
How to make a mesh

Summer Seminar
ISC5939
..........

John Burkardt
Department of Scientific Computing

Florida State University
http://people.sc.fsu.edu/∼jburkardt/presentations/. . .

. . . sem 2012 mesh.pdf

10/12 July 2012

1 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

2 / 119

MESHING:

The finite element method begins by looking at a complicated region,
and thinking of it as a mesh of smaller, simpler subregions.

The subregions are simple, (perhaps triangles) so we understand their
geometry; they are small because when we approximate the differential
equations, our errors will be related to the size of the subregions. More,
smaller subregions usually mean less total error.

After we compute our solution, it is described in terms of the mesh. The
simplest description uses piecewise linear functions, which we might
expect to be a crude approximation. However, excellent results can be
obtained as long as the mesh is small enough in places where the solution
changes rapidly.

3 / 119

MESHING:

Thus, even though the hard part of the finite element method involves
considering abstract approximation spaces, sequences of approximating
functions, the issue of boundary conditions, weak forms and so on, ...it
all starts with a very simple idea:

Given a geometric shape, break it into smaller, simpler shapes; fit the
boundary, and be small in some places.

Since this is such a simple idea, you might think there’s no reason to
worry about it much!

4 / 119

MESHING:

Indeed, if we start by thinking of a 1D problem, such as modeling the
temperature along a thin strand of wire that extends from A to B, our
meshing problem is trivial:

Choose N, the number of subregions or elements;

Insert N-1 equally spaced nodes between A and B;

Create N elements, the intervals between successive nodes.

For this problem, we can write down formulas for the location of each
node, the location of each element, the indices of the pair of nodes I and
J that form element K, and the indices of the elements L and M that are
immediate neighbors to element K.

5 / 119

MESHING: Nodes and Elements in 1D

From 2 vertices, we define 11 nodes, and 10 elements.

6 / 119

MESHING: Nodes and Elements in 1D

It might seem that the 2D world is going to be just as easy! We just
take our rectangular region, defined by four corners, place nodes along
each side and then put nodes at intersection points, and then, because
we prefer triangles, we split each of the resulting squares into two
triangular elements.

Again, we can write down, fairly easily, the location of every node, the
nodes that form each triangle, and the triangles that neighbor each
triangle.

7 / 119

MESHING: The “ELL” Problem

For our basic 2D example, we’ll consider an L-shaped region, and show
how to go through the basic meshing steps.

When it’s time to talk about programs for doing the meshing for us, we
will come back to this same problem, so keep its simple shape in mind!

It’s simply a square of dimension 2x2 units, from which a 1x1 unit square
in the northeast has been removed.

8 / 119

MESHING: Nodes and Elements in 2D

6 vertices define the shape.

9 / 119

MESHING: Nodes and Elements in 2D

21 nodes will be used for the internal mesh.

10 / 119

MESHING: Nodes and Elements in 2D

24 triangular elements constitute the mesh.

11 / 119

MESHING: Rectangular Regions Are Not Good Enough!

While a mathematician or academic computing person might regard
our L-shaped region as wildly irregular, a person who actually needs to
use the finite element method will regard the use of purely rectangular
regions as unrealistic and much too limited to be useful.

It’s similar to trying to analyze a horse race by starting out with the
assumption “All horses can be regarded as perfect spheres.”

Well, what kind of problems do we really need to be able to solve?

12 / 119

MESHING: We Want Small Elements Near Boundaries!

We need meshes that automatically vary in density.

13 / 119

MESHING: We May Need Transition Zones!

We need the mesh to be able to get small near “sensitive spots”.

14 / 119

MESHING: We Want to Handle Holes (and Surfaces)!

We need to mesh surfaces that include holes and edges.

15 / 119

MESHING: On a Surface, We Must Match Curvature!

The mesh must notice and adapt to local features (here, curvature.)

16 / 119

MESHING: We May Need an Internal Mesh

For a true 3D problem, we need nodes and elements inside the surface

17 / 119

MESHING: Realistic Problems Can’t Be Meshed by Hand!

These regions are complicated and realistic and not rectangular. The
meshes “respond” to the geometry. How is this done?

Given the boundaries of the region, and perhaps a desired mesh density
at every point, how can we:

describe the input information to a computer?

use the input information to choose nodes?

use the nodes to construct elements?

handle boundaries, internal holes, internal walls?

construct all the arrays of connectivity information?

What if we have 1,000,000 nodes? What if our problem is 3D?

18 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

19 / 119

REP: Data and Files for Meshes

The objects we are talking about must somehow be represented on a
computer. It may be helpful to go over how these objects might be
represented, and in some cases, suggest how one object can be computed
from another.

The fundamental object, of course, is the region. Let’s keep things simple
and assume we’re simply dealing with a subset of the plane, such as a
circle, square, perhaps an irregular polygon, or possible an arbitrary curvy
closed loop.

This region might have sharp corners, stretches with a fixed curvature,
interior holes or barriers. In the most general case, this is a hard object to
describe.

20 / 119

REP: Define a Region by Boundary Vertices

We will assume that the region can be defined by one or more closed
curves, approximated using straight line segments. Even if our region is a
circle, we specify it by a sequence of straight lines.

