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SUMMARY

We propose an improved framework for dynamic mode decomposition (DMD) of 2-D flows for problems
originating from meteorology when a large time step acts like a filter in obtaining the significant Koopman
modes, therefore, the classic DMD method is not effective. This study is motivated by the need to fur-
ther clarify the connection between Koopman modes and proper orthogonal decomposition (POD) dynamic
modes. We apply DMD and POD to derive reduced order models (ROM) of the shallow water equations. Key
innovations for the DMD-based ROM introduced in this paper are the use of the Moore–Penrose pseudoin-
verse in the DMD computation that produced an accurate result and a novel selection method for the DMD
modes and associated amplitudes and Ritz values. A quantitative comparison of the spatial modes computed
from the two decompositions is performed, and a rigorous error analysis for the ROM models obtained is
presented. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The modal decomposition of fluid dynamics is a frequently employed technique, capable of provid-
ing tools for studying dominant and coherent structures in turbulent flows. The coherent structures
[1–3] represent spatially or temporally evolving vortical motions, either growing with one rate,
oscillating with one frequency or containing the largest possible kinetic energy. A complex turbulent
flow often consists of a superposition of such coherent structures, whose development is responsible
for the bulk mass, energy transfer or hydrodynamic instability.

Among several snapshot-based model order reduction (MOR) modal decomposition methods,
proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) have been
widely applied to study the physics of the dynamics of the flows in different applications. The MOR
using the method of POD has been illustrated on a variety of examples ranging from fluid mechan-
ics (Luchtenburg and Rowley [4], Liberge and Hamdouni [5]), turbulent flows and oceanography
(Wang et al. [6], Abramov and Majda [7], Osth et al. [8]) or engineering structures (Mariani and
Dessi [9] and Buljak and Maier [10]). More recently, the POD approach has been incorporated, for
reduced order modelling purposes, within an unstructured mesh finite-element ocean model by Du
et al. [11], Fang et al. [12] and Stefanescu and Navon [13]. POD proved to be an effective technique
also in inverse problems, as demonstrated in the work of Winton et al. [14], Chen et al. [15, 16] and
Cao et al. [17, 18].
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Several types of global modes are considered. Linear global eigenmodes are small-amplitude
perturbations that grow or decay exponentially and pulsate with one frequency. They are used in
hydrodynamic stability analysis [19]. Balanced modes are used to construct low-dimensional models
of large-scale flow systems in order to capture the relation between input disturbances and the output
sensors used for flow measurements. Projecting the original linear system onto modes results in a
high-fidelity model that accurately reproduces the input-output dynamics of the model [20, 21].

Koopman modes represent spatial flow structures with time-periodic motion, which are optimal
in resolving oscillatory behavior. They have been increasingly used because they provide a powerful
way of analyzing nonlinear flow dynamics using linear techniques (see e.g. the work of Bagheri [22],
Mezic [23], Rowley et al. [24]). The DMD generalizes the global stability modes and approximates
the eigenvalues of the Koopman operator [25]. The Koopman modes are extracted from the data
snapshots, and a unique frequency is associated with each mode. This is of major interest for fluid
dynamics applications where phenomena occurring at different frequencies must be individualized.

The application of POD is primarily limited to flows whose coherent structures can be hierar-
chically ranked in terms of their energy content. But there are situations when the energy content
is not a sufficient criterion to accurately describe the dynamical behaviour of the aforementioned
flows. Instead, DMD links the dominant flow features by a representation in the amplitudes-temporal
dominant frequencies space.

A comparative analysis of POD and DMD has been performed in the literature to identify which
of these decomposition techniques is more efficient. Recent studies performed in various fields have
demonstrated that these are complementary methods contributing to the identification of systems
in different ways. Simultaneous application of the two methods provides an a priori knowledge of
the dynamics of the system. For example, Semeraro et al. [26] present a comparative analysis of
POD–DMD computed from experimental data of a turbulent jet. The extracted DMD modes exhibit
many similarities with the POD modes, and the flapping mode was easily identified using both
methods. The transition to unsteadiness and the dynamics of weakly turbulent natural convection
in a differentially heated 3-D cavity was successfully investigated by Soucasse et al. [27] by modal
decomposition. In a novel approach manner, Frederich and Luchtenburg [28] consider the POD
and DMD. They show how the correlation matrix, which is needed for POD, can be re-used in the
computation of the DMD modes. In the field of aerodynamics, Muld et al. [29] applied POD and
DMD to extract the most dominant flow structures of a simulated flow in the wake of a high-speed
train model. They perform a comparison between the modes from the two different decomposition
methods.

The present study is motivated by the need to further clarify the connection between Koopman
modes and POD dynamic modes, as well as address their physical significance, in modal decom-
position of flows with large time span. In general, for problems occurring in meteorology [30, 31]
or oceanography [32, 33], the use of large time step for observables is justified. It was realized that
application of DMD to large time steps observations or to small time steps observations when the
increments are smaller then the experimental noise is subject to several predicaments; therefore, the
classic DMD method is not effective.

In this work, a new approach is proposed to derive an improved DMD-based procedure that is able
to extract dynamically relevant flow features from time-resolved experimental or numerical data.
Our objective is to employ the improved DMD technique in parallel with the classic DMD method
and POD, in order to analyze which of these procedures better highlight the coherent structures of
the flow dynamics. The novelty introduced in this paper resides in application of the improved DMD
technique to problems originating from meteorology, when numerical or experimental data snap-
shots are captured with large time steps. The modes selection, which is central in model reduction,
represents the subject that we aim to investigate in this paper. We propose a new criterion of select-
ing the optimal Koopman modes. Additionally, we present a rigorous error analysis for the ROM
models obtained by POD and the improved DMD and we also compare the relative computational
efficiency of the aforementioned ROM methods.

The remainder of this article is organized as follows. The procedure of numerical data acquisition
is presented in Section 2. In Section 3, we recall the principles governing the DMD and we give
the description of the improved DMD algorithm. In particular, we discuss the implementation of

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2015; 78:552–580
DOI: 10.1002/fld



554 D. A. BISTRIAN AND I. M. NAVON

the proposed method for 2-D flows and the criterion for optimal selection of the Koopman modes.
The principles governing the POD are discussed in detail in Section 4, which includes also the algo-
rithm for computing the 2-D proper orthogonal modes. These strategies are applied to the shallow
water equation (SWE) model in Section 5, along with a qualitative analysis of Koopman and POD
modes, while the reduced order models (ROM) obtained by involving the DMD and POD expan-
sion of the variables are discussed in detail in Section 6. Summary and conclusions are drawn in the
final section.

2. NUMERICAL DATA ACQUISITION

We consider a bounded open domain � � R3 and let L2 .�/ be the Hilbert space of square inte-
grable vector functions over �, associated with the energy norm kwkL2 D .w;w/

1=2

L2
and the

standard inner product .v; w/L2 D
R
�

v � w d´. Let Hr be the Hilbert space of divergence free

functions given by

Hr D
°
w 2 L2 .�/

ˇ̌̌
r � w D 0 in �; w �

!
n D 0 on @�

±
; (1)

where
!
n is the outward normal to the boundary. We defineHd .�/ � L2 .�/ to be the Hilbert space

of functions w with d distributional derivatives rwi , 1 6 i 6 d , which are all square integrable.
Let V be the Hilbert space

V D

²
w 2 Hr

ˇ̌̌̌
w 2 H 1 .�/ ; w D 0;

@w

@
!
n
D 0; on @�

³
; (2)

with norm kwkV D .w;w/
1=2
V and the inner product .v; w/V D

dP
iD1

.rvi ;rwi /.

