
Parallel Programming: OpenMP + FORTRAN

John Burkardt
Virginia Tech

..........
FSU Department of Scientific Computing

“Introduction to Scientific Computing with FORTRAN”
..........

https://people.sc.fsu.edu/∼jburkardt/presentations/. . .
openmp 2010 fsu.pdf

15 April 2010

1 / 1

Parallel Programming With OpenMP and FORTRAN

1 INTRODUCTION

2 The HELLO Example

3 The SAXPY Example

4 The COMPUTE PI Example

5 The MD Example

2 / 1

INTRO: Clock Speed Ceiling

Computer processor speeds have hit physical limits.

3 / 1

INTRO: Parallel Programming

Sequential programming assumes the commands in a program are carried
out one at a time. Sequential programs will never run faster than they
did in 2002.

Parallel programming tries to take advantage of two facts:

Many commands in a program could be carried out simultaneously

It is possible to make multiple processors available to a program.

Sequential programming languages must be extended or replaced in order
to make parallel programming possible.

4 / 1

INTRO: Extending Languages

Creating a new parallel programming language is hard. Getting people to
use it is almost impossible.

Language extensions offer a way to coax programmers and programs into
parallel programming.

OpenMP is a gentle modification to C and FORTRAN programs; a
single sequential program can include parallel portions;

MPI also works with C and FORTRAN; multiple copies of a
program cooperate

MATLAB has a Parallel Computing Toolbox from the MathWorks;
there are also a free MPI-MATLAB, and a free “multicore” toolbox.

5 / 1

INTRO: We’ll Look at OpenMP

We will look at how OpenMP can help to modify a program so it takes
advantage of extra cores (Intel Nehalem processor below).

6 / 1

Parallel Programming With OpenMP and FORTRAN

1 Introduction

2 The HELLO Example

3 The SAXPY Example

4 The COMPUTE PI Example

5 The MD Example

7 / 1

HELLO: How Things Should Work

To feel comfortable with OpenMP, it’s important to have a clear idea of
how things happen.

We’ll assume we have a quadcore computer, which means the processor
includes 4 cores or mini-CPU’s, each of which could be running a
separate program. Each core has its own memory, and there is also a
larger memory that all the cores can see.

Let’s suppose that the user’s program contains a do loop, involving 1000
iterations, and that the i-th iteration carries out some computation and
stores the result in x(i), and that these iterations could be done in any
order, or simultaneously.

8 / 1

HELLO: How Things Should Work

To modify our program and run it with OpenMP, we would need to do
the following things:

1 mark the do loop to run in parallel;

2 compile the program, indicating that we want to use OpenMP;

3 signal the number of parallel workers we want;

4 run the program in the ordinary way.

If we have used parallel programming correctly and wisely, then using 4
workers we could hope to run 4 times faster.

9 / 1

HELLO: What Goes On in the Program?

The next thing to wonder about is what is going on in the program.

A program compiled with OpenMP will begin execution in the same way
as an ordinary sequential program.

However, at some point, the program will reach a block of statements
that the user has marked as a parallel region. This parallel region
contains a number of tasks that can be carried out in parallel.

At this point, the extra parallel workers are activated, the tasks are
divided among them, and the program “waits” at the end of the block
until all the tasks have been completed. Sequential execution resumes
until another parallel region is encountered.

10 / 1

HELLO: Let’s Say Hello!

Let’s go through the steps of running a simple “Hello, World” program.

To mark a parallel region, we use comments of the form

!$omp parallel

stuff to execute in parallel
!$omp end parallel

Anything inside the parallel region will be executed by all the threads
(another name for parallel workers or processes or processors or cores).

11 / 1

HELLO: HELLO Source Code

program main

implicit none

write (*, *) ’A sequential hello to you!’

!$omp parallel

write (*, *) ’ Parallel hello’’s to you!’

!$omp end parallel

stop

end

12 / 1

HELLO: Making It Run

To make this program do its work, we do the following:

1 compile: gfortran -fopenmp hello.f90

2 environment: export OMP NUM THREADS=4

3 run: ./a.out

If you are using the Intel compiler, you would say:
ifort -openmp -parallel -fpp hello.f90

If you are using the C or T shells, you say:
setenv OMP NUM THREADS 4

13 / 1

HELLO: HELLO Output

A sequential hello to you!

Parallel hello’s to you!

