Geometry: Triangles

Mathematical Programming with Python
https://people.sc.fsu.edu/~jburkardt/classes/math1800-2023 /geometry2/geometry2.pdf

1TV

We can compute the distance from a point to a triangle.

”Computational Geometry in 2D”

In 2D, the basic object is the triangle;

Algorithms can be found for area, containment, distance, and so on;

Triangles can be combined to form polygons;

Polygonal properties can be derived from the elemental triangles.

Given data on a rectangular mesh, graphics packages interpolate a function over triangles;

A function can be integrated over a polygon by working with elemental triangles.

Partial differential equations (PDEs) may be posed over a 2D region;

To approxzimate the PDE solution, If the region is filled with sample points, organized into
triangles, then a system of equations can be generated and solved..

1 Representing triangles

To represent a triangle in a 2D region, we need the (x,y) coordinates of its three vertices. By mathematical
convention, we also prefer that the vertices are listed in counterclockwise order. Consider the triangle #1,
with vertices A, B, C, we might define a corresponding Python array T:

t =np.array ( [ [ 4, 1], [ 8 3], [ 0, 9] 1)
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FExample triangle #1.

2 Triangle centroid

The centroid or, loosely speaking, the “center of mass”, of a triangle, is the unique point CM with the
property that any line through CM divides the triangle into two pieces of equal area.

You can locate the centroid in a drawing of a triangle very easily: Connect each edge midpoint to the opposite
vertex. All three lines intersect at the centroid.

def triangle_centroid ( t ):
import numpy as np
centroid = np.mean ( t, axis =0 )
return centroid

For our example, centroid = [ 4.0, 4.333 ].



Locating the centroid of example triangle #1.

3 Triangle side lengths

Another important property is the length of the sides. Typically, the side opposite A, B,C are labeled
BC,CA, AB. If we compute all the side lengths in an array s, our first entry, s[0], involves the side described
by the vector t[2] - t[1], and so on.

s = np.zeros ( 3 )
for i in range ( 0, 3 ):
ipl = (i+1)%3
ip2 =(i+2)%3
s[i] = np.linalg .norm ( t[ip2,:] — t[ipl,:] )

For our example, s = [ 10, 8.94, 4.47 ], so we see in particular that side c is the shortest, as the diagram
suggests.

4 Triangle angles

Another important property is the measurement of the angles. By tradition, the angles at vertices A, B, C' are

denoted by a, 3,7y respectively. While software will work in radians, we can convert to degrees by multiplying
by %.




The law of cosines for angle « says:
BC? = AB? + AC? — 2% AB x AC * cos(a)
Using the inverse cosine function, we can derive formulas for all three angles:

_ _ [AB?4 AC? - BC?
@ =cos 2% AB x AC

P <A32 + BC? — AC?)
2% AB x BC

_, (AC? + BC? — AB?

T ( 2+ AC + BC )

Assuming that the array s has already been computed to hold the side lengths, we can produce the angles
as follows:

angle = np.zeros ( 3 )
for i in range ( 0, 3 ):
ipl =(i+4+1)%3
ip2 =(i+2)%3
top = s[i]**2 4+ s[ip2]**2 — s[ipl]*x*2
bot = 2.0 % s[i] % s[ip2]
angle[i] = np.arccos ( top / bot )

5 Triangle area

For the triangle area, we will rely on Heron’s formula, where S = %(AB + BC + CA):

Area = /S (S — AB) (S — BC) (S — CA)

which we can program as

abc = 0.5 * np.sum ( s )
area = np.sqrt ( abc x ( abc — s[0] ) * ( abc — s[1] ) % ( abc — s[2] ) )

Because example triangle #1 is a right triangle, with sides of length /20 and /80, we can actually predict
in advance that the area is 1/2v/20 % 80 = 20.

6 Triangle signed area

There is a second formula, for the signed area of a triangle, which we will find useful.

Signed area = (1/2) (
+ za (yb - yo)
— b (ye — ya)
+zc(ya — yb))

The signed area can also be computed using the vector cross product. For our calculation
Signed area = (1/2)(B — A) x (C — A)

which can become a function




def triangle_signed_area ( t ):
import numpy as np
value np.cross ( t[:,1] — ¢t[:,0], t[:,2] — t[:,0] )
value 0.5 * float ( value )
return value

7 Triangle orientation

If the vertices of a triangle are given in counterclockwise order, then the signed area is the same as Heron’s
area. But if the vertices are given in clockwise order, the signed area is the negative of Heron’s area. Oddly
enough, this is a very useful fact. We can ensure counterclockwise order if we are in charge, but if we get
the vertex coordinates of a triangle from some other source, we need to verify that they are in the proper
order, and if not, reverse them.

