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Abstract: Model order reduction (MOR) of the 2D Burgers equation is investigated. The 
mathematical formulation of POD/DEIM reduced order model (ROM) is derived based on the Galerkin 
projection and discrete empirical interpolation method (DEIM) from the existing high fidelity implicit 
finite difference full model. For validation we numerically compared the POD ROM, POD/DEIM and 
the full model in two cases of Re = 100 and Re = 1000, respectively. We found that the POD/DEIM 
ROM leads to a speed-up of CPU time by a factor of O(10). The computational stability of POD/DEIM 
ROM is maintained by means of a careful selection of POD modes and the DEIM interpolation points. 
The solution of POD/DEIM in the case of Re = 1000 has an accuracy with error O(10−3) versus O(10
−4) in the case of Re = 100 when compared to the high fidelity model. For this turbulent flow, a closure 
model consisting of a Tikhonov regularization is carried out in order to recover the missing information 
and is developed to account for the small scale dissipation effect of the discarded POD modes. It is 
shown that the computational results of this calibrated low-order model (LOM) exhibit considerable 
agreement with the real high-fidelity model, which implies the efficiency of the  closure model used.

Keywords: 2D Burgers equation; POD/DEIM reduced order Model; Tikhonov regu-
larization; Calibration

1 Introduction

The two-dimensional Burgers’ equation is a fundamental mathematical model
from fluid mechanics which has the same convective and diffusion terms as the
Navier-Stokes equation, and is widely used in various areas as a simple model
for understanding of various physical flows and problems, such as modeling
of dynamics, the phenomena of turbulence, and flow through a shock wave
traveling in a viscous fluid and traffic flow [1, 2, and 3]. Numerical solution
of Burgers equation is a logical first step towards developing methods for the
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computation of complex flows. Burgers equation is also a useful tool for ex-
amining the robustness of numerical discretization schemes [4]. It has become
customary to test new numerical approaches in computational fluid dynamics
by implementing novel numerical approaches to the Burgers equation. So far,
many numerical solution approaches to 2D Burgers equations have been devel-
oped by scientists and engineers, such as [3,5,6,7]. In addition, its analytical
solution was also explored [8]using the Cole-Hopf transformation.

However, in the conventional numerical approach the computational cost
of these calculations becomes higher as the Reynolds number (Re) increas-
es, particularly when a smooth wave becomes a single-shock wave. Also the
cost increases as we refine the resolution of the spatial discretization mesh.
This will become more accentuated when attempting to solve a control or pde
optimization problem in a wide class of engineering applications by DNS (di-
rect numerical simulation) of the full 2D Burgers equations model due to the
requirement of quick and repeated numerical simulations[9,10,11,12], which of-
ten pose important mathematical and computational challenges in both CPU
and memory requirements.

To overcome the difficulty encountered during simulating, controlling, and
optimizing such systems, reduced-order modelling offers a possible remedy as
a powerful and feasible approach enabling a representation of the dynamics of
high-dimensional systems on a smaller number of degrees of freedom. Devel-
oping low-dimensional models for partial differential equations (PDEs) is one
of the active research topics today [13,14].

An effective technique of low-order modelling, Proper Orthogonal Decom-
position (POD) is attractive to apply [15,16], and has become one of the most
important reduced order model (ROM) methods combined with Galerkin pro-
jection, thanks to its ability to rebuild numerical signals, with a high order of
precision gained with only few POD-modes. Additionally, POD is also known
under other names such as Karhunen-Love expansions [17,18], principal com-
ponent analysis [19], empirical orthogonal functions [20], and the Hotelling
transform [21]. It is one of the most prevalent model reduction methods for
nonlinear problems [13]. Data analysis using POD is conducted in order to
extract basis functions from experimental data or detailed simulations of high-
dimensional systems for subsequent use in Galerkin projections that yield low-
dimensional dynamical models. Nevertheless, beside its efficiency, the POD
Galerkin approach still exhibits some disadvantages.

First, for models with nonlinear terms, the nonlinear reduced terms still
have to be evaluated on the original state space making the simulation of the
reduced order system computationally expensive. Presently an interpolation
technique known as discrete empirical interpolation method (DEIM) [22,23,24]
is the best candidate method that avoids this problem by using an interpola-
tion algorithm [25,26,27]. DEIM approach employs a small selected a set of
spatial grid points to avoid evaluation of the expensive inner products at ev-
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ery time step that are required to evaluate the nonlinear term and focuses on
approximating each nonlinear function so that a certain coefficient matrix can
be precomputed and, as a result, the complexity in evaluating the nonlinear
term is proportional to only a small number of selected spatial indices, thus a
considerable reduction in complexity is achieved.

Second, for the conventional POD-ROM, few modes are sufficient to perfor-
m a feasible computation and give a good representation of the kinetic energy
of the flow, however, the low-order ODE systems obtained are unstable flow
with high Reynolds number due to the discarded POD modes. This is due
to discarded small singular values through which energy dissipation occurs in
overall dynamical system [28,29]. This can bring about a lack of effectiveness
and stability of the POD-Galerkin method [30,31]. Thus robustness is still
an issue in turbulent POD-Galerkin ROM. To fix and improve the accura-
cy and stability of such POD-based reduced-order models, various calibration
methods were proposed, such as H1 Sobolev norm [14,32,and 33], eddy viscosi-
ties [34], least square or adjoint method [30,35,36,37,38]. Calibration of LOM
can enhance its performance at low computational cost, but still remains a
challenging task.

When the one-dimensional Burgers equation is considered, the correspond-
ing POD/DEIM reduced order model has been developed, and the control
problem involved was also discussed. It has been shown in [39,40,41,42] that
good results are achieved. Yet to the best of our knowledge, there are very
few results reporting the POD/DEIM reduced order modeling issues for 2D
Burgers equation, particularly in the case where the Reynolds number be-
comes large, and the question remains if the use of a proper number of DEIM
points is really beneficial for POD/DEIM CPU cost. This paper fills the gap
between very simple models and very complicated systems such as those re-
ported in [43]. The present work can be viewed as a new step towards the goal
of modeling and control of more complicated PDE systems.