In the Cartesian coordinates formulation, we suppose there exists a time-dependent flow w D
.u; v; h/ .x; y; t/ 2 V and a given initial flow w .x; y; 0/ D .u0; v0; h0/ .x; y/, which are solutions
of the Saint Venant equations, also called the SWE [34],

ut C uux C vuy C �x � f v D 0; (3)

vt C uvx C vvy C �y C f u D 0; (4)

�t C .�u/x C .�v/y D 0; (5)

where u .x; y; t/ and v .x; y; t/ are the velocity components in the x and y axis, respectively,
� .x; y; t/ D gh .x; y; t/ is the geopotential height, h .x; y; t/ represents the depth of the fluid, f
is the Coriolis factor and g is the acceleration of gravity. Subscripts represent the derivatives with
respect to time and the streamwise and spanwise coordinates.

We consider that the reference computational configuration is the rectangular 2-D domain � D
Œ0; Lmax� � Œ0;Dmax�. The model (3)–(5) is considered here in a ˇ-plane assumption [35], in which
the effect of the earth’s sphericity is modelled by a linear variation in the Coriolis factor

f D bf C ˇ

2
.2y �Dmax/ ; (6)

where bf and ˇ are constants and Lmax and Dmax are the dimensions of the rectangular domain of
integration �.

The SWE have been used for a wide variety of hydrological and geophysical fluid dynamics
phenomena such as tide-currents [36], pollutant dispersion [37], storm-surges or tsunami wave
propagation [38].

The test problem used in this paper consisted of the nonlinear SWE (3)–(5) in a channel on
the rotating earth, associated with periodic boundary conditions in the x-direction and solid wall
boundary condition in the y-direction:
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w .0; y; t/ D w .Lmax; y; t/ ; v .x; 0; t/ D v .x;Dmax; t / D 0: (7)

The initial condition I1 introduced by Grammeltvedt [39] was adopted as the initial height field,
has been tested by different researchers (Cullen and Morton [40], Navon [41], Stefanescu and Navon
[13] and Fang et al. [42]), that is,

h0 .x; y/ D H0CH1 tanh

�
9.Dmax=2 � y/

2Dmax

�
CH2 sin

�
2�x

Lmax

�
cosh�2

�
9.Dmax=2 � y/

Dmax

�
; (8)

which propagates the energy in wave number one, in the streamwise direction. Using the
geostrophic relationship, u D �hy .g=f /, v D hx .g=f /, the initial velocity fields are
derived as:

u0 .x; y/ D�
g

f

9H1

2Dmax

�
tanh2

�
9Dmax=2 � 9y

2Dmax

�
� 1

�

�
18g

f
H2 sinh

�
9Dmax=2 � 9y

Dmax

� sin
�
2�x
Lmax

�
Dmaxcosh3

�
9Dmax=2�9y

Dmax

� ; (9)

v0 .x; y/ D 2�H2
g

f Lmax
cos

�
2�x

Lmax

�
cosh�2

�
9.Dmax=2 � y/

Dmax

�
: (10)

In developing a higher-order scheme for approximating the quadratically nonlinear terms that
appear in the equations of hydrological dynamics, we have followed the approach used by
Navon [35], which implements a two-stage finite-element Numerov–Galerkin method for inte-
grating the nonlinear SWE on a ˇ-plane limited-area domain. In the aforementioned paper, a
two-stage Galerkin method combined with a high-accuracy compact (Numerov) approximation
to the first derivative is presented. This method when applied to meteorological and oceano-
graphic problems not only gives an accurate phase propagation but also handles nonlinearities well.
The accuracy of temporal and spatial discretization scheme equals or exceeds O

�
k2; h4�8

�
. The

use of numerical integration methods to study the behaviour of theoretical models in oceanog-
raphy or to predict the evolution of an actual state is subject to several predicaments, one
of the major difficulties being nonlinear computational instability of the finite difference ana-
logues of the governing partial differential equations. The approach adopted in the work noted
earlier involves the use of a weighted selective lumping scheme in the finite-element method,
combined with a successive overrelaxation iterative method for solving the resulting systems of lin-
ear equations. Determination at each time step of the values of the three integral invariants [43,
44] of the SWE, that is. the total mass, the total energy and the potential enstrophy, proved that
the two-stage Numerov–Galerkin is attaining a consistently higher accuracy than the single-stage
finite-element method (see Navon (1983) [45]).

In several seminal papers, Arakawa [46, 47] indicated that the integral constraints on quadratic
quantities of physical importance, such as conservation of mean kinetic energy and mean square
vorticity, will not be maintained in finite difference analogues of the equation of motion for two-
dimensional incompressible flow, unless the finite difference Jacobian expression for the advection
term is restricted to a form that properly represents the interaction between grid points (i.e. use of
staggered C or D grids).

Thus, the effect of conservation of integral invariants by finite-element discretization scheme
of the SWE (3)-(5) as a measure of the correct discretization of long-term integrations
has a pivotal importance. The numerical integration scheme is detailed in [35]. Using this
program, we have captured the shallow-water dynamics over long-term numerical integra-
tions (10–20 days). We will further detail the results in the section dedicated to numerical
experiments.
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3. DYNAMIC MODAL DECOMPOSITION OF FLOW FIELDS

So far, we have noticed two directions in DMD technique. The straightforward approach is seeking
a companion matrix that helps to construct in a least squares sense the final data vector as a linear
combination of all previous data vectors [24, 48, 49]. Because this version may be ill-conditioned
in practice, Schmid [50] recommends an alternate algorithm, based on averaging the mapping from
the snapshots to the new one upon which the work within this article is based.

The aim of this section is twofold: first, we describe the classical analytical method for DMD.
A DMD algorithm is then introduced as an improvement of the original algorithm, together with a
criterion of optimal selection of the Koopman modes.

3.1. The Koopman operator and the general description of dynamic mode decomposition

Employing numerical simulations or experimental measurements techniques, different quantities
associated with the flow are measured and collected as observations at one or more time signals,
called observables. It turns out (see the survey of Bagheri [51]) that monitoring an observable over
a very long time interval allows the reconstruction of the phase space.

Considering a dynamical system evolving on a manifold M such that, for all wk 2M

wkC1 D f .wk/; (11)

the Koopman operator, defined by Koopman [25] in 1931, maps any scalar-valued function g W
M! R into a new function Ug given by

Ug .w/ D g .f .w// : (12)

The Koopman operator is infinite-dimensional and it steps forward in time an observable. Related to
the spectral properties of the Koopman linear operator, the reader is invited to refer to Rowley et al.
[24] for rigorous treatment on the subject. There is a unique expansion that expands each snapshot
in terms of vector coefficients �j , which are called Koopman modes and mode amplitudes aj .w/,
such that iterates of w0 are then given by

g .wk/ D

1X
jD1

�kjaj .w0/ �j ; �j D e
�jCi!j ; (13)

where �j are called the Ritz eigenvalues of the modal decomposition, which are complex-valued
flow structures associated with the growth rate �j and the frequency !j .

