORMULAS 29

approximation to y at the midpoint i.e.,

y(ti +
∆t

2
) ≈ y(ti) +

∆t

2
f
(
ti, y(ti)

)
.

Thus we can view our method as having two parts; first we approximate y at
the midpoint and then use it to approximate y(ti+1) from

Yi+1 = Yi + ∆tf
(
ti +

∆t

2
, Yi +

1

2
∆tf(ti, Yi)

)
.

The method is usually written in the following way for simplicity and to em-
phasize the fact that there are two function evaluations required:

k1 = ∆tf(ti, Yi)
k2 = ∆tf(ti + ∆t

2 , Yi + 1
2k1)

Yi+1 = Yi + k2 .
(2.3)

Computationally, we see that we have to do extra work compared with the
Euler method because we have to approximate the intermediate value y(ti +
∆t/2). Because we are doing more work than the Euler method, we would like
to think that the scheme would converge faster.

We now demonstrate that the local truncation error of the Midpoint method
is O((∆t)3) so that we expect the method to converge with a global error of
O((∆t)2). The steps in estimating the local truncation error for the Midpoint
method are analogous to the ones we performed for determining the local trun-
cation error for the Euler Method except now we will need to use a Taylor
series expansion in two independent variables for f(t, y) because of the term
f(ti + ∆t

2 , Yi + 1
2k1). One way to arrive at a Taylor series expansion for a func-

tion for two independent variables is to first hold one variable fixed and expand
in the other and then repeat the procedure for all terms. For completeness
we give Taylor series in two independent variables in the following proposition.
Note that in the result we assume that the function is continuously differentiable
so that the order of differentiation does not matter; e.g., fxy = fyx.

Proposition 1. Let f(x, y) be continuously differentiable. Then

f(x+ h, y + k) = f(x, y) + hfx(x, y) + kfy(x, y)

+
h2

2!
fxx(x, y) +

k2

2!
fyy(x, y) + 2

kh

2!
fxy(x, y)

+
h3

3!
fxxx(x, y) +

k3

3!
fyyy(x, y) + 2

k2h

3!
fxyy(x, y)

+2
h2k

3!
fxxy(x, y) + · · ·

(2.4)

To estimate the local error recall that we apply one step of the difference
formula starting from the exact solution and compare the result with the actual
solution. For the Midpoint rule the local truncation error τi+1 at ti+1 is

τi+1 = y(ti+1)−
[
y(ti) + ∆tf

(
ti +

∆t

2
, y(ti) +

∆t

2
f(ti, y(ti))

)]
.

30 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

As before, we expand y(ti+1) with a Taylor series but this time we keep explicit
terms through (∆t)3 because we want to demonstrate that terms in the expres-
sion for the truncation error through (∆t)2 cancel but terms involving (∆t)3 do
not; we have

y(ti+1) = y(ti) + ∆ty′(ti) +
(∆t)2

2
y′′(ti) +

(∆t)3

3!
y′′′(ti) +O

(
(∆t)4

)
. (2.5)

Now to combine terms involving y′(t) and f(t, y) in the expression for τi+1 we
must expand f(ti + ∆t

2 , y(ti) + ∆t
f (ti, y(ti))); because it is a function of two

variables instead of one we need to use Proposition 2.4. To use this proposition
we note that the change in the first variable t is h = ∆t/2 and the change in
the second variable y is k = (∆t/2)f(ti, y(ti). We have

∆tf
(
ti +

∆t

2
, y(ti) +

∆t

2
f(ti, y(ti))

)
= ∆t

[
f +

∆t

2
ft +

∆t

2
f fy

+
(∆t)2

4 · 2!
ftt +

(∆t)2

4 · 2!
f2fyy + 2

(∆t)2

4 · 2!
f fty

]
+O

(
(∆t)4

)
.

All terms involving f or its derivatives on the right-hand side of this equation
are evaluated at (ti, y(ti)) and we have omitted this explicit dependence for
brevity. Substituting this expansion and(2.5) into the expression for τi+1 and
collecting terms involving each power of ∆t yields

τi+1 = ∆t(y′ − f) +
∆t2

2

(
y′′ − (ft + ffy)

)
+∆t3

(1

3!
y′′′ − 1

8

(
ftt + f2fyy + 2ffty

)
+O

(
(∆t)4

)
.

To cancel terms we note that from the differential equation y′(t) = f(t, y) we
have y′′(t) = ft+ffy and y′′′ = ftt+2ffty+f2fyy+ftfy+ff2

y . Thus the terms
involving ∆t and (∆t)2 cancel but the terms involving (∆t)3 do not; thus the
local truncation error is cubic and we expect the global convergence rate to be
quadratic in ∆t. The following example demonstrates the numerical accuracy
of the Midpoint method.

Example 6. We use the Midpoint method given in (2.3) to approximate the
solution of the IVP

y′(t) = 3yt2 y(0) =
1

3
that we considered in Example 5. The following table provides errors at t = 1
for ∆t = 1/4, 1/8, . . . , 1/128 and the numerical rates. As can be seen from the
table, the numerical rate is approaching two as ∆t→ 0.

∆t Error Numerical rate
1/4 0.69664×10−1

1/8 0.22345×10−1 1.64
1/16 0.63312×10−2 1.82
1/32 0.16827×10−2 1.91
1/64 0.43346×10−3 1.96
1/128 0.10998×10−3 1.98

2.3. METHODS FROM INTERPOLATION 31

If we use a Riemann sum or the Midpoint rule to approximate an integral∫ b
a
g(t)dt where g(t) ≥ 0 on [a, b] then we are using a rectangle to approximate

the area. Another approach is to use a trapezoid to approximate this area. The
trapezoidal integration rule is found by calculating the area of the trapezoid
with base (b − a) and height determined by the line passing through (a, g(a))
and (b, g(b)); specifically the rule is∫ b

a

g(t) dt ≈ (b− a)

2

(
g(a) + g(b)

)
.

Integrating our differential equation (1.1a) from ti to ti+1 and using this quadra-
ture rule gives

y(ti+1)− y(ti) ≈
∆t

2

[
f
(
ti, y(ti)

)
+ f

(
ti+1, y(ti+1)

)]
.

This suggests the Trapezoidal rule

Yi+1 = Yi +
∆t

2

[
f(ti, Yi) + f(ti+1, Yi+1)

]
. (2.6)

However, like the backward Euler method this is an implicit scheme and thus
for each ti we need to solve a nonlinear equation for most choices of f(t, y). This
can be done, but there are better approaches for using implicit schemes in the
context of ODEs as we will see in § 2.6.

Other numerical quadrature rules lead to additional explicit and implicit
methods. The Euler method, the Midpoint Rule and the Trapezoidal rule all
belong to a family of methods called Runge-Kutta methods. There is actually
an easier way to derive these methods which we discuss in § 2.4.

2.3 Methods from Interpolation

Another approach to deriving methods with higher than first order accuracy
is to use an interpolating polynomial to approximate either y(t) or f(t, y). If
we choose to use an interpolating polynomial for y(t) over some interval then
we must differentiate it and use it as an approximation to y′(t) in the equation
y′(t) = f(t, y). This approach leads to the family of implicit methods called
Backward Difference Formulas (BDF).

In § 2.2 we integrated our differential equation from ti to ti+1 and used a
quadrature formula for the integral involving f(t, y). However, if we approxi-
mate f(t, y) by an interpolating polynomial then this can be integrated exactly.
This approach leads to families of methods called multistep methods discussed
in § 2.5. These methods use previous approximations such as Yi, Yi−1, Yi−2,
etc. and corresponding slopes to extrapolate the solution at ti+1.

2.3.1 Backward difference formulas

Backward difference formulas (BDF) are a family of implicit methods and the
backward Euler is a first order BDF. In § 1.4 we showed that if we use a linear

32 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

interpolating polynomial p1(t) to approximate y(t) for ti ≤ t ≤ ti+1 then we
can differentiate it to get an approximation to y′(t). When we use p′1(t) to
approximate y′(ti) = f(ti, y(ti)) we obtained the explicit forward Euler scheme
and if we used y′(ti+1) = f(ti+1, y(ti+1)) then we obtained the implicit backward
Euler scheme. Backward difference formulas are especially useful when the IVP
is difficult to solve in the sense that smaller and smaller time steps are required.
This property is discussed in Chapter 3.

The backward Euler method is a first order BDF so if we want a higher order
approximation an obvious approach would be to use a higher order interpolating
polynomial to approximate y. For example, we could use a quadratic polyno-
mial; however we know that fitting a quadratic requires three points. We have
the points (ti, y(ti)) and (ti+1, y(ti+1)) but need to choose a third. In BDF for-
mulas information at previously calculated points are used; this has the advan-
tage that no additional function evaluations are required. Thus for a quadratic
interpolating the point

(
ti−1, y(ti−1)

)
is chosen as the third point. The La-

grange form of the interpolating polynomial p2(t) for the points (ti−1, y(ti−1)),
(ti, y(ti)), and (ti+1, y(ti+1)) is

p2(t) = y(ti−1)
(t− ti)(t− ti+1)

(ti−1 − ti)(ti−1 − ti+1)
+ y(ti)

(t− ti−1)(t− ti+1)

(ti − ti−1)(ti − ti+1)

+y(ti+1)
(t− ti−1)(t− ti)

(ti+1 − ti−1)(ti+1 − ti)

and differentiating with respect to t and assuming a constant ∆t gives

p′2(t) =
y(ti−1)

2(∆t)2

[
2t− ti− ti+1

]
− y(ti)

(∆t)2

[
2t− ti−1− ti+1

]
+
y(ti+1)

2(∆t)2

[
2t− ti−1− ti

]
.