The main focus of the paper is the size of the reduced order system and the
quality of approximation compared to the full-order system, as well as compu-
tational efficiency gained by using POD/DEIM in nonlinear model reduction
applications to 2D Burgers equation. Even though these are some fundamen-
tal questions related to POD, we believe that they have not been addressed in
literature related to 2D Burgers equations with large Reynolds number (Re).

The main contributions of the research presented in this paper are , first,
development of the mathematical formulation of POD/DEIM ROM based
on existing fully implicit finite difference time discretization scheme; second,
derivation of a calibrated low order ODEs system from the precomputed POD
coefficients using the Tikhonov regularization method as closure model in the
case where we deal with a large Re [44] (due to the rather demanding mem-
ory requirements, we had to restrict the turbulent case only to Re number
equal to 1000). It is expected that a reduced-order ODEs model of the two-
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dimensional Burgers equation can yield a decrease in both the memory storage
requirements and the CPU time.

The rest of this paper is organized as follows. Section II provides the
construction process of the POD/DEIM reduced order model of 2D Burger-
s equation, including: description of two-dimensional Burgers equation and
fully implicit finite difference scheme in section 2.1, and the corresponding
Newton iteration method in section 2.2, the POD ROM of 2D Burgers equa-
tion and Galerkin projection are presented in section 2.3, as well as discrete
empirical interpolation method (DEIM) dealing with the nonlinear functions
arising from the nonlinear advection terms in the 2-D Burgers model in sec-
tion 2.4, while in section 2.5, numerical experiments are performed to verify
and validate the POD/DEIM ROM in the case of Re = 100 and Re = 1000,
respectively. Special care needs to be taken to find the reduced basis and to
choose DEIM interpolation points. In Section 3, a calibrated LOM based on
Tikhonov regularization method serving as a closure model is developed for
turbulent flow (Re = 1000). Concluding remarks are provided at the end of
the paper, and an Appendix providing a simple introduction to the discrete
Picard condition is added for better presentation of the regularization closure
model.

2 POD/DEIM reduced order model of

2D Burgers equation

Considering the construction of POD or POD/DEIM ROM, some important details 
about the f ully implicit finite difference scheme and its Newton iteration solution 
method are stressed here, and presented in sections 2.1 and 2.2, respectively.

2.1 Full-order Model of 2D Burgers equation

We consider a two-dimensional nonlinear viscous Burgers equations like this
(called Full Model):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re
(
∂2u

∂x2
+
∂2u

∂y2
), (2.1.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

Re
(
∂2v

∂x2
+
∂2v

∂y2
), (2.1.1b)

(x, y) ∈ Ω = (a, b)× (c, d), t ∈ (0, T )

subject to the boundary conditions

u(a, y, t) = gu1(y, t); u(b, y, t) = gu2(y, t);
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u(x, c, t) = gu3(x, t); u(x, d, t) = gu4(x, t); (2.1.2a)

v(a, y, t) = gv1(y, t); v(b, y, t) = gv2(y, t);

v(x, c, t) = gv3(x, t); v(x, d, t) = gv4(x, t); (2.1.2b)

and the initial conditions

u(x, y, t)|t=0 = φ(x, y), (2.1.2c)

v(x, y, t)|t=0 = ψ(x, y), (x, y) ∈ Ω (2.1.2d)

where Re is the Reynolds number, and the u(x, y, t) and v(x, y, t)represent the
velocity components, respectively. When 2D spatial computational domain Ω
is divided uniformly into nx − 1 and ny − 1 subintervals in x and y direction,
respectively. It is assumed that the discrete functions are defined on an nx×ny

-grids in space domain Ω = [a, b] × [c, d] . The following notation will be
used: xj = jdx, yi = idy, uij = u(xi, yj, t), vij = v(xi, yj, t) . Here dx =
b−a
nx−1

, dy = d−c
ny−1

. Then the centered-difference scheme corresponding to the

first- or second-order derivatives in space will eventually result in the following
form of 2D Burgers equation[3]:

dui,j
dt

+
ui+1,j − ui−1,j

2dx
ui,j +

ui,j+1 − ui,j−1

2dy
vi,j =

1

Redx2
(ui+1,j − 2ui,j + ui−1,j) +

1

Redy2
(ui,j+1 − 2ui,j + ui,j−1) (2.1.3a)

dvi,j
dt

+
vi+1,j − vi−1,j

2dx
ui,j +

ui,j+1 − vi,j−1

2dy
vi,j =

1

Redx2
(vi+1,j − 2vi,j + vi−1,j) +

1

Redy2
(vi,j+1 − 2vi,j + vi,j−1) (2.1.3b)

which can be cast in matrix form as follows:

dU

dt
+ f1(U, V )− 1

2dx
BulU − 1

2dy
BubV =

1

Redx2
(D1U + b1u) +

1

Redy2
(D2U + b2u) (2.1.4a)

dV

dt
+ f2(U, V )− 1

2dx
BvlU − 1

2dy
BvbV =

1

Redx2
(D1V + b1v) +

1

Redy2
(D2V + b2v) (2.1.4b)

where

U = (u1,1, u2,1, · · · , un,1, u1,2, · · · , un,2, · · · , u1,n, · · · , un,n)T
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V = (v1,1, v2,1, · · · , vn,1, v1,2, · · · , vn,2, · · · , v1,n, · · · , vn,n)T

hereafter, the superscript ‘T ’ stands for transpose. Let nxy = (nx−2)×(ny−2)
, two maps f1, f2 : R

nxy ×Rnxy → Rnxy are then defined as follows:

f1(U, V ) =
1

2dx
MU. ∗ U +

1

2dy
NU. ∗ V, (2.1.5a)

f2(U, V ) =
1

2dx
MV. ∗ U +

1

2dy
NV. ∗ V, (2.1.5b)

and M =

M1

. . .

