
Lab 4: Boundary Value Problems
MATH2071, University of Pittsburgh, Spring 2023

1 Introduction

The initial value problem for ordinary differential equations of the previous labs is only one of the two
major types of problem for ordinary differential equations. The other type is known as the “boundary value
problem” (BVP). A simple example of such a problem would describe the shape of a rope hanging between
two posts. We know the position of the endpoints, and we have a second order differential equation describing
the shape. If the two conditions were both given at the left endpoint, we’d know what to do right away. But
how do we handle this “slight” variation?

This lab is concerned with two of the most common approaches to solving BVPs as well as a combined
IVP-BVP for a partial differential equation. The discussion in this lab is limited to relatively simple ap-
proaches in a single space dimension and is intended to give the flavor of these approaches, each of which
could easily be the subject of a full semester’s course. Except for the extra credit exercise, these methods
are easily extended to two and three space dimensions.

The approaches included in this lab are the following:

� The Finite Difference method (FDM),

� The Finite Element method (FEM),

� The Method of Lines (MOL).

This lab will take four sessions.

2 Boundary Value Problems

A one-dimensional boundary value problem (BVP), is similar to an initial value problem, except that the
data we are given isn’t conveniently located at a starting point, but rather some is specified at the left end
point and some at the right. (We’re also usually thinking of the independent variable as representing space,
rather than time, in this setting).

We will be using the following problem as the illustrative example for several of the following exercises.
The clothesline BVP: A rope is stretched between two points. If the rope were weightless, or if it were

rigid, it would lie along a straight line; however, the rope has a weight and is elastic, so it sags down slightly
from its ideal linear shape. We wish to determine the curve described by the rope. We will use the variable
x to denote horizontal distance and u(x) to denote height of the rope at the point x.

Forces on a clothesline
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The equation for the curve described by the rope can be derived (this is not a proof: it is a description
of why you should believe the equation) in the following manner. Suppose that the tension in the rope is
T (a constant because the rope is in equilibrium), and consider a tiny piece of the rope of length dx, and
with mass per unit length ρ. The total mass of the differential piece of rope is ρ dx, so that the force due to
gravity is directed downward and is given by ρg dx. This piece of rope observes forces on each of its ends.
The magnitudes of these forces are equal to the tension, T , and the directions are given by the slope of the
curve at the ends of the differential piece. Hooke’s law says that the tension is proportional to the amount
of strain in the string, T = −Kdu/dx, where K is a constant of proportionality (Young’s modulus). Hence,
the equation can be written as

−K du

dx

]
right

+K
du

dx

]
left

= −ρg dx.

Dividing both sides by dx and letting dx→ 0 yields the equation

− d

dx

(
K
du

dx

)
= −ρg

. There is no reason that the “constant” of proportionality cannot change from place to place. For the sake
of definiteness, assume K varies as K(x) = 1+κx, representing a rope (or spring) whose stiffness varies from
end to end. The result is the equation

(1 + κx)u′′ + κu′ = ρg.

When κ = 0, this equation is called the “Poisson equation” and also describes the distribution of heat in a
solid bar, among other common physical problems.

For the sake of definiteness, take ρg = 0.4 and κ = 0.05, the left end of height 1 at x = 0, and the right
end height of 1.5 at x = 5. Thus, the system to be solved is

(1 + κx)u′′ + κu′ = ρg

κ = 0.05

ρg = 0.4 (1)

u(0) = 1

u(5) = 1.5

The ODE is linear. Linearity implies good things such as the existence and uniqueness of solutions.
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3 Finite Difference Method for a BVP

The “derivation” presented above for the shape of the rope is suggestive of a way to solve for the shape,
called the “finite difference method.” Assume that we have divided the interval up into N equal intervals of
width ∆x determined by N + 1 points. Denote the spatial points xn, n = 0, 1, . . . , N + 1. Approximate the
value of y(xn) by yn. Also approximate the Young’s modulus function as Kn = K(xn) = (1 + κxn).