In fact, this can be so useful that we can turn this idea into a function:

def triangle orientation ( t ):
sa = triangle_signed_area ( t )
if ( sa < 0.0 )
value = —1
else
value = +1
return value

8 Triangle contains point

Now we are ready to ask whether we can determine whether a point p is inside a triangle with vertices ¢.
This is one of those questions that would be trivial to answer from a picture; however, it’s really not obvious
how to go about training a computer program to answer it correctly. We need to find a way of answering
this question that is an algorithm, that is, computational and automatic.

We will suppose our triangle vertices are listed in counterclockwise order. Imagine then, walking from vertex
A to B, then to C and on back to A. What can we say about our left hand?

It’s always pointing into the triangle. Moreover, any point p inside the triangle will always be to our left.
And any point in the triangle will be “to the left of” the edges AB, BC, and CA.

And if a point p is not inside the triangle, what can we say? It might be to the left of one or two of the
sides, but it will always be to the right of at least one side. Now we can characterize the difference between
points inside and outside the triangle:

Theorem 1 Triangle Contains Point: A point p is inside a triangle t if, and only if, it is “to the left”
of all three sides of t.

Recall our function for the location of a point relative to a line.

def line_side ( p0, pl, q ):
import numpy as np
v0 = pl — pO
vl = q — p0
vOxvl = float ( np.cross ( vO, vl ) )
return vOxvl

For a given line from p0 to pl and a test point g, the value returned by line_side(p0,p1,q) is:




e +1if q is to the left of the line;

e 0 if q is on the line;

e -1if q is to the right of the line.
Suppose we call this function three times, to check the status of q with respect to the lines through the
segments pO—pl, p1-p2 and p2—p07?

If we test q against all three lines, with these results, where is q?7 (Note that there is something a little odd
(or even impossible) about one result.)

pO--pl pl--p2 p2--p0 Where is q7

ql +1 +1 +1
q2 -1 +1 +1
q3 +1 -1 +1
q4 +1 +1 -1
q5 +1 -1 -1
q6 -1 +1 -1
q7 -1 +1 +1
g8 -1 -1 -1

Technically, zero values are also very interesting, but unlikely computationally.

And now we know enough to be able to determine if a point is contained inside a triangle! If the point is to
the right of any one of the three sides, it is not in the triangle.

def triangle_contains_point ( t, q ):



value = True
for i in range ( 0, 3 ):
ipl=(i+4+1)%3

if ( line_side( t[i,:], t[ipl,:], q ) < 0.0 ):
value = False
break

return value

Let’s test our method using our example triangle and the points g1 = (1,2),¢2 = (2,5),¢3 = (4,4).

X Y Contains?
1.0 2.0 No
2.0 5.0 Yes
4.0 4.0 Yes

9 Triangle coordinate system

Every point p in a triangle can be represented as a linear combination of the vertices A, B, C, of the form
p=axA+BxB+~yxC

where the coefficients «, 8,y are nonnegative, and a4+ g + v = 1.

Here are the coordinates of a few special triangle points:

alpha beta gamma



A 1 0 0
B 0 1 0
C 0 0 1
AB Mid 1/2 1/2 0
BC Mid 0 1/2 1/2
CA Mid 1/2 0 1/2

Centroid 1/3 1/3 1/3

Given any point p = (z,y) in the plane, and a triangle ABC)| there is a procedure for computing «, 3, ~, and
of course, knowing these coefficients, we can easily compute p. Moreover, a point p is inside the triangle if
and only if all the coefficients are positive.

This useful system is known as the set of barycentric coordinates, and in fact corresponds to the fact that
every point in the triangle must be a convex combination of the vertices.

