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INTRO: Orion Space Vehicle Heat Shield

Kleb, Johnston,
Uncertainty Analysis of Air Radiation for Lunar Return Shock Layers, AIAA 2008-6388.
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INTRO: Wing Load Test

Babuska, Nobile, Tempone,
Reliability of Computational Science, Numerical Methods for PDE’s, Volume 23, Number 4, April 2007.
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INTRO: Boussinesq Flow

Boussinesq flow, right hand side temperature is uncertain.

Temperature (left) and velocity (right) with uncertainty bars.

Le Maitre, Reagan, Najm, Ghanem, Knio,
A stochastic projection method for fluid flow II,
Journal of Computational Physics, Volume 181, pages 9-44, 2002.
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INTRO: Fuel Rod Fretting

Nuclear fuel rods are held in a grid. The flow of coolant can set up
vibrations. If resonance occurs, a rod suffers severe fretting.
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INTRO: An “Exact Answer” May Be Wrong

The preceding images suggest some of the situations in which a
calculation must be carried out in the presence of uncertainty, error, or
variation.

One can ignore the uncertainty, assume the data is exact, and compute
an “exact answer”.

One understands that this “exact answer” will not correspond to the
physical situation actually encountered, in part because of the
uncertainties we ignored; if we expect the actual behavior to be close to
our calculation, that is simply a matter of hope.

However, a variety of techniques are available for making a reasonable
model of uncertain input parameters, and then, for the output solution
and related quantities of interest, computing the expected value, the
variance, and other statistical quantities.
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INTRO: Estimating Values in Real Life

For a space vehicle subject to collisions with debris, I might begin by
considering a quantity such as the particle size, which can have a
continuous range of values. From observational records, I may choose a
probability density function (PDF) that is a good model for the variability
of this quantity.

We may also want to consider the velocity of the particle. This represents
a second “dimension” of uncertainty. If I can assume the quantities are
independent, then I can first construct a PDF for the velocities alone,
and then combine the two PDF’s to give probabilities about a particle of
a given size and velocity.
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INTRO: Approximating High Dimensional Integrals

As we add variable factors to our model, we increase the abstract
“dimension”. Summarizing the effect of all possible events requires
integrating over this multidimensional product region.

So, analyzing uncertainty requires estimating a high-dimensional integral.

Monte Carlo sampling produces a cheap estimate that is not very precise.

Product rules perform spectacularly better in low dimensions, but their
precision breaks the budget as we go to higher dimensions (even 10
dimensions can be too many).

This talk considers a method (cheap and precise) for estimating integrals
associated with some kinds of uncertain or stochastic problems.
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STOCHASTIC: The Poisson Equation

Stochastic problems are mathematical models of systems in which some
data is uncertain, approximate, or nondeterministic.

Let us consider the Poisson diffusion equation:

−∇ · (a(~x)∇u(~x)) = f (~x)

a(~x) is the diffusivity, f(~x) a source term.

A stochastic version might allow uncertainties in the diffusivity:

−∇ · (a(~x ;ω)∇u(~x ;ω)) = f (~x)

Here, ω represents the stochastic influence, and we must now write u
with an implicit dependence on ω as well.
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STOCHASTIC: Stochastic Diffusivity

Examples of a mildly varying stochastic diffusivity a(x , y ;ω).

Log of realizations of the diffusivity a(x , y ;ω) using uniform random
variables ω (left) or Gaussian ω (right).

http://people.sc.fsu.edu/∼jburkardt/m src/stochastic diffusion/stochastic diffusion.html
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STOCHASTIC: Computing the Expected Value

Since ω is unknown, our problem has a family of solutions, and any
particular solution is actually not very important or meaningful.

But what is important is to characterize the statistics of the solutions,
such as the average behavior and variance from that average.

We could imagine addressing this question by solving every possible
variation of the problem, and weighting it by its probability.

With each value of ω we associate a probability density function ρ(ω),
and reformulate our problem to solve for the finite element coefficients of
the expected value function ū(~x).

