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Abstract During the last 20 years data assimilation has gradually reached a mature
center stage position at both Numerical Weather Prediction centers as well as being
at the center of activities at many federal research institutes as well as at many uni-
versities.

The research encompasses now activities which involve, beside meteorologists
and oceanographers at operational centers or federal research facilities, many in the
applied and computational mathematical research communities. Data assimilation
or 4-D VAR extends now also to other geosciences fields such as hydrology and
geology and results in the publication of an ever increasing number of books and
monographs related to the topic.

In this short survey article we provide a brief introduction providing some his-
torical perspective and background, a survey of data assimilation prior to 4-D VAR
and basic concepts of data assimilation.

I first proceed to outline the early 4-D VAR stages (1980–1990) and addresses
in a succinct manner the period of the 1990s that saw the major developments and
the flourishing of all aspects of 4-D VAR both at operational centers and at research
Universities and Federal Laboratories. Computational aspects of 4-D Var data as-
similation addressing computational burdens as well as ways to alleviate them are
briefly outlined.

Brief interludes are provided for each period surveyed allowing the reader to have
a better perspective A brief survey of different topics related to state of the art 4-D
Var today is then presented and we conclude with what we perceive to be main di-
rections of research and the future of data assimilation and some open problems. We
will strive to use the unified notation of Ide et al. (J Meteor Soc Japan 75:181–189,
1997).
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1 Introduction

Data assimilation in atmospheric sciences started from the fact that NWP is an initial
value problem. This since we start at whatever constitutes the present state and use
the NWP model to forecast its evolution. Early work by Richardson (1922) and
Charney et al. (1950) were based on hand interpolations (Kalnay 2003). This in
order to combine present and past observations of the state of the atmosphere with
results from the model (also referred to as “Mathematical” model). Since this was
a rather tedious procedure, efforts to obtain “automatic” objective analysis-the first
methods have been developed by Panofsky (1949), Gilchrist and Cressman (1954),
Cressman (1959), and Barnes (1964). Use of prior information to supplement rather
insufficient data was pioneered by Bergthorsson and Döös (1955), Cressman (1959)
followed by the comprehensive work of Lev Gandin (1965).

Early reviews of data assimilation whose purpose is that of “using all available
information (data) to determine as accurately as possible the state of the atmospheric
(or oceanic) flow” (Talagrand 1997) were provided by Le Dimet and Navon (1988),
an in-depth survey of Ghil and Malonotte-Rizzoli (1991) as well as by the outstand-
ing book of Daley “Atmospheric Data Analysis” (Daley 1991).

A collection of papers by Ghil et al. (1997) in “Data Assimilation in Meteorol-
ogy and Oceanography: Theory and Practice (Ghil et al. 1997) summarizes state
of the art of data assimilation for that period. See also a short survey by Zupanski
and Kalnay (1999) along with the excellent book of Kalnay (2003) “Atmospheric
Modeling, Data Assimilation and Predictability”. An early effort linking Optimal
Interpolation (O.I.) with the variational method was done by Sasaki (1955, 1958)
and in more final form by Sasaki (1969, 1970a, b, c, d) which can be viewed as a
3-D VAR approach. It was Lorenc (1986) that showed that OI and 3-D VAR were
equivalent provided the cost functional assumes the form:

J =
1
2

{[
yo −H(x)

]T
R−1[yo −H(x)

]
+
(
x− xb)T

B−1(x− xb)} (1)

The first term measures the distance of forecast field x to observations yo and the
second term measures the distance to background xb.

The analysis x is obtained by adding the innovation to the model forecast
with weights W based on estimated statistical error covariances of forecast and
observations.

x = xb +W
[
yo −H(xb)

]
(2)

Related theoretical material related to the set-up that led to modern data assim-
ilation may be found in the “Inverse Problem Theory” of Tarantola (1987), the
optimal control book of Lions (1971), the “Perspectives in Flow Control and Opti-
mization” by Max Gunzburger (2003) along with “Inverse Modeling of the Ocean
and Atmosphere” by Andrew Bennett (2002) and “Dynamic Data Assimilation: A
Least Squares Approach” by John Lewis et al. (2006), Cacuci (2003) and Cacuci
et al. (2005). See also Haltiner and Williams (1980).
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In this brief review we first provide some historical background to the data assim-
ilation effort along with some basic concepts of data assimilation. We then proceed
to survey in a section the early stages (1980–1990) of 4-D VAR data assimilation
with brief interludes summarizing and providing perspectives as we go along. In
the following section we address some computational aspects of data assimilation
such as issues of automatic differentiation, and the incremental method which al-
leviated the computational burden of 4-D VAR and made it operationally viable at
large operational NWP centers. A short section is dedicated to state-of the art of data
assimilation at present time and we close with a short section outlining directions of
development of 4-D VAR in the future.

2 Relationship Between OI and 3-D VAR

The terminology of 4-D VAR (4-dimensional data assimilation) was originally used
in research centers in the context of using continuous data assimilation satellite data
leading to the First Global Atmosphere Research Program (GARP) Global Experi-
ment, Charney, Halem and Jastrow (1969).

Insertion of observations directly into primitive equations models excited spu-
rious inertia-gravity oscillations in the model and required the use of damping
schemes (Matsuno 1966) for damping the high-frequency components. A full-
account of these techniques and the history of continuous data assimilation are pro-
vided in the seminal book of Daley (1991). This review will survey some aspects
of variational data assimilation while only providing a brief outline of methodolo-
gies that prevailed prior to the 1980s. We will rely on work of Kalnay (2003),
Daley (1991), Talagrand (1997), Zupanski and Kalnay (1999), Ghil et al. (Eds)
(1997), works of the present author and his collaborators, the review of Ghil and
Malonotte-Rizzoli (1991) and an early review that remained an unpublished techni-
cal report (Le Dimet and Navon 1988).

Panofsky (1949) is credited for pioneering the first objective analysis based on
2-D polynomial interpolation. It was followed by Gilchrist and Cressman (1954)
who put forward an interpolation scheme for geopotential field as a quadratic poly-
nomial in x and y

E(x,y) = a00 + a10x + a01y + a20x2 + a11xy + a02y2, (3)

then minimizing mean square difference between polynomial and observations
within a radius of influence of the closest grid point,

min
ai j

E = min
ai j

{
Kv

∑
k=1

pv ·
(

Ev
0 −E(xv,yv)

)2
(4)

+
Kv

∑
k=1

qv ·
{
[u0

v −ug(xv,yv)]2 +[v0
v − vg(xv,yv)]2

}}
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where pv and qv were empirical weights and ug and vg the components of the
geostrophic wind obtained from the gradient of geopotential height E(x,y) at ob-
servation pointk. K was total number of observations within the radius of influ-
ence. The introduction of first guess estimate is credited to have been introduced
by Bergthorsson and Döös (1955). Usually either climatology or a combination of
it with first guess was used in the analysis cycle. See also the influential work of
Gandin (1965), translated from Russian by the Israeli program of Translations in
1965.

3 Successive Correction Method

The first analysis method in 4DDA was the successive correction method developed
by Bergthorsson and Döös (1955) and by Cressman (1959). The field of background
was chosen as a blend of forecast and climatology with a first estimate given by the
first guess field

f 0
i = f b

i . (5)

f b
i background field estimated at the i-th grid point, f 0

i being the zeroth iteration
estimate of gridded field. This is hence followed by new iteration obtained by “suc-
cessive corrections”

f n+1
i = f n

i +
Kn

i

∑
k=1

wn
i j

(
f 0
k − f n

k

)
+

Kn
i

∑
k=1

wn
ik + ε2 (6)

f n
i - n-th iteration estimate at ith grid point,

f 0
k - k-th observation surrounding grid point,

f n
i - value of n-th field estimate calculated at observation point k derived by inter-

polation from nearest grid points,
ε2- estimate of ratio of observation error variance to background error variance.