Now, consider the nth interval as if it were the differential piece of rope mentioned in the derivation.
Using the standard finite difference approximation for a derivative, the slope of the rope at the left of the

nth interval could be approximated as (yn−yn−1)/∆x and the slope on the right of the nth interval could be
approximated as (yn+1−yn)/∆x. The difference between these is an approximation of the second derivative

y′′n ≈
yn+1 − 2yn + yn−1

∆x2
.

Along similar lines, approximate the first derivative as

y′n ≈
yn+1 − yn−1

2∆x
.

Both approximations (of y′ and y′′) have the same Taylor-series (truncation) error of O(∆x2).
Put all these together into (1) to get

(1 + κxn)
yn+1 − 2yn + yn−1

∆x2
+ κ

yn+1 − yn−1
2∆x

= ρg

and, as above, κ = 0.05 and ρg = 0.4. We can associate this equation with the solution value at yn, except
for n = 0 and n = N + 1 (do you see why?). Conveniently, those are the points at which we have boundary
conditions specified.

In particular, let us look at approximating our rope BVP at 6 points. We set up the ODE at points 1,
2, 3, and 4, and associate the boundary conditions with the n = 0 and n = 5 solution values. Note that
xn = n∆x. I also multiplied through by ∆x2 to make things look nicer:

u0 = 1

(1 + c∆x− κ∆x/2)u0 − 2(1 + κ∆x)u1 + (1 + κ∆x+ κ∆x/2)u2 = 0.4∆x2

(1 + 2c∆x− κ∆x/2)u1 − 2(1 + 2κ∆x)u2 + (1 + 2κ∆x+ κ∆x/2)u3 = 0.4∆x2 (2)

(1 + 3c∆x− κ∆x/2)u2 − 2(1 + 3κ∆x)u3 + (1 + 3κ∆x+ κ∆x/2)u4 = 0.4∆x2

(1 + 4c∆x− κ∆x/2)u3 − 2(1 + 4κ∆x)u4 + (1 + 4κ∆x+ κ∆x/2)u5 = 0.4∆x2

u5 = 1.5

Actually, in Equation (2), the quantities u0 and u5 are not really unknowns, since the boundary conditions
give their values explicitly. However, boundary conditions will not always be so simple, and it will be
convenient to treat these two quantities as unknown variables, just like the others.

u0 0 0 0 0 0 = 1
(1 + 0.5κ∆x)u0 −2(1 + κ∆x)u1 +(1 + 1.5κ∆x)u2 +0 +0 0 = 0.4∆x2

0 (1 + 1.5κ∆x)u1 −2(1 + 2κ∆x)u2 (1 + 2.5κ∆x)u3 +0 0 = 0.4∆x2

0 0 +(1 + 2.5κ∆x)u2 −2(1 + 3κ∆x)u3 +(1 + 3.5κ∆x)u4 0 = 0.4∆x2

0 0 +0 +(1 + 3.5κ∆x)u3 −2(1 + 4κ∆x)u4 (1 + 4.5κ∆x)u5 = 0.4∆x2

0 0 0 0 0 u5 = 1.5
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and this system has been formatted to suggest the matrix equation
1 0 0 0 0 0

(1 + 0.5κ∆x) −2(1 + κ∆x) (1 + 1.5κ∆x) 0 0 0
0 (1 + 1.5κ∆x) −2(1 + 2κ∆x) (1 + 2.5κ∆x) 0 0
0 0 (1 + 2.5κ∆x) −2(1 + 3κ∆x) (1 + 3.5κ∆x) 0
0 0 0 (1 + 3.5κ∆x) −2(1 + 4κ∆x) (1 + 4.5κ∆x)
0 0 0 0 0 1




u0
u1
u2
u3
u4
u5

 =


1.0
0.4∆x2

0.4∆x2

0.4∆x2

0.4∆x2

1.5


(3)

By discretizing the differential equations we have created a set of linear algebraic equations that have
the symbolic form AU = b.