A circle might be specified by 24 evenly spaced vertices V.

A region is really specified by the curve suggested by the vertices, so we
should be more careful and either insist that the 24 vertices are
connected one after another, or else we should include an additional set
of information, namely, the order in which the given vertices should be
connected to bound the region.

The advantage of the second approach is that, if I always specify such a
curve in counterclockwise order, then it is easy to describe regions with
multiple parts, or with holes.

21 / 119

REP: Define a Region That is a Square Minus a Triangle

Here is a region defined by a square with a triangular hole.

Vertices V: { (0,0), (5,0), (5,5), (0,5),
(4,2), (2,1), (2,4) }

Boundary Indices BI: { 1, 2, 3, 4, 1, 5, 6, 7, 5 }

This describes a square from which a triangle has been removed. The
region is on the “inside” of both curves, that is, points that lie on the left
hand side as you follow each curve.

MATLAB could plot this data by starting with the first index (and
remembering it!), drawing to the next one, until it returns to the start.
Then it should jump to the next index and start a new line segment. We
assume V is stored as a V NUM by 2 array.

22 / 119

REP: Draw A Vertex Boundary of Multiple Line Segments

hold on

next = 1;

s = bi(1);

t2 = s;

draw = 1;

while (next < length (bi))

t1 = t2;

next = next + 1;

t2 = bi(next);

if (draw)

line ([v(t1,1), v(t2,1)], [v(t1,2), v(t2,2)]);

if (t2 == s)

draw = 0;

end

else

s = t2;

draw = 1;

end

end

hold off

http://people.sc.fsu.edu/∼jburkardt/m src/fem meshing/boundary display.m

23 / 119

REP: Nodes Fill the Region and the Vertex Boundary

The vertices outline the boundary of the region, but we need to fill up
the region (and the vertex boundary) with what we have called nodes.
These nodes will be used to define our elements, and the basis functions.
If our region isn’t rectangular, it might not be obvious how to produce
them, but once we have them, we’ll think of them as a list P of (X,Y)
coordinates.

Nodes P: { (0.0,0.0), (0.5,0.0), (1.0,0.0), (1.5,0.0),
(2.0,0.0) ... (1.0,2.0) }

It is very likely that some or all of the vertices V will be included in the
list P. If we’ve stored the P data as a P NUM by 2 array, then MATLAB
can plot the nodes:

plot (p(:,1), p(:,2), ’r.’, ’MarkerSize’, 5)

24 / 119

REP: Triangles Are Formed From Nodes

Even if we can’t compute the triangles, we can imagine how to store
them. A triangle is formed by three nodes. We can store the collection T
of triangles as a T NUM by 3 array of node indices:

Triangles T: { (1, 2, 3), (6,1,4), (5,6,8), ...
... (89,43,27) }

When listing triangles, we choose the counterclockwise ordering. This
means that every interior edge will be listed twice, while boundary edges
will all be listed once. In other words, the “logical sum” of all the
triangles is an outline of the original region!

MATLAB can plot a triangulation:

trimesh (t, p(:,1), p(:,2))

25 / 119

REP: The Node Boundary is Edges Used Once

One way to compute the node boundary takes all the edges and drops
the duplicates. The node boundary can be stored as a B NUM by 2 list
of pairs of node indices:

Boundary Edges: { (1, 2), (7,18), (4,63), ... (82,14) }

Simply having a collection of boundary edges is different than actually
having the edges in sequence. If you need that, you start with one edge,
find a connecting edge, keep looking until you get back to where you
started, and then check to see whether you have more edges to work on.

We seem to have discussed the boundary twice. First was the vertex
boundary, which only involved vertices. The node boundary, includes
short line segments between nodes added to the boundary between the
vertices.

26 / 119

REP: Triangle Neighbors

The standard finite element method doesn’t need to know element
neighbors; however, there are many times when dealing with a mesh
when this is necessary. For example, there’s a fast algorithm to find a
random point hidden in one of 1,000,000 elements that will take, on
average, 500 trials, rather than 500,000, but it requires being able to
move from one triangle to its neighbor.

All the information for determining triangle neighbors is available. Two
triangles are neighbors if they share an edge. That is, one triangle uses
nodes 5 and 17, in that order, the other uses 17 and 5. There are ways to
efficiently examine all the edges, find these pairs of matching data, and
indicate that two triangles are neighbors. Some triangles don’t have a
neighbor on a particular side, because they are on the boundary, so that
neighbor is -1.

27 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

28 / 119

DELAUNAY: Whence P and T?

A pair of mysteries remain:

where does the set of nodes P come from?

how are these nodes arranged into triangles T?

The answer to both questions involves the Delaunay triangulation, which
can compute a “good” triangulation of any set of nodes P.

That explains T, but what about P? Well, it turns out that we can start
with an arbitrary or random set of nodes P, and use information from the
Delaunay triangulation that will rearrange the nodes to better fill the
region, either uniformly or in accordance with some density function we
specify. By iterating on this process, we get good nodes and good
triangles.

29 / 119

DELAUNAY: A Maximal Triangulation

Suppose we generate a random set of nodes P within our problem
region. We can then connect as many pairs of nodes as possible without
ever crossing a previous line. The result is a (maximal) triangulation of
the nodes.