Parallel hello’s to you!

Parallel hello’s to you!

Parallel hello’s to you!

14 / 1

HELLO: Helpful Functions

OpenMP provides a small number of useful functions:

omp get wtime(), wall clock time;

omp get num procs(), number of processors available;

omp get max threads(), max number of threads available;

omp get num threads(), number of threads in use;

omp get thread num(), ID for this thread;

To use these functions, you need the statement:

use omp_lib

Let’s redo HELLO, and use some of these functions.

15 / 1

HELLO: HELLO Again!

wtime = omp_get_wtime ()

write ’ Available processors: ’, omp_get_num_procs ()

write ’ Available threads ’, omp_get_max_threads ()

write ’ Threads in use ’, omp_get_num_threads ()

!$omp parallel private (id)

id = omp_get_thread_num ()

write (*, *) ’ Hello from process ’, id

if (id == 0) then

write ’ Threads in use ’, omp_get_num_threads ()

end if

!$omp end parallel

wtime = omp_get_wtime () - wtime

write ’ Wtime = ’, wtime

16 / 1

HELLO: HELLO Again Output

Available processors: 2

Available threads 2

Threads in use 1

Hello from process 0

Hello from process 1

Threads in use 2

Wtime = 0.732183E-03

17 / 1

HELLO: Private? What’s That?

There’s one item not explained in the previous example.
Why did I mark the beginning of the parallel region this way:

!$omp parallel private (id)

OpenMP is based on the idea of shared memory. That is, even though
multiple threads are operating, they are expected not to get in each
other’s way.

When variables are being computed, we have to make sure that

only one thread sets a particular variable, or

only one thread at a time sets a variable, and “puts it back” before
another thread needs it, or

if the threads can’t share the data, then each thread gets its own
private copy of the variable.

18 / 1

Parallel Programming With OpenMP and FORTRAN

1 Introduction

2 The HELLO Example

3 The SAXPY Example

4 The COMPUTE PI Example

5 The MD Example

19 / 1

SAXPY: Tasks Inside the Parallel Region

The Hello example showed us how to print the same message 4 times.
But how do we organize the workers to carry out different parts of a task?

Inside of a parallel region, you are allowed to have one or more “blocks”
of code to be executed:

!$omp parallel

PARALLEL TASK 1 (do loop on I)

PARALLEL TASK 2 (sections)

PARALLEL TASK 3 (a nested do loop on I and J)

!$omp end parallel

By default, the threads cooperate on task 1. When all are done, they
move to task 2, and so on. (There’s a “nowait” clause that can let fast
threads move on.)

20 / 1

SAXPY: The DO Directive

The do directive indicates a given loop in the parallel region should be
executed in parallel:

!$omp parallel

!$omp do

...parallelized DO loop here...
!$omp end do

..more blocks could follow...
!$omp end parallel

If the parallel region only contains a single DO loop, you can use a
shortened directive:

!$omp parallel do

...ONE parallelized DO loop here...
!$omp end parallel do

21 / 1

SAXPY: DO Example

If loops are nested, you only parallelize one index!

!$omp parallel

!$omp do

do i = 1, nedge

do j = 1, nface

This nested loop is parallel in I

end do

end do

!$omp end do

do i = 1, nedge

!$omp do

do j = 1, nface

This nested loop is parallel in J

end do

!$omp end do

end do

$omp end parallel

22 / 1

SAXPY: The SECTION Directive

Another kind of block is described by the sections directive.

It’s somewhat like a case statement. You simply have several sets of
statements to execute, and you want each set of statements to be
executed by exactly one thread.

The group is marked by sections, and each subgroup by section.

If there are more sections than threads, some threads will do several
sections.

Any extra threads will be idle.

23 / 1

SAXPY: SECTION Syntax

!$omp parallel <-- inside "parallel"

... <-- other parallel tasks

!$omp sections (nowait) <-- optional nowait

!$omp section

code for section 1

!$omp section

code for section 2

<-- more sections

could follow

!$omp end sections

... <-- other parallel tasks

!$omp end parallel

24 / 1

SAXPY: Section Example

A Fast Fourier Transform (FFT) computation often starts by computing
two tables, containing the sines and cosines of angles.