4 rope bvp six points()

To set up and solve the equations (3), create a file rope bvp six points.py, which reads as follows:

def r op e bvp s i x po i n t s ( u l e f t = 1 . 0 , u r i gh t = 1 . 5 , kappa = 0 .05 , rhog = 0 .4 ) :

import numpy as np

x1 = 0 .0
x2 = 5 .0
n = 6
x = np . l i n s p a c e ( x1 , x2 , n )
dx = ( x2 − x1 ) / ( n − 1 )

A = np . array ( [ \
[ 1 , 0 , 0 , 0 , 0 , 0 ] , \
[ 1+0.5*kappa*dx , −2*(1+1*kappa*dx ) , 1+1.5*kappa*dx , 0 , 0 , 0 ] , \
[ 0 , 1+1.5*kappa*dx , −2*(1+2*kappa*dx ) , 1+2.5*kappa*dx , 0 , 0 ] , \
[ 0 , 0 , 1+2.5*kappa*dx , −2*(1+3*kappa*dx ) , 1+3.5*kappa*dx , 0 ] , \
[ 0 , 0 , 0 , 1+3.5*kappa*dx , −2*(1+4*kappa*dx ) , 1+4.5*kappa*dx ] , \
[ 0 , 0 , 0 , 0 , 0 , 1 ] ] )

b = np . array ( [ \
u l e f t , \
rhog*dx**2 , \
rhog*dx**2 , \
rhog*dx**2 , \
rhog*dx**2 , \
ur i gh t ] )

u = np . l i n a l g . s o l v e ( A, b )

return x , u

5 Exercise 1

1. Create a file exercise1.py for the following experiments. Each time you run the code, use the default
input values except where indicated, and look at the plot of the results. You only need to turn in the
plot for the default values.

2. Run the code with the default values.

3. How does your solution change if you input kappa = 0.75?

4. How does your solution change if you input rhog = 0.0?

5. How does your solution change if you input rhog = -0.4?

6. How does your solution change if you input uleft=1.0, uright=5.0?

4



6 Solving with a general value for N, the number of mesh points

If we want a more accurate and informative solution, we need to increase n, the number of mesh points.
But we do NOT want to type in the individual entries for an 11× 11 or 101× 101 matrix! The structure of
the matrix is pretty regular, so we can use a for loop to do this, if we can express the individual formulas
correctly.

We need to fill in an n× n matrix A, and the right hand side b. The first (index 0) and last (index n-1)
equations are special boundary conditions. Equations 1 through n-2 all have the same format, but are posed
at different locations in the mesh. In particular, equation i is posed at x[i], and involves only the variables
with indices i-1, i, and i+1.

7 rope bvp.py

Our code will have a rough outline as follows (note that n is now an input quantity!):

def rope bvp ( n = 6 , u l e f t = 1 . 0 , u r i gh t = 1 . 5 , kappa = 0 .05 , rhog = 0 .4 ) :

Set up x1 , x2 , x , dx

Make space for A and b

A[ 0 , 0 ] = 1
b [ 0 ] = u l e f t

Handle equat ions 1 through n−2

A[ i , i −1] =
A[ i , i ] =
A[ i , i +1] =
b [ k ] =

A[ n−1,n−1] = 1
b [ n−1] = ur i ght

Solve for u

Return x and u

The main challenge here is to figure out the formula for the matrix entries. You should look for a formula
that will work in general. We are also deliberately being somewhat vague about the Python details, because
it is time for you to get some more confidence in writing Python code.

8 Exercise 2

1. Create a file exercise2.py for the following experiments.

2. Run rope bvp() with the default arguments. You should get the exact same results that you got with
rope bvp six points().

3. If your results differ, compare the quantities A and b between the two codes. Something is probably
different.

4. If your results for n=6 look OK, then run the code again with twice the number of intervals, n=11.
Your result should look smoother.