Because we want an implicit scheme we use p′2(t) as an approximation to y′ in
the equation y′(ti+1) = f(ti+1, y(ti+1)); this yields

p′2(ti+1) =
y(ti−1)

2(∆t)2
∆t− y(ti)

(∆t)2
2∆t+

y(ti+1)

2(∆t)2
3∆t

= f(ti+1, y(ti+1) .

This suggest the BDF

3

2
Yi+1 − 2Yi +

1

2
Yi−1 = ∆tf(ti+1, Yi+1) .

or equivalently

Yi+1 =
4

3
Yi −

1

3
Yi−1 +

2

3
∆tf(ti+1, Yi+1) . (2.7)

Some references will give the BDF formulas so that the coefficient of Yi+1 is one
and others will not normalize by the coefficient of Yi+1. In general BDF formulas
using approximations at ti+1, ti, · · · , ti+1−s have the general normalized form

Yi+1 =

s∑
j=1

asjY(i+1)−j + β∆tf(ti+1, Yi+1) . (2.8)

2.3. METHODS FROM INTERPOLATION 33

order s as1 as2 as3 as4 as5 β

1 1 1
2 4/3 -1/3 2/3
3 18/11 -9/11 2/11 6/11
4 48/25 -36/25 16/25 -3/25 12/25
5 300/137 -300/137 200/137 -75/137 12/137 60/137

Table 2.1: Coefficients for implicit BDF formulas of the form (2.8) where the
coefficient of Yi+1 is one.

For our scheme (2.7) we have , a21 = −2 and a22 = 1/2. Table 2.1 gives coeffi-
cients for other uniform BDF formulas using the terminology of (2.8). Note that
we have included the order of accuracy of each method in Table 2.1. However,
we have not rigorously proved that the method (2.7) is second order but it is
what we should expect from interpolation theory. Recall that the backward Eu-
ler method can be derived by using a linear polynomial to interpolate y(t) and
for (2.7) we used a quadratic interpolating polynomial so, in theory, we should
gain one power of ∆t. This can be rigorously demonstrated.

It is also possible to derive BDFs for nonuniform time steps. The formulas
are derived in an analogous manner but are a bit more complicated because for
the interpolating polynomial we must keep track of each ∆ti; in the case of a
uniform ∆t there are some cancellations which simplify the resulting formulas.
In the exercises a BDF formula corresponding to (2.7) is explored for nonuniform
time steps.

Another way to derive schemes using interpolation is to use an interpolation
polynomial to approximate f(t, y). If we do this, then when we integrate the
equation over the given interval the integral of the interpolating polynomial
for f(t, y) can be integrated exactly. To see this suppose we want to derive
an explicit method where we use the previous information at ti and ti−1; we
do not include the point ti+1 because that would result in an implicit method.
We write the linear interpolating polynomial for f(t, y) through the two points
and integrate the equation from ti to ti+1. As before we use the Fundamental

Theorem of calculus to integrate
∫ ti+1

ti
y′(t) dt. We have

y(ti+1)− y(ti) ≈
∫ ti+1

ti

[
f
(
ti−1, y(ti−1)

) t− ti+1

−∆t
+ f

(
ti, y(ti)

) t− ti
∆t

]
dt

= − 1

∆t
f
(
ti−1, y(ti−1)

) (t− ti)2

2

∣∣∣ti+1

ti
+

1

∆t
f
(
ti, y(ti)

) (t− ti−1)2

2

∣∣∣ti+1

ti

= − 1

∆t
f
(
ti−1, y(ti−1)

)
+

1

∆t
f
(
ti, y(ti)

)3∆t2

2

which suggests the scheme

Yi+1 = Yi = +
3

2
∆tf

(
ti, y(ti)

)
− ∆t

2
f
(
ti−1, y(ti−1)

)
. (2.9)

34 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

This is an example of a multistep method; these types of methods will be dis-
cussed in § 2.5.

2.3.2 Single step versus multistep methods

Note that the BDF scheme (2.8) differs from other schemes we derived because
it uses the history of approximations to y to extrapolate the solution at the
next point; for example, (2.7) specifically uses approximations at ti and ti−1.
These types of methods are called multistep methods because they use the
solution at multiple points of our discretization to approximate the solution at
the next point ti+1. This is in contrast to methods such as the Midpoint method
which uses only one previous approximation, Yi, to approximate Yi+1; of course
it also uses an approximation at ti + ∆t

2 . Such a method is called a single step
method.

Single step methods perform approximations to y in the interval [ti, ti+1] as
a means to bootstrap an approximation to y(ti+1). Multistep methods combine
information that was previously calculated at points such as ti, ti−1, ti−2 . . . to
extrapolate the solution at ti+1. A method is called an m-step method if it uses
information from m grid points (including ti) to calculate Yi+1; this is why a
single step method is also called a one-step method since it only uses ti.

There are advantages and disadvantages to both single step and multistep
methods. Because multistep methods use previously calculated information, we
must store these values; this is not an issue when we are solving a single IVP
but if we have a system then our solution and the slope are vectors and so this
requires more storage. However multistep methods have the advantage that
f(t, y) has already been evaluated at prior points so this information can be
stored. Consequently multistep methods require fewer function evaluations per
step than single step methods and should be used where it is costly to evaluate
f(t, y).

If we look at the second order BDF (2.7) that we derived then we realize
another shortcoming of multistep methods. Initially we set Y0 = y(t0) and use
this to start a single step method such as the Midpoint method. However, in
(2.7) we need both Y0 and Y1 to implement the scheme. How can we get an
approximation to y(t1)? The obvious approach is to use a single step method.
So if we use m previous values (including ti) then we must take m − 1 steps
of a single step method to start the simulations; it is m − 1 steps because we
have the value Y0. Of course care must be taken in the choice of which single
step method to use. For example, if our multistep method is O((∆t)r) then we
should choose a single step method of the same accuracy; a lower order accurate
scheme could contaminate the error.

2.4 Runge-Kutta Methods

Runge-Kutta (RK) methods are a family of single step methods which in-
clude both explicit and implicit methods. The forward Euler and the Midpoint

2.4. RUNGE-KUTTA METHODS 35

method are examples of explicit RK methods. The backward Euler and the
Trapezoidal method are examples of implicit RK methods. When we derived
the Midpoint and Trapezoidal methods we used a numerical quadrature rule
to approximate

∫ ti+1

ti
f(t, y)dt. To derive other single step methods we can use

other numerical quadrature rules such as Gauss quadrature. However, there
is an easier approach to deriving families of single step methods which have a
desired accuracy.

Runge was a German mathematician who first pointed out that it was pos-
sible to get higher order accurate methods without having to perform the suc-
cessive differentiation of f(t, y) that is required in Taylor series methods. He
described the Midpoint method in 1895 and demonstrated that the accuracy is
quadratic. The approach to deriving families of RK methods is to form a prob-
lem with undetermined parameters and approximate y(t) and its slope f(t, y)
at a fixed number of unknown points in [ti, ti+1]; we then determine the pa-
rameters so that the accuracy is as high as possible. We assume a total of s
unknown points (including the approximation at ti) in [ti, ti+1] and write the
most general formula for such a method which will involve unknown parameters.
Then we use Taylor series to determine the parameters governing the points in
[ti, ti+1] which guarantee the highest local truncation error possible.

For example, in the simplest case when s = 1 we only use y and its slope at
ti; then the most general difference equation is

Yi+1 = βYi + b1f(ti, Yi) ,

where we have two unknown parameters β and b1. Now we determine the
parameters which make the scheme have as high a local truncation error as
possible. We proceed as before when we determined a local truncation error
and we expand y(ti+1) in a Taylor series to get

τi =
[
y(ti) + ∆ty′(ti) +

∆t2

2
y′′(ξi)

]
−
[
βy(ti) + b1f(ti, y(ti))

]
.

We want to choose the parameters β, b1 so that the terms (∆t)r for r = 0, 1, . . . p
vanish for the largest possible value of p. If we force the terms involving (∆t)0

and (∆t)1 to be zero we get

(∆t)0
[
y(ti)− βy(ti)

]
= 0 and (∆t)1

[
y′(ti)− b1y′(ti)

]
= 0

where we have used the differential equation y′ = f(t, y). Clearly we have β = 1
and b1 = 1 which is just the forward Euler method so it is the simplest RK
method. In the sequel we will dispense with the coefficient β because it always
must be equal to one.