M1


(ny−2)×(ny−2)

, M1 =

 0 1

−1
. . . 1
−1 0


(nx−2)×(nx−2)

with ‘.∗’ denoting componentwise multiplication as used in Matlab; theBul,Bub,b1u
and b2uare related to the boundary conditions, which are denoted by

Bul = diag(kron(u(1, 2 : ny − 1), [1, 0, 0, · · · , 0]1×(nx−2))),

Bub = diag(kron([1, 0, 0, · · · , 0]1×(ny−2), u(2 : nx − 1, 1)),

b1u = (u1,2, 0, · · · , 0, u5,2, u1,3, 0, · · · , u5,4)T ,

b2u = [u(2 : nx − 1, 1)T , 0, · · · , 0, u(2 : nx − 1, 5)T ]T ,

D1 =

D11

. . .

D11


(ny−2)×(ny−2)

, D2 =

−2E(nx−2)×(nx−2) E

E
. . . E
E −2E


(ny−2)×(ny−2)

D11 =

−2 1

1
. . . 1
1


(nx−2)×(nx−2)

, N =

 E

−E . . .

−E E


where E is (ny − 2)-by-(ny − 2) the identity matrix, and ‘kron’ is a Matlab
function which means that K = kron(A,B) returns the Kronecker tensor
product of A and B. Note that Bvl,Bvb,b1v and b2v are not mentioned here due
to their same expression with Bul,Bub,b1u and b2u.

2.2 Newton method of Full-order Model

Equations (2.1.4a,b) is just a semi-discretized system (ODEs) of equation-
s (2.1.1a,b). The numerical solution of its can be accomplished by one of
the known procedure from the differentiation equation such as Runge-Kutta
method etc.. However, when backward Euler scheme in time is performed,
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hopefully and practically, there is another way that Newton method is em-
ployed [45]. This method converges fast with each subsequent convergence
error proportional to the square of its predecessor provided we have a good
initial guess. In a time-stepping context, a good guess is always available,
that is, the value at the end of the last step. Discretizing the time inter-
val [0, T ] into nt =

T
dt

equal segments, according to the expression of model
(2.1.4a,b), we introduce two maps F1, F2 : Rnxy × Rnxy → Rnxy to define the
relation as follows for the purpose of carrying out the Newton iteration for
Un+1 = U(tn), V

n+1 = V (tn) :

F1(U
n+1, V n+1) = 0; (2.2.1a)

F2(U
n+1, V n+1) = 0; (2.2.1b)

where tn = ndt, and the F1 and F2 are represented by

F1(U
n+1, V n+1) = Un+1 − Un + dtf1(U

n+1, V n+1)− dt

2dx
BulU

n+1−

dt

2dy
BubV

n+1 − dt

Redx2
(D1U

n+1 + b1u)−
dt

Redy2
(D2U

n+1 + b2u); (2.2.2a)

F2(U
n+1, V n+1) = V n+1 − V n + dtf2(U

n+1, V n+1)− dt

2dx
BvlU

n+1−

dt

2dy
BvbV

n+1 − dt

Redx2
(D1V

n+1 + b1v)−
dt

Redy2
(D2V

n+1 + b2v) (2.2.2b)

Thus a linear system of algebraic equation can be derived due to the Taylor
series expansion at the k iteration,

Jk

(
δUn+1

k

δV n+1
k

)
= −

(
F1

F2

)k

(2.2.3)

The coefficient matrix is the Jacobian, which is expressed as

J =

(
F1u F1v

F2u F2v

)
(2.2.4)

where

F1u =
∂F1

∂Un+1
= E + dt(

∂f1
∂Un+1

− 1

2dx
Bul )−

dt

Redx2
D1 −

dt

Redy2
D2; (2.2.5)

F1v =
∂F1

∂V n+1
= dt(

∂f1
∂V n+1

− 1

2dy
Bub); (2.2.6)

F2u =
∂F2

∂Un+1
= dt(

∂f2
∂Un+1

− 1

2dx
Bvb); (2.2.7)
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F2v =
∂F1

∂V n+1
= E + dt(

∂f2
∂V n+1

− 1

2dy
Bvb)−

dt

Redx2
D1 −

dt

Redy2
D2; (2.2.8)

while ∂f1
∂Un+1 ,

∂f1
∂V n+1 ,

∂f2
∂Un+1 and ∂f2

∂V n+1 are such that

∂f1
∂Un+1

=
1

2dx
(diag(MUn+1) + diag(Un+1)M) +

1

2dy
diag(V n+1)N ; (2.2.9)

∂f1
∂V n+1

=
1

2dy
diag(NUn+1); (2.2.10)

∂f2
∂Un+1

=
1

2dx
diag(MV n+1); (2.2.11)

∂f2
∂V n+1

=
1

2dx
diag(Un+1)M +

1

2dy
(diag(NV n+1) + diag(V n+1)N). (2.2.12)

By solving equations (2.2.3), the (Un+1
k , V n+1

k )T can be updated like this(
Un+1
k+1

V n+1
k+1

)
=

(
Un+1
k

V n+1
k

)
+

(
δUn+1

k

δV n+1
k

)
(2.2.13)

Check if the following conditions are satisfied, or continue the iterative
process above. ∥∥∥∥(δUn+1

k

δV n+1
k

)∥∥∥∥ < tol, or
∥∥F (Un+1

k+1 )
∥∥ < tol, (2.2.14)

The tol can be used as a stopping criteria. In the present work, we let tol =
10−6. And the solution Un and V n of model (2.2.1a,b) are denoted as Ufull

and Vfull, respectively.