5. Run your code with n=121. It should run quickly, and produce a smooth plot essentially like the
previous one.
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9 Lagrange piecewise basis functions

For our next topic, our mesh will use an odd number of points n, and we will organize that mesh into
m = n−1

2 subintervals. Each subinterval is bounded by two points with even index, with an odd-index point
in the middle. Here is a suggestion of this arrangement, using n = 11 points, and m = 5 subintervals:

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

[-------][------][------][------][-------]

For our next topic, we will be working with such a mesh of n points x, and we will want to create a set of
special functions φi(x), 0 ≤ i < n known as (piecewise quadratic) Lagrange basis functions. Each function
φi is a piecewise quadratic function, and for every mesh point xj , we have

φi(xj) =

{
1 i = j
0 otherwise

Note that if the index i is odd (remember, we count starting at 0!), then φi(x) is only nonzero over the single
subinterval [xi−1, xi+1]. To write it as a formula, we reason as follows:

� φi(xi−1) = 0, so φi(x) = (x− xi−1)× more

� φi(xi+1) = 0, so φi(x) = (x− xi−1)× (x− xi+1)× more

� φi(xi) = 1, so φi(x) = (x−xi−1)×(x−xi+1)
(xi−xi−1)×(xi−xi+1)

If i is even, then φi(x) has the value 1 at a point that is shared by two subintervals, and so we must
define it over subinterval [xi−2, xi] and over [xi, xi+2], using two quadratic formulas that match at xi. Using
similar reasoning as above, we have

φi(x) =


(x−xi−1)(x−xi−2)
(xi−xi−1)(xi−xi−2)

for xi−2 < x ≤ xi,
(x−xi+1)(x−xi+2)
(xi−xi+1)(xi−xi+2)

for xi < x ≤ xi+2

0 otherwise

(4)

10 lagrange basis.py

We are going to create a file which allows us to evaluate φi(x). To do this, we need as input the index i, the
node vector xn, and the points at which we want to sample the function, xs.

We have to use some tricky python commands here. You don’t need to master these commands right
now, but you should trust that they are doing what I say:

� xs = np.atleast 1d ( xs ) allows us to treat xs as a vector, even if the user only supplies a scalar.
We do this because we will be indexing xs later.

� np.nonzero allows us to index the entries of a vector where a condition is true (nonzero). In a piecewise
formula, we only apply the formula to values of xs that are in the particular interval of interest.

Here is a start at the code. You need to finish it by filling in the text where question marks appear.

def phi ( i , xn , xs ) :

import numpy as np

xs = np . a t l e a s t 1 d ( xs )
ns = len ( xs )
zs = np . z e r o s ( ns )
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i f ( ( i % 2 ) == 1 ) :

ks = np . nonzero ( ( xn [ i −1] <= xs ) & ( xs <= xn [ i +1] ) )
zs [ ks ] = ( xs [ ks ] − xn [ i −1] ) / ( xn [ i ] − xn [ i −1] ) \

* ( xs [ ks ] − xn [ i +1] ) / ( xn [ i ] − xn [ i +1] )

else :

nn = len ( xn )

i f ( 0 < i ) :
ks = np . nonzero ( ( xn [ i −2] <= xs ) & ( xs <= xn [ i ] ) )
z s [ ks ] = ( xs [ ks ] − xn [ i −2] ) / ( xn [ i ] − xn [ i −2] ) \

* ( xs [ ks ] − xn [ i −1] ) / ( xn [ i ] − xn [ i −1] )

i f ( i < nn − 1 ) :
ks = ???
zs [ ks ] = ???

return zs

Why do we have the checks 0 < i and i < nn - 1 for the case when i is even?

11 Exercise 3

� Create a file exercise3.py for the following experiments.

� Consider the interval [2, 8]. Define a mesh of n = 7 points over this interval.

� Set up an array xs of 101 points in the interval.

� Evaluate ys = φ0(xs) at each of these points, and plot (xs,ys).

� Now evaluate ys = φ1(xs) in the same way.

� Now evaluate ys = φ2(xs). This is also a basis function of even index, but unlike φ0(xs) it should now
extend over a wider range.