Assuming that ¹w0; w1; : : : wN º is a data sequence collected at a constant sampling time 	t , we
define the following matrices

V N�10 D
�
w0 w1 : : : wN�1

�
; V N1 D

�
w1 w2 : : : wN

�
: (14)

The DMD algorithm is based on the hypothesis that a Koopman operator A exists, that steps
forward in time the snapshots, such that

wiC1 D Awi ; i D 0; : : : ; N � 1: (15)

Schmid [50] assumed that the Koopman operator A is linear, but it was shown that the linearity
assumption is not necessary in Rowley et al. [24]. It follows that the snapshots data set

V N�10 D
�
w0 Aw0 A2w0 : : : AN�1w0

�
(16)

corresponds to the N th Krylov subspace generated by the Koopman operator from w0.
Because the eigenvalues of the unknown matrix operator A must be obtained, a Galerkin projec-

tion of A onto the subspace spanned by the snapshots is performed. For a sufficiently long sequence
of the snapshots, we suppose that the last snapshot wN can be written as a linear combination of the
previous N � 1 vectors, such that

wN D c0w0 C c1w1 C : : :C cN�1wN�1 CR; (17)
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which can be written in matrix notation as

wN D V
N�1
0 cCReTN�1; (18)

in which cT D
�
c0 c1 : : : cN�1

�
is a complex column vector and R is the residual vector. We

assemble the following relations

A ¹w0; w1; : : : wN�1º D ¹w1; w2; : : : wN º D
®
w1; w2; : : : V

N�1
0 c

¯
CReTN�1 (19)

in the matrix notation form,

AV N�10 D V N1 D V
N�1
0 C CReTN�1; C D

0BBB@
0 : : : 0 c0
1 0 c1
:::
:::
:::

:::

0 : : : 1 cN�1

1CCCA ; (20)

where C is the companion matrix and eTj represents the j th Euclidean unitary vector of lengthN�1.
A direct consequence of (20) is that decreasing the residual increases the overall convergence and,

therefore, the eigenvalues of the companion matrix C will converge toward some eigenvalues of the
Koopman operator A. Therefore, the way that we will monitor this convergence is by evaluating the
size of the residual during the modal decomposition and plotting its L2 -norm.

Several methods have been employed so far to compute the companion matrix. The last column
of the companion matrix may be found using the Moore–Penrose pseudoinverse [52] of V N�10 , as

c D
�
V N�10

�C
wN D

��
V N�10

��
V N�10

��1�
V N�10

��
wN .

A solution for the linear least-square problem obtained from (20) is given by the economy size
QR-decomposition of V N�10 , as it is discussed in [53].

Instead of using QR-decomposition, singular value decomposition (SVD) was also applied on
V N�10 in order to find the singular eigenvalues and vectors, this approach being helpful when the
matrix V N�10 is rank deficient [50]. The eigenelements of the companion matrix span the original
data, and the decomposition (13) is achieved.

An error analysis of DMD [54, 55] proved that the procedure described earlier turns out to
be ill-conditioned in practice. This may especially be the situation when modal decomposition is
applied to snapshots collected at large time steps, which behave like using noisy experimental data,
or for small time steps when the increments are smaller then the noise (aliasing). In this situa-
tion, the modal decomposition is unable to find proper eigenelements of the Koopman operator and
the flow reconstruction is inaccurate. For these cases, we propose in the following an improved
DMD algorithm.

3.2. Description of an improved dynamic mode decomposition algorithm

In this section, we consider that dynamical system (11) represents an approximation of the SWE
model (3)-(5), discretized in both time and space, and the observable wi D w .ti /, ti D i	t ,
i D 0; : : : ; N , consist of the time dependent variables w D ¹u; v; hº .x; y; t/ in the spatial domain
�. The main objective is to find a representation of the flow field in the form

wDMD .x; y; t/ D Wb C

rX
jD1

aj e
.�jCi!j /t�j .x; y/; �j D

log
�ˇ̌
�j
ˇ̌�

	t
; !j D

arg
�ˇ̌
�j
ˇ̌�

	t
;

(21)

where �j 2 C are the DMD modes, r is the number of the DMD modes kept for flow decompo-
sition, aj 2 C are the amplitudes of the modes, �j 2 C are the Ritz eigenvalues of the modal
decomposition associated with the growth rate �j and the frequency !j and Wb is a constant offset
that represents the data mean, usually called the base flow in hydrodynamic stability analysis,
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Wb .x; y/ D
1

1CN

NX
iD0

wi .x; y/: (22)

Theoretically, we apply the DMD on the mean-subtracted data w
0

i D wi � Wb; i D 0; : : : ; N .
As noticed by Noack et al. [56], the use of the mean of a data set as the base flow represents a com-
mon practice in application of modal decomposition like POD. Recently, Chen, Tu and Rowley [57]
pointed out that constructing the Koopman modes from base-flow-subtracted data offers the advan-
tage that the ROM will satisfy the same boundary conditions employed for the full model, while
computing DMD modes without first subtracting a base flow results in the boundary conditions not
being satisfied.

The quantitative capabilities of DMD have already been well demonstrated in the literature by
the efforts of Bagheri [22], Mezic [23], Rowley et al. [24] and Belson et al. [58]. The method of
snapshots formulation is well-suited for large data because the eigenvalue problem does not depend
on the dimension of the snapshot vector (see Holmes et al. [59]).

Here, we apply the method of snapshots introduced by Sirovich [60] in 1987 and we solve the
resulting eigenvalue problem by a matrix multiplication method. We introduce in this paper a DMD-
based approach yielding a supplementary subroutine for extracting the optimal Koopman modes.
We summarize in the succeeding section the steps of the algorithm.

Algorithm 1: Improved dynamic mode decomposition for 2D flows with selection of dominant
modes

(i) Collect data wi .x; y/ D w .x; y; ti /, ti D i	t , i D 0; : : : ; N from the flow field, equally
distributed in time.

(ii) Placing the columns one after another, transform snapshots wi into columns ewi of the matrix

V D
� ew0 ew1 : : : ewN 	 : (23)

(iii) Compute the mean columnW b D
1

1CN

NP
iD0

ewi and the mean-subtracted snapshot matrix V 0 D

V �W b . Reshaping W b into the matrix form corresponds to the base flow Wb .x; y/.
(iv) A matrix V N�10 is formed with the first N columns and the matrix V N1 contains the last N

columns of V 0,

V0
N�1 D

� ew0 ew1 : : : ewN�1 	 ; (24)

V1
N D

� ew1 ew2 : : : ewN 	 : (25)

Performing a Galerkin projection of the unknown Koopman operator A onto the subspace
spanned by the snapshots, we express the vectors of V N1 as a linear combination of the
independent sequence V N�10 :

V N1 D AV N�10 D V N�10 S CR; (26)

where R is the residual matrix and S approximates the eigenvalues of A when the norm
kRk2 ! 0. The objective at this step is to solve the minimization problem

Minimi´e
S

R D


V N1 � V N�10 S



 : (27)

(v) We identify a singular value decomposition of V N�10 :

V N�10 D U†W H ; (28)
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where U contains the proper orthogonal modes of V N�10 , † is a square diagonal matrix
containing the singular values of V N�10 and W H is the conjugate transpose of W . It follows
from (26) that S can be obtained by multiplying V N1 by the Moore–Penrose pseudoinverse
of V N�10 :

S D
�
V N�10

�C
V N1 D W†

CUHV N1 D XƒX
�1; (29)

where X and ƒ represent the eigenvectors, respectively the eigenvalues of S, and †C is
computed according to Moore–Penrose pseudoinverse definition of Golub and van Loan [52]:

†C D diag

�
1

�1
; � � � ;

1

�r
; 0 � � � ; 0

�
; r D rank

�
V N�10

�
: (30)

(vi) Calculation of Koopman modes and amplitudes. After solving the eigenvalue problem

SX D Xƒ; (31)

the diagonal entries of ƒ represent the Ritz eigenvalues �. The frequency and damping are
provided by these eigenvalues. The projection of V N1 on the modes V N�10 X yields:

V N1 D
�
V N�10 X

�
ƒX�1 D AV N�10 : (32)

From this expression, the contribution of each dynamic mode to the data sequence V N1 is
obtained. Thus, the Koopman modes are the columns of the matrix � D V N�10 X . Reshape
these columns back into matrix form to obtain the dynamic modes �i .x; y/ D � .x; y; ti /,
ti D i	t , i D 0; : : : ; N � 1. The amplitudes are given by the norm of the corresponding
column vector of V N�10 X , as

aj D



V N�10 X .W; j /



2

V N�10 X




2

; j D 1; : : : ; r; (33)

where r represents the number of the Koopman modes stored for modal decomposition.

A novel and efficient technique to select the dominant Koopman modes will be given in
the following.