2.3 POD Reduced-order Burgers Equation and Galerkin
Projection

POD can be seen as one of the most popular model reduction techniques
or as a method for data representation that has been used in data analysis,
pattern recognition, optimal control and inverse problem. POD provides a
method for finding the best approximating subspace to a given set of data.
Originally POD was used as a data represention technique. For model re-
duction of dynamical systems, POD may be used on data points obtained
from system trajectories obtained via experiments, numerical simulations, or
analytical derivations. For more details, Please see [46]. The POD method
has been widely discussed in literature during the last decades, and is stil-
l a very active field of research [13,14,15,16,22,23]. The main advantage of
POD lies in the fact that it requires only standard matrix computation. In
combination with Galerkin projection, it provides a powerful tool to obtain
low-dimensional models of high-dimensional systems. It is well known that
in a finite-dimensional space or in Euclidean space, the POD model order
reduction method can be accomplished by SVD or EVD technique.
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2.3.1 Snapshot collection and POD basis

As far as the calculation of the POD modes is concerned, let us first give
the model variables solution Ψ = [Ψk(x, tk)] ∈ Rnxy×nk (e.g. either one of
the velocity components u, v ) to form a set of snapshots sampled at the
defined checkpoints during the numerical simulation at equally distributed
time instances tn1 , tn2 , · · · , tnk

, where nk is the number of snapshots. Due to
possible linear dependence, the snapshots themselves are not suitable for use
as a basis. At this time, singular value decomposition (SVD) for Ψ ∈ Rnxy×nk ,
eigenvalue decomposition for ΨΨT ∈ Rnxy×nxy or eigenvalue decomposition for
ΨTΨ ∈ Rnk×nk are used to derive the so-called POD basis. In this work, the
POD basis vectors for u, v are built from the snapshots of the solution for
each variable separately. Here we present only the construction of the POD
basis corresponding to u as a similar procedure is used to determine the POD
basis for v. When taking into account that nk ≪ nxy, we choose to construct
the POD basis matrix Φu = [Φi

u, i = 1, 2, · · · ,m1] ∈ Rnxy×m1 by solving the
eigenvalue problem

ΨTΨûi = λiûi, i = 1, 2, · · · , nk (2.3.1)

and we can choose an orthogonal basis of eigenvectors{û1, û2, · · · , ûm1} cor-
responding to the m1 largest eigenvalue, then POD modes of velocity u are
given by Φi

u = 1√
λi
Ψûi. Similarly, let Φv ∈ Rnxy×m2 be the POD basis matrix

of velocity component v. Although these POD modes provide an optimal rep-
resentation of the snapshot matrix, some information is inevitably lost. This
loss of information can be qualified by the following ratio,

I(m) =

∑m
i=1 λi∑nk

i=1 λi
(2.3.2)

through which one defines a relative information content to choose a low-
dimensional basis of size M ≪ nk by neglecting modes corresponding to the
small eigenvalues. We can choose M such that M = argmin{I(m) : I(m) ≥
γ0}, where 0 ≤ γ0 ≤ 1 is the percentage of total information captured by the
reduced space span{Φu}. The tolerance γ0 must be chosen to be near the
unity in order to capture most of the energy of the snapshot basis.

2.3.2 Construction of POD-ROM of 2D Burgers’ Equation with
Galerkin Projection

To get a reduced order POD model, we use the POD bases obtained above to
approximate U ,V as following way:

U(tn) ≈ Φuα(tn), V (tn) ≈ Φvβ(tn), (2.3.3)

where α(tn) ∈ Rm1 , β(tn) ∈ Rm2 . Plugging the equations (2.3.3) in the equa-
tions (2.1.4) and multiplying the equation (2.1.4a) and (2.1.4b) by Φu and Φv,
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respectively, we can have the POD reduced order model (POD ROM)

dα

dt
+ fPOD

1 (α, β)− 1

2dx
BPOD

ul α− 1

2dy
BPOD

ub β =

1

Redx2
(DPOD

11 α + bPOD
1u ) +

1

Redy2
(DPOD

12 α+ bPOD
2u ) (2.3.4a)

dβ

dt
+ fPOD

2 (α, β)− 1

2dx
BPOD

vl α− 1

2dy
BPOD

vb β =

1

Redx2
(DPOD

21 β + bPOD
1v ) +

1

Redy2
(DPOD

22 β + bPOD
2v ) (2.3.4b)

where

fPOD
1 (α, β) = ΦT

uf1(Φuα,Φvβ), f
POD
2 (α, β) = ΦT

v f2(Φuα,Φvβ), (2.3.5)

DPOD
11 = ΦT

uD1Φu, D
POD
12 = ΦT

uD2Φu, D
POD
11 = ΦT

vD1Φv, D
POD
12 = ΦT

vD2Φv,

BPOD
ul = ΦT

uBulΦu, B
POD
ub = ΦT

uBubΦv, b
POD
1u = ΦT

u b1u, b
POD
2u = ΦT

u b2u,

BPOD
vl = ΦT

vBvlΦu, B
POD
vb = ΦT

vBubΦv, b
POD
1v = ΦT

v b1v, b
POD
2u = ΦT

v b2v,

All the matrix-matrix multiplications are calculated in an offline-phase. It can
be seen that the equations (2.3.4) have the same form as the equations (2.1.4).
For comparison purpose, the Newton iteration method is still adopted. But
the gradients of nonlinear functions with respect to α, β will be changed as
follows:

∂fPOD
1

∂α
= ΦT

u

1

2dx
[diag(Φuα)MΦu+

diag(MΦuα)Φu] + ΦT
u

1

2dy
diag(Φvβ)NΦu, (2.3.6)

∂fPOD
1

∂β
= ΦT

u

1

2dy
diag(NΦuα)Φv, (2.3.7)

∂fPOD
2

∂β
= ΦT

v

1

2dx
diag(Φuα)MΦv+

ΦT
v

1

2dy
[diag(NΦvβ)Φv + diag(Φvβ)NΦv], (2.3.8)

∂fPOD
2

∂α
= ΦT

v

1

2dx
diag(MΦvβ)Φu. (2.3.9)