At each step, check that your plot seems to correspond to our definitions of even and odd piecewise quadratic
Lagrange basis functions. If not, your code may have an error and you need to find it and fix it before
proceeding.

12 Lagrange basis function derivatives

It turns out that we will also need to compute the derivatives of the piecewise quadratic Lagrange basis
functions. To do this, we will add a second definition, called phip(), to lagrange basis.py. It will look
very similar to phi(), and so the easiest thing to do is to start with a copy of that function and modify it.
All you need to do is write the formulas for the derivatives. Here is a start:

def phip ( i , xn , xs ) :

import numpy as np

xs = np . a t l e a s t 1 d ( xs )
ns = len ( xs )
zps = np . z e r o s ( ns )

i f ( ( i % 2 ) == 1 ) :

ks = np . nonzero ( ( xn [ i −1] <= xs ) & ( xs <= xn [ i +1] ) )
zps [ ks ] = 1 .0 / ( xn [ i ] − xn [ i −1] ) * ( xs [ ks ] − xn [ i +1] ) / ( xn [ i ]

− xn [ i +1] ) \
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+ ( xs [ ks ] − xn [ i −1] ) / ( xn [ i ] − xn [ i −1] ) * 1 .0 / ( xn [ i ]
− xn [ i +1] )

else :

nn = len ( xn )

i f ( 0 < i ) :
ks = ???
zps [ ks ] = ???

i f ( i < nn − 1 ) :
ks = ???
zps [ ks ] = ???

return zps

Finish the definition of phip().

13 Exercise 4

In order to have confidence in your phip() definition, we will now plot a couple of these functions. Before
you see the plot, you might ask yourself what you expect to see.

� Create a file exercise4.py for the following experiments.

� Consider the interval [2, 8]. Define a mesh of n = 7 points over this interval.

� Set up an array xs of 101 points in the interval.

� Evaluate yps = φ′0(xs) at each of these points, and plot (xs,yps).

� Now evaluate yps = φ′1(xs) in the same way.

� Now evaluate yps = φ′2(xs). This is also a basis function of even index, but unlike φ′0(xs) it should
now extend over a wider range.

You may find something slightly surprising about these plots. They may look almost discontinuous. In fact,
the actual functions are discontinuous. Can you explain this?

14 fem value()

Suppose that we use our piecewise quadratic Lagrange basis functions as building blocks, and we construct
a new function y(x) =

∑i<n
i=0 cniφi(x). If we have the values of the coefficients cn, the nodes xn, and a list

of evaluation points xs, we can easily add up a linear combination of the φi() basis functions.
Write a code fem value.py which contains the following definition:

def f em value ( cn , xn , xs ) :

from l a g r ang e ba s i s import phi
import numpy as np

nn = len ( xn )

ns = len ( xs )
ys = np . z e r o s ( ns )

for i in range ( 0 , nn ) :
ys [ j ] = ys [ j ] + ???

return ys

after you replace the question marks by the appropriate formula for the linear combination.
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15 Exercise 5

� Create file exercise5.py for this experiment.

� Assume we are interested in the interval [2,8], with nn=7 equally spaced mesh points, and a coefficient
vector cn = [ 1.0, 0.68695865, 0.42029673, 0.23631118, 0.23352226, 0.54437828, 1.5 ]. Use
your fem value() function to evaluate the finite element function ys whose coefficients are cn, at
ns=101 equally spaced points in the interval. Plot your result. It should look familiar.

� Modify your file fem value.py by adding a second definition,

def femp value ( cn , xn , xs ) :

which evaluates the derivative dy
dx of the finite element function ys. Evaluate this function at 101 points

over the interval and plot it. This should not look familiar, and parts of the plot might seem slightly
surprising at first. You should be able to explain what is happening.

Note that ys(2.0)=1.0, ys(3.0) = 0.68695865, and so on. Explain why this is not a coincidence!