The process seems pretty arbitrary, and it fact there are many possible
triangulations of a set of points. You may wonder how to automate this
process; a natural way is to start by creating a giant triangle that
encloses all the points you are going to use.

Then add the first node. Connect it to each vertex of the enclosing
triangle, and you’ve got a maximal triangulation. Add the second node.
It falls into one of the triangles you already created, so you subdivide that
triangle. Keep going. At the end, remove the enclosing triangle, and any
edges that connect to it, and you
have a maximal triangulation of the nodes.

30 / 119

DELAUNAY: Sixteen Nodes to Triangulate

31 / 119

DELAUNAY: A Triangulation of 16 Nodes

32 / 119

DELAUNAY: What is a “good” triangulation?

We drew the lines of our triangulation at random. If we tried a second
time, we’d get a different picture. There are actually many ways to
triangulate a set of points in the plane. Given that fact, it’s likely that
some triangulations are “better” than others, but that depends on what
we want to do with our triangulations!

If we think about the connecting lines as “roads”, we might prefer a
triangulation that uses the shortest total length.

If we think about the triangles as representing patches of territory, we
might dislike triangles that have a very small angle.

For graphics applications, and for many computational purposes, the
avoidance of small angles is a very common criterion.

33 / 119

DELAUNAY: What is a “good” triangulation?

The Delaunay triangulation of a set of points is the (usually unique)
triangulation which does the best job of avoiding small angles.

Strictly speaking, we consider all possible triangulations of a set of nodes.
For each triangulation T , let θ(T) be the smallest angle that occurs in
any triangle of that triangulation. Then a triangulation T ∗ is a Delaunay
triangulation if

θ(T) ≤ θ(T ∗)

for all triangulations T .

Since there are only finitely many possible triangulations, the Delaunay
triangulation must exist, and if we had no other way,
we could find it by computing and comparing every triangulation.

34 / 119

DELAUNAY: A Triangulation of 16 Points

35 / 119

DELAUNAY: A Delaunay Triangulation of 16 Points

36 / 119

DELAUNAY: A Delaunay Triangulation of 16 Points

Although we chose the Delaunay triangulation based on an angle
consideration, comparing the two pictures suggests that the Delaunay
triangulation also does a better job of connecting nearby nodes rather
than far-away ones, avoiding long triangle sides, and creating triangles
that have a more uniform shape.

The convergence of the finite element method come, in part, from
ensuring that all the elements get small. The accuracy of the finite
element calculations within a triangle depend, in part, on the triangle
having a relatively equilateral shape. The smoothness of the
approximation depends somewhat on having relatively short triangle sides.

So the Delaunay triangulation has much to recommend it!

37 / 119

DELAUNAY: An Algorithm

Even though we will end up calling a piece of software to take care of
all the details for us, it’s important to understand that there are simple
ways to compute a Delaunay triangulation.

For instance, a triangulation is Delaunay if each triangle is “locally
Delaunay”. A triangle is locally Delaunay if we can’t improve the (local)
minimum angle by merging with a neighbor triangle and flipping the edge.

So we check each triangle, and if an edge swap improves the local
minimum angle situation, we take it. We keep doing this until no more
improvement is possible.

It’s not magic, it’s an algorithm...

38 / 119

DELAUNAY: MATLAB Calculation

To compute the triangles that form a Delaunay triangulation of a set
of data points, use the MATLAB command

t = delaunay (p(:,1), p(:,2))

or

t = delaunayn (p)

To display the triangulation,

t = delaunay (p(:,1), p(:,2))
triplot (t, p(:,1), p(:,2))

39 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

40 / 119

TRIANGLE: The C Program “Triangle”

Jonathan Shewchuk’s triangle can start from a node file:

spiral.node
15 2 0 0 <-- Point count, dimensions,
1 0.00 0.00 attributes, boundary markers.
2 -0.42 0.91
3 -1.35 0.43

...
14 2.16 2.89
15 1.36 3.49

We can triangulate the nodes we are given, or add nodes to increase the
minimum angle.

triangle spiral <-- Triangulate the nodes
triangle -q spiral <-- Minimum angle 20 deg
triangle -q32.5 spiral <-- Minimum angle 32.5 deg

41 / 119

TRIANGLE: Angle Constraints

No New Points || Minimum Angle 20o || Minimum Angle 32.5o

42 / 119

TRIANGLE: Area Constraints

In finite element calculations, one of the crucial quantities to control is
the area of the elements. Sometimes we simply want all the elements to
be smaller than some tolerance. Other times, we only need elements to
be small in places where the solution changes rapidly, or has low
differentiability.

The ”-a” switch sets a global maximum for the area of all elements:

triangle -a0.2 spiral

If you can decompose your domain, you can specify a separate maximum
area for each subdomain.

You can also determine a mesh density function which is defined
pointwise. This might come from error estimators determined from a
previous finite element mesh.

43 / 119

TRIANGLE: Area Constraints

Global Maximum || Subdomain Maximum || Pointwise Maximum

44 / 119

TRIANGLE: Refinement

triangle helps you make a sequence of refined meshes, including all
points from the current mesh.