Sections could be used to set up these tables more quickly:

!$omp parallel

!$omp sections

!$omp section

call sin_table (n, s)

!$omp section

call cos_table (n, c)

!$omp end sections

!$omp end parallel

25 / 1

SAXPY: The WORKSHARE Directive

A third kind of task that can be included in a parallel region involves
particular FORTRAN commands:

array operations that use colon notation

the where statement,

the forall statement

To indicate that such an operation or block should be done in parallel, it
is marked with the workshare directive.

26 / 1

SAXPY: Workshare for Colon and WHERE

!$omp parallel

!$omp workshare

y(1:n) = a * x(1:n) + y(1:n)

!$omp end workshare

!$omp workshare

where (x(1:n) /= 0.0)

y(1:n) = log (x(1:n))

elsewhere

y(1:n) = 0.0

end where

!$omp end workshare

!$omp end parallel

27 / 1

SAXPY: Workshare for FORALL

!$omp parallel

!$omp workshare

forall (i = k+1:n, j = k+1:n)

a(i,j) = a(i,j) - a(i,k) * a(k,j)

end forall

!$omp end workshare

!$omp end parallel

(This calculation corresponds to one of the steps of Gauss elimination or
LU factorization)

28 / 1

SAXPY: OpenMP Program with DO

program main

integer i

integer, parameter :: n = 1000

double precision :: s = 123.456

double precision x(n), y(n)

call random_number (harvest = x(1:n))

call random_number (harvest = y(1:n))

!$omp parallel

!$omp do

do i = 1, n

y(i) = y(i) + s * x(i)

end do

!$omp end do

!$omp end parallel

stop

end

29 / 1

SAXPY: Program Comments

The SAXPY program can run in parallel, as long as every thread can
“see” the value of S, and can grab its desired entries of X and Y, and
can store the new value of Y without interfering with any other thread.

And all this works, and the threads “share” the variables just fine.

However, there’s one variable that cannot be shared. It’s a variable each
thread needs and modifies. It’s only needed temporarily, and its value
before and after the loop is not important, but during the loop, it makes
everything happen.

Each thread must get a private copy of the DO loop index I, so that they
have a way of keeping track of what they are doing.

By default, OpenMP automatically makes the index of the parallelized
loop a private variable. This is the second example of a private variable.
It may be time to try to understand them!

30 / 1

Parallel Programming With OpenMP and FORTRAN

1 Introduction

2 The HELLO Example

3 The SAXPY Example

4 The COMPUTE PI Example

5 The MD Example

31 / 1

PI: Data Conflicts

Sometimes OpenMP can’t parallelize a loop because of the way data is
handled.

The program might be written in such a way that the results of one
iteration are used in the next iteration.

Sometimes, this is an inherent feature of the algorithm or problem (such
as solving a differential equation) and that part of the algorithm might
never run in parallel.

But often the code can be reworded so the difficulty goes away.

32 / 1

PI: Data Conflicts

Suppose we compute a table of factorials this way:

fact(0) = 1;

do i = 1, n

fact(i) = fact(i-1) * i;

end do

Even though you might suspect this operation could take advantage of
parallelism, it cannot be done if the code is written this way! Even if we
had so many threads that we could assign each iteration to its own
thread, only one thread can begin (number 1); only when it has
computed fact(1) can thread 2 begin, and thread n has to wait

I invite you to figure out how to compute a table of N factorial values in
log(N) parallel steps!

33 / 1

PI: Which of these loops are “safe”?

do i = 2, n - 1

y(i) = (x(i) + x(i-1)) / 2 Loop #1

end do

do i = 2, n - 1

y(i) = (x(i) + x(i+1)) / 2 Loop #2

end do

do i = 2, n - 1

x(i) = (x(i) + x(i-1)) / 2 Loop #3

end do

do i = 2, n - 1

x(i) = (x(i) + x(i+1)) / 2 Loop #4

end do

34 / 1

PI: Data Conflicts

Another difficulty arises because OpenMP shares a single memory space
for multiple threads. What could go wrong with the following loop if all
variables are shared (except for i)?

do i = 1, n

t = sqrt (a(i,1)**2 + a(i,2)**2 + a(i,3)**2)

x(i) = x(i) / t

end do

The variable t is a “convenience” or “temporary” variable. Its value is
only briefly needed, but each iteration will put a different value into t. If
we only have one variable called t, then thread 1 might store a value
there, then thread 2 might store a different value, and only then might
thread 1 come back to get the (wrong) value to use in the next
statement.