The validity and usefulness of all our results depends on how carefully we
choose a probabilistic model to combine with our deterministic system.

13 / 61



STOCHASTIC: The Stochastic Finite Element System

A finite element approach to the deterministic problem integrates the
equation against various test functions vi(~x):∫

D

a(~x)∇u(~x) · ∇vi (~x) d~x =

∫
D

f (~x)vi (~x) d~x

We can still apply the finite element approach to our stochastic problem,
but now we integrate over the probability space as well:Z

Ω

Z
D

a(~x ;ω)∇u(~x ;ω) · ∇vi (~x) d~x ρ(ω) dω =

Z
Ω

Z
D

f (~x)vi (~x ;ω) d~x ρ(ω) dω

Once we interchange the orders of integration, this looks very much like
an ordinary finite element computation, an algebraic system A ∗ c = f for
the finite element coefficients of ū(~x).

But evaluating A and f requires approximate integration over D and Ω.
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STOCHASTIC: Focus on the Integration Problem

Solving the stochastic problem begins by approximating the probability
space by some discretized M-dimensional subspace ΩM . We are then
faced with the problem of estimating these integrals.

Clearly, we can do a better job of estimating the influence of the
stochastic parameters if we can make M large; on the other hand, the
task of estimating integrals in M-dimensional space can quickly become
intractable as the dimension increases.

We’ll now concentrate on the problem of integral approximation, and
thus replace our complicated stochastic diffusion integral by the model
task of estimating integrals in an M-dimensional product region:∫

ΩM

f (x) dx
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STOCHASTIC: The Monte Carlo Approach

One choice is the Monte Carlo method, which randomly samples the
integration parameter, either uniformly or according to a weight function.

The method does not require the integrand function to be smooth, we
can choose any number of samples we want, and if we decide to request
more samples, these can be combined with the existing ones.

Statistically, the error in the Monte Carlo integral estimates will tend to
decrease like N−1/2. It’s good that this number does not depend on the
dimension M. But it is nonetheless a remarkably slow rate. Roughly
speaking, each new decimal of accuracy requires 100 times as much work.

Since the error goes down relatively slowly, if our initial estimates are
poor, it may be a very long time before we achieve a good estimate.
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STOCHASTIC: The Interpolatory Approach

Interpolatory methods sample the integration parameter at selected
points, constructing and integrating the interpolating function. If the
function is smooth, convergence will be fast, and actually precise if the
integrand is a low degree polynomial.

Gauss methods are similar to the interpolatory approach, requiring very
specific sampling locations in exchange for squaring the convergence
exponent.

For the interpolatory and Gauss rules, the natural approach is to form a
product rule, using the Cartesian product of the 1D rule taken M times.
If we approach this problem by asking for a specific precision, then we
will specify some number of points P for the 1D rule. This implies that
our product grid will need N = PM points.

Even for low precision requests P, we can’t go far in dimension M before
a product rule becomes unaffordable.
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SMOLYAK: Interpolatory Quadrature Precision and Cost

The guaranteed precision of the product rule comes at a cost which
explodes as the dimension M increases.

Each successive entry in a family of quadrature rules integrates precisely
more successive monomials of the series constants, linears, quadratics,
cubics, quartics, ....

For a given dimension M, if we increase the precision request P, how
many monomials must we be able to precisely integrate?

We assume that a quadrature rule can “buy” a monomial at the cost of a
function evaluation.
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SMOLYAK: What Monomials Must We Capture?

The space of M-dimensional P-degree polynomials has dimension(
P + M

M

)
≈ MP

P! .

An M-dimensional product of a 1D P-point rule requires PM function
evaluations. This means the M dimensional product rule can integrate
precisely far more monomials than it needs to.

Keep in mind that P is likely to stay relatively small, but M may go to
20, 30, 50 or 100.