The ”box.poly” file contains a square with a square hole. We can
compute a triangulation, and a series of refinements, as follows:

triangle box Creates “box.1” mesh
triangle -rpa0.2 box.1 Creates “box.2” mesh, and so on
triangle -rpa0.05 box.2
triangle -rpa0.0125 box.3

45 / 119

TRIANGLE: Refinement of the Box Mesh

46 / 119

TRIANGLE: Voronoi Diagram

triangle can compute the Voronoi diagram of the nodes.

triangle -v dots

47 / 119

TRIANGLE: The SHOWME Graphics Interface

triangle includes a graphics program called showme, which can
display the nodes, edges, triangulation, or Voronoi diagram.

48 / 119

TRIANGLE: Comments

triangle is also available as a compiled library, which means a C
program you write can use triangle directly as it is running.

Web page:

www.cs.cmu.edu/~quake/triangle.html

Reference:

Jonathan Shewchuk,
Triangle: Engineering a 2D Quality Mesh Generator and Delaunay
Triangulator,
in Applied Computational Geometry: Towards Geometric
Engineering, edited by Ming Lin, Dinesh Manocha,
Lecture Notes in Computer Science, Volume 1148,
Springer, 1996.

49 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

50 / 119

DISTMESH: Using T to Improve P

So any set of nodes P defines a Delaunay triangulation T. How can we
use T to improve P?

The meshing program distmesh(), by Persson and Strang, uses the idea
that, in the typical case, we’d like each node to be roughly the same
distance from all its neighbors. The Delaunay triangulation connects a
node to its neighbors (but not to far away nodes!). We can imagine each
of these connections to be a little spring, which exerts a force if it is too
long or too short.

So distmesh() actually sets up a linear system for the forces in a
differential equation, and then takes a small time step, that is, it lets
each node respond to the force by moving in the appropriate direction.

51 / 119

DISTMESH: Using T to Improve P

Once the nodes have been allowed to move, it is necessary to
recalculate the spring forces, and take another step. By repeating this
process carefully, a good result can be obtained.

Nodes that try to cross the boundary are pushed back in.

The result is a mesh of nodes that is well-spaced internally, and adapts to
the shape of the boundary.

Moreover, if the user wants nodes to be denser in some areas than
others, this information is easily used to make the springs “stiffer” in
some regions and “looser” in others, again creating a mesh that smoothly
varies in density according to the user’s request.

52 / 119

DISTMESH: Usage

[p, t] = distmesh (@fd, @fh, h, box, itmax, fixed);

where:

@fd, the name of a distance function defining the region;

@fh, the name of a mesh density function;

h, the nominal mesh spacing;

box, a box that contains the region;

itmax, the maximum number of iterations;

fixed, a list of points which must be included;

p, node coordinates;

t, triangles defined by node indices.

53 / 119

DISTMESH: Region Defined by Signed Distance

A peculiar input to distmesh() is the distance function fd(). This is
the way the program expects the region to be defined. The function
returns a signed distance d from any point (x,y) to the boundary of the
region, with the distance being negative if the point is actually inside the
region.

This makes it wonderfully easy to describe mathematical regions such as
a circle of radius r, because in that case

d =
√

x2 + y2 − r

However, for complicated geometries, it can be difficult to write down a
good formula, and inefficient for MATLAB to evaluate it millions of times
(which it must do!).

54 / 119

DISTMESH: The ELL Region

Although the L-shaped region is defined by straight line segments, the
true distance function is actually pretty complicated!

That is because exterior corners of the shape create curved level sets of
distance, while interior corners create sharp bends.

For convenience, distmesh() allows the user to define a distance function
that is only approximate, but both the true distance function and the
approximation can cause some odd behaviors in the mesh near corners.

And trying to write an exactly correct distance function, even for the
L-shaped region, is surprisingly tricky!

Remind me to sketch the L-shaped distance function now!

55 / 119

DISTMESH: Distance function for the L Region

distmesh() supplies some basic functions that make it easier to
construct distance functions:

function d = p11_fd (p)

% The L shaped region is the union of two rectangles.

g1 = drectangle (p, 0.0, 1.0, 0.0, 0.5);
g2 = drectangle (p, 0.0, 0.5, 0.0, 1.0);

d = dunion (g1, g2);

return
end

http://people.sc.fsu.edu/∼jburkardt/m src/distmesh/p11 fd.m

56 / 119

DISTMESH: First Iterates for the L Region

57 / 119

DISTMESH: Distance function and Mesh for “Holey Pie”

58 / 119

DISTMESH: Reference

The source code for distmesh() is freely available at

http://persson.berkeley.edu/distmesh/

and a very readable and useful reference is available:

Per-Olof Persson, Gilbert Strang,
A Simple Mesh Generator in MATLAB,
SIAM Review,
Volume 46, Number 2, June 2004, pages 329-345.

http://persson.berkeley.edu/distmesh/persson04mesh.pdf

59 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

60 / 119

MESH2D: Region Defined by Vertices

Darren Engwirda has adapted some of the ideas from distmesh() and
added some new features that offer a second powerful and flexible
MATLAB meshing program called mesh2d().