We now derive a scheme where s = 2, i.e., we use the slope at one inter-
mediate point in (ti, ti+1] in addition to the point ti. Because we are doing an
additional function evaluation, we expect that we should be able to make the
truncation error smaller if we choose the parameters correctly; i.e., we choose
an appropriate point in (ti, ti+1]. We must leave the choice of the location of

36 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

the point as a variable so our general difference equation is

Yi+1 = Yi + b1∆tf(ti, Yi) + b2∆tf
(
ti + c2∆t, Yi + a21∆tf(ti, Yi)

)
where our new point in (ti, ti+1] is

(
ti+ c2∆t, Yi+a21∆tf(ti, Yi)

)
. To determine

constraints on the parameters b1, b2, c2 and a21 which result in the highest order
for the truncation error, we compute τi and use Taylor series to expand the
terms. For simplicity, in the following expansion we have omitted the explicit
evaluation of f and its derivatives at the point (ti, y(ti)); however, if f is evalu-
ated at some other point we have explicitly noted this. We use Proposition 2.4
for a Taylor series expansion in two variables to get

τi+1 =

[
y + ∆ty′ +

∆t2

2!
y′′ +

∆t3

3!
y′′′ +O((∆t)4)

]
−
[
y + b1∆tf + b2∆tf(ti + c2∆t, y + a21∆tf)

]
=

[
∆tf +

∆t2

2

(
ft + ffy

)
+

∆t3

6

(
ftt + 2ffty + f2fyy + ftfy + ff2

y

)
+O((∆t)4)

]
−b1∆tf − b2∆t

[
f + c2∆tft + a21∆tffy

+
c22(∆t)2

2
ftt +

a2
21(∆t)2f2

2
fyy + c2a21(∆t)2ffty +O((∆t)3)

]
.

We first see if we can determine the parameters so that the scheme has a local
truncation error of O(∆t3); to this end we must determine the equations that
the unknowns coefficients must satisfy in order for the terms involving (∆t)1

and (∆t)2 to vanish:

∆t [f(1− b1 − b2)] = 0

∆t2
[
ft
(1

2
− b2c2

)
+ ffy

(1

2
− b2a21

)]
= 0

where once again we have dropped the explicit evaluation of y and f at (ti, y(ti)).
Thus we have the conditions

b1 + b2 = 1, b2c2 =
1

2
and b2a21 =

1

2
. (2.10)

Note that the Midpoint method given in (2.3) satisfies these equations with
b1 = 0, b2 = 1, c2 = a21 = 1/2. There are many other schemes which satisfy
these conditions because we only have three constraints and four degrees of
freedom, i.e., our parameters. A commonly used choice is the Heun method
where the intermediate point is

(
ti+

2
3∆t, Yi+

2
3∆tf(ti, Yi)

)
; note that y(ti+

2
3∆t)

is approximated by taking an Euler step of length 2
3∆t. Specifically the Heun

method is

Yi+1 = Yi +
1

4
∆tf(ti, Yi) +

3

4
∆tf

(
ti +

2

3
∆t, Yi +

2

3
∆tf(ti, Yi)

)
where b1 = 1/4, b2 = 3/4, c2 = 2/3 and a21 = 2/3. RK methods are usually
written in a slightly different form to make clear how many points in [ti, ti+1]

2.4. RUNGE-KUTTA METHODS 37

are used to approximate y(ti+1) and thus how many function evaluations are
needed. For the Heun method we write

k1 = ∆tf(ti, Yi)
k2 = ∆tf(ti + 2

3∆t, Yi + 2
3k1)

Yi+1 = Yi + 1
4k1 + 3

4k2 .

(2.11)

So any choice of coefficients which satisfy (2.10) leads to a RK scheme which
has a local truncation error of O(∆t3) and thus we expect the global error to
be O(∆t2).

Because we have four parameters and only three constraints we might ask
ourselves if it is possible to choose the parameters so that the local truncation
error is one order higher, i.e., O(∆t4). To see that this is impossible to do note
that in the expansion of y(ti+1) the term y′′′ involves terms such as ftfy for
which there are no corresponding terms in the expansion of f

(
ti + c2∆t, Yi +

a21∆tf(ti, Yi)
)

so these O(∆t3) terms will remain.
To obtain a RK scheme which has a local truncation error of O(∆t4) we

need to use approximations at two intermediate points in the interval (ti, ti+1).
In general, we have a scheme of the form

k1 = ∆tf(ti, Yi)
k2 = ∆tf(ti + c2∆t, Yi + a21k1)
k3 = ∆tf(ti + c3∆t, Yi + a31k1 + a32k2)

Yi+1 = Yi + b1k1 + b2k2 + b3k3 .

To obtain conditions on the eight coefficients we would proceed as before by
writing the local truncation error and using Taylor expansions; the calculation
is straightforward but tedious. The calculations demonstrate that we can find a
family of methods which have a local truncation of O(∆t4) but not higher using
ti and two additional points in (ti, ti+1].

There is a general form for explicit RK methods and we identify the methods
by the number of stages s and the coefficients. The general form of an s-stage
explicit RK is

k1 = ∆tf(ti, Yi)
k2 = ∆tf(ti + c2∆t, Yi + a21k1)
k3 = ∆tf(ti + c3∆t, Yi + a31k1 + a32k2)

...
ks = ∆tf(ti + cs∆t, Yi + as1k1 + as2k2 + · · ·+ ass−1ks−1

Yi+1 = Yi +
∑s
j=1 bjkj .

(2.12)

For example, the forward Euler method is a one-stage (s = 1) RK method and
the Midpoint method and the Heun method are two-stage (s = 2) methods. To
carry out a single step of an s stage RK method we need to evaluate s slopes;

38 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

i.e., we must evaluate f(t, y) at s points. In addition, we have (s− 1) values to
compute, Yi+a21k1, Yi+a31k1 +a32k2, · · ·, Yi+as1k1 +as2k2 + · · ·+ass−1ks−1.

Once the stage s is set and the coefficients are determined, the method is
completely specified; for this reason, the RK explicit methods are often described
by a Butcher1 tableau of the form

0
c2 a21

c3 a31 a32

...
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

(2.13)

for an s-stage RK method. Note that c1 = 0 because we always use the point
(ti, Yi). As an example, a commonly used 4-stage RK method is described by
the tableau

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

(2.14)

which uses an approximation at the point ti, two approximations at the point
ti+∆t/2, and the fourth approximation at ti+1. In the examples of RK methods
provided, it is important to note that ci in the term ti+ci∆t satisfy the property
that ci =

∑i−1
j=1 aij ; recall that we set c1 = 0 so that we are forced to use the

point ti. In addition, the weights bi satisfy
∑s
i=1 bi = 1. This is true in general

and can be used as a check in a computer code to see if the coefficients have
been entered correctly.

Many RK methods were derived in the early part of the 1900’s; initially,
the impetus was to find higher order explicit methods. We have seen examples
where a one-stage RK method produced a global error of O(∆t), a two-stage
RK method produced a global error of O((∆t)2) and a three-stage method
produced a O((∆t)3) accuracy. One might be tempted to generalize that an
s-stage method always produces a method with global error O((∆t)s), however,
this is not the case. In the table below we give the minimum stage number
required to gain a specific accuracy. As you can see from the table, a five-
stage RK method does not produce a fifth order scheme; we need a six-stage
method to produce that accuracy. Consequently higher stage RK methods are
not as efficient as RK methods with ≤ 4 stages. Once it was realized that the
stage number of a RK method did not correspond to the accuracy, the effort
to derive additional RK methods moved to finding methods which optimize the
local truncation error and to investigating implicit RK methods.

1Named after John C. Butcher, a mathematician from New Zealand.

2.4. RUNGE-KUTTA METHODS 39

Order 1 2 3 4 5 6 7 8 9
Min. stage 1 2 3 4 6 7 9 11 11

Analogous to the general explicit s-stage RK scheme (2.12) we can write
a general form of an implicit s-stage RK method. The difference in implicit
methods is that in the calculation of ki the approximation to y(ti + ci∆t) can
be over all values of s whereas in explicit methods the sum only goes through
the previous kj , j = 1, · · · , j − 1 terms. We have

k1 = ∆tf(ti, Yi + a11k1 + +a12k2 + · · · a1sks)
k2 = ∆tf(ti, Yi + a21k1 + +a22k2 + · · · a2sks)

...
ks = ∆tf(ti + cs∆t, Yi + as1k1 + as2k2 + · · ·+ ass1ks)

Yi+1 = Yi +
∑s
j=1 bjkj

(2.15)

and its tableau is no longer upper triangular

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...
cs as1 as2 · · · ass

b1 b2 · · · bs

(2.16)

Unlike explicit RK methods, implicit s-stage RK methods can have an accu-
racy higher than s; in fact, it can be shown that the maximum possible accuracy
of an s-stage implicit RK method is 2s. Interest in deriving methods which can
be used for error control blossomed in the 1960’s; we will look at error control
in the next section. Interest in implicit methods also rose when solving more
difficult stiff problems became important; this will be discussed in § 3.5.

2.4.1 Step size control in Runge Kutta methods

So far we have assumed that the step size ∆t is uniform; however, in many
problems this is not practical when the solution varies much more rapidly at
one time than another. At instances when the solution varies quickly, i.e., the
slope is large, we need to take a small step size and at times when the solution
hardly changes using a large step size makes the scheme more efficient. The
question is how to determine the appropriate step size at any instance. It turns
out that there is an way to do this with RK methods.

Basically the way to use RK for step size control is to use two different
methods to approximate the solution at ti+1 and compare the approximations.
If the results are close, then we are confident that a correct step size was chosen;
if they vary considerably then we assume that too large a step size was chosen
and if they are extremely close then this suggests a larger step size can be used.
Of course, to efficiently implement this approach we would like to choose the
methods so that they have function evaluations in common to reduce the work.