The important ingredient is constituted by the weights wn
ik which are related to

a radius of influence. Cressman (1959) proposed the following weights in the SCM
(Successive corrections method).

wn
ik =

R2
n − r2

ik

R2
n + r2

ik

if r2
ik ≤ R2

n (7)

wn
ik = 0 if r2

ik > R2
n (8)

r2
ik square of distance between observation point rk and a grid point at ri.

The controlling parameter is the radius of influence Rn, allowed to vary between
iterations while Kn

i is the number of observations within a radius of Rn of the grid
point i. If one reduces the radius of influence, this results in a field reflecting large
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scales after first iteration -and tends towards smaller scales after additional itera-
tions. For additional technical details see Daley (1991), Kalnay (2003).

Cressman (1959) took the coefficient ε2 to be zero. For noisy data with errors it
may lead to erroneous analysis. Taking ε2 > 0 i.e. assuming observations with er-
rors, allows some impact to the background field. Barnes (1964) defined the weights
to follow a Gaussian or normal distribution

wi j =

⎧
⎪⎨
⎪⎩

exp−
(

r2
ik

d2

)
if rik ≤ d

0 otherwise,
(9)

where d is the radius of influence.
It uses an adaptive version where the radius of influence changes by a factor γ

0 < γ < 1. (10)

It was shown by Bratseth (1986) that with an appropriate choice of weights these
SCM iterative method analysis increments can be made to be the same as those
obtained using optimal interpolation (OI). Lewis et al. (2006) quote also similar
independent work done by Franke and Gordon (1983), Franke (1988) and Seaman
(1988).

4 The Variational Calculus Approach

It was introduced in meteorology by Yoshi Sasaki in his PhD Thesis (1955) and later
extended by him to include dynamic model laws (Sasaki 1969, 1970a, b, c). He pro-
posed three basic types of variational formalism in the numerical variational analysis
method. The basic formalisms are categorized into three areas: (1) “timewise local-
ized” formalism, (2) formalism with strong constraint, and (3) a formalism with
weak constraint. Exact satisfaction of selected prognostic equations was formulated
as constraints in the functionals for the first two formalisms. This approach is now
generically referred to as 3-D VAR.

In 3-D VAR one defines a cost function proportional to the square of the dis-
tance between analysis and both background and observations, and it was showed
by Lorenc (1981, 1986) that the OI and the 3-D VAR approaches are equivalent
provided the cost function is defined as

J =
1
2

[
yo −H(x)

]T
R−1[yo −H(x)

]
+(x− xb)B−1(x− xb). (11)

where

B is the background error covariance,
R is the observation error covariance,
H is an interpolation operator (or observation operator),
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xb is the first guess or background,
yo is the observation,
yo −H(xb) are the observational increments

xa = xb +W
[
yo −H(xb)

]
(12)

W is a weight matrix based on statistical error covariances of forecast and observa-
tions.

5 Variational Methods

The start of variational methods is originally attributed to the work of Euler and
Lagrange the seventeenth and eighteenth century. The Euler-Lagrange equation, de-
veloped by Leonhard Euler and Joseph-Louis Lagrange in the 1750s, is the major
formula of the calculus of variations. It provides a way to solve for functions which
extremize a given cost functional. It is widely used to solve optimization problems,
and in conjunction with the action principle to calculate trajectories. Variational cal-
culus has had a broad appeal due to its ability to derive behavior of an entire system
without details related to system components. Broadly speaking variational calculus
involves finding stationary points of functionals written as integral expressions. The
general theory is rigorously explained in the work by Lanczos (1970) and Courant
and Hilbert (1962).

Basic to the constrained minimization theory is the method of undetermined
Lagrange multipliers where

λ = (λ1, . . . ,λn)T (13)

is a vector of n unknowns for the solution of

min f (x) ∈ Rn (14)

subject to g(x) = 0 x ∈ Rm (15)

and using the first-order conditions for a minimum we obtain using the first deriva-
tives of the Lagrangian function

L(λ ,x) = f (x)+λ T g(x) (16)

∇xL(x,λ ) =
∂ f
∂x

+λ
∂g
∂x

(17)

∇λ L(x,λ ) = g(x) (18)

The Lagrange multiplier λ can be viewed as measuring sensitivity of value of
function f at a stationary point to changes in the constraint (see also Nocedal and
Wright 2006).
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One can show formally (see any text book on variational methods) that finding
in a given domain of admissible functions u(x) the continuous first derivatives of a
functional I for which I(u(x)) is a stationary value (i.e. any function which extrem-
izes the cost functional) must also satisfy the ordinary differential equation called
the Euler-Lagrange equation

∂F
∂u

− ∂
∂x

∂F
∂u′

= 0 (19)

where

I(u(x)) =
∫ xb

xa

F(u(x))dxxa ≤ x ≤ xb (20)

u′ =
∂u
∂x

(21)

As an example of a typical application of variational methods, consider work of
Sasaki (1970a, b, c). Navon (1981) used it to enforce conservation of total enstrophy,
total energy and total mass in one and two-dimensional shallow water equations
models on a rotating place.

6 First Interlude

6.1 Situation in Data-Assimilation at Beginning of 1980s

Charney, Halem and Jastrow (1969) proposed that numerical models be used to
assimilate newly available asynoptic data. The idea was to insert asynoptic tem-
perature information obtained from satellite-born radiometers into the model at its
true (asynoptic) time. Continuous data assimilation referred to frequent insertion of
asynoptic data. Charney et al. (1969) experiment suggested continuous data assim-
ilation I.G. Tadjbakhsh (1969). Problems of real data insertion soon emerged in the
form of an inertia-gravity wave shock (Daley and Puri 1980) leading to essential re-
jection by the model of the information of real observational data. A remedy for con-
tinuous data assimilation of real data was to reduce the insertion interval to the time
step of the model (Miyakoda et al. 1976). See also Talagrand and Miyakoda (1971).

Other approaches were via geostrophic wind correction outside the tropics or
nudging also referred to as Newtonian relaxation (Hoke and Anthes 1976), Davis
and Turner (1977). See also work of Talagrand (1981, 1987). Ghil, Halem and
Atlas (1979), McPherson (1975). McPherson (1975) viewed data assimilation as
“a process by which something is absorbed into something else”. During 1974
Marchuk proposed application of adjoint method in meteorology (Marchuk 1974 –
see also Russian article of Marchuk 1967) and in 1976 Penenko and Obratsov used
these methods to study adjoint sensitivity (Penenko and Obratsov 1976).
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In 1969, Thompson had already put forward the idea that incorrect analyses at
two successive times may be optimally adjusted to maintain dynamical consistency
with a given prediction model (Thompson 1969). This may be viewed as a precursor
to variational data assimilation. Since 1958, Marchuk and collaborators used adjoint
methods for linear sensitivity analysis problems. Atmospheric issues were also ad-
dressed in the same fashion (see Marchuk 1974). Adjoint operators have been intro-
duced by Lagrange (1760) and have been used in modern times since Wigner (1945)
and by many others in different domains.

The advent of optimal control theory of partial differential equations is attributed
to Bellman starting in the late 1950s Bellman (1957) (the Hamilton-Jacobi-Bellman
equation) and to Pontryagin et al. (1962) (Pontryagin’s minimum principle).

The major impetus in this area came from the monograph of Lions (1968) on
optimal control of partial differential equations. It was to be that a former doctoral
student of Lions, Francois Le Dimet, introduced the concepts of optimal control to
the meteorological community starting in the early 1980s.

One major work which impacted in a serious way the adjoint sensitivity anal-
ysis was the work of Cacuci et al. (1980), D.G. Cacuci (1981a, 1981b). Histori-
cally one can trace back linear adjoint sensitivity to work of Wigner (1940–1942)
(see Wigner 1945). See the lecture of Cacuci (2004). Wiener (1949) was the first
to interpret physically the adjoint functions (see also Lewins 1965) as importance
functions. As mentioned above Cacuci (1980–1981) presented a complete rigorous
theory for adjoint sensitivity of general nonlinear systems of equations.

Le Dimet (1981) was then preparing his technical report at Clermont-Ferrand
introducing for the first time optimal control methodology with variational adjust-
ment to the meteorological community that led to the seminal paper by Le Dimet
and Talagrand (1986).

