Computational Geometry Lab:
BARYCENTRIC COORDINATES IN TRIANGLES

John Burkardt
Information Technology Department
Virginia Tech
http://people.sc.fsu.edu/~jburkardt /presentations/cg_lab_barycentric_triangles.pdf

August 28, 2018

1 Introduction to this Lab

In this lab we investigate a natural coordinate system for triangles called the barycentric coordinate system.
The barycentric coordinate system gives us a kind of standard chart, which applies to all triangles, and allows
us to determine the positions of points independently of the particular geometry of a given triangle.

Our path to this coordinate system will identify a special reference triangle for which the standard
(z,y) coordinate system is essentially identical to the barycentric coordinate system.

We begin with some simple geometric questions, including determining whether a point lies to the left
or right of a line. If we can answer that question, we can also determine if a point lies inside or outside
a triangle. Once we are comfortable determining the (signed) distances of a point from each side of the
triangle, we will discover that the relative distances can be used to form the barycentric coordinate system.

This barycentric coordinate system, in turn, will provide the correspondence or mapping that allows us
to establish a 1-1 and onto relationship between two triangles.

The barycentric coordinate system is useful when defining the basis functions used in the finite element
method, which is the subject of a separate lab.

2 Signed Distance From a Line

In order to understand the geometry of triangles, we are going to need to take a small detour into the simple
world of points and lines. Our immediate interest is in finding a formula for the distance between a point
and a line; when we have worked out this result, we will be able to turn it into a very useful fact about
triangles.

As with triangles, we need to agree on a system for representing points and lines. It’s easy to agree that
a typical point called P can be thought of as a list of its  and y components:

P={x,y1}
and it’s reasonable to define a line L in terms of two distinct points Pa and Pb that lie on that line:
L ={Pa, Pb } = { {xa, ya}, {xb, yb} }.

Now if we are given any line L, it is easy to construct a vector D which corresponds to the direction of
the line, simply by subtracting the starting point from the endpoint:

xzD =xb— xa

yD =yb —ya



Perhaps more important is the fact that we can also construct a vector N which is perpendicular or normal
to the line:

N =ya — yb
yN =zb — za

We can now easily verify, by arithmetic, that the two direction vectors are orthogonal, by computing the dot
product of the two vectors:

D-N=xDxN +yDyN = (zb— za)(ya — yb) + (yb — ya)(zb — xa) =0

If a vector is normal to a line, then so is any (nonzero) multiple of it. To try to standardize things, let us
compute another vector n, the result of dividing N by its length. We call the result a unit normal vector :

ya —yb
n =
\/(ya —yb)2 + (xb — za)?
b — za
yn =

V/ (ya — yb)? + (xb — za)?

The unit normal vector n to a line L has the very useful property that the signed distance from any point
P to the line L is a simple vector dot product involving n and the difference between the point P and any

point on the line, such as Pa:
Signed Distance(P, L) =n - (P — Pa)

Note that the signed distance is zero if P is actually on the line, negative if P is “to the right” of the line,
and positive if P is “to the left” of the line. Here, being to the right of the line is understood by imagining
that we stand on point Pa and face in the direction of point Pb. We are looking along the line L, in the
direction specified by its two defining points. Points to our right have negative distance to the line, and
points to our left have positive distance.

We have come up with a formula that gives us both a distance and an orientation. We will find that we
can do a lot with this ideal!

3 Program #1: Point/Line Orientation

Write a program which:
e reads the definition of a line L;
e reads the definition of a point P ;
e computes D = Signed Distance(P, L);
e prints P and D.
To test your program, use the line
L1 = {{1,3}, {4,9}}

As test points P, use the sequence of values {3,3}, {3,4}, {3,5}, ...{3,10}.
Repeat your tests for the lines L2 and L3:

{{4,9}, {1,3}}
{{0,1}, {10,21}}

Lines L1, L2 and L3 all “look” like the same line, but L2 is going in the opposite direction, which affects
its orientation and hence the value of the signed distance. Do your results agree with this statement?

L2
L3



Negative distance

LI=({13 {491}

Figure 1: The Point-Line Orientation Test.

T={{4.0}.{3.4].{0,1}

Figure 2: The Point-Triangle Orientation Test for Triangle Tex4.



4 Does a Point Lie Inside a Triangle?

Because the formula for the signed distance from a point to a line is positive exactly when a point is “to the
left” of a line, we can use this formula to find out something interesting about triangles.

Suppose we ask whether a point P is inside or outside a given triangle T={a,b,c}. To answer the
question, imagine walking along the perimeter of the triangle. Suppose you walk from vertex a to vertex b,
or as we might say, along side Sab. Suppose that as you do this, you can say the point P is to the left of
the line {a,b}. Suppose that as we continue our walk, from b to ¢, and then from c back to a, we also see
that the point is to the left of the lines {b,c} and {c,a}.

Remember that we assume the vertices of our triangle are listed in counterclockwise order. Therefore,
if the point is always to our left as we walk around the triangle, it must actually be inside the triangle.
On the other hand, if it is to the right at any time, then it must lie outside. We can replace the image of
walking around the triangle by our formula which measures signed distances. If all the signed distances are
positive, the point is inside; if any one is negative, it is outside. If all the signed distances are nonnegative,
but one is zero, the point lies along a side of the triangle. If two distances are zero, the point is actually a
vertex.

Thus we have discovered a numeric formula which tells us something interesting about a geometric object.