40 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

A commonly used pair for error control is a combination of a fourth and fifth
order explicit method; it is called the Runge-Kutta-Fehlberg method (RKF45)
and was developed by the mathematician Erwin Fehlberg in the late 1960’s.
Recall that to get an accuracy of (∆t)5 at least six function evaluations are
required; specifically we have

k1 = f(ti, Yi)

k2 = f(ti +
1

4
∆t, Yi +

1

4
k1)

k3 = f(ti +
3

8
∆t, Yi +

3

32
k1 +

9

32
k2)

k4 = f(ti +
12

13
∆t, Yi +

1932

2197
k1 −

7200

2197
k2 +

7296

2197
k3)

k5 = f(ti + ∆t, Yi +
439

216
k1 − 8k2 +

3680

513
k3 −

845

4104
k4

k6 = f(ti +
1

2
∆t, Yi −

8

27
k1 + 2k2 −

3544

2565
k3 +

1859

4104
k4 −

11

40
k5)

Then the fourth order RK method

Yi+1 = Yi +
25

216
k1 +

1408

2565
k3 +

2197

4104
k4 −

1

5
k5 (2.17)

is used to approximate y(ti+1) and the fifth order RK method

Yi+1 = Yi +
16

135
k1 +

6656

12825
k3 +

28561

56430
k4 −

9

50
k5 +

2

55
k6 (2.18)

is used for comparison. Note that the fifth order method uses all of the coeffi-
cients of the fourth order method so it is efficient to implement because it only
requires a single additional function evaluation. Typically the Butcher tableau
is written for the fifth order method and then two lines are appended at the
bottom for the coefficients bi in each method. For example, for RKF45 the
tableau is

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 − 7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40

25
216 0 1408

2565
2197
4104 − 1

5 0

16
135 0 6656

12825
2856
56430 − 9

50
2
55

2.5. MULTISTEP METHODS 41

To implement the RKF45 scheme we find two approximations, Y
(4)
i+1 using

the fourth order scheme (2.17) and Y
(5)
i+1 using the fifth order scheme (2.18). We

then determine the difference |Y (5)
i+1 − Y

(4)
i+1| which should be O(∆t). This error

is used to make the decision whether to accept the step or not; if we accept the
step then the decision must be made whether or not to increase the step size for
the next calculation or keep it the same. One must choose a priori a minimum

and maximum acceptable value for the difference between Y
(4)
i+1 and Y

(5)
i+1 and

use these values for deciding whether a step is acceptable or not.

2.5 Multistep Methods

Recall that single step methods such as RK methods use information at points
in the interval [ti, ti+1] to obtain an approximation at ti+1 whereas multistep
methods take the viewpoint that the history of the solution should affect the
approximation at the next time level. Specifically, multistep methods use infor-
mation at ti plus additional computed approximations at previous times such as
ti−1, ti−2 to extrapolate the solution at ti+1, i.e., it uses information at multiple
grid points. A method is called an m-step method if it uses information from m
grid points (including ti) to calculate Yi+1. An advantage of using a multistep
method over a single step method is that it requires fewer function evaluations.
A disadvantage is that it requires storing previous values which is only an issue
when we are solving systems of equations. Multistep methods require the use
of a single step method to obtain additional starting values. We saw that the
BDF formula (2.8) is an example of a two-step implicit multistep method.

The general form of an m-step multistep method is

Yi+1 = am−1Yi + am−2Yi−1 + am−3Yi−2 + · · ·+ a0Yi+1−m

+∆t
[
bmf(ti+1, Yi+1) + bm−1f(ti, Yi) + bm−2f(ti−1, Yi−1)

+ · · ·+ b0f(ti+1−m, Yi+1−m)
]
.

(2.19)
If bm = 0 then the method is explicit; otherwise it is implicit.

A commonly used family of explicit multistep methods are called Adams-
Bashforth which uses the derivative f evaluated at m prior points but only uses
the approximation to y(t) at ti; i.e., a0 = · · · = am−2 = 0. Schemes in the
Adams-Moulton family are commonly used implicit multistep schemes which
also use the derivative f evaluated at ti+1 plus m prior points but only uses Yi.

In § 2.3 we used an interpolation polynomial for f(t, y) to derive the 2-step
scheme

Yi+1 = Yi = +
3

2
∆tf

(
ti, y(ti)

)
− ∆t

2
f
(
ti−1, y(ti−1)

)
which belongs to the Adams-Bashforth family with b2 = 0, b1 = 3/2 and b0 =
−1/2. We expect the local truncation error to be O(∆t3) and the method to be
second order. In the exercises, you are asked to rigorously demonstrate that the
local truncation error for (2.9) is third order. Because this is a 2-step method

42 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

we need Y1 in addition to Y0 to start the method. We can use a second order
single step method for this purpose; higher order schemes can also be used but
of course we have to do extra function evaluations which is wasted work in this
case.

To obtain implicit multistep methods we use the point ti+1 in additional to
previous points to interpolate f(t, y). In the exercises you are asked to derive a
2-step implicit method.

2.6 Predictor-Corrector Methods

We have considered several implicit schemes for approximating the solution of
an IVP. However, when we implement these schemes the solution of a nonlin-
ear equation is usually necessary. This requires extra work and we know that
methods such as the Newton-Raphson method for nonlinear equations are not
guaranteed to converge globally. For this reason, we need a more efficient way
to use implicit schemes.

In predictor-corrector methods implicit schemes are used to improve (or
correct) the solution that is first obtained (or predicted) by an explicit scheme.
The idea is to combine appropriate explicit and implicit schemes to obtain better
results. In simulations where a variable step size is needed, we can also use
predictor-correct methods to estimate the appropriate step size.

For example, we consider the Euler-Trapezoidal predictor-corrector pair where
the explicit scheme is forward Euler and the implicit scheme is the Trapezoidal
method (2.6). If the result of the predicted solution at ti+1 is Y pi+1 then we have
the pair

Y pi+1 = Yi + ∆tf(ti, Yi)

Yi+1 = Yi + ∆t
2

[
f(ti+1, Y

p
i+1) + f(ti, Yi)

]
(2.20)

It is important to realize that the implicit Trapezoidal method is now imple-
mented like an explicit method because we evaluate f(ti+1, Y

p
i+1) instead of

f(ti+1, Yi+1). The predicted solution Y pi+1 from the forward Euler method is
first order but we add a correction to it using the Trapezoidal method and im-
prove the error. We can view the predictor-corrector pair as implementing the
difference scheme

Yi+1 = Yi +
∆t

2

[
f
(
ti+1, Yi + ∆tf(ti, Yi)

)
+ f(ti, Yi)

]
which uses an average of the slope at (ti, Yi) and ti+1 and the Euler approxima-
tion there. In Exercise xx you are asked to show that the predictor-corrector
pair Euler-Trapezoid is second order.

Typically predictor-corrector pairs consist of an explicit multistep method
such as one in the Adams-Bashforth of order p and a corresponding implicit
Adams-Moulton multistep method of order p. The pair should be chosen so
that the only additional function evaluation in the corrector equation is at the

2.6. PREDICTOR-CORRECTOR METHODS 43

predicted point. For example, one such pair is an explicit third order Adams-
Bashforth predictor coupled with an implicit third order Adams-Moulton. The
pair is given by

Y pi+1 = Yi +
∆t

12

[
23f(ti, Yi)− 16f(ti−1, Yi−1) + 5f(ti−2, Yi−2)

]
Yi+1 = Yi +

∆t

12

[
5f(ti+1, Y

p
i+1) + 8f(ti, Yi)− f(ti−1, Yi−1)

]
.

In the table below we compare the errors and rates of convergence for this
PC pair and the third order Adams-Bashforth method defined by the predictor
equation above. Note that both numerical rates are approaching three but the
error in the PC pair is almost an order of magnitude smaller at a fixed ∆t.

∆t Error in Num. rate Error in Num. rate
Predictor only PC pair

1/10 0.20100 ×10−1 0.153×10−2

1/20 0.36475×10−2 2.47 .33482×10−3 2.19
1/40 0.54518×10−3 2.74 0.55105 ×10−4 2.60
1/80 0.74570×10−4 2.87 0.79035×10−5 2.80

1/160 0.97513 ×10−5 2.93 0.10583×10−5 2.90

Using predictor-corrector pairs also provide a way to estimate the error and
thus determine if the current step size is appropriate. For example, for our third
order predictor and corrector pair one can specifically compute the constant in
the local truncation error to get

|y(ti+1)− Y pi+1| =
9

24
y[4](ξ)(∆t)4 |y(ti+1)− Yi+1| = −

1

24
y[4](η)(∆t)4

For small ∆t we assume that the fourth derivative is constant over the interval
and so

|y(ti+1)− Yi+1| ≈
1

9
|y(ti+1)− Y pi+1| .

If the step size ∆t is too large, then the assumption that the fourth derivative
is constant from ti to ti+1 may not hold and the above relationship is not
true. Typically the exact solution y(ti+1) is not know so instead we monitor the
difference in the predicted and corrected solution |Yi+1−Y pi+1|. If it is larger than
our prescribed tolerance, then the step is rejected and ∆t is halved. Otherwise
the step is accepted; if the difference in below our minimum prescribed tolerance
than the step size is increased in the next calculation.