As M increases, the discrepancy grows. As an extreme example, for
M = 100, there are just 101 monomials of degree 1 or less, and 5,151
monomials of degree 2 or less, but a product rule of 2 points would
request 2100 function evaluations.
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SMOLYAK: Beat the Product Rule

The Smolyak approach arises as follows. Let Q be a family of 1D
quadrature rules, so that Q(P) can integrate polynomials of degree P
exactly. (We’ll shortly want to assume that the points used by rules
Q(0), Q(1), Q(2) are nested.)

Write any 2D product rule Q(P1,P2) = Q(P1)⊗ Q(P2)

To approximate an integral in 2D up to and including linear terms, we
might use the product rule Q(1, 1) = Q(1)⊗ Q(1), using 4 points, and
precisely integrating any terms involving 1, x , y , or xy .

Smolyak observed that we can get exactly the constants and linears,
using just 3 points, using a rule that looks like this:

A(L=1,M=2) = Q(1, 0) + Q(0, 1)− Q(0, 0)

(The L indicates the level, and M the spatial dimension.)
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SMOLYAK: Rewrite to Form a New Quadrature Rule

We’re assuming the rules are nested. So we can represent the rules as
follows:

Q(0,0) = a * f(0,0)
Q(1,0) = b * f(0,0) + c * f(x,0)
Q(0,1) = d * f(0,0) + e * f(0,y)

This requires 5 function evaluations before we can combine the three
results. Instead, let’s combine the coefficients of each function value:

A(L=1,M=2) = (b + d − a) ∗ f (0, 0) + c ∗ f (x , 0) + e ∗ f (0, y)

Now we’ve guaranteed we only need 3 function evaluations. And we have
also written the Smolyak rule as a quadrature rule, that is, coefficients
times function values.
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SMOLYAK: 5x5x5 Product Versus Smolyak L=2, M=3

125 points in the product rule, 25 points in the Smolyak rule.

http://people.sc.fsu.edu/∼jburkardt/m src/tensor grid display/tensor grid display.html
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SMOLYAK: Generalizing the Idea

Smolyak determined a formula combining low-order product rules to
achieve a desired precision, avoiding the excessive function evaluation of
the standard product rule.

The details of precision, order, efficiency and accuracy vary depending on
the underlying 1D quadrature rules.

In most cases, Smolyak matches the product rule while avoiding the
crushing explosion in function evaluations.

It’s useful now to quote the formal definition of the Smolyak procedure,
so you can see that it is framed in an abstract way that allows a lot of
flexibility in how it is applied.
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SMOLYAK: Formal Definition

We have a family of 1D quadrature rules Q` indexed by `.

We form a sparse grid A(L,M) for dimension M and level L.

A(L,M) is a weighted sum of M-dimensional product rules

Q`1 ⊗ · · · ⊗ Q`M

The vector ~̀ lists the levels of the component rules used, and
|~̀| = `1 + · · ·+ `M is the sum.

A(L,M) =
∑

L−M+1≤|~̀|≤L

(−1)L−|~̀|
(

M − 1

L− |~̀|

)
(Q`1 ⊗ · · · ⊗ Q`M )

Thus, the rule A(L,M) is a weighted sum of M-dimensional product

rules whose total level |~̀| never exceeds L.
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SMOLYAK: Efficiency

We said that the space of M-dimensional polynomials of degree P or less

has dimension

(
P + M

M

)
≈ MP

P! .

For large M, a Clenshaw-Curtis Smolyak rule that achieves precision P

uses N ≈ (2M)P

P! points; we do not see an exponent of M in the point
count.

For the extreme case of M = 100, a sparse grid based on the Clenshaw
Curtis rule can integrate polynomials of total degree 0, 1, 2 or 3 using
just 201 points.