16 Approximate integration

The final tool we will need in order to carry out our estimated solution of a boundary value problem allows us
to estimate integrals. In Math2070 we spent some time looking at methods for approximating q =

∫
f(x)dx,

the integral of a function over some interval. A quadrature rule supplies a set of ]ttnq points xq, and weights

wq, so that q ≈
∑i<nq

i=0 wqif(xqi).
A composite rule usually does a better job by using a set of nn mesh points xn to break the interval up

into subintervals. The j-th subinterval is [x[j],x[j+1]], but we’ll think of it as [a,b]. Then we have to
recompute the points and weights for this interval as xab, wab, estimate qab ≈

∑i<nq
i=0 wabif(xabi). and add

each of these estimates to get our final integral estimate q.
The points and weights for a Gauss quadrature using nq points are available as follows:

from numpy . polynomial . l e gendre import l e ggau s s
xq , wq = leggaus s ( nq )

We will now create a function that uses a composite Gauss quadrature rule for a function over an interval
for which we have supplied a mesh.

17 gauss quad()

Create the following file gauss quad.py, which will allow us to approximate the integral of a function func(x)

over an interval that has been meshed with mesh points xn, using a Gauss quadrature rule involving nq points.

def gauss quad ( func , xn , nq ) :

from numpy . polynomial . l e gendre import l e ggau s s
import numpy as np

xq , wq = leggaus s ( nq )

q = 0 .0
nn = len ( xn )

for i in range ( 0 , nn − 1 ) :
xab = ( xn [ i ] * ( 1 . 0 − xq ) + xn [ i +1] * ( xq + 1 .0 ) ) / 2 .0
wab = ( xn [ i +1] − xn [ i ] ) * wq / 2 .0
fab = func ( xab )
qab = np .sum ( wab * fab )
q = q + qab

9



return q

The values xq, wq are integration points and weights for the interval [-1,+1]. The integral estimate is made
by doing a separate estimate over each of the nn-1 intervals. Inside interval i, the values xab, wab are
computed for the interval [x[i],x[i+1]]. The function is evaluated at the points xab, and then added to
the integral estimate q using the weights wab.

18 Exercise 6

� Create the file exercise6.py for this experiment.

� Insert def humps(x): so that y(x) = 1
(x−0.3)2+0.01 + 1

(x−0.9)2+0.04 − 6

� Insert def humps anti(x): so that ya = 10 arctan(10(x− 0.3)) + 5 arctan(5(x− 0.9))− 6x

� Set exact = humps anti(2.0) - humps anti(0.0);

� Create a double for loop on nn and nq as follows:

� for nn = 2, 4, 8, 16, 32, define a set xn of equally spaced points over [0,2]

� for nq = 1, 2, 4, 8, 16, use gauss quad() to estimate q =
∫ 2

0
humps(x)dx.

� Print each pair of values nn, nq, and the integration error, ||q − exact||;

In some sense, the “cost” of the integral approximation is nn∗nq. There are 5 integral estimates with a cost
of 32 function evaluations. Which one does the best?

19 Integral of a finite element function

As part of the finite element method, it is necesary to compute integrals involving the product of a finite
element function f(x) =

∑j=n−1
j=0 cjφj(x) or its derivative f ′(x), multiplied by a basis function φi(x) or its

derivative φ′i(x). Before we consider a complete finite element program, then, it is worth while to see the
details of how such an integral is computed, using the tools we have developed so far.

In particular, for the example of the rope boundary value problem, we need to set up a linear system
A ∗ c = b, where c is the vector of finite element coefficients, A can be computed in two parts, A = A1 + A2,
and b is a right hand side vector. Most of the linear system components can be computed once we choose
the indices i and j:

A1i,j =

∫ 8

2

−(1 + κx)φ′j(x)φ′i(x) dx

A2i,j =

∫ 8

2

κφ′j(x)φi(x) dx

bi =

∫ 8

2

ρ g φi(x) dx

As before, the first and last rows of the linear system will be determined instead by boundary conditions.