A POD reduced order model has been constructed above. It is necessary
to note that the nonlinear functions (2.3.5) have to be evaluated online which
means that the computational complexity of the reduced order model still
depends on the number of unknowns of the Full Model which may cause
the POD ROM to be inefficient. To overcome this problem, the subsequent
consideration is the application of Discrete Empirical Interpolation Method
(DEIM) to the nonlinear functions (2.3.5).
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2.4 The Acceleration of POD-ROM Based on Applica-
tion of DEIM Approach

Let us now describe briefly the process of application of DEIM. Similar to
the building of POD basis Φu and Φv, the snapshots of f1(U, V ) and f2(U, V )
are first collected at time instances tk ∈ {t1, · · · , tl} ⊂ [0, T ], then the DEIM
approximates the projected functions (2.3.5)such that

fPOD
1 ≃ ΦT

uΞf1(P
T
1 Ξf1)

−1︸ ︷︷ ︸
Ξf1

P T
1 f1(Φuα,Φvβ)︸ ︷︷ ︸

f̃1(α,β)

, (2.4.1)

fPOD
2 ≃ ΦT

v Ξf2(P
T
2 Ξf2)

−1︸ ︷︷ ︸
Ξf2

P T
2 f1(Φuα,Φvβ)︸ ︷︷ ︸

f̃2(α,β)

(2.4.2)

where Ξfi ∈ Rnxy×τi , i = 1, 2 contains the first τi POD basis of the space
spanned by the snapshots {fi(U(tk), V (tk)), i = 1, 2; k = 1, 2, · · · , nk} associ-
ated with the largest eigenvalues (or singular values). And the selection matrix
Pi = [eρ1 , · · · , eρτi ] ∈ Rnxy×τi , i = 1, 2, selects the rows of fi corresponding to
the DEIM indices ρ1, · · · , ρτi which are obtained by the greedy algorithm, see
[25] for details. By using the fact that f̃1, f̃1 are pointwise, we can calculate
them as

f̃1(α, β) :=
1

2dx
P T
1 MΦuα. ∗ (P T

1 Φuα) +
1

2dy
P T
1 NΦuα. ∗ (P T

1 Φvβ), (2.4.3a)

f̃2(α, β) :=
1

2dx
P T
2 MΦvβ. ∗ (P T

2 Φuα) +
1

2dy
P T
2 NΦvβ. ∗ (P T

2 Φvβ), (2.4.3b)

Finally, the POD/DEIM ROM is of the form:

dα

dt
+ Ξf1 f̃1(α, β)−

1

2dx
BPOD

ul α− 1

2dy
BPOD

ub β =

1

Redx2
(DPOD

11 α + bPOD
1u ) +

1

Redy2
(DPOD

12 α+ bPOD
2u ) (2.4.4a)

dβ

dt
+ Ξf2 f̃2(α, β)−

1

2dx
BPOD

vl α− 1

2dy
BPOD

vb β =

1

Redx2
(DPOD

21 β + bPOD
1v ) +

1

Redy2
(DPOD

22 β + bPOD
2v ) (2.4.4b)

We see from the equations (2.4.3a,b) that a substantial reduction in compu-
tational cost can be expected due to their dependence only on dimensions τi
instead of the original dimensions nxy.
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2.5 The Validation of POD/DEIM ROM

In this section we will provide numerical experiments and aim at illustrating
the accuracy and efficiency of the POD/DEIM. For the Full Model, POD
ROM and POD/DEIM ROM, as ODEs, the implicit Euler scheme was
used. The resulting nonlinear algebraic system of equations is all solved by
Newton-iteration method. The computational domain is taken as Ω = [0, 1]×
[0, 1], T is set as T = 1. The number of the spatial grid points is taken to be
nx × ny = 60 × 60, with nt = 250 in the case of Re = 100, and nx × ny =
200 × 200, with nt = 1000 in the case of Re = 1000. The initial conditions
(ICs) and boundary conditions (BCs) related to u(x, y, t) and v(x, y, t) are
derived directly from the exact traveling wave solution of 2D Burgers equations
[8].

u(x, y, t) =
3

4
− 1

4[1 + exp((−4x+ 4y − t)Re/32)]
(2.5.1a)

v(x, y, t) =
3

4
+

1

4[1 + exp((−4x+ 4y − t)Re/32)]
(2.5.1b)

To assess how well our reduced order model (ROM)approximates the full
model, we use the root mean square error (RMSE) and the correlation coef-
ficients Corr to measure the difference between POD or POD/DEIM ROM
velocity solution and the Full Model solutions at the time level n

RMSEn =

√∑N
i=1(U

n
i − Un

0,i)
2

N
(2.5.2)

Corr(U,U0)
n =

E(Un − µU)(U
n
0 − µUn

0
)

σUnσUn
0

(2.5.3)

where µU , and µU0 are the given expected value and the standard deviations
σU , and σU0 . In addition, the average relative error (E)[13] are also provided
in the analysis. Its computational formula is defined as

Eu =
1

nt

nt∑
i=1

∥UFull(:, i)− UPOD/DEIM(:, i)∥2
∥UFull(:, i)∥2

(2.5.4)

2.5.1 Case of Re = 100

The POD basis is constructed using 125 snapshots obtained from the nu-
merical solution of the full-order fully implicit finite difference scheme of 2D 
Burgers equation at equally spaced time steps for time interval[0, T ]. Figure 1 
shows the decay around the eigenvalues of the snapshot solutions for u,v and 
nonlinear snapshots of f1, f2. The dimension of the POD basis for u,v was tak-
en to be 5, respectively, capturing more than 99.8% (Iu(m) = Iv(m) > 0.998) of 
the system energy. The DEIM approach is used to improve the efficiency

12



of the POD ROM, and achieves a complexity reduction of the nonlinear terms
due to the first 50 spacial interpolation points selected from the DEIM ap-
proach using the POD bases of f1 and f2 as inputs. For the distribution, see
Figure 2. As for the selection of 50 DEIM interpolation points, it is only based
on results shown in Table 1, and other particular consideration is not involved
here.
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Figure 1: Eigenvalues of solution snapshots and nonlinear function
snapshots(Re = 100)

Table 1. Comparisons of the CPU time and the average rela-

tive errors of POD5/DEIM ROM at different number of DEIM

interpolation points for a 60× 60 spatial mesh discretization.