EXERCISES

44 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

1. Each of the following Runge-Kutta schemes is written in the Butcher
tableau format. Identify each scheme as explicit or implicit and then
write the scheme as

Yi+1 = Yi +

s∑
i=1

bif(ti + ci, Yi + ki)

where the appropriate values are substituted for bi, ci, and ki.

a.

0 0 0
1
2

1
2 0 0

1 −1 2 0
1
6

2
3

1
6

b.

0 1
6 − 1

3
1
6

1
2

1
6

5
12 − 1

12
1 1

6
2
3

1
6

1
6

2
3

1
6

2. Use a Taylor series to derive a third order accurate explicit difference
equation for the IVP (1.1).

3. Gauss quadrature rules are popular for numerical integration because one
gets the highest accuracy possible for a fixed number of quadrature points;
however one gives up the “niceness” of the quadrature points. In addition,
these rules are defined over the interval [−1, 1]. For example, the one-point
Gauss quadrature rule is ∫ 1

−1

g(x) dx =
1

2
g(0)

and the two-point Gauss quadrature rule is∫ 1

−1

g(x) dx =
1

2

[
g(
−1√

3
) + g(

1√
3

)

Use the one-point Gauss rule to derive a Gauss-Runge-Kutta method. Is
the method explicit or implicit? Does it coincide with any method we
have derived?

4. Simpson’s numerical integration rule is given by∫ b

a

g(x) dx =
b− a

6

[
g(a) + 4g

(
a+ b

2

)
+ g(b)]

If g(x) ≥ 0 on [a, b] then it approximates the area under the curve g(x) by
the area under a parabola passing through the points (a, g(a)), (b, g(b))
and ((a + b)/2, g((a + b)/2)). Use this quadrature rule to approximate∫ ti+1

ti
f(t, y) dt to obtain an explicit 3-stage RK method. When you need

to evaluate terms such as f at ti + ∆t/2 use an appropriate Euler step
to obtain an approximation to the corresponding y value as we did in the
Midpoint method. Write your method in the format of (2.12) and in a
Butcher tableau.

2.6. PREDICTOR-CORRECTOR METHODS 45

5. In § 2.3 we derived a second order BDF formula for uniform grids. In
an analogous manner, derive the corresponding method for a nonuniform
grid.

6. Use an appropriate interpolating polynomial to derive the multistep method

Yi+1 = Yi−1 + 2∆tf(ti, Yi) .

Determine the accuracy of this method.

7. Determine the local truncation error for the 2-step Adams-Bashforth method
(2.9).

46 CHAPTER 2. HIGHER ORDER ACCURATE METHODS

Chapter 3

Systems of Initial Value
Problems

When modeling phenomena where we know the initial state and how it changes
with time, we often have either a higher order IVP or a system of IVPs rather
than a single first order IVP. In this chapter we first demonstrate how a higher
order IVP can be transformed into a system of first order IVPs. Then we extend
in a straightforward manner some of the methods from Chapter 2 to systems
of equations. We discuss implementation issues and provide case studies that
illustrate the use of systems of IVPs.

The last concept we investigate in our study of IVPs is that of stability and
its affect on convergence. So far we have demonstrated the accuracy of certain
methods, that is, as ∆t → 0 we determined the rate at which the error goes
to zero. However, in these calculations we tacitly assumed convergence. Now
we look at convergence in more depth because, as we saw in Example 4, not
all methods converge for every problem. Lastly we will look at so-called stiff
systems of IVPs which have characteristics that make simulations using many
explicit schemes unreliable.

3.1 Higher order IVPs

Suppose we have the second order IVP

y′′(t) = 2y′(t)− sin(πy) + 4t 0 < t < 2
y(0) = 1
y′(0) = 0

where now the right-hand side is a function of t, y and y′. The methods we
have learned only apply to first order IVPs. However, we can easily convert this
second order IVP into two coupled first order IVPs. To do this, we let w1(t) =
y(t), w2(t) = y′(t) and substitute into the equations and initial conditions to

47

48 CHAPTER 3. SYSTEMS OF INITIAL VALUE PROBLEMS

get a first order system for w1, w2

w′1(t) = w2(t) 0 < t < 2
w′2(t) = 2w2(t)− sin(πw1) + 4t 0 < t < 2
w1(0) = 1 w2(0) = 0 .

Note that these two differential equations are coupled, that is, the differential
equation for w1 depends on w2 and the equation for w2 depends on w1.

In general, if we have the pth order IVP for y(t)

y[p](t) = f(t, y, y′, y′′, · · · , y[p−1]) t0 < t < T
y(t0) = α1, y′(t0) = α2, y′′(t0) = α3, · · · y[p−1](t0) = αp

then we convert it to a system of p first-order IVPs by letting w1(t) = y(t),
w2(t) = y′(t), · · · , wp(t) = y[p−1](t) which yields the first order coupled system

w′1(t) = w2(t)
w′2(t) = w3(t)

...
w′p−1(t) = wp(t)
w′p(t) = f(t, w1, w2, . . . , wp)

(3.1)

along with the initial conditions wk = αk, k = 1, 2, . . . , p. Thus any higher order
IVP that we encounter can be transformed into a coupled system of first order
IVPs.

Oftentimes our model is already in the form of a system of first order IVPs.
Our goal is to apply the methods of the previous chapter to a system of first
order IVPs. The notation we use for a general system of N first order IVPs is

w′1(t) = f1(t, w1, w2, . . . , wN) t0 < t < T
w′2(t) = f2(t, w1, w2, . . . , wN) t0 < t < T

...
w′N (t) = fN (t, w1, w2, . . . , wN) t0 < t < T

(3.2)

along with the initial conditions wk(t0) = αk, k = 1, 2, . . . , N . For example,
using this notation the pth order IVP written as the system (3.1) has f1 = w2,
f2 = w3, etc.

Existence, uniqueness and continuous dependence of the solution to the sys-
tem (3.2) can be established. Analogous to the case of a single IVP each function
fi must satisfy a Lipschitz condition. Details of this analysis can be found in
standards texts in ODEs. For the sequel, we will assume that each system has
a unique solution which depends continuously on the data.

In the next two sections we demonstrate how methods from Chapter 2 can
be extended to our system of N equations (3.2).

3.2. SINGLE STEP METHODS FOR SYSTEMS 49

3.2 Single step methods for systems

We now want to extend single step methods to the system (3.2). To this end,
we use the notation Wk,i to approximate wk(ti) where the first subscript of W
refers to the unknown number and the second to the point for which we have
an approximation. For simplicity we first extend the forward Euler method for
a system and then with the intuition gained from that method we extend a
general explicit Runge-Kutta method to a system. Implicit RK methods can be
extended in an analogous way.

Suppose we have the N first order system (3.2) with the initial conditions
wk(t0) = αk for k = 1, 2, . . . , N . The forward Euler method for each equation
is

Wk,i+1 = Wk,i + ∆tfk
(
ti,W1,i,W2,i, · · · ,WN,i

)
.

We write the Euler method as a vector equation so we can solve for all unknowns

at one time. We set Wi =
(
W1,i,W2,i, · · · ,WN,i

)T
, W0 = (α1, α2, . . . , αN)T ,

and Fi =
(
f1(ti,Wi), f2(ti,Wi), · · · , fN (ti,Wi)

)T
. For i = 0, 1, 2, . . . we have

the following vector equation for the forward Euler method for a system

Wi+1 = Wi + ∆tFi . (3.3)

To implement the scheme at each point ti we have p function evaluations to
form the vector Fi, then we perform the scalar multiplication to get ∆tFi and
then a vector addition to obtain the final result Wi+1.

Example 7. Consider the system of three IVPs

w′1(t) = 2w2(t)− 4t 0 < t < 10
w′2(t) = −w1(t) + w3(t)− et + 2 0 < t < 10
w′3(t) = w1(t)− 2w2(t) + w3(t) + 4t 0 < t < 10
w1(0) = −1, w2(0) = 0, w3(0) = 2

for the unknown (w1, w2, w3)T . The exact solution is (− cos(2t), sin(2t)+2t, cos(2t)+
et)T . We want to compute an approximation at t = 0.2 using ∆t = 0.1 and the
forward Euler method. We set W0 = (−1, 0, 2)T and because Fi =

(
2W2,i −

4ti,−W1,i +W3,i − eti + 2,W1,i − 2W2,i +W3,i + 4ti
)T

we have F0 = (0, 4, 1)T .
With ∆t = 0.1 we form W1 from

W1 =

 −1
0
2

+ 0.1

 0
4
1

 =

 −1.0
0.4
2.1

 .

Now to determine W2 we need F1 which is given by

F1 =

 2(0.4)− 4(.1)
1 + 2.1− e.1 + 2
−1− 2(.4) + 2.1 + 4(.1)

 =

 0.4
3.995

0.7

50 CHAPTER 3. SYSTEMS OF INITIAL VALUE PROBLEMS

so that

W2 =

 −1.0
0.4
2.1

+ 0.1

 0.4
3.995

0.7

 =

 −0.96
0.7995
2.17

The exact solution at t = 0.2 is (−0.921061, 0.789418, 2.14246)T giving an error
vector of (0.038939, .010082, .02754)T so the standard Euclidean norm of the
error normalized by the norm of the solution is 1.98 × 10−2. Recall that the
Euclidean norm of a vector x = (x1, x2, . . . , xn)T ∈ Rn is

‖x‖2 =
[n∑
i=1

x2
i

]1/2
(3.4)

and is often called `2 norm or the “little l2 norm”.