3.3. Optimal selection of the dominant Koopman modes

Selection of Koopman modes and amplitudes used for the flow reconstruction constitutes the source
of many discussions among modal decomposition practitioners. For instance, Jovanovic et al. [61]
introduced a low-rank DMD algorithm to identify an a priori specified number of modes that provide
optimal approximation of experimental or numerical snapshots at a certain time interval. Conse-
quently, the modes and frequencies that have the strongest influence on the quality of approximation
have been selected. Chen et al. [57] introduced an optimized DMD, which tailors the decomposi-
tion to an optimal number of modes. This method minimizes the total residual over all data vectors
and uses simulated annealing and quasi-Newton minimization iterative methods for selecting the
optimal frequencies.

The superposition of all Koopman modes, weighted by their amplitudes and complex frequencies,
approximates the entire data sequence, as relation (21) describes, but there are also modes that have
a weak contribution. We address in this section the problem of identification of an optimal truncated
representation of the flow field in order to capture the most important dynamic structures.

To this end, we seek for a number rDMD < r , which represents the optimal number of the selected
modes that must be identified, such that the flow can be reconstructed using the first rDMD optimal
Koopman modes and associated amplitudes and Ritz eigenvalues as:

wDMD .x; y; t/ D Wb .x; y/C

rDMDX
jD1

aj�j�j .x; y/: (34)
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In matrix formulation, relation (34) yields:

wDMD .x; y; t/ D Wb C
�
a1 a2 : : : arDMD

�0B@ �1 : : : 0
:::

:::
:::

0 : : : �rDMD

1CA
0B@ �1 .x; y/

:::

�rDMD .x; y/

1CA : (35)

In POD or POD Balanced Truncation Method [49], the flow field is decomposed into orthogonal
modes, which are by construction ranked by energy level through the POD or Hankel eigenvalues
[51]. Thereafter, the order of the modes is in decreasing amount of energy, and the POD modes are
designed to contain the largest amount of energy with any given number of modes. In DMD, the
modes are not orthogonal, but one advantage of DMD compared with POD is that each DMD mode
is associated with a pulsation and a growth rate, and each mode has a single distinct frequency. For
this feature, the DMD method was originally used in nonlinear dynamics, for instance Muld et al.
[29], and was just recently introduced in fluid mechanics [28, 62, 63].

A criterion of selecting the DMD modes can be their amplitude, aj , or based on their fre-
quency/growth rate, !j =�j . As reported by Noack et al. [64], the amplitude criterion is not sufficient
because there exist modes that are very rapidly damped, having very high amplitudes. The modal
selection based on frequency/growth rate is not rigorous because it relies on a priori physical knowl-
edge of the flow. The frequencies resolved by the DMD are still subjected to the Nyquist sampling
theorem [65], and the researcher has to know in advance, frequencies that are essential in the flow
physics to adjust the sampling interval	t . On the other hand, the non-orthogonality of the Koopman
modes may raise the projection error while increasing the order of the DMD basis.

To avoid these difficulties, we introduce in the following a new method to optimize the selection of
the Koopman modes involved in the reconstruction of the flow. The DMD algorithm that we propose
is based on the conservation of quadratic integral invariants by the finite-element discretization
scheme of the shallow-water model (3)-(5). We assume that the reduced order reconstructed flow
(34) also preserves the conservation of the total flow energy. In parallel, we aim to eliminate the
modes that contribute weakly to the data sequence. Let

E D
1

N C 1

NX
iD0

Z Z
�

hi .x; y/
�
ui .x; y/

2 C vi .x; y/
2
�
C ghi .x; y/

2dx dy; (36)

be the total energy of the high fidelity flow, defined also in [43], or in Hamiltonian form in [66] and

EDMD D
1

N C 1

NX
iD0

Z Z
�

hi
DMD.x; y/

�
ui
DMD.x; y/2 C vi

DMD.x; y/2
�

C ghi
DMD.x; y/2dx dy;

(37)

be the total energy of the reduced order flow, where .hi ; ui ; vi / .x; y/ and
�
hi
DMD;

ui
DMD; vDMDi

�
.x; y/, i D 0; : : : ; N represents the full rank flow, respectively, the Koopman

decomposed flow at time i .
We arrange the Koopman modes in descending order of the energy of the modes, weighted by the

inverse of the Strouhal number St D arg
�
�j
�
= .2�	t/:

eDMDj D
1

St
�



�j .x; y/

F
kVkF

; j D 1; : : : ; r: (38)

We denote by k � kF the Frobenius matrix norm in the sense that for any matrix A 2 Cm�n having
singular values �1; : : : ; �n and SVD of the form A D U†V H , then

kAkF D


UHAV 



F
D k†kF D

p
�12 C : : :C �n2: (39)
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Determination of the optimal vector of amplitudes and corresponding eigenvalues and Koopman
modes

�
aj ; �j ; �j .x; y/

�
; j D 1; : : : ; rDMD then amounts to finding the solution to the following

optimization problem 8<:Minimi´e
rDMD

1
NC1

NP
iD0

kwi .x;y/�wiDMD.x;y/kF
kwi .x;y/kF

;

Subject to
ˇ̌
E �EDMD

ˇ̌
< ";

(40)

where wi .x; y/ and wiDMD .x; y/, i D 0; : : : ; N represents the full rank flow, respectively, the
Koopman decomposed flow at time i and " D 10�5 sets an upper bound on the relative error because
of rounding in floating point arithmetic.

We are interested in finding the Koopman modes that provide the maximum energy of the fluctua-
tions at distinct frequencies and we continue minimizing the residual subject to the linear dynamics
constraint and the flow energy conservation assumption.

4. DECOMPOSITION OF FLOW FIELDS BY PROPER ORTHOGONAL DECOMPOSITION
SUBJECT TO THE LINEAR DYNAMICS

Apart from Krylov subspace methods, the POD represents at the moment state-of-the-art for many
model reduction problems. The strong point of POD is that it can be applied to nonlinear partial
differential equations, especially for smooth systems in which the energetics can be characterized
by the first few modes. The applicability of POD to complex systems is limited mainly because
of errors associated with the truncation of POD modes. The POD and its variants are also known
as Karhunen–Loeve expansions in feature selection and signal processing, empirical orthogonal
functions in atmospheric science or principal component analysis in statistics. In weather and cli-
mate modelling [7, 12, 13, 33], as well as in other complex systems such as data assimilation
[15, 16], the development of accurate and reliable low-dimensional models represents an extremely
important task.

The idea underlying this method is that the time response of a system, given a certain input,
contains the essential behavior of the system. Therefore, the set of outputs serves as a starting-point
for POD. We consider that the observables wi D w .ti /, ti D i	t , i D 0; : : : ; N , consist of the
time dependent variables w D ¹u; v; hº .x; y; t/ of the SWE model (3)-(5), discretized in both time
and space in the spatial domain�. The main objective in POD is to find a representation of the flow
field of the form

wPOD .x; y; t/ D Wb .x; y/C

rPODX
jD1

bj .t/ˆj .x; y/; (41)

where Wb .x; y/ represents the data mean flow defined as in (22), rPOD represents the optimal
number of the POD selected modes that must be identified. The time dependent coefficients bj are
called Fourier coefficients. We are looking for an orthonormal basis

®
ˆj .x; y/

¯
, j D 1; : : : ; rPOD

such that the averages of the first few Fourier-coefficients represent 99% of the total energy of the
snapshots. This leads to the following POD algorithm:

Algorithm 2: Proper orthogonal decomposition algorithm for 2D flows

(i) Collect data wi .x; y/ D w .x; y; ti /, ti D i	t , i D 0; : : : ; N from the flow field, equally
distributed in time.