You can get a copy of mesh2d from the Matlab Central Exchange:

http://www.mathworks.com/matlabcentral/fileexchange/...
25555-mesh2d-automatic-mesh-generation

61 / 119

MESH2D: Usage

[p, t] = mesh2d (vertices, edge, hdata, options);

where:

vertices, a V by 2 list of boundary vertex coordinates;

edge, (optional input), lists pairs of vertex indices that form the
boundary;

hdata, (optional input), a structure containing element size
information;

options, (optional input), allows the user to modify the default
behavior of the solver .

p, the coordinates of nodes generated by the program;

t, the triangulation of the nodes.

62 / 119

MESH2D: Usage

The mesh2d program has some nice features:

a very short call [p,t]=mesh2d(v) is possible;

short boundary segments result in small interior elements;

the region is described by vertices and the program is optimized for
this case; this means it’s actually pretty easy to triangulate a map,
diagram, or CAD outline;

the output is “clean”; duplicate and unused nodes and small
elements are discarded, elements are in counterclockwise order.

a refine() function can refine a mesh.

a smoothmesh() function will smooth a mesh.

63 / 119

MESH2D: Simple ELL Mesh

As examples of mesh2d usage, we can start with variations of the
L-shaped problem:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 1.0; 1.0, 1.0; ...
1.0, 2.0; 0.0, 2.0];

[p, t] = mesh2d (v);

http://people.sc.fsu.edu/∼jburkardt/m src/mesh2d/ell demo.m

64 / 119

MESH2D: Simple ELL Mesh

65 / 119

MESH2D: Two Short Boundary Segments

Suppose we add two extra boundary vertices:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 0.25; 2.0, 0.5; ...
2.0, 1.0; 1.0, 1.0; 1.0, 2.0; 0.0, 2.0];

[p, t] = mesh2d (v);

66 / 119

MESH2D: Two Short Boundary Segments

67 / 119

MESH2D: Set Maximum Element Size

Go back to the original problem, but specify a maximum element size:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 1.0; 1.0, 1.0; ...
1.0, 2.0; 0.0, 2.0];

hdata = [];
hdata.hmax = 0.1;

[p, t] = mesh2d (v, [], hdata);

68 / 119

MESH2D: Set Maximum Element Size

69 / 119

MESH2D: Use a Density Function

Go back to the original problem, but specify a density function so
elements are small near the reentrant corner:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 1.0; 1.0, 1.0; ...
1.0, 2.0; 0.0, 2.0];

hdata = [];
hdata.fun = @hfun;

[p, t] = mesh2d (v, [], hdata);

70 / 119

MESH2D: Use a Density Function

function h = hfun (x, y)

%
% Minimum size is 0.01, increasing as we move away
% from (1.0, 1.0).
%
h = 0.01 + 0.1 * sqrt ((x-1.0).^2 + (y-1.0).^2);

return
end

71 / 119

MESH2D: Use a Density Function

72 / 119

MESH2D: Refine Example 1

Go back to the original problem, then refine the mesh:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 1.0; 1.0, 1.0; ...
1.0, 2.0; 0.0, 2.0];

[p, t] = mesh2d (v);
[p, t] = refine (p, t);

73 / 119

MESH2D: Refine Example 1

74 / 119

MESH2D: Refine Example 1

75 / 119

MESH2D: Smooth Example 2

Go back to problem 2, but smooth the mesh:

v = [0.0, 0.0; 2.0, 0.0; 2.0, 0.25; 2.0, 0.5; ...
2.0, 1.0; 1.0, 1.0; 1.0, 2.0; 0.0, 2.0];

[p, t] = mesh2d (v);
[p, t] = smoothmesh (p, t);

76 / 119

MESH2D: Smooth Example 2

77 / 119

MESH2D: Smooth Example 2

78 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

79 / 119

FILES: Compute Your Mesh Ahead of Time!

A person writing a finite element program does not need to do the
mesh generation inside the program! It is far better to take advantage of
good software written by others.

The easiest way to handle this issue is to create the mesh ahead of time,
and write it to a file.

The triangle program automatically creates files of output.

distmesh() and mesh2d() can be convinced to do so.

Such files can be easily read back into a finite element program written in
C, FORTRAN, PYTHON, or any appropriate language.

80 / 119

FILES: What a Node File Might Look Like

The fundamental mesh quantities are the arrays P and T, and if we
understand them, we can handle other items, such as the triangle
neighbor list, or the boundary node list.

When dealing with communication between programs, the best idea is to
keep things simple. So we will create one file for each array. Text files are
bigger, but easier to read than binary files. Since P is an array of
P NUM rows by 2 columns, our file will contain that many rows and
columns of data.

The P file for the ell problem should look something like this:

0.0 0.0
1.0 0.0
2.0 0.0
... ...
2.0 4.0

81 / 119

FILES: What a Triangle File Might Look Like

Similarly there should be a separate T file, and because it contains
integers, we want to read and write it with an integer format. (Note that
the MATLAB save command writes integers with a real number format
that can cause problems later.)

The T file for the ell problem should look something like this:

1 2 6
7 6 2
2 3 7
8 7 3
..
17 18 20
21 20 18

Any programming language should be able to read such files and store
the corresponding data.