Suppose now that we have a s-stage RK method; recall that for a single first
order equation we have s function evaluations for each ti. If we have p first
order IVPs, then we need sp function evaluations at each ti. For example, if
we use a 4-stage RK with 10,000 equations then at each time we need 40,000
function evaluations; if we do 100 time steps then we have 4 million function
evaluations. If function evaluations are expensive, multistep methods may be
more efficient.

In an s-stage RK method for a single equation we must compute each ki,
i = 1, 2, . . . , s as defined in (2.12). For a system, f in (2.12) is now a vector so
each ki is a vector. Thus for a system an s-stage RK method is written as

k1 = ∆tF
(
ti,Wi

)
k2 = ∆tF

(
ti + c2∆t,Wi + a21k1

)
k3 = ∆tF

(
ti + c3∆t,Wi + a31k1 + a32k2

)
...

ks = ∆tF
(
ti + cs∆t,Wi + as1k1 + as2k2 + · · ·+ ass−1ks−1

)
Wi+1 = Wi +

s∑
j=1

bjkj .

The following example uses the Heun method, a 2-stage RK scheme given in
(2.11), to approximate the solution to the IVP in Example 7.

Example 8. We want to approximate the solution to the system given in Ex-
ample 7 using the Heun method. Recall that for this method the coefficients are
c2 = 2/3, a21 = 2/3, b1 = 1/4 and b2 = 3/4. As in the previous example, W0 =

(−1, 0, 2)T and Fi =
(
2W2,i−4ti,−W1,i+W3,i−eti+2,W1,i−2W2,i+W3,i+4ti

)T
.

For the first step of length ∆t = 0.1 we have k1 = 0.1(0, 4, 1)T and to determine
k2 we need to evaluate F at (2

3 (.1),W0 + 2
3k1); performing this calculations

gives k2 = (.026667, .399773, .08)T so that

W1 =

 −1
0
2

+
1

4

 0.0
0.4
0.1

+
3

4

 .026667
.399773
.080000

 =

 −0.980000
0.39983
2.085

3.3. MULTISTEP METHODS FOR SYSTEMS 51

Similarly for the approximation at 0.2 we have

W2 =

 −0.980000
0.39983
2.085

+
1

4

 .039966
.395983
−.070534

+
3

4

 .066097
.390402
.0517697

 =

 −0.9204
.791633
2.1415

The exact solution at t = 0.2 is (−0.921061, 0.789418, 2.14246)T giving an er-
ror vector of (0.000661, .002215, .000096)T ; calculating the standard Euclidean
norm of the error and normalizing by the Euclidean norm of the solution gives
1.0166 × 10−3 which is considerably smaller than we obtained for the forward
Euler.

3.3 Multistep methods for systems

Recall that multistep methods use values from previous times to extrapolate the
solution to the new point. The m-step explicit method from § 2.5 for a single
IVP is

Yi+1 = am−1Yi + am−2Yi−1 + am−3Yi−2 + · · ·+ a0Yi+1−m

+∆t
[
bm−1f(ti, Yi) + bm−2f(ti−1, Yi−1)

+ · · ·+ b0f(ti+1−m, Yi+1−m)
]
.

For a system of N equations the function f is now a vector F so we must store
its value at the previous m steps. In the Adams-Bashforth or Adams Moulton
methods only the solution at ti is used so this saves additional storage because
we only have to store m slope values and a single approximation to the solution.
So for the system of N equations using an m-step method we must store (m+1)
vectors of length N .

As an example, we consider a 2-step Adams-Bashforth method which is an
explicit method given by

Yi+1 = Yi + ∆t
[3

2
f(ti, Yi)−

1

2
f(ti−1, Yi−1)

]
for a single IVP; or for the system of N equations (3.2) we have

Wi+1 = Wi + ∆t
[3

2
F(ti,Wi)−

1

2
F(ti−1,Wi−1)

]
. (3.5)

At each step we must store three vectors Wi, F(ti,Wi), and F(ti−1,Wi−1). In
the next example we apply this 2-step method to the system of Example 7.

Example 9. To apply the 2-step Adams-Bashforth method (3.5) to the system
of Example 7 we need values for W1 because we set W0 from the initial condi-
tions. Because this method is second order we need a second order scheme to
generate an approximation to W1. In Example 8 we used the Heun method to
approximate the solution W2 and because this is a second order scheme, it is

52 CHAPTER 3. SYSTEMS OF INITIAL VALUE PROBLEMS

adequate for our purposes. Here we will use ∆t = 0.1 as before. Consequently
we have

W0 =

 −1
0
2

 and W1 =

 −.98000
.39982

2.08500

From Example 8 we have F(0,W0) = (0.0, 4.0, 1.0)T and also F(0.1,W1)=(.39966,
3.95982,−.704659)T . Then W2 is given by

W2 =

 −.980000
.39982

2.08500

+0.1

3

2

 0.39966
3.95983

−0.704659

− 1

2

 0.0
4.0
1.0

 =

 −.920051
0.793795

1.9293

 .

3.4 Stability

We have seen that numerical results from some standard methods such as the
forward Euler method exhibit oscillatory and unbounded behavior for some
problems as we saw in Example 4. However, when we solve the same problem
using the same step size with the backward Euler method we got results which
appeared to be converging. Why does one numerical method produce reasonable
results and the other produces unbounded results? The answer lies in the stabil-
ity properties of the numerical scheme. Even if the actual differential equation
is stable, the numerical scheme may not be stable. Consequently we need to
look at the concept of stability of numerical schemes so we are able to choose a
scheme which produces stable numerical simulations. The literature on stability
of single step and multistep methods is quite extensive; we will only touch on
some of the results here but interested readers should consult standard texts in
numerical ODEs for a well-developed analysis. Due to time constraints, we will
only give some of the major points and illustrate the concept with examples.

We have investigated the accuracy of many of the methods we have derived;
specifically we obtained results of the form O((∆t)r) for the rate of convergence.
Of course, we have tacitly assumed that the methods converge but this may not
always be the case. We have seen an example where the forward Euler method
failed to converge so we might ask ourselves if this is due to the linear accuracy of
the method. However, in the plot on the left of Figure 3.1 we present the results
of approximating the solution to the same IVP y′(t) = −20y(t), y(0) = 1 using
a second order RK scheme. As we see from the figure, the numerical results
are not converging to the correct solution which is e−20t but rather becoming
unbounded. The phenomena we are experiencing here is numerical instability
due to too large a step size ∆t. The figure on the right shows convergent
approximations when we decrease the step size. One might be tempted to just
use a very small step size to avoid getting into this problem, but then we may
get into problems because roundoff errors are accumulating due to the large
number of steps; in addition, using too small a step size results in extra work.
Remember that the time frame in realistic problems may be quite long; for
example, if we are modeling climate change Consequently, we need to delve a
little deeper into what is actually happening.

3.4. STABILITY 53

Dt = 0.5

Dt = 0.25

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

Dt=1/32

Dt=1/64

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1: Approximations for the IVP y′(t) = −20y, y(0) = 1 using the Heun
method. For the plot on the left the step size ∆t is too large and numerical
instability is occurring. When we reduce the step size the method converges as
the graph on the right demonstrates.

The goal is for our numerical schemes to be convergent so we want to control
the global error over [t0, T]. Basically, for convergence we want to look at the
global error as ∆t → 0 and show that this limit goes to zero. We form two
sequences; the first is a sequence of values of ∆t which approach zero monoton-
ically such as 0.1, 0.05, 0.025, 0.0125, . . . and the second is a sequence where the
kth term is the maximum global error in [t0, T] where the ∆t used is the value
in the kth term of the first sequence. Then the method is convergent if the
limit of the sequence of errors goes to zero. Formally we write that a method is
convergent if

lim
∆t→0

max
1≤i≤p

|y(ti)− Yi| or for the system (3.2) lim
∆t→0

max
1≤i≤p

‖w(ti)−Wi‖

where p = (T − t0)/∆t and ‖ · ‖ is a norm on RN .
We know how to control the local error because this is just the truncation

error. Recall that this measures the error in one step of our method if we start on
the exact solution curve so it measures how well the difference equation mimics
the differential equation. If the local truncation error goes to zero as ∆t → 0
we say the method is consistent; i.e.,

lim
∆t→0

max
1≤k≤p

|τk(∆t)| ,

where τk(∆t) is the local truncation error at step k using step size ∆t. For
example, if we computed the local truncation error and found that it was a
constant and not dependent upon ∆t, then the scheme would not be consistent.
A method must be consistent if we have any hope of it being convergent; of
course consistency does not guarantee convergence as previous examples have
illustrated. The other requirement for convergence turns out to be stability.

Loosely speaking, for stability we want to know that the solution to the
difference equation does not grow in an unbounded manner. To see what we
mean by this we look at the differential equation

y′(t) = λy 0 < t ≤ T, λ ∈ C,

54 CHAPTER 3. SYSTEMS OF INITIAL VALUE PROBLEMS

which has the exact solution y(t) = y0e
λt for the initial condition y(0) = y0.

Note that here λ is a complex number so it can be written as λ = α+ iβ where
α, β are real numbers and i =

√
−1. The exact solution is

y(t) = y0e
λt = y0e

αt+iβt = y0e
αteiβt .