Thus, if we are seeking exact integration of polynomials, the
Clenshaw-Curtis Smolyak rule uses an optimal number of points (to
within a factor 2P that is independent of M).
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SMOLYAK: Relation with Stochastic Variables

In stochastic problems, the type of random variable used to model
uncertainty determines the quadrature rule that should be used to handle
that variable. Some common choices include:

Distribution Domain Weight Quadrature
Uniform [−1,+1] 1 Gauss-Legendre or

Clenshaw-Curtis

Gaussian (−∞,+∞) e−(x−α)2/β2

Gauss-Hermite
Gamma [0,+∞) e−αx Gauss-Laguerre
Beta [−1,+1] (1− x)α(1 + x)β Gauss-Jacobi

Any of these rules can be used in the sparse grid formulation.
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SMOLYAK: Mixed Products

The Smolyak procedure allows each dimension to be treated
independently in whatever manner is appropriate for that variable.

The sparse grid technique simply combines the given rules, without
requiring that they involve the same 1D domain or weight function.

Level 4 Rule, Hermite in X, Clenshaw Curtis in Y
http://people.sc.fsu.edu/∼jburkardt/m src/sparse grid mixed dataset/sparse grid mixed dataset.html
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SMOLYAK: Precision, Point Growth, Error Bounds

Refer to Novak and Ritter* for details about the construction of rules
based on the Clenshaw Curtis rule, error bounds for the approximation of
integrals of smooth functions, estimates for the growth in the number of
function evaluations with increasing level or dimension, and a proof that
the rules are exact for all monomials up to a given degree.

The authors also indicate conditions under which other 1D quadrature
rules can be used to construct Smolyak rules of comparable precision.

*High dimensional integration of smooth functions over cubes,
Numerische Mathematik, volume 75, pages 79-97, 1996.
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ASPECTS: The Nested Clenshaw-Curtis Sparse Grid

.
The Smolyak definition does not specify the properties of the 1D
quadrature rules used to form product rules.

A popular choice uses the 1D Clenshaw Curtis rule (based at the zeros of
the Chebyshev polynomials). A nested sequence of rules is selected, of
orders 1, 3, 5, 9, 17, 33, ... so the rule of one level includes the points of
the previous one. This is the approach in Novak and Ritter.

Nesting keeps our point count low by reusing points; on the other hand,
rules of successive levels double in size, which is a potential (but fixable)
pitfall.
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ASPECTS: Computing X and W for Clenshaw Curtis

MATLAB code to compute a Clenshaw Curtis rule of order N:

theta(1:n) = ( n - 1 : -1 : 0 ) * pi / ( n - 1 );

x(1:n) = cos ( theta(1:n) );

w(1:n) = 1.0;

for i = 1 : n

for j = 1 : floor ( ( n - 1 ) / 2 )

if ( 2 * j == ( n - 1 ) )

b = 1.0;

else

b = 2.0;

end

w(i) = w(i) - b * cos ( 2 * j * theta(i) ) / ( 4 * j * j - 1 );

end

end

w(1) = w(1) / ( n - 1 );

w(2:n-1) = 2.0 * w(2:n-1) / ( n - 1 );

w(n) = w(n) / ( n - 1 );

http://people.sc.fsu.edu/∼jburkardt/m src/quadrule fast/quadrule fast.m
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ASPECTS: We Choose a Nested Clenshaw Curtis Sequence

Each grid includes all points from the previous one.
(However, the size of the grid grows more rapidly than required.)

http://people.sc.fsu.edu/∼jburkardt/m src/nested sequence display/nested sequence display.html
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ASPECTS: We Choose a Nested Clenshaw Curtis Sequence

We can index our rules by level L, writing CC(0) for the the first rule,
counting the points in the rule as the order O, and denoting the
polynomial precision by P.