7 Emergence of Early Data Assimilation Works

Le Dimet (1982), Lewis and Derber (1985), Courtier (1985), Le Dimet and Tala-
grand (1986) were the first to work on adjoint data assimilation. Cacuci (1981a,
1981b) extended adjoint sensitivity analysis to the fully nonlinear case. Lagrange
multiplier methods were presented in detail by Bertsekas (1982), while Navon and
De Villiers (1983) exhibited the method in detail applied to enforcing conservation
of integral invariants.

8 Optimal Interpolation (OI) Methods

Lev Gandin (1965) coined the term (OI) but the technique of statistical interpolation
can be traced back to Kolmogorov (1941) and Wiener (1949) and the terminology
of optimal interpolation was apparently due to Wiener (1949).
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A review of the work of these two mathematicians is provided in the Yaglom
(1962) book on stochastic processes (see Lewis et al. 2006). In atmospheric sciences
use of statistical interpolation goes back to Eliassen (1954) while Krige (1951), used
it in the mining industry.

Use of least-squares to obtain best estimate of state of the atmosphere by com-
bining prior information which can consist of either a first guess or a background
with observations which have errors. The concept of background field goes back to
Gauss (1809). We wish to carry out a minimum variance estimation.

In a general form the optimal least-squares estimation is defined by the following
interpolation equations

Xa = Xb + K(y−H[Xb]), (22)

where K is a linear operator referred to as gain or weight matrix of the analysis and
is given by

K = BHT (HBHT + R)−1, (23)

where Xa is the analysis model state,

H- an observation operator,
B- covariance matrix of the background errors (Xb −X),
X- being the time model state,
Xb- background model state,
R- covariance matrix of observation errors.
The analysis error covariance matrix is

A = (I−KH)B(I−KH)T + KRK−1 (24)

If K is optimal least-squares gain, A becomes

A = (I −KH)B (25)

(see proof in Bouttier and Courtier 1999).
One can show that the best linear unbiased estimator (Talagrand 1997; Bouttier

and Courtier 1999) may be obtained as the solution of the following variational
optimization problem.

minJ = (X −Xb)T B−1(X −Xb)+ (y−H(X))TR−1(y−H(X)) (26)

= Jb(X)+ Jo(X)

One notes that if the background and observation error probability functions are
Gaussian then Xa is also the maximum likelihood estimation of Xt (time). Prob-
ability density function represents a probability distribution in terms of integrals,
being non-negative everywhere with an integral from −∞ to +∞ being equal to 1.
More exactly a probability distribution has density f (x), if f (x) is a non-negative
Lebesgue integrable function from R → R such that the probability of the interval
[a,b] is given by

∫ b
a f (x)dx for any two numbers a and b.
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For a comprehensive examination of OI in meteorology we refer to Lorenc (1981)
and Lorenc (1986). The most important advantage of using statistical interpolation
schemes such as OI and 3-D VAR instead of empirical schemes such as SCM (1959)
is the fact that they are taking into account the correlation between observational in-
crements.

How to estimate the prior error covariances B and R and the observation operator
H? A difficult issue with observation operator is the case of satellite products such
as radiances, a piece of information which cannot be directly used. The observation
operator performs both interpolation from model grid to satellite observation loca-
tion and then uses physical theory (such as in the case of radiances) to convert model
column of temperature to synthetic radiances. Observation error covariance matrix
R is obtained from instrument error estimates which, if independent mean that the
covariance matrix R will be diagonal. This can facilitate computations.

Assume that background and observation error (covariances) are uncorrelated,
the analysis error covariance matrix is given as

A = (I −KH)B(I−KH)T + KRKT . (27)

Solution of minimum covariance requires

∂
∂K

(trace(A)) = 0 (28)

∂
∂A

(traceBAC) = BTCT (29)

∂
∂ t

(traceABAT ) = A(B + BT ) (30)

∂
∂K

(trace(A)) ≡ (I−KH)(B + BT )HT + K(R + RT) (31)

= −2(I−KH)BHT + 2KR

= −2BHT + 2K(HBHT + R)

= 0

from which we obtain the optimal weight K

K = BHT (HBHT + R)−1. (32)

9 Estimating Background Error Covariances

The background error covariance is both the most difficult error covariance to esti-
mate and it has a most important impact on results (Kalnay 2003; Navon et al. 2005).
This since it is primarily the background error covariance that determines the spread
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of information as well as allowing observations of wind field to enrich information
about the mass field and vice-versa.

In order to render modelling of B practically feasible some compromises had
to be made with respect to statistical aspects of the covariance matrix such as
anisotropy, flow dependence and baroclinicity (Fisher 2003a, 2003b). The first ap-
proach by Hollingsworth and Lonnberg (1986) concerned statistics of innovations,
namely observation – minus -background (in short forecasts) and rawinsonde obser-
vations. The assumption made was that observation errors are spatially uncorrelated
and they assigned spatial correlations of innovations to the background error. Hid-
den in this method of use of innovation statistics is the implicit assumption of a
dense homogeneous observing network.

For 3-D VAR the most popular and universally adopted method does not depend
on measurements but rather uses differences between forecasts of different time-
lengths which verify at the same time. It is known as the “NMC” (now NCEP)
method having been introduced by Parrish and Derber (1992). In an operational
numerical weather prediction they use

B ≈ αE
{
[Xf (48h)−Xf (24h)][Xf (48h)−Xf (24h)]T

}
(33)

This provides a multivariate global forecast difference covariance. If this time
interval is longer than the forecast used to generate background fields then the co-
variances of the forecast difference will be broader than those of the background
error.

A new method based on ensemble of analyses to estimate the background errors
is described in detail in Fisher (2003a, 2003b) who presents also modern approaches
to background error covariance matrix construction.

10 Framework of Variational Data Assimilation

The objective of variational 4-D Var is to find the solution to a numerical forecast
model that best fits a series of observational fields distributed in space over a finite
time interval. We are assuming that the model of the atmosphere can be written as

B
dX
dt

+ A(X) = 0 (34)

with B being identity for a dynamical model or the null operator for a steady state
model. A can be a linear or nonlinear operator. We have U defined as a control
variable which may consist of initial conditions, boundary conditions and/or model
parameters.

U should belong to a class admissible controls Uad . We are looking for a unique
solution X(U) of (34). The major step consists in formulating the cost function J
which measures distance between model trajectory and observations as well as the
background field at initial time during a finite time-interval, referred to as the time
window.
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Typically in meteorology (see Le Dimet and Talagrand 1986; Rabier 2005).

J(X0) =
1
2
(X0 −Xb)T B−1(X0 −Xb) (35)

+
1
2

N

∑
i=0

(Hi(Xi)− yi)T R−1
i (Hi(Xi)− yi)

where

X0 is the NWP model state as time t0,
Xb-background state at time t0, typically a 6h forecast from a previous analysis,
B-the background error covariance matrix,
yi-the observation vector at timeti,
Hi-observation operator,
Xi = Mi,0(X0) model state at time ti,
Ri-observation error covariance matrix at time ti.

where an alternative to writing the NWP model is

Xi+1 = Mi+1,i(Xi) (36)

Mi+1,i is the nonlinear NWP model from time ti to time ti+1.
The minimization of the cost functional can be viewed both in the perspective of

finding its gradient in (a) Lagrangian approach, (b) adjoint operator approach and
(c) a general synthesis of optimality conditions in the framework of optimal control
theory approach. Requiring the gradient of the cost to vanish with respect to initial
conditions control variable X0 yields

∇X0J(X0) = B−1(X0 −Xb)+
N

∑
i=0

MT
i,0HT

i R−1
i [Hi(Xi)− yi] (37)

where we substitute the dynamical constraint

Xi+1 = Mi+1,i(Xi) (38)

while perturbations of the atmospheric state are obtained by linearizing the nonlin-
ear model (38) as