Now the term eiβt = cos(βt) + i sin(βt) so it does not grow in time; however
the term eαt will grow in an unbounded manner if α > 0. Consequently we say
that the differential equation y′ = λy is stable when the real part of λ is less
than or equal to zero, i.e., Re(λ) ≤ 0 or the left half plane.

We are going to mimic this analysis first for a difference equation of the form

Yi+1 = ζ(λ∆t)Yi . (3.6)

Our single step methods fit into this framework. For example, for the forward
Euler method applied to the differential equation y′ = λy we have Yi+1 =
Yi + ∆tλYi so ζ(λ∆t) = 1 + ∆tλ. For the backward Euler method we have
Yi+1 = Yi + ∆tλYi+1 so ζ(λ∆t) = 1/(1 − λ∆t). For explicit RK methods ζ(z)
will be a polynomial in z and for implicit RK methods it will be a rational
function. We apply the difference equation (3.6) recursively to get

Yi = ζ(λ∆t)Yi−1 = ζ2(λ∆t)Yi−2 = · · · = ζi(λ∆t)Y0

so we can view ζ as an amplification factor. We know that its magnitude must
be less than or equal to one or else Yi will become unbounded. This condition
is known as absolute stability. There are many other definitions of different
types of stability; some of these are explored in the exercises.

Definition 6. The region of absolute stability for the difference equation (3.6)
is {λ∆t ∈ C | ζ(λ∆t) ≤ 1}. A method is called A-stable if ζ(λ∆t) ≤ 1 for the
entire left half plane.

Example 10. We want to determine the region of absolute stability of the
forward Euler method and of the backward Euler method and then discuss the
results of Example 4 in light of these regions. For the forward Euler method
ζ(λ∆t) = 1 +λ∆t so it is A-stable provided |1 +λ∆t| ≤ 1. Now λ is, in general,
complex which we can write as λ = α + iβ but let’s first look at the real case,
i.e., β = 0. Then we have

−1 ≤ 1 + λ∆t ≤ 1⇒ −2 ≤ λ∆t ≤ 0

so on the real axis we have the interval [−2, 0]. This says that for a fixed real
λ < 0, ∆t must satisfy ∆t ≤ 2/|λ|. For example, in Example 4 λ = −20 so ∆t
must satisfy ∆t ≤ 0.1. In Figure 1.7 we plotted results for ∆t = 1/4 and 1/8
which do not satisfy the stability criteria. In Figure 3.2 we plot approximations
to the same problem using ∆t = 1/20, 1/40 and 1/60. As you can see from the
graph, the solution appears to be converging. If β 6= 0 then we have a circle in
the complex plane of radius one centered at -1.

3.4. STABILITY 55

Out[654]=

0.0 0.2 0.4 0.6 0.8 1.0

0.02

0.04

0.06

0.08

0.10

Figure 3.2: Approximations for the IVP y′(t) = −20y, y(0) = 1 using the for-
ward Euler method with ∆t = 1/20, 1/40, and 1/60. These values of ∆t satisfy
the stability condition |1 + λ∆t| ≤ 1 so the method is stable and converges.
Compare these results with those from Example 4 .

For the backward Euler method ζ(λ∆t) = 1/(1 − λ∆t). As before, we first
find the region when λ is real. For λ ≤ 0 have∣∣∣∣ 1

1− λ∆t

∣∣∣∣ ≤ 1⇒ 1− λ∆t ≥ 1 and − 1 + λ∆t ≤ 1⇒ −λ∆t ≥ 0, λ∆t ≤ 2

so we have the entire left plane and the interval [0, 2] on the real axis. We say
that the backward Euler method is A-stable. Returning to our Example 4 we
saw that the backward Euler appeared to be converging for all values of ∆t we
used. This is because in this example λ = −20 and so the stability criteria is
always satisfied.

Example 11. In this example we want to investigate the regions of absolute
stability for the explicit 2-stage Heun method

Yi+1 = Yi +
∆t

4

[
f(ti, Yi) + 3f

(
ti +

2

3
∆t, Yi +

2

3
∆tf(ti, Yi)

)]
.

We have written the scheme as a single equation rather than the standard way
of specifying ki because it will be easier to determine the amplification factor.
We apply the difference scheme to y′ = λy to get

Yi+1 = Yi +
∆t

4

[
λYi + 3λ(Yi +

2

3
∆tλYi)] =

[
1 +

1

4
(λ∆t) +

3

4
(λ∆t) +

1

2
(λ∆t)2

]
Yi

so ζ(λ∆t) = 1 + (λ∆t) + 1
2 (λ∆t)2. The region of absolute stability is all points

z in the complex plane where |ζ(z)| ≤ 1. If λ is real and non-positive we have

−1 ≤ 1 + z +
z2

2
≤ 1⇒ −2 ≤ z(1 +

z

2
) ≤ 0

For λ ≤ 0 we must have 1 + 1
2λ∆t ≥ 0 which says ∆tλ ≥ −2 so the region

is [−2, 0] when λ is real and when it is complex we have a circle of radius one
centered at −1. This is the same region as the forward Euler method.

56 CHAPTER 3. SYSTEMS OF INITIAL VALUE PROBLEMS

It can be shown that there is no explicit RK method that has an unbounded
region of absolute stability. This is one reason that we need implicit methods.

For an N ×N system of IVPs we consider the linear problem

w′(t) = Aw

analogous to the problem y′(t) = λy where now A is an N × N matrix. Con-
sider first the simple case where A is a diagonal matrix and the equations are
uncoupled so basically we have the same situation as a single equation. Thus
the stability criteria is that the real part of each diagonal entry must be less
than or equal to zero. But the diagonal entries of a diagonal matrix are just its
N eigenvalues1 counted according to multiplicity. So an equivalent statement of
stability when A is diagonal is that Re(λi) < 0, i = 1, 2, . . . , N . It turns out that
this is the stability criteria for a general matrix A; recall that even if the entries
of A are real the eigenvalues can be complex. If A is symmetric we are guar-
anteed that the eigenvalues are real. If we have the general system (3.2) where
fi(t,w) is not linear in w, then the condition becomes one on the eigenvalues
of the Jacobian matrix for f ; the (i, j) entry of the Jacobian is ∂fi/∂wj .

If we apply the forward Euler method to the system w′(t) = Aw where the
entries of A are aij then we have the system

Wi+1 =

1 + ∆ta11 ∆ta12 ∆ta13 · · · ∆ta1N

∆ta21 1 + ∆ta22 ∆ta23 · · · ∆ta2N

. . .
. . .

· · · · · · ∆taN,N−1 1 + ∆taN,N

Wi

The condition on ∆t is determined by choosing it so that the all the eigenvalues
of the matrix have real parts less than zero. If the system is not linear, then
the condition is on the eigenvalues of the Jacobian matrix.

The numerical stability of a single step method depends on the initial condi-
tion y0 but in a m-step multistep method there are m starting values Y0, Y1, . . . ,
Ym−1 which are obtained by another method such as a RK method. In 1956
Dahlquist2 published a seminal work on the stability of linear multistep meth-
ods. We first write the m-step multistep method (2.19) where we shift the
indices to get

Yi+m = am−1Yi+m−1 + am−2Yi+m−2 + am−3Yi+m−3 + · · ·+ a0Yi

+∆t
[
bmf(ti+m, Yi+m) + bm−1f(ti+m−1, Yi+m−1)

+bm−2f(ti+m−2, Yi+m−2) + · · ·+ b0f(ti, Yi)
]

as

Yi+m −
m−1∑
j=0

ajYi+j = ∆t

m∑
j=0

bjf(ti+j , Yi+j) .

1The eigenvalues of an N ×N matrix A are scalars λ such that Ax = λx; the vector x is
called the eigenvector corresponding to the eigenvalue λ.

2Germund Dahlquist (1925-2005) was a Swedish mathematician.

3.4. STABILITY 57

As before, we apply it to the stable IVP y′ = λy, y(0) = y0 for λ < 0. Substi-
tuting f = λy into the difference equation gives

Yi+m −
m−1∑
j=0

ajYi+j = ∆t

m∑
j=0

bjλYi+j .

We seek a solution of the form Yi = zi and substitution into the difference
equation yields

zi+m −
m−1∑
j=0

ajz
i+j = ∆t

m∑
j=0

bjλz
i+j .

Canceling the lowest order term zi gives the so-called characteristic equations

ρ(z) = zm −
m−1∑
j=0

ajz
j and σ(z) =

m∑
j=0

bjz
j (3.7)

which play an important role in the Dahlquist stability theory. For stability, we
need the roots of ρ(z) to have magnitude ≤ 1 and if a root is identically one
then it must be a simple root. If this root condition is violated, then the method
is unstable so a simple check is to first see if the root condition is satisfied. To
find the condition on ∆t we find the roots σi of Q(λ∆t) where

Q(λ∆t) = zm −
m−1∑
j=0

ajz
j −∆t

m∑
j=0

bjλz
j

= zm(1− λ∆tbm)− zm−1(am−1 + bm−1λ∆t)− · · · − (a0 + b0λ∆t) .

The region of stability is {λ∆t ∈ C | |σi| ≤ 1}.

Example 12. We look at the characteristic polynomial ρ(z) for two methods
and see if the root condition is satisfied. If it is, we find the region of absolute
stability. First we consider the forward Euler method and see if we get the same
result as before. Next we look at a 2-step Adams-Bashforth method.