We are going to use gauss quad() to approximate these integrals. This process was simple when the
integrand was a simple formula involving one variable, as when we were working with y=humps(x) so that
we could just write

q = gauss quad ( humps , xn , nq )

but now our integrands are more complicated. They involve a Python expression of several variables, in
which the integration must be identified. To compute A1, we might want to write:
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q = gauss quad ( −(1+ kappa * x ) * phip ( j , xn , x ) * phip ( i , xn , x ) , xn , nq )

but the integrand seems to involve variables kappa, x, j, xn, and i. We need to tell gauss quad which
variable is the free variable or integration variable. We do that with another lambda expression:

q = gauss quad ( lambda x : −(1+ kappa * x ) * phip ( j , xn , x ) * phip ( i , xn , x ) , xn , nq )

and now gauss quad() knows to integrate over x, leaving the other variables at their input values.

20 Exercise 7

� Create a file exercise7.py for this experiment.

� As before, assume that we are working on the interval [2,8], and have created meshpoints xn using nn

= 7 points.

� As before, assume kappa = 0.05, rhog = 0.4;

� Assume we have a finite element function whose coefficients are cn = [ 1.0, 0.68695865, 0.42029673,

0.23631118, 0.23352226, 0.54437828, 1.5 ].

� For the following steps, use gauss quad() with nq = 3 to estimate integrals;

� Estimate the integral A12,3, correct result is 1.766....

� Estimate the integral A22,3, correct result is 0.033...

� Estimate the integral b2, correct result is 0.222...

21 The Finite element method

Now let’s apply the finite element method to our boundary value problem. We are working on the interval
[2,8], and recall that our system is:

(1 + κx)u′′ + κu′ = ρg

κ = 0.05

ρg = 0.4 (5)

u(2.0) = 1

u(8.0) = 1.5

We will shortly be using integration, for which it is crucial that the state equation can be rewritten in what
is sometimes called “self-adjoint form”:

d

dx
((1 + κx)u′) = ρg

We have defined xn, a mesh of nn points, and our basis functions φi(x) for 0 ≤ i < nn. We want to

compute an approximate solution y(x) =
∑j<nn

j=0 cjφj(x). We plan to write a linear system A ∗ c = b that
will give us the coefficient values c. The first and last equations in this linear system specify the solution
value at the endpoints:

c0 = 1

cnn−1 = 1.5

The equations for 2 ≤ i ≤ nn − 2 will all be formed in a common way, so let’s assume we are interested in
some equation i and see how it is set up.
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1. Rewrite the original system by replacing y(x) by its finite element sum:

(1 + κx)

j<nn∑
j=0

cjφ”j(x) + κ

j<nn∑
j=0

cjφ
′
j(x) = ρg

2. Premultiply the equation by φi(x):

φi(x)

(1 + κx)

j<nn∑
j=0

cjφ”j(x) + κ

j<nn∑
j=0

cjφ
′
j(x)

 = φi(x)ρg

3. Integrate the equation over the interval:

∫ 8

2

φi(x)

(1 + κx)

j<nn∑
j=0

cjφ”j(x) + κ

j<nn∑
j=0

cjφ
′
j(x)

 dx =

∫ 8

2

φi(x)ρg dx

4. Rewrite the equation in its “self-adjoint” form:

∫ 8

2

φi(x)

 d

dx
(1 + κx)

j<nn∑
j=0

cjφ
′
j(x)

 dx =

∫ 8

2

φi(x)ρg dx

5. Use integration by parts so we don’t have to compute φ”(x). Note that boundary term is zero.

∫ 8

2

−φ′i(x)(1 + κx)

j<nn∑
j=0

cjφ
′
j(x)

 dx =

∫ 8

2

φi(x)ρg dx

6. Pull out summation to left, and cj to right:

j<nn∑
j=0

(∫ 8

2

−φ′i(x)(1 + κx)φ′j(x) dx

)
cj =

∫ 8

2

φi(x)ρg dx

7. Realize that we have the i-th equation of a linear system A ∗ c = b:

j<nn∑
j=0

Ai,jcj = bi

8. Use Gauss quadrature to evaluate the integrals Ai,0, Ai,1, ..., Ai,nn−1, bi
9. Solve the linear system.

22 Finite element program for the rope

Here is the sketch of a program to apply the finite element method to our rope BVP. We have allowed the
number of mesh points nn to be an input argument, with a default value of 7.