δXi+1 = Mi+1,i(Xi)δXi (39)

yielding

∇X0J(X0) = B−1(X0 −Xb)+
N

∑
i=0

MT
i,0HT

i R−1
i [Hi(Xi)− yi] (40)

where Hi is the tangent linear operator of the observation operator Hi and HT
i is the

adjoint operator and
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MT
i,0 = MT

1,0MT
2,1 · · ·MT

i,i−1 (41)

is the adjoint model consisting of a backward integration from time ti to time t0.
The minimization of the cost functional is obtained using a gradient-based mini-

mization algorithm. Starting from a first guess

X0(t0) = Xb(t0) (42)

while at each iteration step k = 1,2, · · · ,N, we compute and store both first guess
trajectory and the observation departures Hi(Xi)− yi by integrating forward in time
the nonlinear model

Xk(ti) = M(ti, t0)(Xk(t0)) (43)

Start with initializing the adjoint variable at time tN

δ ′Xk(tN) = 0 (44)

integrating the adjoint model backwards in time from final time tN to initial time t0.
and whenever observations are encountered a forcing term

HT
i R−1

i (Hi(Xi)− yi) (45)

is added to δ ′Xk(ti).
Finally one can show that

δ ′Xk(t0)+ B[Xk(t0)−Xb] (46)

is the gradient ∇Jk with respect to the control variable Xk(t0).
If

||∇X0Jk+1|| ≤ ε max{1, ||Xk||} (47)

(where ε is a predetermined adequately chosen tolerance.) If above criterion is sat-
isfied then stop.

If the above criterion is not satisfied then use a stepsize search algorithm us-
ing, say, a cubic interpolation usually provided by the gradient based minimization
algorithm.

One then updates the first guess, namely

Xk+1(t0) = Xk(t0)−ρk∇Jk (48)

where ρ is a step-size in the direction of descent and find the next minimization
iterate using a gradient based minimization algorithm.

All the time we assume that the nonlinear cost function has a unique minimum
and avoids temporarily addressing the complex issue of the presence of multiple
minima.
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11 Variational Formalism

11.1 The Lagrangian Approach

One can consider a model given as in Le Dimet and Talagrand (1986) by

F(U) = 0 (49)

where U denotes meteorological fields being considered. Suppose we have observa-
tions Û occurring at an irregular set of points distributed in both space and time.

We wish to solve the problem of finding a solution that minimizes a cost function

J(U) =
∫

||U −Û||2 dxdydt (50)

where ‖,‖ is a suitable norm and Û consists of discrete observations hence the inte-
gral is replaced by suitable finite sums. Here we view the model equation

F(U) = 0 (51)

as a strong constraint on cost function J. Using classical Lagrange multiplier tech-
nique a Lagrangian of (50) subject to model strong constraint allows us to convert
this constrained minimization into an unconstrained minimization problem by defin-
ing a Lagrangian (see Bertsekas 1982) as

L(U,λ ) = J(U)+ (λ ,F(U)) (52)

for an adequately defined inner product for a functional space in which F(U) also
belongs.

Then finding minima of J(U) subject to

F(U) = 0 (53)

is equivalent to finding the minima of

∇λ L = 0 and (54)

∇U L = 0 (55)

which taking into account boundary conditions turns out to be the Euler-Lagrange
equations of the problem. Since the Euler-Lagrange equations can seldom be solved
directly, we are interested in practical algorithms for solving the minimization of
cost functional subject to strong model constraint by transforming it into a sequence
of unconstrained minimization problems.

There are many constrained minimization algorithms-but the simplest and most
robust of them are the penalty and the multiplier (or duality) algorithms. These
are presented in many numerical minimization text books, (Nash and Sofer 1996;
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Nocedal and Wright 2006). For shortcomings of the penalty and duality algorithms
see book of Bertsekas (1982) and Navon and De Villiers (1983).

In the augmented Lagrangian algorithm (where the constrained problem is con-
verted into a sequence of unconstrained minimization problems) we have

L(ρ ,U,λ ) = J(U)+{λ ,F(U)}+ρ |F(U)|2 (56)

This algorithm was initially proposed by Hestenes (1969) and independently by
Powell (1969). Here ρ > 0 is the quadratic penalty coefficient.

12 Optimal Control View Point

In optimal control of partial differential equations developed by Lions (1968, 1971)
the Lagrange multiplier is viewed as an adjoint variable. The adjoint method of
optimal control allows computing the gradient of a cost J with respect to the control
variables.

Consider as in Gunzburger (2003) a second order nonlinear elliptic PDE

−∇(a∇φ)+ b ·∇φ +φ3 =
K

∑
k=1

αK fK (57)

in domain Ω with boundary conditions

φ = 0 on Γ (58)

a,b and fK are given functions defined on Ω.
We define a cost as

J(φ ,α1, · · · ,αK) =
1
2

∫

Ω
(φ −Φ)2dΩ+

σ
2

K

∑
k=1

(αK)2 (59)

Φ is a given function and σ a penalty parameter. We introduce a Lagrange multiplier
(here adjoint variable) ζ and define a Lagrangian

L(φ ,g,ζ ) = J(φ ,g)− ζT F(φ ,g) (60)

We aim to find controls g, states φ and adjoint states ζ such that the Lagrangian
is stationary and we obtain as in the Augmented Lagrangian approach

∂L
∂ζ

= 0, constraint (61)

∂L
∂φ

= 0,adjoint equation (62)

∂L
∂g

= 0,optimality condition (63)
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Taking a first order variation of L with respect to the Lagrange multiplier, we
obtain a variation in the state yielding an optimality condition

(
∂F
∂φ

|(φ ,g)

)T

ζ =
(

∂J
∂φ

|(φ ,g)

)T

(64)

which yields the optimality condition.

13 Situation of Data Assimilation-the Early Period
(1980–1987) of 4-D Var

Efforts in early adjoint applications following Francois Le Dimet (1981) pioneer-
ing technical report were by Lewis and Derber (1985) and Le Dimet and Tala-
grand (1986) as well as Courtier (1985). These research efforts started the mete-
orological optimal control application called “adjoint operator” approach.

Work of Navon and De Villiers (1983) on augmented Lagrangian methods is
related to the same topic and is referred to in the early work of Le Dimet and Tala-
grand (1986).

John Lewis and John Derber (1985) were the first authors to present application
of adjoint method, having read the report of Francois Le Dimet (1982) and inspired
by earlier work of Thompson (1969). Lorenc (1986) presented a detailed account of
state of theory in data assimilation for that period. See also Navon (1986).

It became soon apparent that size and complexity of atmospheric equations is
such that enormous computational resources were required-limiting applications of
4-D VAR to undergo drastic approximations for actual operation forecast circum-
stances.

Penenko and Obratsov (1976) used adjoint data assimilation to perform simple
experiments on a linear model (see Talagrand and Courtier 1987), while Derber
(1985) used it in his Ph.D thesis to adjust analysis to a multi-level quasi-geostrophic
model.

Hoffmann (1986) was the next to use 4-D VAR (even though he used a simplified
primitive equation model and in order to estimate the gradient he perturbed in turn
all the components of the initial state.)

Talagrand and Courtier (1987) presented a more in-depth general exposition of
the theory of adjoint equations in the framework of variational assimilation and
applied it to the inviscid vorticity equation and to the Haurwitz wave. Their results
are presented in Courtier and Talagrand (1987).

14 OI, 3-D VAR and PSAS

Lorenc (1986) showed that the optimal weight matrix W that minimizes the matrix
of analysis error covariance solution may be posed in terms of a variational assimi-
lation problem, namely that of finding the optimal analysis field Xa that minimizes a
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cost function. The cost function measures the distance between the field variables X
and the background Xb (the background term of the cost)-plus another term, namely
the distance to the observations yo weighted by the inverse of the observation error
covariance matrix R

J(X) =
1
2
(X −Xb)T B−1(X −Xb)+ [yo −H(X)]T R−1[yo −H(X)] (65)

where H is the forward observational operator. The cost function (97) can also be
derived based on a Bayesian approach.