35 / 1

PI: Data Conflicts

The private clause allows us to indicate that certain variables should be
stored by each thread as local, private copies. As long as OpenMP is
informed that this is what we want, the computation can proceed
correctly:

!$omp parallel private(t,i)

!$omp do

do i = 1, n

t = sqrt (a(i,1)**2 + a(i,2)**2 + a(i,3)**2)

x(i) = x(i) / t

end do

!$omp end do

!$omp end parallel

(OpenMP made i private, but we must declare t too).

36 / 1

PI: Directive Clauses

Clauses are additional information included on a directive.

Inside of a parallel region, OpenMP assumes (unless we say otherwise)
that all variables are shared, except for indices corresponding to
parallelized DO loops.

Using the private clause, we can indicate that certain variables are
actually to be stored privately by each thread. Typically, such variables
are ”temporaries” or other convenience variables whose values whose
values change from one iteration to the next, but which aren’t important
once the loop is finished.

37 / 1

PI: Sequential Code

h = 1.0 / dble (2 * n)

q = 0.0

do i = 1, n

x = h * dble (2 * i - 1)

q = q + 1.0 / (1.0 + x * x)

end do

q = 4.0 * q / dble (n)

38 / 1

PI: Another Problem!

It’s pretty clear that the convenience variable x must not be shared, but
will be fine if we make it private.

But now there’s another tricky issue. What is the status of the variable
q? It is not a temporary variable. Its value is important outside the loop.
On the other hand, just like a temporary variable, its value is altered on
every iteration, by every iteration.

The variable q is a funny kind of mixture between shared and private.
We’ll use yet one more clause for that, and explain it later!

39 / 1

PI: Directive Clauses

h = 1.0 / dble (2 * n)

q = 0.0

!$omp parallel shared (h, n) private (i, x) &

!$omp reduction (+ : q)

!$omp do

do i = 1, n

x = h * dble (2 * i - 1)

q = q + 1.0 / (1.0 + x * x)

end do

!$omp end do

!$omp end parallel

q = 4.0 * q / dble (n)

40 / 1

PI: Reduction Operations

We’ve just seen one example of a reduction operation.

These include:

the sum of the entries of a vector,

the product of the entries of a vector,

the maximum or minimum of a vector,

the Euclidean norm of a vector,

Reduction operations, if recognized, can be carried out in parallel.

The OpenMP reduction clause allows the compiler to set
up the reduction correctly and efficiently. We must name the variable,
and the type of reduction being performed. It’s almost always of type
”addition”.

41 / 1

PI: The reduction clause

Any variable which will contain the result of a reduction operation must
be identified in a reduction clause of the OpenMP directive.

Examples include:

reduction (+ : q) (we just saw this)

reduction (+ : sum1, sum2, sum3) , (several sums)

reduction (* : factorial), a product

reduction (max : pivot) , maximum value)

Inside a parallel region, every variable is exactly one of the following:
shared, private or reduction.

42 / 1

Parallel Programming With OpenMP and FORTRAN

1 Introduction

2 The HELLO Example

3 The SAXPY Example

4 The COMPUTE PI Example

5 The MD Example

43 / 1

The MD Example: A Real Computation

The MD program simulates the behavior of a box full of particles.

The user picks the number of particles, and the number of time steps.

The program gives the particles random positions and velocities for time
step 0.

In order to compute data for the next time step, it must sum up the force
on each particle from all the other particles.

This operation is completely parallelizable.

Because this is a large computation, you are much more likely to see a
speedup as you go from sequential to parallel execution.

44 / 1

The MD Example: Example Programs

Examples available at

http://people.sc.fsu.edu/∼burkardt/f src/f src.html:

fft open mp (Fourier transform)

md open mp (molecular dynamics)

mxv open mp (matrix times vector)

open mp (compute pi, dot product, hello, helmholtz)

quad open mp (estimate integral)

satisfiability open mp (seek solutions to logical formula)

sgefa open mp (Gauss elimination)

ziggurat open mp (random numbers)

45 / 1

The MD Example: References

References:

1 Chandra, Parallel Programming in OpenMP

2 Chapman, Using OpenMP

3 Petersen, Arbenz, Introduction to Parallel Programming

4 Quinn, Parallel Programming in C with MPI and OpenMP

https://computing.llnl.gov/tutorials/openMP/

46 / 1