Rule CC(0) CC(1) CC(2) CC(3) CC(4) CC(5)
L 0 1 2 3 4 5
O 1 3 5 9 17 33 2L−1 + 1
P 1 3 5 9 17 33 P = O

Because our 1D rules have odd order, instead of P=O-1 we will actually
have P=O, that is, a 1 point rule gets constants and linears, a three
point rule picks up cubics, and so on.

http://people.sc.fsu.edu/∼jburkardt/cpp src/sparse grid cc/sparse grid cc.html
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ASPECTS: The First Three CC Rules

The CC-based Smolyak rules A(L = 0/1/2,M = 2) are:

A(0, 2) =CC (0)⊗ CC (0)

A(1, 2) =CC (1)⊗ CC (0)

+CC (0)⊗ CC (1)

−CC (0)⊗ CC (0)

A(2, 2) =CC (2)⊗ CC (0)

+CC (1)⊗ CC (1)

+CC (0)⊗ CC (2)

−CC (1)⊗ CC (0)

−CC (0)⊗ CC (1)

(For higher dimensions, we don’t just have +1 and -1 as coefficients, but
they will still be combinatorial coefficients.)
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ASPECTS: The Quadrature Points of A(2, 2)
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ASPECTS: A(2, 2) = 2x0 + 1x1 + 0x2 - 1x0 - 0x1

It helps to see the underlying product rules that were combined:
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ASPECTS: A(2, 2) as good as C (5)⊗ C (5)

The picture correctly suggests that the Smolyak combination of the 5
lower order grids is (essentially) as precise as the 5x5 product grid in the
upper right corner.

But the Smolyak grid A(2, 2) uses 13 points, the product grid
C (5)⊗ C (5) uses 25.

The Smolyak definition chooses a collection of lower order product grids
that capture the information necessary to approximate all the monomials
of interest, and then combines this information correctly to produce a
good integral estimate.

(Because of the nesting choice we made, the precision results are not so
neat for higher levels...)
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ASPECTS: Precision of a General CC Sparse Grid

Novak and Ritter show that for sparse grids based on the 1D Clenshaw
Curtis rule, the precision is related to the level by:

P = 2 ∗ L + 1

The first sparse grid (L=0) picks up constants and linears, the second
adds quadratics and cubics, and so on. This means that our family of
sparse grids has a predictable precision behavior based on the level,
regardless of dimension.

If our CC-based sparse grids were perfectly efficient, the level L rule
would pick up exactly the monomials up to precision P and no more. A
precision graph will show that we do better than a product rule, but still
have some inefficiency.
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ASPECTS: What Monomials are Precisely Integrated?

Here are the precisions of A(2, 2),A(3, 2),A(4, 2). The diagonal black
line “fences off” the monomials of degree 2*L+1, which the sparse grid
must integrate precisely. With increasing level, the rules spill over the
fence, suggesting some inefficiency.

(The red squares are monomials just added on this level.)
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ASPECTS: Reducing the Nesting Overhead

Our sparse grid of level L will have the precision P = 2 ∗ L + 1 as long
as our family of 1D rules has at least that same precision sequence:

L 0 1 2 3 4 5 6 7 8 9 10...
P minimal: 1 3 5 7 9 11 13 15 17 19 21...

But our 1D rules double the number of points with each level, in order to
effect nesting...which we want to control the point count.

P supplied: 1 3 5 9 17 33 65 129 255 513 1025...

We could keep nesting but reduce the cost of doubling, by reusing a 1D
rule if it satisfies the precision requirement.

P suggested: 1 3 5 9 9 17 17 17 17 33 33...

http://people.sc.fsu.edu/∼jburkardt/cpp src/sgmg/sgmg.html
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ASPECTS: Standard and Slow Growth versions of A(4, 2)

Using the slower growth strategy preserves our overall precision
requirement while cutting down on the order of the finest grid, and hence
the number of function evaluations.

Both rules achieve precision P = 2 ∗ L + 1 = 9;
the standard rule uses 65 points, the slow rule 49.

http://people.sc.fsu.edu/∼jburkardt/presentations/sgmga ccs.pdf
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ASPECTS: Anisotropic Growth

The standard formulation of the Smolyak formula treats each
dimension equally.

In the precision diagrams, this corresponds to using a diagonal line that
indicates the total polynomial precision we expect on each successive rule.