(ii) Placing the columns one after another, transform snapshots wi into columns ewi of the matrix

V D
� ew0 ew1 : : : ewN 	 : (42)

(iii) Compute the mean columnW b D
1

NC1

NP
iD0

ewi and the mean-subtracted snapshot matrix V 0 D

V �W b . Reshaping W b into the matrix form corresponds to the base flow Wb .x; y/.
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(iv) Calculate the empirical correlation matrix

C D
1

N C 1
V 0V 0T ; (43)

whereN C1 represents the number of snapshots and V 0T represents the transpose of the mean
subtracted snapshot matrix.

(v) Compute the eigenvalue decomposition

Cvj D �j vj ; j D 1; : : : ; N C 1; vj 2 RNC1; (44)

where N C 1 represents the number of the total eigenvalues.
(vi) Find the number of POD basis vectors rPOD capturing 99:99% of the snapshots energy,

defined as

ePOD D

rPODX
jD1

�j

,
NC1X
jD1

�j : (45)

(vii) We can choose the first orthonormal basis of eigenvectors
®
v1; : : : ; vrPOD

¯
, and the corre-

sponding POD basis functions are given by

ˆj D
1p
�j

V 0vj ; j D 1; : : : ; rPOD: (46)

(viii) The temporal coefficients are stored in the matrix B , which is obtained by relation

B D ˆT V 0: (47)

Hence, in each row we find the trajectories of the dynamical system at discrete time events.
(ix) The reconstruction of the flow fluctuating part is achieved as V 0POD D ˆB , and the recon-

struction of the flow field is VPOD D V 0POD CW b . Reshape the columns of VPOD back into
matrix form to obtain the POD representation of the flow wPOD .x; y; t/.

5. ANALYSIS OF SHALLOW WATER EQUATIONS COHERENT STRUCTURES BY
KOOPMAN MODES AND PROPER ORTHOGONAL DECOMPOSITION

We perform the numerical experiments in a rectangular channel whose dimensions are Dmax D
4400km, Lmax D 6000km. The dimensional constants used for the model are
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Figure 1. The error of the minimization problem (27) in the computation of the geopotential height field.
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bf D 10�4s�1; ˇ D 1:5 � 10�11s�1m�1; g D 10ms�1;

H0 D 2000m; H1 D 220m; H2 D 133m:
(48)

In this section, the application of POD and DMD is illustrated by comparing the evolution of the
flow field along the integration time window. There are several major differences between these two
decomposition methods. The spatial basis functions �j .x; y/ and ˆj .x; y/, for DMD and POD,
respectively, offer an insight into the coherent structures in the flow field. The differences between
�j .x; y/ and ˆj .x; y/ occur because of the principles of the decomposition methods. The time
evolution of a DMD mode is influenced by the multiplication of the complex eigenvalue �j of the
Koopman operator weighted by the amplitude, while the time evolution of POD modes is described

a. b.

c.

Figure 2. Spectrum of the dynamic mode decomposition: (a) geopotential field h; (b) streamwise velocity
field u; and (c) spanwise velocity field v, 	t D 600s.

a. b.

Figure 3. Decomposition of geopotential height field h using the improved dynamic mode decomposition
(DMD) algorithm: The lighter colored dots indicate the modes for which the amplitude values and Ritz
eigenvalues are kept in the flow reconstruction. (a) the normalized vector energy versus the Strouhal number;

and (b) the amplitudes of the DMD modes, sorted in descending order.
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by the functions bj .t/. The POD modes are orthonormal in space with the energy inner product.
In DMD, each mode oscillates at a single frequency, hence the expression that the DMD modes are
orthogonal in time.

5.1. Numerical results for the improved dynamic mode decomposition algorithm

As an improvement of the classic algorithm of Schmid [50], we explore the subtraction of the data
mean of the flow when DMD algorithm is applied to large time step observation. Unlike the classic
algorithm, we arrange the Koopman modes in descending order of the energy of the DMD modes
weighted by the inverse of the Strouhal number, defined by relation (38). In addition, the novelty
introduced in this paper resides in the selection of the DMD modes and associated amplitudes and
Ritz values as a solution of the constrained optimization problem (40).

In order to assess the performances of the method proposed, we have considered two numerical
experiments. In the first experiment, we record a number of 240 unsteady solutions of the two-
dimensional SWE model (3)-(5), with time step 	t D 600s. Figure 1 presents the error of the
minimization problem (27), which confirms that the use of the Moore–Penrose inverse in the DMD
computation produces an accurate result.

The DMD spectra for the mean-subtracted fields .u; v; h/ .x; y; t/ are presented in Figure 2. The
improved DMD technique presented herein is fully capable of determining the modal growth rates
and the associated frequencies.

Figure 3a presents the normalized vector energy (38) versus the Strouhal number. The lighter
colored dots indicate the modes for which the corresponding amplitudes and Ritz eigenvalues are

a. b.

Figure 4. Improved dynamic mode decomposition (DMD) algorithm: (a) absolute error between the total
energy of the high fidelity flow and the total energy of the reduced order flow, as the number of the DMD

modes; and (b) The relative error
kh.x;y/�hDMD.x;y/kF

kh.x;y/kF
of geopotential height field decomposition, using

rDMD D 13 modes.

a. b.

Figure 5. Classic dynamic mode decomposition (DMD) algorithm: (a) absolute error between the total
energy of the high fidelity flow and the total energy of the reduced order flow, as the number of the DMD

modes; and (b) the relative error
kh.x;y/�hDMD.x;y/kF

kh.x;y/kF
of geopotential height field decomposition, using

rDMD D 23 modes.
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kept in the flow reconstruction. Figure 3b shows that the higher amplitudes are associated to the
most energetic Koopman modes selected for flow decomposition. This demonstrates that in DMD
decomposition, the amplitudes are directly proportional to the energy in the coherent structures, as
defined in Equation (38), unlike the POD decomposition where the eigenvalues capturing most of
the snapshots energy indicate the corresponding POD basis functions.

A novel selection method for the DMD modes has been proposed in this paper, based on the
conservation of total flow energy by the finite-element discretization scheme of the shallow-water
model. We have computed the double integral representing the flow energy defined, respectively,
in Equations (36) and (37) using Simpson’s 1=3 rule, considering DMD decomposition with an
incremental number of modes, and we solved the constrained optimization problem (40) employing
the sequential quadratic programming (SQP) [67]. Solution of the constrained optimization problem
(40) leads to the number of rDMD D 13Koopman modes and associated amplitudes and Ritz values
to be used in flow decomposition in the case of the improved DMD algorithm, while a number of
rDMD D 23 dominant Koopman modes were detected in the case of the classic DMD algorithm.

The absolute error between the total energy of the high fidelity flow and the total energy of the
reduced order flow, that is,

ˇ̌
E �EDMD

ˇ̌
, in case of application of the improved DMD algorithm

is represented in Figure 4a. The relative error of geopotential height field decomposition, defined

as
kh.x;y/�hDMD.x;y/kF

kh.x;y/kF
using rDMD D 13 modes is depicted in Figure 4b. The absolute error

between the total energy of the high fidelity flow and the total energy of the reduced order flow,
in case of application of the classic DMD algorithm, is represented in Figure 5a. The relative error
of geopotential height field decomposition, using rDMD D 23 modes is depicted in Figure 5b. A

a. b.

Figure 6. Decomposition of streamwise velocity field u-The normalized vector energy versus the Strouhal
number: (a) application of classic dynamic mode decomposition (DMD) algorithm [50] and (b) application
of improved DMD algorithm–present approach. The lighter colored dots indicate the amplitude values for

which the corresponding modes and Ritz eigenvalues are kept in the flow reconstruction.

a. b.

Figure 7. (a) Comparative analysis of the amplitudes used in reconstruction of the geopotential height field
and (b) finite-element solution of the geopotential height field.
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comparative analysis of the presented results indicates that the improved DMD algorithm is more
efficient in the flow reconstruction than the classic one.