def e x e r c i s e 8 ( nn = 7 ) :

# Import s t u f f

# Define the problem data

# Det the mesh
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# Get a Gauss ru l e

# Create the l i n e a r system

A = np . z e r o s ( [ nn , nn ] )
b = np . z e r o s ( nn )

for i in range ( 0 , nn ) :

i f ( i == 0 ) :
A[ i , i ] = 1 .0
b [ i ] = u l e f t

e l i f ( i == nn − 1 ) :
A[ i , i ] = 1 .0
b [ i ] = ur i ght

else :
b [ i ] = gauss quad ( lambda xs : phi ( i , xn , xs ) * rhog , xn , nq )
for j in range ( 0 , nn ) :

A[ i , j ] = A[ i , j ] + gauss quad ( lambda xs : \
phip ( i , xn , xs ) * (−1.0−kappa*xs ) * phip ( j , xn , xs )

# Solve A*c=b

c = ?

# Compute the s o l u t i on curve ( xs , ys ) and p l o t i t :

xs =
ys =

return

23 Exercise 8

� Create a file exercise8.py by copying the text above, and filling in all the gaps.

� Run your program using the usual mesh of nn=7. You should expect to see a plot very similar to what
we found in exercises 1 and 5.

� The plot in exercise 1 seems crude, but your new plot should look smooth, but both plots are based
on a very crude mesh of only 6 or 7 points. What explains the difference?

Congratulations! You’ve solve a boundary value problem using the finite element method.

24 A new boundary value problem

Consider the following boundary value problem:

y” + y′ + y = x+ 1

defined over the interval [0,1], with boundary values

y [ 0 . 0 ] = y l e f t = 0 .0
y [ 1 . 0 ] = yr i gh t = 0 .0

which has the exact solution
yexact(x) = x− e(1−x)/2 sin(ωx)/ sin(ω)

with ω =
√

3/2.
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We will try to set up a finite element approach for solving this problem. It will be very similar to what
we did for the previous exercise, but now you have to set the data for this new problem, and make some
modifications to the definition of the linear system.

25 Exercise 9

� Create a file exercise9.py for this experiment with signature

def e x e r c i s e 9 ( nn = 9 ) :

� Start from a copy of exercise8.py, and try to modify it so that it solves the new boundary value
problem.

� Your computation of the Aij matrix entries will now be the sum of three terms rather than two,
involving products φ′i(x)φ′j(x), φi(x)φ′j(x) and φi(x)φj(x);

� Remember that the first term is defined after integration by parts is used;

� Use nn=9 for your grid.

� Make a plot with ns=26 sample values, showing both the finite element solution (red dots, ’ro’) and
the exact solution (blue line, ’b-’).

� For the same 26 sample values, compute and print e, the maximum absolute value of the difference
between your finite element solution and the exact solution.

26 Exercise 10

� Create a file exercise10.py for this experiment, starting from a copy of exercise9.py, with signature

def e x e r c i s e 1 0 ( nn = 9 ) :

� Turn off the plotting feature.

� Change the code so that it returns the value of e, the maximum absolute value of the difference between
your finite element solution and the exact solution at the 26 evenly spaced points.

� Define an array nn = 3, 5, 9, 17, 33, and a array e of size 5 that is initially zero.

� For 0 ≤ k < 5, compute and print e[k] = exercise10(nn[k];

� For 0 ≤ k < 4, compute and print r[k] = e[k] / e[k+1]

On each step, we are doubling the number of intervals, and thus dividing the interval size h by 2. The
behavior of r[k] tells us the corresponding divisor for the error. For a linear convergence rate, we would
expect to see r[k] approximately 2. What do we see instead, and how do you interpret it?

14