We might now in advance, or discover adaptively, that some coordinates
are inactive, and that some are relatively more active than others. It is
easy to modify the Smolyak formula so that, with each successive rule
adds significantly more precision (more monomials) in the most active
dimensions.

In this case, our precision diagram (in 2D) would involve a sequence of
nondiagonal lines whose slope corresponds to the level of anisotropy.

http://people.sc.fsu.edu/∼jburkardt/cpp src/sgmga/sgmga.html
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ASPECTS: Very Adaptive Approach

It turns out that the Smolyak formula can also handle very general
cases suitable for adaptivity.

A given 2D precision diagram is a monotonically decreasing ”cityscape”
of squares representing monomials we have captured.

Each ”corner” of the cityscape represents a monomial we didn’t capture,
but which could be captured by including a single new product rule to
the Smolyak formula.

Thus, an adaptive approach could start with a given precision diagram,
then consider each corner and compute its potential new contribution,
and take those which rise above a given tolerance in magnitude.

Naturally, the search approach itself becomes expensive as the dimension
gets very high.

http://people.sc.fsu.edu/∼jburkardt/cpp src/sandia sgmgg/sandia sgmgg.html
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NUMERICAL: Function Evaluations Versus Accuracy

.
We estimate the integral of f (x) over an M-dimensional hypercube
[a, b]M using N points or function evaluations.

The “cost” of the estimate is N. If an estimate is not satisfactory, it’s
important to know how fast the error is likely to go down if we increase
N and try again.

For the Monte Carlo method, the rate of error decay is known to be
O( 1√

N
). The rate is independent of spatial dimension M, and essentially

independent of the smoothness of f (x).

Compare Monte Carlo and sparse grid values of N and accuracy.
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NUMERICAL: Sparse Grids Require Smoothness!

Let f (x) be the characteristic function of the unit ball in 6D:

N SG Estimate SG Error : MC Estimate MC Error
1 4.000 1.167 : 0.00000 5.16771

13 64.000 58.832 : 0.00000 5.16771
85 -42.667 -47.834 : 3.01176 2.15595

389 -118.519 -123.686 : 4.77121 0.39650
1457 148.250 143.082 : 5.16771 0.01555
4865 -24.682 -29.850 : 5.41994 0.25226

Can you see why negative estimates are possible for the sparse grid,
even though the integrand is never negative?

Sparse grids need smooth integrands; and because sparse grids use
extrapolation, they are liable to unpleasant errors otherwise.

http://people.sc.fsu.edu/∼jburkardt/m src/quadrature test/quadrature test.html, problem #18
http://people.sc.fsu.edu/∼jburkardt/m src/ball volume monte carlo/ball volume monte carlo.html
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NUMERICAL: MC Quadrature Can be Slow

Monte Carlo doesn’t diverge, but look how hard we have to work to
get three places of accuracy for the characteristic function of the unit ball
in 6D.

N MC Estimate MC Error
1 0.00000 5.16771

32 6.00000 0.83228
1,024 4.81250 0.35521

32,768 5.39063 0.22291
1,048,576 5.18042 0.01271

33,554,432 5.16849 0.00077
∞ 5.16771 0.00000

Should we want one more digit of accuracy, we can expect to need 100
times as many points ≈ 3.3 billion points.

http://people.sc.fsu.edu/∼jburkardt/m src/ball volume monte carlo/ball volume monte carlo.html
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NUMERICAL: Genz Product Peak Test in 6D

Alan Genz provided six high dimensional test integrals;
The product peak function is defined on the unit hypercube, with given
C and Z vectors, and is smooth:

F (X ) =
1∏m

i=1(C 2
i + (Xi − Zi )2)

http://people.sc.fsu.edu/∼jburkardt/f src/quadrature test genz/quadrature test genz.html
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NUMERICAL: Genz Product Peak Test in 6D

Red: Sparse grid estimate
Blue & Cyan: MC estimates
Black: Expected MC Rate of Decrease
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NUMERICAL: Genz Tests in 10D

Discontinuous, Continuous, Oscillatory
Corner Peak, Product Peak, Gaussian

(sparse grid estimate in red)
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NUMERICAL: The Poisson Equation

Let’s return to the stochastic Poisson equation considered earlier:

−∇ · (a(x , y ;ω)∇u(x , y ;ω)) = f (x , y)

Our integration problem seeks the expected value of u(x , y ;ω), assuming
we have a probabilistic model for the stochastic influence.