A formalism allowing viewing the assimilation algorithms of O-I, 3-D VAR,
PSAS and 4-D VAR as a sequence of corrections to a model state can be derived
from the work of Lorenc (1986), Kalnay (2003) and Courtier (1997). See also re-
search work of Da Silva et al. (1995) who first proposed the physical space statistical
analysis system (PSAS) (see also report of Aarnes 2004).

We are considering incrementing background model state Xb with additional in-
formation from the observation z where

Xa = Xb + K(z−HXb). (66)

Here H is an observation operator mapping the model state on space and time loca-
tions of the observation, Xa is the analysis and K is the gain matrix weighting the
contributions from the new information according to the reliability of the observa-
tion relative to respective reliability of the model state. Following Kalnay (2003),
Lorenc (1986) OI, 3-D VAR, 4-D VAR and PSAS are mathematically equivalent
but 3-D VAR and related PSAS have the advantage w.r.t. OI by virtue of the fact
that one can minimize the cost function J with global unconstrained minimization
algorithms for 3-D VAR hence all the approximation made in OI are not necessary.
Other advantages of 3-D VAR are enumerated in Kalnay (2003).

To show equivalence of 3-D VAR and OI we start from the matrix system
(

R H
HT −B−1

) (
W

Xa −Xb

)
=
(

z−HXb

0

)
(67)

where R and B are the error observation error and background error covariance
matrices, respectively, assumed to be symmetric and positive-definite. The equiv-
alence between OI and 3-D VAR statistical problems was proven by Lorenc (1986),
Kalnay (2003) and using suggestion of Jim Purser (see Kalnay (2003))

W = KOI = BHT (R + HBHT ) (68)

To see the equivalence between OI and the PSAS scheme where minimization
is performed in the space of observations rather than in the model space (Since the
number of observation is usually much smaller than the dimension of model space-
PSAS may turn out to be more efficient than 3-D VAR for obtaining similar results)
we note that
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(
R H

HT −B−1

) (
W

Xa −Xb

)
=
(

z−HXb

0

)
(69)

is equivalent to
(

W 0
HT −B−1

) (
W

Xa −Xb

)
=
(

z−HXb

0

)
(70)

yielding

w = W−1(z−HXb) (71)

and

Xa −Xb = BHTW−1 (72)

One first solves the linear system

Ww = z−HXb (73)

and then interpolates solution onto model space as

Xa = Xb + BHT w (74)

In PSAS one solves the first step by minimizing the cost functional

J(w) =
1
2

wTWw−wT (Z −HXb) (75)

thus allowing a better conditioning of the minimization due to smaller dimension of
W i.e

dim(W ) ≤ dim(B) (76)

Courtier (1997) has shown that there is a duality between 3-D VAR and the
physical space statistical analysis system (PSAS). He also showed that the tem-
poral extension of 3-D VAR leads to 4-D VAR while the temporal extension of
PSAS,4-D VAR PSAS is achieved using an algorithm related to the represen-
ters technique (Bennett 2002), which is a practical algorithm for decoupling the
Euler-Lagrange equations associated with the variational problem with weak con-
straint. (see Amodei 1995)

15 4-D VAR Developments in Early 1990s

A comprehensive list of adjoint applications to meteorological problem is provided
by Courtier et al. (1993). The early 1990s were characterized by publication of
many research efforts related to extending 4-D VAR data assimilation to multilevel
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primitive-equation models using analyses as observations along with other work us-
ing synthetic observations. See for instance Thepaut and Courtier (1991), Navon
et al. (1992a) and Zupanski (1993). Thepaut et al. (1993) used real observations
while Rabier and Courtier (1992) studied the performance of 4-D VAR in the pres-
ence of baroclinic instability. Courtier et al. (1994) introduced an incremental for-
mulation of the 4-D VAR, a major achievement allowing the 4-D VAR method to
become computationally feasible on that period’s computers.

It was perceived rather early by Derber (1989) that the perfect model hypothesis
is a weakness of 4-D VAR. In the above seminal paper he assumed the model error
to be fully correlated in time and solved the problem by including the bias in the
control variable. Wergen (1992) and Miller et al. (1994) illustrated how serious the
problem is.

At universities research in 4-D VAR data assimilation proceeded to address issues
such as the impact of incomplete observations on 4-DVAR (see Zou et al. 1992),
while at the suggestion and advice of Francois Le Dimet, Zhi Wang completed a
doctoral thesis on second order adjoint methods (Wang 1993), as well as a first
paper on second order adjoint data assimilation (Wang et al. 1995). Initial work on
4-D VAR data assimilation with the semi-implicit semi Lagrangian (SLSI) models
in 2-D and 3-D was using both shallow-water and a NASA multilevel model. (see Li
et al. 1993, 1994, Li and Droegemeier 1993) Basic work on optimization methods
suitable for 4-D VAR was carried out by Zou et al. (1993) based on Navon (1992)
and Navon et al. (1992b). Application of 4-D VAR to a finite-element model of the
shallow-water equations was carried out by Zhu et al. (1994) while a novel Hessian
preconditioning method based on an idea of Courtier et al. (1994) was written by W.
Yang et al. (1996) Aspects of 4-D VAR dealing with boundary conditions as control
variables were dealt amongst others in the work of Zou et al. (1995).

16 Model Error in 4-D VAR

Numerical weather prediction (NWP) models are imperfect, since they are dis-
cretized, dissipative and dispersion errors arise, and, moreover subgrid processes
are not included. In addition, most of the physical processes and their interactions
in the atmosphere are parameterized and a complete mathematical modeling of the
boundary conditions and forcing terms can never be achieved. Usually all of these
modeling drawbacks are collectively addressed by the term model error (ME). The
model equations do not represent the system behavior exactly and model errors arise
due to lack of resolution as well as inaccuracies occurring in physical parameters,
boundary conditions and forcing terms. Errors also occur due to numerical discrete
approximations. A way to take these errors into account is to use the weak constraint
4D-Var.

Variational data assimilation is based on the minimization of:

J(x) = [H(x)− y]T R−1[H(x)− y] (77)

+(x0 −xb)T B−1(x0 −xb)+Φ(x)TC−1Φ(x)
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Here x is the 4D state of the atmosphere over the assimilation window, H is a
4D observation operator, accounting for the time dimension. Φ represents remain-
ing theoretical knowledge after background information has been accounted for
(such as balance relations or digital filtering initialization introduced by Lynch and
Huang (1992)). One can see that model M verified exactly although it is not perfect.

16.1 Weak Constraint 4D-Var

The model can be imposed as a constraint in the cost function, in the same way as
other sources of information:

Φi(x) = xi −Mi−1 (78)

Model error η is defined as: ηi(x) = xi −Mi−1.
The cost function becomes:

J(x) =
1
2

n

∑
i=1

(H(xi)− yi)T R−1
i (H(xi)− yi) (79)

+
1
2
(x0 −xb)T B−1(x0 −xb)+

1
2

n

∑
i=1

ηT
i Q−1

i η

Another issue requiring attention is that model error covariance matrix Q has to
be defined. Strong constraint 4D-Var is obtained when Φi(x) = 0 i.e. η = 0 (perfect
model).

Studies indicate that model error (ME) can severely impact forecast errors, see
for instance Boer (1984), Dalcher and Kalnay (1987), Bloom and Shubert (1990)
and Zupanski (1993).

For early methods on estimating modeling errors in operational NWP models
see Thiébaux and Morone (1990) and Saha (1992). Thus giving up the assumption
that the model is perfect, in the context of strong constraint VDA leads us to weak
constraint formulation of VDA, and if we include time evolution of the variables,
we could say we have a weak constraint 4D-Var (time plus three space dimensions).

Comparing the strong and weak constraint VDA, in the formulation of for-
mer, it is assumed that η has mean and model error covariance matrix Q =
E(η(t)ηT (t ′)) = 0,∀ t and t ′ and model error covariance matrix, E[·] is the math-
ematical expectation operator. It should be noted that if the mean and (co)variance
of a random vector are prescribed to be equal to zero, then all realizations of that
random vector are identically equal to zero, thus, η ≡ 0. In the weak constraint
version of VDA, the mean and covariance of ME have to be specified. However
exact statistical details of ME are difficult to obtain (Daley 1992a, b; Dee and Da
Silva 1998; Zhu and Kamachi 2000) a fact which led researchers to suggest a variety
of assumptions to approximate and parameterize the ME.