DEIM points 10 30 50 60 70 80
Cpu time 1.5706 1.5559 1.4812 1.5355 1.5850 1.6057
Eu(×10−5) 1.6141 1.5883 1.6219 1.6214 1.6279 1.6472

From the Table 2, it is observed that the POD ROM fails to decrease com-
plexity since the dependence of nonlinear terms on the size nxy of the original
full-order model. While the POD/DEIM 50-ROM is shown to be very effective
in overcoming the deficiencies of POD, being faster than the POD ROM and
high fidelity model by a factor of 10 mainly due to the DEIM computation of
nonlinear functions f1, f2 on the selected 50 DEIM interpolation points, see
figure 2.
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Table 2. Comparisons of the CPU time between the Full-
Model, the POD-ROM and the POD5/DEIM 50-ROM for a
250 time step integration window (with time step size 0.004) in
spatial domain Ω = [0, 1]× [0, 1].

Meshgrids Full-Model POD-ROM POD/DEIM50-ROM

30× 30 3.3465 2.3481 1.0890

60× 60 12.5944 6.7459 1.4812

90× 90 32.5888 13.3619 2.2287

120× 120 58.0337 31.6470 3.4297

150× 150 96.9749 66.0908 6.9015

200× 200 172.7232 149.9842 11.8085
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Figure 2: First 50 DEIM interpolation points for nonlinear function
f1 (Re = 100)

We see from  Figure 3 that the solutions u of POD/DEIM50 ROM at time 
steps nt = 10, 100, 200 are very close to those of Full Model. And the good 
RMSE at different time is also observed in Figure 4. In addition, the correlation 
of u between POD/DEIM50 ROM and Full Model is provided in Figure 5, 
which is very close to 1.

Next we carry out a second experiment to test the performance of POD/DEIM
ROM in the case of Re = 1000,(turbulent flow).
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Figure 3: Comparison of u between Full Model and POD5/DEIM50 ROM at
nt=10,100 and 200 in the case of Re = 100.

2.5.2 Case of Re = 1000 (turbulent case)

To further demonstrate the capability of the POD/DEIM, the Reynolds num-
ber is then increased to Re = 1000, which leads to appearance of shock wave,
and a sharp front can be observed in Figure 7. This is of interest as it fre-
quently occurs in practical engineering applications. In this case, adding the
spatial grid points and shrinking the time step size is required to maintain
stability of the computation. In the current case, let the spatial grid points
mesh be 200 × 200, and the time step size is 0.001. Though I = 99.8%, we
find that additional number of POD bases are chosen, and DEIM interpolation
points need also to be increased according to the requirement of our compu-
tation. Considering a good compromise between accuracy and computational
time in Tables 3,4, we take the number of POD modes and DEIM points as
15 and 250, respectively. From Table 3 , we see that the POD ROM hard-
ly reduces the computational time (CPU time) in comparison with the Full
Model whose CPU time is 814.6910, whereas the POD15/DEIM250 still keeps
the advantage with the computational time reduced by factor of O(10), see
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Figure 5: Correlation of u between Full Model and POD15/DEIM250
ROM at each time nt, (Re = 100)

Table 4. It implies that the POD scheme is not able to really reduce the com-
putational complexity for nonlinear systems but on the contrary, it increases
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sometimes the computational cost in some sense. In addition, we also provide
a comparison of u(x, y, t) between the full model and POD15/DEIM250 at
different model times nt = 100, 600, 1000, respectively, which illustrate that
the POD/DEIM is applicable to the case of large Re, see Figure 7.

Table 3. The CPU time and the average relative errors of

POD ROM at different modes for a 200 × 200 spatial mesh

discretization (Re = 1000).

POD MODEs 10 11 12 13 14 15
Cpu time 570.4287 630.7205 694.3305 767.7129 852.4420 927.2546
Eu(×10−4) 28.000 21.000 15.000 11.000 8.2051 6.0803

Table 4. The CPU time and the average relative errors

of POD15/DEIM ROM at different number of DEIM inter-

polation points for a 200 × 200 spatial mesh discretization

(Re = 1000).

DEIM points 200 230 250
Cpu time 75.5601 73.8339 73.5964
Eu(×10−4) 10.000 7.2978 8.4108
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Figure 6: Eigenvalues of solution snapshots and nonlinear function
snapshots (Re = 1000)

Through the comparison between the cases of Re = 100 and Re = 1000,
we can find:
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Figure 7: Comparison of u between Full Model and POD15/DEIM250 ROM
at nt=100,600 and 1000 in the case of Re = 1000.

(1). the POD/DEIM ROM can retain the same reduction of computational
time by factor of O(10). The computational stability of POD/DEIM ROM
is kept by means of the careful selection of the finite POD modes and DEIM
interpolation points. The solution of POD/DEIM in the case of Re = 1000
has accuracy with error O(10−3) versus O(10−4) in the case of Re = 100 due
to the additional energy distributed on the neglected POD state modes and
POD nonlinear modes used for DEIM;

(2). the numerical experiment reminds us that more points are beneficial
when determining the DEIM interpolation points. As for the optimal selec-
tion of POD modes, it is not sufficient to depend only on equation (2.3.2)
since slower decaying of eigenvalue spectrum for large Re can be observed by
comparing Figure 1 with Figure 6. It suggests that a modest number of POD
modes are required for a computational result with higher accuracy. Certain-
ly, this will inevitably increase the computational burden. How to provide an
optimal truncation of POD modes remains an open problem [28].

(3). When the number of POD modes is increased up to 15, some spurious
oscillations can  be found near the steepened front, see Figure 7, due to the
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truncation of POD modes and DEIM interpolation of nonlinear term, which
cannot be neglected for a longer time integration interval. This leads us to 
consider recovery of the lost information by calibrating the evolutionary
coefficients.