82 / 119

FILES: A MATLAB Function To Write Integer Data

function triangle_write (outfile, m, n, table)

outunit = fopen (outfile, ’wt’);

for j = 1 : n

for i = 1 : m

fprintf (outunit, ’ %12d’, round (table(i,j)));

end

fprintf (outunit, ’\n’);

end

fclose (outunit);

return

end

http://people.sc.fsu.edu/∼jburkardt/m src/fem meshing/triangle write.m

83 / 119

FILES: The FEM Program Needs to Allocate Space

It’s a good idea to try to let the FEM program figure out the size of
the array simply by reading the file. That way, the same program can
solve problems of different sizes without needing to be modified and
recompiled.

It is not too difficult to write functions that will count the number of
lines in a file, and the number of data items on a single line. This gives
you the number of rows and columns you need to allocate for your array.

But if you don’t like my idea, you can always put the number of rows and
columns as the first line of the file!

Once your FEM program knows how big the array is that is described by
the file, it can allocate the necessary space, and read the actual data.

84 / 119

FILES: C++ Reads an MxN Integer Array

int **triangle_read (string infile, int m, int n)

{

ifstream inunit;

int i, j;

int **t;

inunit.open (infile.c_str ());

t = i4mat_new (m, n); <-- Set up a two dimensional array t[][]

for (i = 0; i < m; i++)

{

for (j = 0; j < n; j++)

{

inunit >> t[i][j];

}

}

inunit.close ();

return table;

}

http://people.sc.fsu.edu/∼jburkardt/m src/fem meshing/triangle read example.cpp

85 / 119

FILES: FORTRAN Reads an MxN Integer Array

subroutine triangle_read (infile, m, n, t)

integer m, n

integer i

character (len = *) infile

integer t(m,n)

open (unit = 1, file = infile, status = ’old’)

do i = 1, m

read (1, *) t(i,1:n)

end do

close (unit = 1)

return

end

http://people.sc.fsu.edu/∼jburkardt/m src/fem meshing/triangle read example.f90

86 / 119

FILES: PYTHON Reads an MxN Integer Array

define triangle_read (filename)

input = open (filename, ’r’)

t = []

for line in input.readlines():

x = line.split ()

t.append ([int (xi) for xi in x])

input.close ()

return t

http://people.sc.fsu.edu/∼jburkardt/m src/fem meshing/triangle read example.py

87 / 119

FILES: Advantages to Using Files

When you let a program like mesh2d() create your finite element
mesh, you get the advantage of being able to handle general regions,
variable size meshing, and so on.

But by storing your meshes as files, you also make it possible to

think about your FEM program independently of the mesh, so that
it can be written to solve any size or shape problem;

feed the mesh to different FEM programs, compare results;

compute a complicate mesh once, use it many times;

plot the mesh any time, without running the FEM program;

add/delete elements or nodes by (carefully) modifying files;

compute related quantities (such as the triangle neighbor list) by
working directly on the files.

88 / 119

FILES: Visualizing a Mesh

If you can store your mesh information as p and t data, then you can
save it to a file and pass it to a graphics program for visualization. One
reason is simply to look at your mesh and make sure it corresponds to
your geometry.

Triangle’s showme program displays nodes or elements; otherwise,
the .node and .ele files contain p and t;

MESH2D displays the mesh as you go, and returns p and t;

DISTMESH returns the p and t arrays;

If you have p and t available, you can display the mesh with MATLAB
commands like:

trimesh (t, p(:,1), p(:,2), zeros(N,1))

89 / 119

FILES: Numeric Displays for Debugging

Sometimes you want to debug a mesh, and see the numeric labels for
the nodes, elements, or element neighbors:

http://people.sc.fsu.edu/∼jburkardt/m src/triangulation display/triangulation display.m

90 / 119

FILES: For 21
2D and 3D

For the 2D case we have looked at so far, there are not many standard
file formats, perhaps because the problem is pretty simple.

For 2 1
2D and 3D, however, there is a lot more information to store (more

nodes, more connectivity, more element choices), and there are many
applications (biomedical scan analysis, computer graphics, geographic
information, computer-aided design) so many file formats have been
created which add features such as texture, color, surface normals, and so
on.

For these more complicated problems, you will probably want to use a
standard format, especially if you can find a good program to display and
modify your mesh. We will see a few examples shortly.

91 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

92 / 119

21
2D:

Since we don’t have X-ray vision, we can’t see inside objects. We can’t
even see the backs of objects. That means that if we want to make a
computer graphics image of a 3D region, we can simplify out job by only
modeling the surfaces.

Our data may come from a 3D scanner, in which case we only have
surface data.

Sometimes the region we’re looking at really is essentially 2D, although it
“lives” on a curved 3D surface. You may have noticed this about the
earth, for instance. A simple model of weather requires a “flat” mesh on
the surface of the sphere.

Even if we are interested in a true 3D problem, we might start by working
on the surface, since a good representation of the boundary is enough for
a meshing program to fill in the interior.