We will see this coordinate system in action for random sampling, and for defining quadrature rules.

def triangle_barycentric ( t, p ):

import numpy as np

A =np.zeros ([ 2, 2] )
b = np.zeros ( 2 )

A[0,0] = t[0,0] — t[2,0]
Af0,1] = t[1,0] — t[2,0]
b[0] = p[0] — t[2,0]
A[1,0] = t[0,1] — t[2,1]
Al1,1] = t[1,1] — t[2,1]
b[1] = p[1] — t[2,1]
sol

np.linalg.solve (A, b
s

)
np.array ( [ sol[0], 1

[1], 1.0 — sol[0] — sol[1] ] )
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return xsi

10 Triangle sampling

To pick a point p inside an arbitrary triangle uniformly at random, we compute the barycentric coefficients
in the following way:

def triangle_sample ( t ):
import numpy as np

rl = np.random.rand ( )
r2 = np.random.rand ( )
alpha = 1 — np.sqrt ( rl )

beta = np.sqrt( rl ) * r2

gamma = np.sqrt ( rl ) % (1 — r2 )

p = alpha * t[0,:] + beta = t[1,:] + gamma * t[2,:]
return p

Requesting 100 sample points this way produces the following results:




11  Triangle Monte Carlo method

If we can uniformly sample n points (z;,y;) in a triangle T, then we can use the Monte Carlo method to
estimate integrals, as follows:

z<n

A
:/Tf(as,y)d:rdy%Q(f = rea(T Zf i, Yi)

We can formalize this approach as a Python function:

def triangle_monte_carlo ( t, f, n ):
A = triangle_area ( t )

Q= 0.0

for i in range ( 0, n ):
p = triangle_ sample (t)
Q=Q+ f ( p[0], p[1] )
Q=(A/n) *Q

return Q

We could use this approach to estimate the integral of f(z,y) = 22 + y? over our triangle. Since we don’t
know the answer, and we don’t know an appropriate value of n, we can just experiment by increasing n and
hoping to see the results settle down.

10 856.01
100 808.75
1000 794.77

10000 807.04
100000 808.06

From these results, we might guess that I(f) ~ 808 but the results really haven’t settled down enough to be
reasonably confident.




12  Triangle quadrature rules

There are families of quadrature rules for triangles, which specify a set of n points (x;,y;) and weights w;,
and guarantee a precise answer for all polynomial integrands up to a particular degree d.

A rule which is precise for all polynomials of degree 0 < d < 1 is the 1-point centroid rule. Here, we describe
the

X y W

(1/3 1/3 1/31 [1/3 1/3 1/31 [1.01]

If we use this rule on our integral, we get the pretty crude estimate of 695.55. If we don’t know the exact
answer, then we need some other way to get some better estimates. What are our options?

13 Triangle refinement

One way to improve the estimate produced by a quadrature rule is to split the triangle up into smaller
triangles, and apply the rule over each subtriangle. Even the centroid rule rule can be improved this way.
Here is an illustration of the decomposition of our triangle:

After step 5, refinement into 25 subtriangles.
and here are the integral estimates using n subtriangles

C N Estimate

1 1 695.556
2 4 778.889
3 9 794.321
4 16 799.722
5 25 802.222
6 36 803.58

7 49 804.399
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8 64 804.931
9 81 805.295
10 100 805.556

So, it looks like, with just 100 points, the centroid rule is already converging in a regular fashion, whereas
our Monte Carlo rule was still producing significantly varying estimates.

14 Triangle rule of higher degree

Another way to improve an estimate for the integral of a function over a triangle rule is simply to find a
stronger quadrature rule. We happen to know of a six point quadrature rule for triangles, which is exact for
integrands through degree 4.

To define the rule, we need to set up some parameter values first:

0.816847572980459; b
0.108103018168070; d

0.091576213509771; u
0.445948490915965; v

0.109951743655322;
0.223381589678011;

C

Then a, b, u define the first three points and weights, and ¢, d, v the remaining three, as follows:

X y W
barycentric barycentric
[a,b,b] [Db,a, bl u
[b,a, bl [a, b,b]l u
[b,b,al] [Db,b,al] u
[c,d,d] [d, c,d]l v
[d, c,d] [c,d,d]l v
[d,d, c] [d,d, c] v

To be clear, the (x,y) coordinates of the first quadrature point are computed using [a,b,b] and [b, a,b] as
barycentric coordinates:

x[0] = a*4 + bx8 + b*0 = 4.00...
y[0] = bx1 + ax3 + bx9 = 3.36...

and their contribution to the integral estimate is u * f(«[0], y[0]). Using these six quadrature points, the rule
gets an integral estimate of 806.66... which is the exact answer, since the integrand degree is 2.

15 Triangles as building blocks

The reason for working so hard on triangles is that we will now be able to handle almost any other shape
that is polygonal, or that can be approximated by polygons. This is so because, as we shall see, we can take
polygons or general sets of points, and organize them into triangles.

Using simple methods, we can then compute area, angles, centroids, integral estimates and so on for these
polygonal structures. We will next suggest how this triangularization process can be done in a computational
fashion.
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