2.6 Calibration using Tikhonov regularization

From above, we see that low-order modeling indeed provides a way to simplify
the 2D Burgers equation into a minimal set of ordinary differential equations
(ODEs). However, as pointed out in [30,37], there still exists a major barrier for
POD Galerkin approach at high Reynolds numbers due to lack of  turbulence 
closure. As carefully explained in [28], for realistic turbulent flows, the high
index POD modes that are not included in the POD-ROM Galerkin do have
a significant effect on the dynamics of the POD-ROM. We will deal with it
using a closure model consisting of Tikhonov regularization to account for the
small scale dissipation effect of the discarded POD modes. (As recently used
in [37]). So it is first assumed that the calibrated ROM can be expressed as
follows:

ȧ(t) = f(y, a(t)) (2.6.1)

where y represents polynomial coefficients, Ny is denoted as the number of
components of y that is equal to [N0(constant terms)+N1 (linear terms)+N2

(quadratic terms)], while a(t) = (a1(t), a2(t), · · · , am(t)), f(y, a(t)) = C +
La(t) + Ha(t). ∗ (Qa(t))) where C,L,H, and Q are the relevant coefficient
matrices to be determined. f is a polynomial of degree 2 in a(t), which can
be written componentwise as follows:

f (k)(y, a(t)) = ck +
m∑
i=1

likai +
m∑
i=1

m∑
j=1

aiDijaj (2.6.2)

In our present case, m = 15 is set as the number of POD modes for the case
of POD15/DEIM250. The calibration process consists in correcting whole or
part of polynomial coefficients originating from POD Galerkin by using the
exact temporal coefficients known in advance. For that purpose, we introduce
a error function,

e(y, t) = ȧ(t)− f(y, a(t)) (2.6.3)

the calibration of the coefficients can be then done by minimizing the function
with Tikhonov regularization term in space RNy

J(y) =
⟨
∥e(y, t)∥22

⟩
T0

+ γ2∥Ly∥22

=
1

N

N∑
k=1

m∑
i=1

(ȧi(tk)− f (i)(y, a(tk)))
2
+ γ2∥Ly∥22, (2.6.4)
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where the γ is regularization parameter, L = I and ∥·∥2 stands for 2-norm
(or Euclidean length). The minimization of the function (2.6.4) amounts to
solving the linear system

(ATA+ γ2I)y = AT b (2.6.5)

where I is the identity matrix of order Ny, for details of A and b, please refer
to [37]. Details of the Tikhonov regularization procedure are based on the
several considerations:

(1). the minimization problem (2.6.4) is not well conditioned if γ = 0.
That is clearly seen when the solution to the linear system (2.6.5) is written
in the following form using the singular value decomposition (SVD)of A:

y = Σm
i=1

σ2
i

σ2
i + γ2

uTi b

σi
vi (2.6.6)

here u and v are left (right) singular vectors, σ is the singular value, and uTi b
is called the Fourier expansion coefficient. We can find from Figure 10 that
some small Fourier coefficients do not decrease sufficiently fast compared with

the small singular value, while the quotient
|uT

i b|
σi

increases to a higher level
after a certain index i. This implies that the Picard criterion [47,48,49] is only
partially satisfied, which will lead to an amplification of noise included in b.
The quality of the solution is thus greatly effected. However, if let γ ̸= 0, we

see that
σ2
i

σ2
i +γ2 will act as a filter function and a suitable γ is necessary.

(2). The key to the success of Tikhonov regularization technique is related
to the computation of the regularization parameter γ. To do so, the L-curve
method implemented in the package REGULARIZATION TOOLS [50] is used
throughout the paper. The L-curve method is based on the analysis of the
curve representing the semi-norm of the regularized solution ∥Ly∥2 versus the
corresponding residual norm ∥Ay−b∥2. In most of the cases, this curve exhibits
a typical L shape (see Figure 10). The corner of the L-curve represents a fair
compromise between the minimization of the norm of the residual (horizontal
branch) and the semi-norm of the solution (vertical part). In present case of
Re = 1000, γ is set as 0.0053172. This means that the contribution of Fourier
coefficient corresponding to the small singular value is dampened, a stable
solution y is therefore derived.

Substitution of solution result of equation (2.6.5) into the equation (2.6.1)
yields a determined calibrated model (called calibrated ROM). Subject to the
initial condition

aα|t=0 = ΦT
uU

∣∣
t=0
, aβ|t=0 = ΦT

v V
∣∣
t=0

(2.6.7)

the computational results are obtained using classical fourth order Runge-
Kutta algorithm. The partial evolutionary results of the calibrated coefficient
are shown in Figure 11. We see that the calibrated temporal POD coefficients
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and the original ones are in good agreement over the entire time interval [0, T ].
In addition, the calibration of the coefficients leads to improvement of the
solution u(x, y, t), which can be observed from Figures 8 and 9, respectively.

It is worth noting that the flow calibration with Tikhonov regularization is
essentially a least-squares estimation (data fitting), which is different from oth-
er well-known closure modeling approaches based on physical insight stemming
from the turbulent simulation [28]. The calibration of evolutionary coefficient
in the present study is accomplished through the correction of the polynomial
coefficient of the constructed dynamical system. Apart from providing good
retrieval results for the coefficients of high index POD modes, another advan-
tage of the current method is that the calibration process is automatically
performed given the snapshots and its SVD result.