The forward Euler method is written as Yi+1 = Yi + ∆tf(ti, Yi) so in the
form of a multistep method with m = 1 we have a0 = 1, b0 = 1, b1 = 0 and
thus ρ(z) = z − 1 whose root is z = 1 so the root condition is satisfied. To find
the region of absolute stability we have Q(λ∆t) = z − (1 + λ∆t) and thus the
region of absolute stability is |1 +λ∆t| ≤ 1 which is the condition we got before
analyzing the method as a single step method.

The second order Adams-Bashforth method is

Yi+1 = Yi +
∆t

2
[3f(ti, Yi)− f(ti−1, Yi−1)]

so its characteristic polynomial ρ(z) = zz−z = z(z−1) whose roots are z = 0, 1
and the root condition is satisfied. To find the region of absolute stability we
determine Q(λ∆t)

Q(λ∆t) = z2(1)− z(1 +
3

2
λ∆t)− (0 +

1

2
λ∆t) = z2 − z(1 +

3

2
λ∆t)− 1

2
λ∆t .

58 CHAPTER 3. SYSTEMS OF INITIAL VALUE PROBLEMS

Setting ζ = λ∆t the roots of this equation are

z2 − z(1 +
3

2
ζ)− 1

2
ζ = 0⇒ ζ =

2z2 − 2z

3z + 1

and we need |ζ| ≤ 1 for absolute stability. To get the region in the complex
plane we set z = eiθ for 0 ≤ θ ≤ 2π and use a computer to plot the region.

In summary, we have seen that some methods can be unstable if the step
size ∆t is too large (such as the forward Euler method) while others are stable
even for a large choice of ∆t (such as the backward Euler method). In general
implicit methods tend to be more stable than explicit methods. As we have seen,
things are more complicated for multistep methods. We have just touched on the
ideas of stability of numerical methods for IVPs; the interested reader is referred
to standard graduate texts in numerical analysis for a thorough treatment of
stability. An important thing to keep in mind is that we need a consistent and
stable method to guarantee convergence of our results.

3.5 Stiff Systems

Some differential equations are more difficult to solve than others. We know
that for problems where the solution curve varies a lot, we should take a small
step size and where it changes very little a larger step size should be used for
efficiency. If the change in the solution curve is relatively small everywhere then
a uniform step size is the most efficient approach. This all seems very heuristic.
However, there are problems which require a very small step size even when
the solution curve is very smooth. There is no universally accepted definition
of stiff differential equations but typically the solution curve changes rapidly
and then tends towards a slowly-varying solution. Because the stability region
for implicit methods is typically much larger than explicit methods, most stiff
equations are approximated using an implicit method.

To illustrate the concept of stiffness we look at a single IVP which is con-
sidered stiff. The example is from a combustion model and is due to Shampine
(2003) who is one of the authors of the Matlab ODE suite. The idea is to model
flame propagation as when you light a match. We know that the flame grows
rapidly initially until it reaches a critical size which is dependent on the amount
of oxygen. We assume that the flame is a ball and y(t) represents its radius; in
addition we assume that the problem is normalized so that the maximum radius
is one. We have the IVP

y′(t) = y2(1− y) 0 < t ≤ 2

δ
; y(0) = δ (3.8)

where δ << 1 is the small given initial radius. At ignition the solution y
increases rapidly to a limiting value of one; this happens quickly on the interval
[0, 1/δ] but on the interval [1/δ, 2/δ] the solution is approximately equal to one.
Knowing the behavior of the problem suggests that we should take a small step

3.6. CASE STUDY - MODELING A VIRAL INFECTION 59

size initially and then on [1/δ, 2/δ] where the solution is almost constant we
should be able to take a large step size. However, if we use the RKF45 method
with an automatic step size selector, then we can capture the solution on [0, 1/δ]
but on [1/δ, 2/δ] the step size is reduced by so much that the minimum allowable
step size is surpassed and the method often fails if the minimum step size is set
too large. Initially the problem is not stiff but it becomes stiff as its approaches
the value one, its steady state solution. The term “stiff” was used to described
this phenomena because it was felt the steady state solution is so “rigid”.

When one has a system of equations like (3.2) the stiffness of the problem
depends upon the eigenvalues of the Jacobian matrix. Recall that we said we
need all eigenvalues to have real part less than zero for stability. If the Jacobi
matrix has eigenvalues which have a very large negative real part and eigenvalues
with a very small negative real part, then the system is stiff and special care
must be used to solve it. You probably don’t know a priori if a system is stiff
but if you encounter behavior where the solution curve is not changing much but
you find that your step size needs to be smaller and smaller, then your system
is probably stiff. In that case, an implicit method is typically used.

3.6 Case study - Modeling a viral infection

In this section we look at a simple model of a viral infection and see that with
certain assumptions we are lead to a system of two IVPs. In the exercises
you are asked to extend this model to include viral mutations. The interested
reader is referred to Nowak and My, Mathematical biology of HIV Infections
in Mathematical Biosciences 106, 1991.

A viral disease begins with an infection of the body by a small number of
viruses. The viruses attempt to enter individual cells and “hijack” them into
producing new copies of the virus. If left unchecked, an infected cell will die
and release the new copies of the virus to continue the infection. The immune
system constantly assesses the body for alien objects such as viruses. When it
recognizes an invading virus it records the pattern of antigens on the surface of
the virus and then produces special cells called antibodies which are programmed
to destroy all objects that have the same pattern of antigens. Thus, once the
immune system has spotted a single virus, it will try to kill all copies of the
virus. Consequently, a typical viral disease usually follows one of two patterns;
either the virus replicates so quickly that the host body is killed or the immune
system is able to kill all the viruses.

To model a viral infection we let v(t) represent the density of viruses which
will give the strength of the infection and let a(t) represent the density of an-
tibodies produced by the immune system. We assume that at t = 0 we can
measure v(0) and a(0). In order to get governing equations for v(t) and a(t)
we need to make certain assumptions. First, we assume that the immune sys-
tem responds to a virus by increasing the number of antibodies linearly, i.e., the
number of antibodies produced is proportional to the number of viruses present.

60 CHAPTER 3. SYSTEMS OF INITIAL VALUE PROBLEMS

If we let k denote this proportionality constant we have

a′(t) = kv(t) .

We are assuming here that the antibodies are never destroyed.
Now to get an equation for v(t) we assume that we know the rate of growth

which assumes knowledge of the probability that the virus will be able to invade
a cell at any time and how long the invaded cell will be able to remain alive
making copies and how many copies will be made before the cell dies. Of course
knowing this rate of growth assumes that the process is understood completely
which is not the case but it is a simplifying assumption we make. Also antibodies
are busy killing viruses so this results in a decrease. A reasonable assumption
is that the decrease is proportional to the product of the number of viruses
and the number of antibodies present at any time. This is because we assume
that the chance that at a given instance one particular antibody will locate a
particular virus and kill it is p(t); then the chance that this particular antibody
will locate any virus is p(t)v(t). Because every antibody has the same chance the
total number of antibody/virus encounters is p(t)v(t)a(t). To get the governing
differential equation we let r(t) be the rate at which new viruses occur at time
t. The rate of change in the density of viruses is due to the increase governed
by r(t)v(t) and the decrease governed by p(t)v(t)a(t); we have

v′(t) = r(t)v(t)− p(t)v(t)a(t) .

Combining the two differential equations yields the system of IVPs

a′(t) = kv(t) 0 < t ≤ T
v′(t) = r(t)v(t)− p(t)v(t)a(t) 0 < t ≤ T
a(0) = a0 v(0) = v0

(3.9)

As an example, suppose k = 0.1, r = 0.5, p = 0.25 and assume that no antibod-
ies are initially present, i.e., a(0) = 0 and that there is a small density of the
virus v(0) = 0.01. In Figure 3.3 we approximate the solution to (3.9) by using
the second order Heun method. In this case ∆t is fifteen minutes and we have
run the simulation for 48 hours. As can be seen from the figure the density of
the virus peaks to around five at about 15 hours but the antibodies produced
are able to kill the virus. If we lower the probability p(t) or the proportionality
constant k, or raise the rate r(t) then this may not be the case. We lower the
proportionality constant governing the increase in the antibodies and rerun the
calculation. We make the assumption that if v > 20, the virus has killed the
host. In Figure 3.4 we show the result of setting k = 0.05 and k = 0.01; in the
first case the antibodies are able to kill off the virus but in the second they are
not and the host is killed before 16 hours!

In the exercises you are asked to extend this model to include viral mutations
and perform some studies.

3.6. CASE STUDY - MODELING A VIRAL INFECTION 61

antibody densityvirus
density

10 20 30 40

1

2

3

4

5

Figure 3.3: Numerical results for approximating the solution to (3.9) with k =
0.1, r = 0.5, p = 0.25, a(0) = 0 and v(0) = 0.01. The second order Heun
method is used.

virus
density

antibody density

5 10 15 20 25 30 35

2

4

6

8

10

,

host is killed ->

5 10 15

5

10

15

20

Figure 3.4: Numerical results for approximating the solution to (3.9) with r =
0.5, p = 0.25, a(0) = 0 and v(0) = 0.01. For the figure on the left k = 0.05 and
for the figure on the right k = 0.01. The second order Heun method is used. If
we assume that the host dies if the virus density reaches 20 then this is the case
for the simulations on the right.