5 Program #2: Point/Triangle Inclusion

Write a program which
e reads the definition of a triangle T={a,b,c};
e reads a point P;
e computes the signed distances from P to the lines {a,b}, {b,c} and {c,a};

e prints P, the signed distances, and the word “inside” or “outside”, depending on whether P is inside
T or not.

Use the triangle Tex4 defined by {{4,0},{3,4},{0,1}}. Use the points (1,4), (2,1), (2,3), (3,2), (3,4), (3,5),
(4,1) and (4,5) to see if your program can detect inside/outside/on. Be prepared to explain your test for
when the point is inside the triangle.

What happens when the point is on an edge, or is a vertex?

What happens if you reverse the order of the vertices of Tex4?

6 The Reference Triangle

We will find it convenient to agree on a single standard triangle called the reference triangle. The actual
definition of this triangle is simply Tref={ {1,0}, {0,1}, {0,0} }.

Consider figure 3, in which we have displayed an image of the reference triangle. This triangle can be
defined as the intersection of three half planes:

0 <z
0 <y
z+y <1

Suppose that we define a new variable z = 1 — z — y. While z and y are Cartesian coordinates, z will just
be an artificial coordinate for us. However, if we include z, our triangle definition has the nicely symmetric



c =40.1,0}

:

(15,1/3,1/3}

Figure 3: The Reference Triangle with Barycentric Gridlines

form:

0 <z
0<y
0<z

Moreover, this new variable z means that we now have an interesting coordinate system inside the triangle.
The vertical and horizontal gray lines in the figure already mark contour levels for x and y coordinates. Now
the diagonal lines do the same thing for z.

Notice that x is 0 on the left boundary, attaining its maximum value at the node a, and that in fact x
marks the distance from the left boundary. Of course y works the same way for the lower boundary and the
node b. By adding the variable z, we can use the same interpretation for the diagonal boundary and the
node c.

We can, if we wish, label points in the triangle with (z,y, z) coordinates. By doing so, we emphasize the
symmetries in the triangle. Notice that a vertex has two zero coordinates, points along the boundary have
one zero coordinate, and points in the interior have all coordinates strictly positive. The centroid has the
coordinates (%, %, %)

Moreover, the definition of the triangle can be rephrased to state that the triangle is exactly the set of
points for which all three values of the coordinates (x,y, z) are nonnegative.

This coordinate system is interesting for the reference triangle, but the remarkable thing is that we can
essentially use this same coordinate system on any triangle, by imagining a linear transformation from the
reference triangle to that triangle. A linear transformation maps lines to lines, so the grid lines on our
reference triangle will map to corresponding grid lines in a general triangle. Figure 4 shows a large yellow
triangle and the reference triangle together, and you can see how the coordinate system is preserved.

7 Barycentric Coordinates

In the reference triangle, it was easy to see what the meanings of the x and y coordinates were, and how
z could be usefully added. But in a general triangle, is there a way to define this coordinate system that
doesn’t rely on us to come up with a mapping from the reference triangle?



T={{4,1}.{3,5}.{0|12}

Tre':{{l,O’],{O,l} {0,0}}

Figure 4: Barycentric Gridlines on a General Triangle

The key to making the handy coordinate system in the reference triangle into a universal coordinate
system is to find some general property that remains true for other triangles. The contour lines should be a
clue. Instead of thinking about x as a Cartesian coordinate, think about it as the distance from the vertex a
to the opposite side {b,c}. This distance will be 1 at a and decrease linearly until the side is reached. This
is almost the right idea, but then if we looked at a triangle that was doubled in size, we’d still want the new
a vertex to have an “x” coordinate of 1.

What would work well would be to use relative distances instead of absolute ones. So in measuring the
“x” coordinate of a point, we’d compute the distance to side {b,c} as before, but then we’d divide it by the
distance of vertex a to side {b,c}. Since a is the point in the triangle that is as far as possible from {b,c},
points inside the triangle will generally have a relative distance between 0 and 1.

To get all three coordinates, of course, which correspond to our (x,y,z) coordinate system in the reference
triangle, we’d measure a point’s relative distance to the sides opposite each vertex in turn.

Since we're not in the reference triangle anymore, we can’t really call this set of coordinates (x,y,z).
Instead, we will use the names (&4, &, &), where the subscript reminds us that the first coordinate, is related
to vertex a. This system of coordinates is known as the barycentric coordinate system.

We know how to compute the distance between a point and a line, so we can write down formulas for
the barycentric coordinates of a point with respect to a triangle. These are valid whether the point is inside
or outside the triangle:

_ SignedDistance(P, {b, c})
~ SignedDistance(a, {b, c})
_ SignedDistance(P, {c,a})
* ™ SignedDistance(b, {c, a})
_ SignedDistance(P, {a, b})
be= SignedDistance(c, {a, b})

€a




8 Program #3: Barycentric Coordinates

Write a program which:
e reads the definition of a triangle t;
e reads a point P;
e computes and prints (&4, &, &c)-

Use the triangle Tex4. Test the points (1,4), (2,3), (3,2), (3,4), (3,5) and (4,5). Compare these results
with your “inside/outside/on” results. How do the barycentric coordinates tell your point is inside, on an
edge, at a vertex, or outside the triangle.

For a triangle t, the centroid t.cent is the average of the vertices. The centroid of Tex4 is (7/3,5/3).
Use this point as input to your program. What are the barycentric coordinates of this point?