3 Conclusions

The model order reduction with POD/DEIM approach is applied to the two
dimensional Burgers equation in the case of Re = 100 and Re = 1000 (rep-
resenting the turbulent case), respectively. Its feasibility has been examined.
The main goal was to assess the effect of large Re when using combination of
POD/DEIM and a Tikhonov regularization as a closure model. This combina-
tion appears to be novel in as far as we can assess. For the sake of simplicity,
the computational results shown in the present study are for u only, and the
ones for v are not provided here. The five POD modes in the case of Re = 100
are used to derive the POD ROM which can capture more than 99.8% of the
system energy, and fifty DEIM interpolation points are selected to use for the
interpolation of nonlinear functions, which leads to a great improvement in
the computational speed. In the case of Re = 1000 (turbulent case), several
facts can be observed. First, a smooth wave becomes a shock wave, and some
spurious oscillation can be found near the steepened front due to the discarded
modes which play an important role in dissipating energy. Second, the eigen-
value spectrum has a slower decay than that in the case of Re = 100. This
means that main energy concentrates on more POD modes. Additional POD
modes are required to maintain sufficient computational accuracy. However,
this in turn will require more computational cost. Thirdly, how to provide
an optimal truncation of POD modes remains an open problem. It is not
sufficient to depend only on the criterion (2.3.2). As for the DEIM, more in-
terpolation points prove to be beneficial in terms of CPU speed-up. Fourth,
larger Re incurs bigger error due to the truncation of POD modes and DEIM
interpolation of nonlinear term as well as numerical computation, which can-
not be neglected for a longer time integration interval. For this purpose we
apply calibration with Tikhonov regularization serving as the closure model.
A noticeable improvement is obtained with large computational gain (CPU
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Figure 10: Check of the Picard condition and L-curve

time 1.7597 using four-order Runge-Kutta method). Our present high fidelity
model is discretized using a second-order central finite difference discretization
in space and a first order backward Euler scheme in time, which allow us to
perform the simulation only up to Re = 1000. For a larger Re, it is possi-
ble to construct a POD/DEIM ROM combined with a higher-order numerical
scheme so as to maintain the numerical stability. This will be investigated in
future research work.
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Figure 11: Comparison of the temporal coefficients before and after calibration.
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Appendix

A simple introduction to the discrete Picard condition
It is well known that the Picard theorem states in a continuous setting that

in order for the equation
Kx = y (A.1)

to have a solution x† ∈ X, it is necessary and sufficient that y ∈ R(K) and
that

Σ∞
i=1

< ui, y >
2

σi2
<∞ (A.2)

where K is a compact operator between the real Hilbert spaces X and Y , and
(σi, ui, vi) is a singular system of K. The infinite sum in (A.2) must converge,
which means that the terms in the sum must decay to zero, or equivalently,
that the generalized Fourier coefficients | < ui, y > | must decay faster to zero
than the singular values σi for i = 1, 2, · · · [47].

For the discrete ill-posed problems there is, strictly speaking, no Picard
condition because the solution always exists and can never become unbounded.
Nevertheless it makes sense to introduce the discrete Picard condition. Sup-
pose that the operator equation in question has been reduced by discretization
to a set of linear equations

Kx = y (A.3)

Here let K be a n×p matrix of rank p, (n ≥ p), and K = UΣV T = Σp
i=1σiuivi,

then the least square solution of the linear equation (A.3)[47] is given by

xols = K†y = V Σ†UTy = Σp
i=1

uTi y

σi
vi (A.4)

From the relation (A.4), we observe that due to the presence of a very small
σp in the denominator, the solution will be very sensitive to the errors (the
inaccurate measurements, discrete error as well as finite precision numerical
computation) included in y. To be more concrete, we choose a large singular-
value index i∗ and consider a perturbation of the exact vector y in the direction
of the singular vector u∗i , i.e.

yδ = y + βu∗i (A.5)

with β = ∥yδ − y∥2 being the noise level. The least square solution is then
provided by

xδols = x+
β

σ∗
i

v∗i (A.6)

so the following relation results in [47,48]

∥xδols − x∥2
∥yδ − y∥2

=
1

σ∗
i

(A.7)
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if σ∗
i is very small, the computed solution by (A.4) can be completely dominat-

ed by the SVD coefficients corresponding to the smallest singular values. In
other words, the xols will be very far from the exact solution, and the instability
of solution will occur.

Based on the analysis of the SVD coefficients, together with an under-
standing of their relation to the SVE (singular vector expansion)coefficients in
(A.4), the discrete version of the Picard condition is therefore introduced. This
was pointed out by Per Christian Hansen in the literature [49]. Let τ denote
the level at which the computed singular values σi level off due to rounding
errors, The discrete Picard condition is satisfied if, for all singular values larger
than τ , the corresponding Fourier coefficients | uTi y |, on average, decay faster
than the σi .The discrete Picard condition will play an important role in deal-
ing with the discrete ill-posed problems to insure solution stability. We note
that it is the ratios of Fourier coefficients and the singular values rather than
their individual values. When the Picard condition is satisfied, the ratios will
decrease, and if the ratios begin to drop and then grow, then the Picard con-
dition is not satisfied, for example, the case shown in this paper, see figure 10.
The violation of the Picard condition may also be regarded as an explanation
of the instability for the linear inverse problem under consideration.

At the same time, the insight we gain from a study of the quantities as-
sociated with the SVE gives a hint on how to deal with noisy problems that
violate the Picard condition, that is, we need regularization methods that can
compute less sensitive approximations to exact solution. Our hope is to filter
out the unwanted part of (A.4). In view of the similarity of two representa-
tive method: TSVD and Tikhonov regularization[49], we only take Tikhonov
regularization method as example to make an interpretation.

The Tikhonov solution xλols is defined as the solution to the problem

min{∥Kx− y∥22 + λ2∥x∥22} (A.8)

The first term measures the goodness-of-fit, and the second term measures
the regularity of the solution. The regularization parameter λ controls the
weighting between the two terms. The hope is therefore that if we control the
norm of x, then we can suppress (most of) the large noise components, which
can be seen clearly from the solution of (A.8)

xλols = Σp
i=1f

λ
i

uTi y

σi
vi (A.9)

Comparing the (A.4) and (A.9), we see that the filter factors are introduced
here for i = 1, 2, · · · , p, which satisfy

fλ
i =

σ2
i

σ2
i + λ2

=

{
1 σi ≫ λ
σ2
i

λ2 σi ≪ λ
(A.10)
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We stress here that the selection of λ is very crucial for the regularization
process. The method to determine it in the current paper is L-curve method.
For the details, please see [47,48,49].
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