93 / 119

21
2D: Approximating Surfaces

94 / 119

21
2D: Data Description

For a simple problem, it’s easy to see how a surface can be described
by a 3D mesh of 2D triangles. We could imagine flexible paper, printed
with triangles, that we can use to wrap around a shape, such as a sphere
or a teapot. We’d have to stretch the paper, and cut it, and glue it, but
it would still be essentially a sheet of paper that’s been mildly distorted.

That means the geometry can again be defined by a set of points p and
triangles t, just like in the 2D case, except that:

the points have 3D coordinates;

the connectivity can become very complicated.

the Delaunay criterion is difficult to apply.

95 / 119

21
2D: Scanner Data

What tools are there for creating a “good” 3D mesh of triangles?

If your data is coming from a 3D scanner, then you simply have to collect
the point data p.

It represents one coordinate, say z , as a function of (x , y), and samples
on a regularly spaced m by n grid of points (xi , yj). Thus, your data is
“logically” a rectangular array. Diagonally slicing each rectangle gives
you triangles, and your t array of connectivity.

However, you probably need to do some processing to eliminate data
points where the scanner did not detect the object, and hence measured
the background.

If your object has folds, or levels, or hollows, these will not be detected
by the scanner. And the scanner won’t give you the hidden back side of
the object.

96 / 119

21
2D: Scanned Surface

97 / 119

21
2D: Grids on a Sphere

If the surface you are studying is regular, then it may be possible to lay
out a smoothly varying grid, and to construct a Delaunay triangulation.
The classic example of this involves meshes on a sphere, especially when
used to model climate on the surface of the earth.

98 / 119

21
2D: File Formats

A lot of information is stored as surface grids, and for this reason many
formats have arisen for organizing this information. Using a common
format allows your information to be recognized and used by a variety of
programs for computation or graphical display.

These formats are recognized by their filename extensions:

.mesh: medit mesh file format

.obj: wavefront object format

.off: geomview object file format;

.ply: polygon file format/Stanford triangle format

.poly + .node: 3D version of Triangle files

.smesh: medit surface mesh file format

.stl: stereolithography

99 / 119

21
2D: Example OBJ File

g Octahedron <-- begin object

v 1.0 0.0 0.0 <-- vertex 1 coordinates
v 0.0 -1.0 0.0
v -1.0 0.0 0.0
v 0.0 1.0 0.0
v 0.0 0.0 1.0
v 0.0 0.0 -1.0

f 2 1 5 <-- face 1 uses vertices 2, 1, 5
f 3 2 5
f 4 3 5
f 1 4 5
f 1 2 6
f 2 3 6
f 3 4 6
f 4 1 6

100 / 119

21
2D: Finite Element Applications

Although many of the file formats were developed for computer
graphics, they usually support triangular elements, and thus have the
node and element information you would need to describe a piecewise
linear finite element model on your surface.

If you wanted quadratic triangles, you might simply refine each linear
triangle by computing the locations of the nodes at the midpoint of each
side and adding these to the triangulation.

101 / 119

21
2D: Graphics

MeshLab is an open source, portable, and extensible system for the
processing and editing of unstructured triangular meshes in 3D.

MeshLab is aimed to help the processing of the typical not-so-small
unstructured models arising in 3D scanning, providing a set of tools for
editing, cleaning, healing, inspecting, rendering and converting this kind
of mesh.

MeshLab can visualize your mesh, but not your finite element solution. If
you want contours of scalars, or vector flow fields, you need to consider
working in MATLAB, or try sophisticated graphics package such as
ParaView or Visit.

http://meshlab.sourceforge.net

102 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

103 / 119

3D: Problems Are Harder, But Important

The finite element method works the same way in 3D as in 2D.

If we used triangles in 2D, it is natural to go to tetrahedrons in 3D. The
same Delaunay principles can be used to construct elements that are
good because they avoid small angles.

The elements depend on the choice of nodes, so we also need a way to
place nodes in the region, well separated, and perhaps distributed
according to a mesh density specified by the user.

The treatment of the boundary can become more difficult, since the
boundary is now a surface, rather than a curve.

We’ll hope that if we can describe the geometry and mesh density of our
region in a simple, mathematical way, that the meshing software will take
care of treating the boundary, filling the region with nodes, and
producing the elements.

104 / 119

3D: DISTMESH

One of the beautiful things about the DISTMESH approach is that the
3D problem works the same as the 2D problem.

The algorithm has the same logic: imagine a set of points in 3D. The 3D
Delaunay ”triangulation” identifies nodes that are neighbors. Assume a
force between neighbors, inversely proportional to distance. Move all the
nodes a small amount, in accordance with the forces. Nodes that move
outside the region must be pushed back into the region. Repeat until the
mesh “settles down”.

The user simply has to produce a distance computation for the 3D shape
instead of 2D. This does not have to be exact; it is easy to handle a
region that is the logical sum or difference of simple geometric shapes.

105 / 119

3D: DISTMESH

106 / 119

3D: Start with a PLY File

An alternative approach starts by describing the bounding surface and
looking for a program that will fill in the interior.