Early efforts to model the systematic component of ME were pioneered by
Derber (1989). He suggested a simplified approach to model η to be equal toλ (t)φ .



Data Assimilation for Numerical Weather Prediction 41

The temporal part, λ (t) is a specified function of time alone, while φ is a spatially
dependent, control variable. Three different forms of λ were considered, namely,
parabolic, delta function and constant in time. It was observed that the parabolic
variation of λ provided results comparable to a constant in timeλ . Using a similar
approach (Wergen 1992; Zupanski 1997) it was shown that inclusion of ME allowed
significant reduction in forecast RMSE.

For dynamically evolving systems such as discrete NWP models, ME is ex-
pected to depend on the model state and should be evolving in time (Griffith and
Nichols 1996, 2000). Various simple forms of evolution of ME in time were con-
sidered by Griffith and Nichols (2000), Nichols (2003), At any time step,tk, the
evolution of ME is

ηk = Tk(ek)+ qk (80)

where Tk describes the distribution of systematic errors in the NWP model equa-
tions, and qk, (stochastic component) is an unbiased, serially correlated, normally
distributed random vector, with known covariance. The evolution of ek, is in-turn
modeled by assuming that it depends on the state vector, xk

ek+1 = gk(xk,ek). (81)

16.2 Systematic Model Error and State Augmentation

In order to take into account systematic components in the model errors, we assume
that the evolution of the errors is described by the equations

ηk = Tk(ek)+ qk (82)

ek+1 = gk(xk,ek) (83)

where qk ∈ Rn is unbiased, serially uncorrelated, normally distributed random vec-
tors with known covariance matrices and the vectors ek ∈ Rr represent time-varying
systematic components of the model errors. The distribution of the systematic er-
rors in the model equations is defined by the functionTk : Rr → Rn. The functions
gk : Rn ×Rr → Rr describing the systematic error dynamics are to be specified.

In practice little known about the form of the model errors and a simple form
for the error evolution that reflects any available knowledge needs to be prescribed.
Examples of simple forms of the error evolution includes:

constant bias error : ek+1 = ek,Tk = I.

This choice allows for a constant vector e = e0 of unknown parameters to be
found, which can be interpreted as statistical biases in the model errors. This form
is expected to be appropriate for representing the average errors in source terms or
in boundary conditions.
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Evolving error : ek+1 = Fkek,Tk = I.

Here Fk ∈ Rn×n represents a simplified linear model of the state evolution. This
choice is appropriate, for example, for representing discretization error in models
that approximate continuous dynamical processes by discrete time systems.

Spectral form: ek+1 = ek,Tk = (I,sin(k/Nτ)I,cos(k/Nτ)I).

In this case the constant vector e ≡ e0 is partitioned into three components vec-
tors, eT = (eT

1 ,eT
2 ,eT

3 ) and τ is a constant determined by the timescale on which
the model errors are expected to vary, for example, a diurnal timescale. The choice
approximates the first order terms in a spectral expansion of the model error.

The weak constraint VDA doubles the size of the optimization problem (com-
pared to strong constraint VDA), in addition if the stochastic component is included
in the ME formulation, then one would have to save every random realization at
each model time step, which amounts to tripling the size of the optimization prob-
lem. The computational results in Griffith et al. (2000) were provided by neglecting
qk, the stochastic component of ME and using the constant and evolving forms
of the systematic component, see Griffith et al. (2000) for additional details. Sim-
ilar approaches for modeling the systematic component of ME was considered by
Martin et al. (2001) and reduction of ME control vector size by projecting it on to
the subspace of eigenvectors corresponding to the leading eigenvalues of the adjoint-
tangent linear operators was illustrated by Vidard et al. (2000)

Other choices can be prescribed, including piecewise constant error and linearly
growing error (see Griffith 1997; Griffith et al. 2000; Martin et al. 2001). These tech-
niques have been applied successfully in practice to estimate systematic errors in an
equatorial ocean model (Martin et al. 2001) Zupanski et al. (2005) provided results
obtained using the NCEP’ s regional weather prediction system in weak constraint
VDA framework. Akella and Navon (2007) studied in depth the nature of modeling
errors and suggested a decreasing, constant and increasing in time forms of ME. Im-
plementation of these forms in a weak constraint VDA framework yielded a further
reduction in forecast errors.

When the number of observations is considerably smaller, the method of rep-
resenters (Bennett 2002) provides a computationally efficient (in storage/ space
requirements) formulation of VDA. Incorporation of ME in such framework was
shown by Uboldi and Kamachi (2000).

Very little is known with certainty about ME spatio-temporal structure since MEs
are not observable, contrary to forecast errors. The common practice is to assume
that MEs are white. Daley (1992a) suggested use of a first order (in time) linear
model for MEs. That approach was implemented by Zupanski (1997) in its simplest
form; the inevitable simplicity is due to the absence of empirical estimates of pa-
rameters and even structural features of the ME model. DelSole and Hou (1999)
considered the state-dependent part of ME and proposed a respective estimator.

Mitchell and Daley (1997) considered the discretization part of ME and its effect
on data assimilation. Menemenlis and Chechelnitsky (2000) estimated the spatial
structure of an ME white-noise model for an ocean circulation model. ME mod-
els rely on hypotheses that have never been checked namely the applicability of a



Data Assimilation for Numerical Weather Prediction 43

stochastic model driven by an additive (and not, say, multiplicative) noise, Gaus-
sianity of ME, the white-noise or red-noise hypotheses. Tools needed to use the
information on ME (Tsyrulnikov 2005) structure in meteorology and oceanogra-
phy are available such as ensemble forecasting, weak-constraint four-dimensional
variational assimilation (4D-Var, e.g. Zupanski 1997; Xu et al. 2005), and Kalman
filtering (e.g. Cohn 1997). Empirical approaches have been used only in ensem-
ble techniques but cannot be used in the weak-constraint 4D-Var, where one must
specify an ME spatio-temporal stochastic model.

17 Automatic Differentiation

Automatic differentiation (AD) is a set to techniques based on the mechanical appli-
cation of the chain rule to obtain derivatives of a function given as a computer pro-
gram adjoint equations resulting from differentiation the discretized model equation
can be obtained.

Automatic differentiation exploits fact that a computer code executes a sequence
of elementary arithmetic operations consisting of additions or elementary functions.

By applying the chain rule derivative repeatedly to these operations derivatives
of any order can be computed automatically. Other classical methods to achieve the
same goal are available but with inherent shortcomings are symbolic differentiation
or use of finite-differences.

Symbolic differentiation is slow, while finite differences suffer from round-off
errors in the discretization process and cancellations.

Automatic differentiation has the advantage of solving these problems.
There are essentially two modes of AD, namely forward accumulation and re-

verse accumulation. Forward accumulation is less useful for data assimilation while
reverse accumulation allows efficient calculation of gradients.

The first powerful general purpose AD systems was developed at Oak Ridge
National Laboratory (Oblow 1983), later endowed with the adjoint variant ADGEN
for reverse AD by Pin et al. (1987). Later ADIFOR (Bischof et al. 1992) was
developed at Argonne National Laboratory, Odyssee was developed at INRIA
and TAMC by Giering and Kaminski (1997). In France the TAPENADE code is
used (see Hascoet and Pascual 2004). There are many more automatic differen-
tiation languages. Earlier books on AD are by Rall (1981) and Kagiwada et al.
(1986). See also Navon and Zou (1991).

Checkpointing is a general trade-off technique, used in the reverse mode of
AD that trades duplicate execution of a part of the program in order to save mem-
ory space employed to save intermediate results. Checkpointing a code fragment
amounts to running this fragment without storage of intermediate values, thus sav-
ing memory space. At a later stage, when the intermediate value is required, the
fragment is run a second time to obtain the required values.