Monte Carlo: select a random set of parameters ω according to pr(ω),
solve the Poisson equation for u, and average.

Sparse grid: choose a level, defining a grid of ω values, solve the Poisson
equation for u, multiply by the probability, and take a weighted average.

Clayton Webster, Sparse grid stochastic collocation techniques for the numerical solution of partial differential equations with random
input data, PhD Thesis, Florida State University, 2007.
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NUMERICAL: Four Monte Carlo Estimates

The black line is the Monte Carlo trend.
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NUMERICAL: Sparse Grid Versus Monte Carlo

The sparse grid estimates converge rapidly.
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NUMERICAL: Remarks

For the stochastic diffusion problem, u(x , y ;ω) has a very smooth
dependence on the perturbations in ω.

For this reason, a sparse grid can sample the solution for a small set of
perturbations ω and accurately estimate the expected value.

If we had a code to solve the original Poisson equation for a given
conductivity field, the sparse grid procedure simply needs to call that
unmodified code with different conductivities.

This is why sparse grids are called a nonintrusive method. Other
procedures for dealing with uncertain or stochastic influences may require
extensive changes, new variables, and a larger coupled system to solve.
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CONCLUSION: High Dimensional Integration is Intractable

.
In general, estimating the integral of an arbitrary function in a high
dimensional space is an intractable problem.

Nonetheless, we are able to estimate the high dimensional integrals
associated with stochastic problems and uncertainty quantification when
the mathematical modeling of uncertainty results in integrands that are
smooth, or localized, or can be well approximated by certain easily
integrated density functions.

Sparse grids are a powerful tool for treating such special integrands,
whose estimated integrals can be pulled out of an otherwise impenetrable
high dimensional jungle!
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CONCLUSION: New Directions

.
The sparse grid construction can be modified so that more precision is
gained in certain coordinate directions. Essentially, the diagonal lines in
the precision diagram become slanted. This coordinate preference can be
done beforehand, or can be modified during execution.

We are free to plug into Smolyak’s formula any sequence of 1D
quadrature rules, including Gauss-Legendre, composite rules, or a
hierarchical family based on piecewise linear hat functions.

Clayton Webster is looking at a method that employs the unusual choice
of wavelets to carry out the 1D approximations.
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CONCLUSION: Discontinuities

.
The sparse grid procedure I described assumes smooth functions. For a
function with a “mild” discontinuity , an adaptive procedure can be
devised to detect the problem, and patch up the 1D quadrature schemes.
The hierarchical linear basis is a natural way to do this.

Let f (x) be defined on [0, 1]N → [0, 1] as the product of N 1D step
functions, each jumping at a random location ξi . Because the function is
separable, I can locate the problem areas by looking at each 1D
projection, and refining the 1D quadrature rule in dimension i near ξi .

But now let g(x) be f (Q ∗ x), where Q is an orthogonal matrix which
rotates the coordinates. The discontinuity lines do not align with the
coordinate axes, and the location problem becomes much harder.

And this is nowhere near as bad as the problem could become!
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CONCLUSION: Software

.
SPINTERP, a MATLAB program, by Andreas Klimke, is a great way to
explore the power of sparse grids.

x = spgrid ( l, m )

returns the points of a sparse grid of level L in dimension M.

To estimate an integral:

z = spvals ( @fun, m )
q = spquad ( z )

SPINTERP can also interpolate and optimize using sparse grids.

http://www.ians.uni-stuttgart.de/spinterp/
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