A comparative representation of the energy of the modes versus the Strouhal number is presented
in Figure 6, where the classic DMD algorithm [50] and the improved DMD algorithm presented
in this paper have been applied for decomposition of the streamwise velocity field u. In the clas-
sic DMD decomposition, the modal energy exhibits a divergent tendency as the Strouhal number
increases. In an opposite manner, in the improved DMD algorithm employed in the present research,
the most energetic Koopman modes selected for flow decomposition correspond to low Strouhal
numbers.

A comparative analysis of the amplitudes selected in reconstruction of the geopotential height
field is illustrated in Figure 7a. It is obvious that decomposition computed with the classic DMD
algorithm exhibits a higher amplitude and a series of lower amplitudes. Instead, the improved DMD

a. b.

Figure 8. (a) Reconstruction of the geopotential height field at time T D 16:5 h employing classic dynamic
mode decomposition (DMD) algorithm [50], rDMD D 23; (b) reconstruction of the geopotential height
field at time T D 16:5 h employing improved DMD algorithm – present research,	t D 600s, rDMD D 13.

a. b.

c.

Figure 9. Spectrum of the dynamic mode decomposition: (a) geopotential field h; (b) streamwise velocity
field u; and (c) spanwise velocity field v, 	t D 1200s.
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algorithm generates a normal distribution of the amplitudes. We perform the reconstruction of the
geopotential height field at time T D 16:5 h in Figure 8, employing both the classic DMD and
the improved DMD algorithm. Comparing the results with the finite-element solution depicted in
Figure 7b, we conclude that the improved DMD algorithm leads to more accurate reconstruction
than the classic method.

In the second experiment, we record a number of 180 unsteady solutions of the two-dimensional
SWE model (3)–(5) and we double the time step at 	t D 1200 s. We perform the geopotential

a. b.

Figure 10. The normalized vector energy versus the Strouhal number: The lighter colored dots indicate the
modes for which the amplitude values and Ritz eigenvalues are retained in the flow decomposition. (a) The
classic dynamic mode decomposition (DMD) algorithm and (b) Improved DMD algorithm–present research,

	t D 1200s.

a. b.

c.

Figure 11. (a) Finite-element solution of the geopotential height field at time T D 49:6h. (b) Reconstruc-
tion of the geopotential height field at time T D 49:6 h employing classic dynamic mode decomposition
(DMD) algorithm [50], rDMD D 21; (c) reconstruction of the geopotential height field at time T D 49:6h

employing improved DMD algorithm–present research, 	t D 1200s, rDMD D 4.
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height flow decomposition at time T D 49:6 h. The DMD spectra for the mean-subtracted fields
.u; v; h/ .x; y; t/ are presented in Figure 9. It is easy to see that the Ritz values are the roots of unity
in the case of geopotential field h and streamwise velocity u decompositions. This occurs in the
situations where the minimization problem (27) produces a nonsingular matrix S.

Solution of the constrained optimization problem (40) leads to the number of rDMD D 21 Koop-
man modes in the case of the classic DMD algorithm, while a number of only rDMD D 4 Koopman
modes are retained in the case of the improved DMD algorithm (the reader is referred to Figure 10).

Geopotential height field reconstruction at time T D 49:6 h is depicted in Figure 11, in
comparison.

Analysing the numerical results, we are able to conclude that the improved DMD algorithm
presented herein is more efficient in the reconstruction of large time step observation because an
accurate solution is achieved with a much smaller number of modes than in the case of employment
of classic DMD decomposition. In the next section, a qualitative comparison between the DMD and
POD modes is given.

5.2. Numerical results for proper orthogonal decomposition algorithm

Considering the set of 180 snapshot used also in the previous investigation, representing unsteady
solutions of the two-dimensional SWE model (3)–(5) computed with the time step	t D 1200 s, we
employ the POD algorithm described in Section 4 to obtain the reconstruction of the geopotential
height field at time T D 49:6 h. We plot in Figure 12 the singular values obtained from POD

Figure 12. (a) Proper orthogonal decomposition (POD) eigenvalues and (b) based on an energetic criterion,
rPOD D 17 modes are kept for the POD expansion.

a. b.

Figure 13. (a) The energy captured in the proper orthogonal decomposition (POD) as the number of the
POD modes and (b) POD reconstruction of geopotential height field at time T D 49:6 h, using rPOD D

17 modes.
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decomposition. Most of the energy defined in Equation (45) is contained in the first few modes.
Specifically, the number of optimal POD basis functions is rPOD D 17, because the first 17 eigen-
values yield more than 99:99% of the snapshots energy (Figure 13a). Representation of the POD
computed geopotential height field is presented in Figure 13b.

Comparing the flow decomposition by the improved DMD algorithm in Figure 11c with the
POD decomposition in Figure 13b, we conclude that the flow reconstruction using the POD method
is more accurate than reconstruction by the DMD method. Instead, DMD provides an acceptable
reduced analytical linear model of considered nonlinear dynamical system.

The first four Koopman modes computed with the improved DMD algorithm presented herein
are depicted in Figure 14, beside the first four POD basis functions, for modal decomposition of the
geopotential height field.

A quantitative comparison of the spatial modes computed from the two decompositions discussed
here can be obtained from the Modal Assurance Criterion (MAC), as recommended by Brown et al.
[68]. The MAC is a measure of the degree of linearity between two vectors. The MAC value for a
pair of modes is defined as

Figure 14. Left column: first four Koopman modes retained in dynamic mode decomposition. Right column:
first four proper orthogonal decomposition basis functions.
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Figure 15. Modal assurance criterion matrix between dynamic mode decomposition and proper orthogonal
decomposition modes.

MACij
�
�i
DMD; ˆj

POD
�
D

�


��j DMD�H �ˆj POD



F

�2



��j DMD�H � �j DMD




F




�ˆj POD�H �ˆj POD



F

; (49)

where � represents the Hermitian inner product, H denotes the conjugate transpose and k � kF is the
Frobenius matrix norm. The computedMACij

�
�i
DMD; ˆj

POD
�

takes values in the interval Œ0; 1�,
where 1 indicates identical modes and 0 indicates the orthogonality of the modes. In practice [69],
two vectors are considered correlated when the MAC value is greater than 0.9, which corresponds
to an angle lower than 18 degrees. The vectors are considered uncorrelated when the MAC value is
lower than 0.6, which means that they are separated by an angle greater than 39 degrees.

In the following, we compare the computed DMD modes with the POD modes used as basis
functions in the two modal decomposition methods. The MAC values computed between the first
rDMD D 4 modes and the first rPOD D 17 orthogonal modes are represented in Figure 15.

As expected, the first mode corresponding to the mean flow is well-captured by both methods,
with MAC

�
�1
DMD; ˆ1

POD
�
D 1. The fourth POD mode ˆ4 exhibits a strong similarity with the

DMD modes, having an increased MAC value MAC41 D 0:89, MAC42 D 0:89, MAC43 D 0:96,
MAC44 D 0:96. Analysing the modal assurance matrix, we conclude that only four POD modes are
correlated with the DMD modes, namely ˆ1, ˆ4, ˆ6 and ˆ16, exhibiting a MAC number greater
than 0.59. The other POD modes differ from the DMD modes, as with all, they ensure the caption
of 99:99% of the snapshots energy in the POD modal decomposition.

Unlike POD, it is evident that the first four optimal DMD modes are sufficient to describe the
flow field, as indicated the higher MAC values between the second, third and fourth DMD modes
and the first POD mode: MAC21 D 1, MAC31 D 0:99, MAC41 D 0:99. Hence, the conclusion
that for the problem investigated here, the DMD modal decomposition is more efficient than POD
decomposition, because the DMD modal decomposition is achieved with a smaller number of terms.