Our plan is:

Describe our bounding surface using polygons

Store this information in a file

Find a program can use the file and fill in nodes, and construct
tetrahedral elements

107 / 119

3D: Our 3D Region “LL”

Let’s take a simple region, which we might imagine is an office
building, with an L-shaped base and an L-shaped profile. Counting the
corners, we find we need 20 vertices. We subdivide the surface into 18
rectangular faces.

http://people.sc.fsu.edu/∼jburkardt/m src/xyzf display/xyzf display.html

108 / 119

3D: The PLY File

ply

format ascii 1.0

element vertex 20

property float32 x

property float32 y

property float32 z

element face 18

property list uint8 int32 vertex_index

end_header

0 0 0 <-- coordinates of node 0

1 0 0 <-- coordinates of node 1

2 0 0

0 1 0

1 1 0

2 1 0

0 2 0

1 2 0

...

0 2 3 <-- coordinates of node 19

4 0 3 4 1 <-- 4 nodes make up face 0

4 1 4 5 2 <-- 4 nodes make up face 1

4 3 6 7 4

4 8 9 12 11

...

4 14 15 19 18 <-- 4 nodes make up face 17

http://people.sc.fsu.edu/∼jburkardt/m src/xyzf display/xyzf display.html

109 / 119

3D: MESHLAB Can Display Our Data

MESHLAB can display our PLY file data:

meshlab ellell.ply

http://people.sc.fsu.edu/∼jburkardt/data/ply/ply.html 110 / 119

3D: TETGEN can “fill in” the interior mesh

tetgen is a C++ program which can generate a Delaunay tetrahedral
mesh that fills a region specified by the user.

The mesh creation command might have the form:

tetgen -p ellell.ply

The .ply format is not the only input choice to tetgen:

.mesh: medit mesh file format

.off: geomview object file format;

.ply: polygon file format/Stanford triangle format

.poly + .node: 3D version of Triangle files

.smesh: medit surface mesh file format

.stl: stereolithography

http://tetgen.berlios.de/

111 / 119

3D: TETGEN’s Output

The mesh information that tetgen creates is stored as three files:

If the input file was ellell.ply, then the mesh will be stored in:

ellell.1.node: the mesh node coordinates

ellell.1.ele: the mesh elements;

ellell.1.face: the mesh faces

The mesh can be view with tetview:

tetview ellell.1

http://tetgen.berlios.de/tetview.html

112 / 119

3D: TETGEN Can Mesh the Data

TETGEN can create the Delaunay mesh of 24 tetrahedrons and 66
triangular faces.

tetgen -pq ellell.ply

http://people.sc.fsu.edu/∼jburkardt/examples/tetgen/tetgen.html

113 / 119

3D: TETGEN Can Refine the Mesh

TETGEN can refine the Delaunay mesh to 132 tetrahedrons:

tetgen -ra0.10 ellell.1

http://people.sc.fsu.edu/∼jburkardt/examples/tetgen/tetgen.html

114 / 119

3D: TETGEN Files Used by FEM Code

The node, element and face files created by TETGEN can be read by a
user program to define the mesh for a finite element calculation.

If a quadratic mesh is desired that uses 10-node tetrahedrons, the user
can simply compute the midpoints of the six edges of each tetrahedron,
and add these points to the mesh in the appropriate way. (In fact,
TETGEN includes an option to automatically generate such a mesh,
saving the user a lot of effort.)

TETGEN can also be used as a library, which means that a running
program can add, move, or delete points, call TETGEN to update the
mesh, and then continue computing.

115 / 119

FEM Meshing

Meshing

Computer Representations

The Delaunay Triangulation

TRIANGLE

DISTMESH

MESH2D

Files and Graphics

2 1
2D Problems

3D Problems

Conclusion

116 / 119

CONCLUSION: The Whole Talk in One Slide

I have suggested that computing a good mesh for a big, interesting
region is possible, important, but too hard for the average programmer to
worry about.

There is good software available to carry out this task.

The meshing can be done in advance of the finite calculation, and the
mesh data stored as files in a simple way.

I’ve suggested some MATLAB software that is easy to use.

Since graphical output can be crucial for checking a mesh, I’ve outlined
some procedures for displaying mesh data.

117 / 119

CONCLUSION: Things I Skipped

I concentrated on the MATLAB programs distmesh and mesh2d
because they are accessible, powerful, usable, and easy to display
graphically.

The triangle program is written in C, and its graphical interface program
“showme” is somewhat difficult and awkward to use. However, a C
program that you write can access triangle as a library, which means you
can have an efficient code that generates meshes as part of a larger
calculation.

For the 3D discussion, I concentrated on tetgen simply because it was
free, included a simple graphics interface, and accepted file formats I was
familiar with. If you are interested in 3D problems, there are many more
graphics packages available, including medit, Paraview, and VisIt, and
other choices for mesh generators.

118 / 119

CONCLUSION: Your Future in Meshing

While we have encountered meshing from a finite element approach,
it’s really a fundamental operation of computational science, coming up
whenever a geometric object needs to be represented, analyzed, and
manipulated.

This means understanding meshing gives you an opening into

computer graphics, 3D animation, gaming;

computer geometry;

facial recognition;

GIS (geographic information systems);

medical scan analysis;

CAD/CAM, (computer-aided design and modeling);

3D “printers”.

In other words, while it’s possible that your future will involve working
with finite elements, it’s certain that you will be working with meshes.
Learn to love them!

119 / 119