Results and application studies of automatic differentiation have been published
in proceedings of the international workshop on automatic differentiation held in
Breckenridge (See Griewank and Corliss 1991). The most comprehensive book and
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work is that of Andreas Griewank (2000). See also Berz et al. (1996) and Griewank
and Corliss (1991).

18 Second Order Adjoint Methods

Behind most of the methods used in meteorology such as: optimal interpolation,
variational methods, statistical estimation etc., there is a variational principle, i.e.
the retrieved fields are obtained through minimization of a functional depending on
the various sources of information. The retrieved fields are obtained through some
optimality condition which can be an Euler or Euler-Lagrange condition if regularity
conditions are satisfied. Since these conditions are first order conditions, it follows
that they involve the first order derivatives of the functional which is minimized.
In this sense, data assimilation techniques are first order methods. But first order
methods provide only necessary conditions for optimality but not sufficient ones.
Sufficient conditions require second order information. By the same token, from the
mathematical point of view sensitivity studies with respect to some parameter can
be obtained through Gateaux derivatives with respect to this parameter. Therefore if
we seek the sensitivity of fields which have already been defined through some first
order conditions we will have to go to an order of derivation higher and in this sense
sensitivity studies require second order information.

Early work on second order information in meteorology includes Thacker (1989)
followed by work of Wang et al. (1992, 1993) stimulated by advice and expertise of
F.X. Le Dimet. Wang (1993) and Wang et al. (1998) considered use of second order
information for optimization purposes namely to obtain truncated -Newton and Ad-
joint Newton algorithms using exact Hessian/vector products. Application of these
ideas was presented in Wang et al. (1997). Kalnay et al. (2000) introduced an elegant
and novel pseudo-inverse approach and showed its connection to the adjoint Newton
algorithm of Wang et al. (1997). (See Pu et al. 1997; Park and Kalnay 1999, 2004;
Pu and Kalnay 1999; Kalnay et al. 2000). Ngodock (1996) applied second order in-
formation in his doctoral thesis in conjunction with sensitivity analysis in the pres-
ence of observations and applied it to the ocean circulation. Le Dimet et al. (1997)
presented the basic theory for second order adjoint analysis related to sensitivity
analysis.

A comprehensive review paper on second order adjoint methods was written by
Le Dimet et al. (2002) considering all aspects of second order adjoint methods.

19 Computing the Second Order Information

In what follows we follow closely the presentation in Le Dimet et al. (2002). In
general we will assume that the model has the general form:

F(X,U) = 0 (84)
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where X, the state variable, describes the state of the environment, U is the input of
the model, i.e. an initial condition which has to be provided to the model to obtain
from Eq. (84) a unique solution X(U). We will assume that X and U belong to a
space equipped with an inner product.

The closure of the model is obtained through a variational principle which can
be considered as the minimization of some functional:

J(X,U) (85)

For instance, in the case of variational data assimilation, J may be viewed as
representing the cost function measuring the discrepancy between the observation
and the solution associated with the value U of the input parameter. Therefore the
optimal input for the model will minimize J.

19.1 First Order Necessary Conditions

If the optimal U minimizes J , then it satisfies the Euler equations given by

∇J(U) = 0 (86)

where ∇J is the gradient of J with respect to control variables.
The gradient of J is obtained in the following way:
(i) we compute the Gateaux (directional) derivative of the model and of F in

some direction u. We may write

∂F
∂X

× X̂+
∂F
∂U

×u = 0 (87)

where (ˆ) stands for the Gâteaux derivative. Let Z be an application from Rn into Rn

with variable U. We define the Gâteaux derivative of Z in the direction u when this
limit exists. For a generic function Z it is given by:

Ẑ(U,u) = lim
α→0

Z(U+αu)−Z(U)
α

(88)

If Ẑ(U,u) is linear in u we can write

Ẑ(U,u) =< ∇Z(U),u > (89)

where ∇Z is the gradient of Z with respect to U. The Gateaux derivative is also
called a directional derivative. Here ∂F

∂X (or ∂F
∂U ) is the Jacobian of F with respect to

X (or U)) and

Ĵ(X,U,u) =<
∂J
∂X

,X̂ > + <
∂J
∂U

,u > (90)

where <> stands for the inner product.
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The gradient of J is obtained by exhibiting the linear dependence of Ĵ with re-
spect to u. This is done by introducing the adjoint variable P (to be defined later
according to convenience).

Taking the inner product between (87) and P yields

<
∂F
∂X

× X̂,P > + <
∂F
∂U

×u,P >= 0 (91)

<

(
∂F
∂X

)T

× P,X̂ > + <

(
∂F
∂U

)T

×P,u >= 0 (92)

Therefore using (90), if P is defined as the solution of the adjoint model

(
∂F
∂X

)T

× P =
∂J
∂X

(93)

then we obtain

∇J(U) =
(
∂F
∂U

)T

× P+
∂J
∂U

(94)

Therefore the gradient is computed by solving Eq. (93) to obtain , then by apply-
ing Eq. (94).

19.2 Second Order Adjoint

To obtain second order information we look for the product of the Hessian G(U)
of J with some vector u . As before we apply a perturbation to Eqs. (84), (93), and
from Eq. (93) and (94) we obtain

(
∂ 2F
∂X2 × X̂+

∂ 2F
∂X∂U

×u
)T

×P+
(
∂F
∂X

)T

×P̂ (95)

=
∂ 2J
∂X2 × X̂+

∂ 2J
∂X∂U

×u

and

̂∇J(U) = G(U)×u = −
(
∂ 2F
∂U2 ×u+

∂ 2F
∂U∂X

× X̂
)T

×P (96)

−
(
∂F
∂U

)T

×P̂+
∂ 2J
∂U2 ×u+

∂ 2J
∂X∂U

× X̂

We introduce here Q and R, two additional variables. To eliminate X̂ and P, we
will take the inner product of Eq. (87) and (95) with Q and R respectively, then add
the results. We then obtain



Data Assimilation for Numerical Weather Prediction 47

< X̂,

(
∂F
∂X

)T

×Q > + < u,

(
∂F
∂U

)T

×Q > + < P,

(
∂ 2F
∂X2

)
× X̂×R > (97)

+ < P,

(
∂ 2F

∂X∂U

)
×u×R > + < P̂,

(
∂F
∂X

)
×R >

= < X̂,

(
∂ 2J
∂X2

)T

×R > + < u,

(
∂ 2J

∂X∂U

)T

×R >

Let us take the inner product of Eq. (96) with u, then we may write

< G(U)×u,u > =< −
(
∂ 2F
∂U2 ×u+

∂ 2F
∂X∂U

× X̂
)T

×P,u > (98)

+ < P̂,

(
−∂F

∂U

)
×u ><

∂ 2J
∂U2 ×u,u > + < X̂,

∂ 2J
∂X∂U

)T ×u >

From (98) we get

< X̂,

(
∂F
∂X

)T

×Q+
(
∂ 2F
∂X2 ×P

)
×R− ∂ 2J

∂X2 ×R > + < P̂,
∂F
∂X

×R >

= < u,−
(
∂F
∂U

)T

×Q−
(

∂ 2F
∂X∂U

×P

)T

×R +
∂ 2J

∂X∂U
×R > (99)

Therefore if Q and R are defined as being the solution of

(
∂F
∂X

)T

< u,−
(
∂F
∂U

)T

×Q+

(
∂ 2F
∂X2 < u,−

(
∂F
∂U

)T

×P

)
×R (100)

−
(

∂ 2J
∂X2

)T

×R =
(

∂ 2J
∂X∂U

)T

×u−
(

∂ 2F
∂U∂X

u
)
×P

(
∂F
∂X

)
×R = −∂F

∂U
×u (101)

then we obtain:

G(U)×u = −
(
∂ 2F
∂U2 ×u

)
×P+

∂ 2J
∂U2 ×u−

(
∂F
∂U

)T

×Q (102)

−
(

∂ 2F
∂X∂U

×P

)
×R +

∂ 2J
∂X∂U

×R

For Eqs. (93), (94), (95), (96), (97), (98) and (99) we took into account the sym-
metry of the matrix of second derivative, e.g.