6. ANALYSIS OF OPTIMIZED DYNAMIC MODE DECOMPOSITION–REDUCED ORDER
MODEL (ROM) AND PROPER ORTHOGONAL DECOMPOSITION–ROM MODELS

The two-stage finite-element Numerov–Galerkin method for integrating the nonlinear SWE on a
ˇ-plane limited-area domain proposed by Navon [35] was employed in order to obtain the numer-
ical solution of the SWE model (3)–(5). In Figure 16, the initial velocity fields are presented. The
solutions of geopotential height field and .u; v/ field at T D 24 h are illustrated in Figure 17.
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Figure 16. Initial velocity fields: Geopotential height field for the Grammeltvedt initial condition h0, stream-
wise and spanwise velocity fields .u0; v0/ calculated from the geopotential field by using the geostrophic

approximation.

a. b.

Figure 17. (a) Solution of geopotential height field at T D 24 h and (b) solution of .u; v/ field at T D 24 h.

The DMD and POD computed geopotential height field and .u; v/ field at T D 24 h are depicted
in Figures 18 and 19, where a number of rDMD D 4 modes and rPOD D 17 modes were kept for
DMD and POD decompositions, respectively, using snapshots captured at 	t D 1200 s.

These reconstructions, when plotted on the same length and time scales as the simulations of the
full system, exhibit strikingly similar features, both quantitatively and qualitatively. The validity of
the improved DMD approach and POD decomposition has been checked by comparing our results
with those obtained by Stefanescu and Navon [13], when an alternating direction fully implicit
finite-difference scheme was used for discretization of 2-D SWE on a ˇ-plane. The flow
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a. b.

Figure 18. (a) Dynamic mode decomposition (DMD) computed geopotential height field at T D 24 h and
(b) DMD computed .u; v/ field at T D 24 h.

a. b.

Figure 19. (a) Proper orthogonal decomposition (POD) computed geopotential height field at T D 24 h and
(b) POD computed .u; v/ field at T D 24 h.

reconstructions presented in Figures 18 and 19 are very close to those computed in [13] (see p. 103,
Figure 2(a) indicates the results used in comparison).

The similarity between these characteristics of the geopotential height field and those obtained in
the previous investigation validates the method presented here and certifies that the improved DMD
can be applied successfully to 2-D flows.

We focus in this section on employing tools of DMD, POD and Galerkin projection to provide a
consistent way for producing ROM from data.

By collecting snapshots of the velocity and geopotential height field and applying the improved
DMD method, an ROM (denoted in the following as DMD-ROM) of the flow is constructed from
the DMD basis by writing

w .x; y; t/ � wDMD .x; y; t/ D Wb .x; y/C

rDMDX
jD1

aj .t/ �j�j .x; y/; (50)

whereWb is the centering trajectory, rDMD is the number of DMD basis functions and �j ; �j .x; y/
represent the Ritz eigenvalues of the Koopman operator and the DMD basis functions, respectively.
We now replace the velocity w with wDMD in the SWE model (3)-(5) associated with the initial
conditions (8), (9), (10), compactly written
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²
@w
@t
.x; y; t/ D f .t; w.x; y; t//

w .x; y; t0/ D w0 .x; y/
(51)

and then project the resulting equations onto the subspace XDMD D span
®
�1.�/; �2.�/; : : : ;

�rDMD .�/
¯

spanned by the DMD basis to compute the following inner products:*
�i .�/ ;

rDMDX
jD1

�j�j .�/ Paj .t/

+
D

*
�i .�/ ; f

0@t; rDMDX
jD1

�j�j .�/ aj .t/

1A+ ; (52)

*
�i .�/ ;

rDMDX
jD1

�j�j .�/ Paj .t0/

+
D h�i .�/ ; w0i ; for i D 1::rDMD; (53)

where hf; gi D
R
� fg d�.

The Galerkin projection gives the DMD-ROM, that is, a dynamical system for temporal
coefficients

®
aj .t/

¯
jD1;:::;rDMD

:

Pai .t/ D

*
�i .�/ ; f

0@t; rDMDX
jD1

�j�j .�/ aj .t/

1A+ ; (54)

with the initial condition

ai .t0/ D h�i .�/ ; w0i ; for i D 1; : : : ; rDMD: (55)

To derive the ROM from the POD basis, denoted in the following as POD-ROM model, we
construct the flow by writing

w .x; y; t/ � wPOD .x; y; t/ D Wb .x; y/C

rPODX
jD1

bj .t/ˆj .x; y/; (56)

whereWb is the centering trajectory, rPOD is the number of POD basis functions andˆj .x; y/ rep-
resents the POD basis functions. We seek for the coefficients bj projecting the SWE equations (51)
onto the subspace XPOD D span

®
ˆ1.�/; ˆ2.�/; : : : ; ˆrPOD .�/

¯
spanned by the POD basis:*

ˆi .�/ ;

rPODX
jD1

ˆj .�/ Pbj .t/

+
D

*
ˆi .�/ ; f

0@t; rPODX
jD1

ˆj .�/ bj .t/

1A+ ; (57)

*
ˆi .�/ ;

rPODX
jD1

ˆj .�/ Pbj .t0/

+
D hˆi .�/ ; w0i : (58)

The POD-ROM given by the Galerkin projection reduces to the solution of the following system
of ODEs, for the temporal coefficients

®
bj.t/

¯
jD1;:::;rPOD

:

Pbi .t/ D

*
ˆi .�/ ; f

0@t; rPODX
jD1

ˆj .�/ bj .t/

1A+ ; (59)

with the initial condition

bi .t0/ D hˆi .�/ ; w0i ; for i D 1; : : : ; rPOD : (60)
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The resulting autonomous systems have linear and quadratic terms parameterized by cim, cimn,
dim, dimn, respectively:

Pai .t/ D

rDMDX
mD1

rDMDX
nD1

cimnam .t/ an .t/C

rDMDX
mD1

cimam .t/ ; i D 1; : : : ; rDMD; (61)

Pbi .t/ D

rPODX
mD1

rPODX
nD1

dimnbm .t/ bn .t/C

rPODX
mD1

dimbm .t/ ; i D 1; : : : ; rPOD: (62)

In the following, we emphasize the performances of the reduced order DMD-ROM model and
POD-ROM model for 2-D flows in comparison with the numerical solution of the full SWE model.
To judge the quality of the ROMs developed here, an error estimate is provided. We define the
relative error as the L2-norm of the difference between the variables of the full SWE model and
approximate solutions over the exact one, that is,

errorDMD D



w .x; y/ � wDMD�ROM .x; y/



2

kw .x; y/k2
; (63)

errorPOD D



w .x; y/ � wPOD�ROM .x; y/



2

kw .x; y/k2
: (64)

The results are presented in Table I. The maximum error of numerical POD-ROM solutions is less
than the error of numerical DMD-ROM solutions, but the benefit of employing the improved DMD

Table I. The average relative errors of reduced order models.

DMD-ROM POD-ROM

errorDMD
h D 0:0119 errorPOD

h D 0:0042
errorDMD

u D 0:1770 errorPOD
u D 0:0929

errorDMD
v D 0:1534 errorPOD

v D 0:0456

DMD, dynamic mode decomposition; POD, proper orthogonal
decomposition, ROM, reduced order model.

Table II. Energy conserving test.

Absolute error of DMD reduced order model Absolute error of POD reduced order modelˇ̌̌
E �EDMD

ˇ̌̌
D 0:1956 � 10�5

ˇ̌̌
E �EPOD

ˇ̌̌
D 0:7436 � 10�6

DMD, dynamic mode decomposition; POD, proper orthogonal decomposition.

a. b.

Figure 20. (a) Dynamic mode decomposition-reduced order model (ROM) computed temporal coefficients;
(b) proper orthogonal decomposition-ROM computed temporal coefficients.
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a.

c.

b.

Figure 21. Comparison of the geopotential height field between full model and reduced order models
(ROM): (a) Solution of geopotential height field computed at time T D 10 h ; (b) dynamic mode
decomposition-ROM solution of geopotential height field computed at time T D 10 h; and (c) proper

orthogonal decomposition-ROM solution of geopotential height field computed at time T D 10 h.

Figure 22. Local errors between dynamic mode decomposition–reduced order model (ROM), proper orthog-
onal decomposition–ROM shallow water equations (SWE) solutions and the full SWE solution at time

T D 10 h.
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prevails in the case of SWE model reduction. Although the POD-ROM model provides higher pre-
cision, the DMD-ROM model is less expensive with respect to the numerical implementation costs,
that is, numerical results are obtained for a considerably smaller number of expansion terms to
derive the ROM.

The flow energy conservation is used as an additional metric to evaluate the quality of the two
reduced order models. Table II presents the absolute errors with respect to flow energy obtained
from the full model. The results indicate that both ROMs will preserve the flow total energy.

Figure 20 illustrates the temporal coefficients of the two ROMs. In Figure 20a, the coefficients
of the DMD-ROM model, corresponding to the first four dominant Koopman modes are visualized.
Figure 20b plots the coefficients corresponding to the first ten POD modes of the POD-ROM model.

A comparison of the full solution of the geopotential height field and ROMs solutions is provided
in Figure 21. The geopotential height field computed at time level T D 10 h by the two ROMs
exhibits an overall good agreement with that from the full model.

The local error between the full SWE solution and DMD-ROM and POD-ROM solutions,
respectively, at time T D 10 h is presented in Figure 22.

The correlation coefficients defined below are used as additional metrics to validate the quality of
the two ROMs:

Ci
DMD D

�

wi .x; y/ � wiDMD�ROM .x; y/



F

�2


.wi .x; y//H � wi .x; y/



F




�wiDMD�ROM .x; y/
�H
� wiDMD�ROM .x; y/





F

; (65)

i D 0; : : : ; N � 1;

Ci
POD D

�

wi .x; y/ � wi POD�ROM .x; y/



F

�2


.wi .x; y//H � wi .x; y/



F




�wi POD�ROM .x; y/
�H
� wi POD�ROM .x; y/





F

; (66)

i D 0; : : : ; N � 1;

where wi .x; y/ means the solution of the full SWE model at time i , wiDMD�ROM .x; y/,
wi
POD�ROM .x; y; t/ represent the computed solutions at time i by means of the ROMs, respec-

tively, .�/ represents the Hermitian inner product and H denotes the conjugate transpose. A
comparison of the correlation coefficients between the full model and ROMs is provided in
Figure 23. The values of the correlation coefficients are greater than 99%, 97%, respectively, and
confirm the validity of the two ROMs.

a. b. Time integration window [s]
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Figure 23. Correlation coefficients for the shallow water equations (SWE) variables: (a) dynamic mode
decomposition–reduced order model (ROM) versus full SWE model; (b) proper orthogonal decomposition-

ROM model versus full SWE model.
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7. SUMMARY AND CONCLUSIONS

We have proposed a framework for DMD of 2-D flows, when numerical or experimental data snap-
shots are captured with large time steps. Such problems originate for instance from meteorology,
when a large time step acts like a filter in obtaining the significant Koopman modes, therefore the
classic DMD method is not effective. This study was motivated by the need to further clarify the
connection between Koopman modes and POD dynamic modes. We have applied DMD and POD
to derive ROMs of the SWE.

Based on the DMD method introduced in [50], we proposed an improved DMD algorithm for
selecting the dominant Koopman modes of the flow field. Unlike the classic algorithm, we arrange
the Koopman modes in descending order of the energy of the DMD modes weighted by the inverse
of the Strouhal number. Key innovations for the DMD-based ROM introduced in this paper are
the use of the Moore–Penrose pseudoinverse in the DMD computation that produced an accurate
result and a novel selection method for the DMD modes and associated amplitudes and Ritz values.
We eliminate the modes that contribute weakly to the data sequence based on the conservation of
quadratic integral invariants by the reduced order flow.

In order to assess the performances of the proposed method, we have considered two numerical
experiments, and we applied the improved DMD algorithm for different snapshots obtained by
sampling down the original solutions of the full SWE model with different time steps. We compared
the novel approach with the classic one in both cases. The improved DMD algorithm introduced in
this paper proved to be more efficient for model reduction than the classic DMD method. Solution
of the constrained optimization problem (40) leads to the number of rDMD D 23, rDMD D 21

Koopman modes in the case of the classic DMD algorithm, respectively, while a number of rDMD D
13, rDMD D 4 Koopman modes, respectively, are kept in the case of the improved DMD algorithm
for flow modal decomposition in the two considered experiments.

We emphasized the excellent behaviour of the improved DMD method compared with POD-
based model results. Following the classic energetic criterion (45), the POD decomposition leads to
a number of rPOD D 17 selected modes. We perform a quantitative comparison of the spatial modes
computed from the two decompositions discussed here using the MAC as a measure of the degree
of linearity between Koopman and POD modes. This evaluation indicates that the DMD modal
decomposition is more efficient than POD decomposition because the DMD modal decomposition
is achieved with a smaller number of modes.

Additionally, we presented a rigorous error analysis for the ROM models obtained by POD and
the improved DMD, and we compared the relative computational efficiency of the aforementioned
ROM methods.

We found a very close agreement between the flow reconstruction computed with the ROM mod-
els and the solution provided by the high fidelity SWE model. But the benefit of employing the
improved DMD method prevails in the case of modal decomposition of 2-D flows described by
SWE. The similarity between the correlation coefficients between the full solution and the reduced
order solutions certifies that the improved DMD method can be applied successfully in parallel with
the POD decomposition to obtain ROMs of potential relevance.

Finally, let us summarize the main features of the presented methods and potential applications
of the novel numerical method introduced in this paper:

(i) Improved DMD method introduced in the present research exhibits more efficiency in recon-
struction of flows described by SWE model. For 	t D 1200 s, rDMD D 4 Koopman modes
are selected for flow reconstruction, while rDMD D 21 Koopman modes are retained in the
case of the classic DMD algorithm and rPOD=17 modes are kept for flow reconstruction in
POD method.

(ii) By employing the DMD, the most energetic Koopman modes are associated to the higher
amplitudes selected for flow decomposition. Instead, the eigenvalues capturing most of the
snapshots energy indicate the corresponding basis functions in POD decomposition.

(iii) DMD is useful when the main interest is to capture the dominant frequency of the phe-
nomenon. POD is useful when the main interest is to find coherent structures in the POD
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modes, which are energetically ranked. Further techniques for system identification or flow
optimization can be addressed based on both DMD method and POD method.

The question whether the proposed DMD methodology is a viable alternative to the linear sta-
bility analysis available in the community for hydrodynamic stability investigation is a subject
that will be addressed carefully in our future work. There are a number of interesting directions
that arise from this work. First, it will be a natural extension to apply the proposed algorithm to
high-dimensional systems in fluid dynamics and to oceanographic/atmospheric measurements. The
methodology presented here offers the main advantage of deriving an ROM capable to provide a
variety of information describing the behavior of 2-D flows. A future extension of this research
will address an efficient numerical approach for modal decomposition of swirling flows, where the
full mathematical model implies more sophisticated relations at domain boundaries that must be
satisfied by the ROM also.

Projection-based methods presented in this paper lead to ROMs with dramatically reduced num-
bers of equations and unknowns. However, for parametrically varying problems or for modelling
problems with strong nonlinearities, the cost of evaluating the reduced order models still depends on
the size of the full order model and is therefore still expensive. The discrete empirical interpolation
method (DEIM) described in detail in [70] further approximates the nonlinearity in the projection
based reduced order strategies. The application of a DEIM-ROM strategy for finite element (FEM)
models combined with the methods proposed in this paper represents a subject that we will further
address in our studies. The resulting DEIM-DMD-ROM and DEIM-POD-ROM will be evaluated
efficiently at a cost that is independent of the size of the original problem.
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