∂ 2F
∂X2 =

(
∂ 2F
∂X2

)T

(103)
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leading to some simplifications. The system (99) will be called the second order
adjoint. Therefore we can obtain the product of the Hessian by a vector u by (i)
solving the system (99). (ii) applying formula (102).

19.3 Remarks

(a) The system (99) which has to be solved to obtain the Hessian/vector product can
be derived from the Gateaux derivative (99) which is the same as (101). In the
literature, the system (99) is often called the tangent linear model, this denom-
ination being rather inappropriate because it implies the issue of linearization
and the subsequent notion of range of validity which is not relevant in the case
of a derivative.

(b) In the case of an N-finite dimensional space the Hessian can be fully computed
after N integrations of vector of the canonical base. Equation (99) differs from
the adjoint model by the forcing terms which will depend on u and R.

(c) The system (99), (100), (101) and (102) will yield the exact value of the Hes-
sian/vector product. An approximation could be obtained by using the standard
finite differences, i.e.,

G(U)×u ≈ 1
α
[
∇J(U+αu)−∇J(U)

]
(104)

where α is the finite-difference interval which has to be carefully chosen. In the
incremental 3/4D-Var approach the Hessian/vector product can readily be obtained
by differencing two gradients.

However several integrations of the model and of its adjoint model will be nec-
essary in this case to determine the range of validity of the finite-difference approx-
imation (Wang et al. (1995) and references therein).

19.4 Time Dependent Model

In the case of variational data assimilation the model F is a differential system on the
time interval [0,T ]. The evolution of X ∈ H[C(0,T )]n between 0 and T is governed
by the differential system,

∂X
∂ t

= F(X)+ B×V (105)

The input variable is often the initial condition,

X(0) = U ∈ Rn (106)

In this system F is a nonlinear operator which describes the dynamics of the
model, V ∈ V [C(0,T )]m is a term used to represent the uncertainties of the model
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which we assume to be linearly coupled through the (m,n) -dimensional matrix B,U
is the initial condition, and the criteria J is the discrepancy between the solution of
Eqs. (105) and (106) and observations

J(U,V) =
1
2

∫ T

0
||HX−Xobs||2dt (107)

where H is the observation matrix, i.e., a linear operator mapping X into Xobs. The
problem consists in determining U and V that minimize J.

A perturbation v on V and u on U gives X̂ and Ĵ the Gateaux derivatives of X
and J as solution of

dX̂
dt

=
∂F
∂X

× X̂+ B×V (108)

X̂(0) = u (109)

Ĵ(U,V,u,v) =
1
2

∫ T

0
< HX−Xobs,HX̂ > dt (110)

Let us introduce P the adjoint variable, we take the product of (108) with P
after a summation on the interval [0,T ] and an integration by parts followed by
identification of linearities with respect to U and V in (110), we conclude that of P
is defined as the solution of

dP
dt

=
∂F
∂X

T

×P+ HT H(X−Xobs) (111)

P(T ) = 0 (112)

and the components of the gradient ∇J with respect to U and V are

∇JU = −P(0) (113)

∇JV = −BT P (114)

V is time dependent, its associated adjoint variable Q will be also time depen-
dent. Let us remark that the gradient of J with respect to V will depend on time.
From a computational point of view the discretization of V will have to be carried
out in such a way that the discretized variable remains in a space of “reasonable”
dimension.

The second derivative will be derived after a perturbation h on the control vari-
ables U and V

h =
(

hU

hV

)
(115)

The Gateaux derivatives X̂, P of X and P in the direction of h, are obtained as the
solution of the coupled system
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dX̂
dt

=
∂F
∂X

X̂+ BhV (116)

X̂(0) = hU (117)

dP̂
dt

+
(
∂ 2F
X2 × X̂

)T

×P+
(
∂F
∂X

)T

×P = HT HX̂ (118)

∇JU = −P̂(0) (119)

∇JV = −BT P̂ (120)

We introduce Q and R, second order adjoint variables. They will be defined later
for ease use of presentations.

Taking the inner product of (116) with Q and of (118) with R, integrating from 0
to T , then adding the resulting equations, we may write:

∫ T

0

[
<

dX̂
dt

,Q > − <
∂F
∂X

× X̂,Q > − < BhV ,Q > + <
dP̂
dt

,R > (121)

+ <

[
∂ 2F
∂X2 × X̂

]T

×P,R > + <

[
∂F
∂X

]T

P̂,R > − < HT HX̂,R >

]
dt = 0

The terms in P̂ and X̂ are collected and after integration by parts and some addi-
tional transformations we obtain

∫ T

0
< X̂,−dQ

dt
−
[
∂F
∂X

]T

×Q+
[
∂ 2F
∂X2 ×P

]T

×R−HTHR > dt (122)

+
∫ T

0
< P̂,−dR

dt
+
(
∂F
∂X

)
×R > dt −

∫ T

0
< hV ,BT ×Q > dt

+ < X̂(T ),Q(T ) > − < X̂(0),Q(0) > + < P̂(T ),R(T ) >

− < P̂(0),R(0) >= 0

Let G be the Hessian matrix of the cost J. We have

G =
(

GUU GUV

GVU GVV

)
(123)

Therefore if we define the second order adjoint as being the solution of

dQ
dt

+
[
∂F
∂X

]T

×Q =
[
∂ 2F
∂X2 P

]T

×R−HTHR (124)

dR
dt

=
[
∂F
∂X

]
×R (125)
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and

Q(T ) = 0 (126)

R(0) = hU (127)

then we finally obtain

< −hU ,Q(0) >=< P̂(0),R(0) > (128)

P̂(0) = −Q(0) (129)

We would like to point out that Eq. (129) follows directly from Eq. (128) by
using Eq. (127). The product of the Hessian by a vector r is obtained exactly by a
direct integration of (125) and (127) followed by a backward integration in time of
(124) and (126).

One can obtain G by n integrations of the differential system:

dQ
dt

+
[
∂F
∂X

]T

×Q =
[
∂ 2F
∂X2 ×P

]T

×R−HTHR (130)

dR
dt

=
[
∂F
∂X

]
R (131)

with the conditions

Q(T ) = 0 (132)

R(0) = ei (133)

where ei are the n-vectors of Rn the canonical base of thus obtaining

GUU ei = Q(0) (134)

GUV ei = BT ×Q (135)

One then integrates m times the differential system

dQ
dt

+
[
∂F
∂X

]T

×Q =
[
∂ 2F
∂X2 ×P

]T

×R−HTHR (136)

dR
dt

−
[
∂F
∂X

]
×R = f j (137)

with initial and terminal conditions

Q(T ) = 0 (138)

R(0) = 0 (139)

where f j are the m canonical base vectors of Rm obtaining
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GVV × f j = BT ×Q (140)

The system defined by these equations is the second order adjoint model. The
Hessian matrix is obtained via n + m integrations of the second order adjoint. The
second order adjoint is easily obtained from the first order adjoint – differing from
it only by some forcing terms, in particular the second order term. The second equa-
tion is that of the linearized model (the tangent linear model).

One can also obtain the product of a vector of the control space, times the Hessian
at cost of a single integration of the second order adjoint.

19.5 Use of Hessian of Cost Functional to Estimate Error
Covariance Matrices

A relationship exists between the inverse Hessian matrix and the analysis error co-
variance matrix of either 3-D VAR or 4-D VAR (See Thacker 1989; Rabier and
Courtier 1992; Yang et al. 1996; Le Dimet et al. 1997).

Following Courtier et al. (1994) we consider methods for estimating the Hessian
in the weakly nonlinear problem when the tangent linear dynamics is a good ap-
proximation to nonlinear dynamics. As a consequence the cost function is near to
being quadratic. If as Gauthier and Courtier (1992) we consider the observations
as random variables and we look at variational analysis as attempting to solve the
minimization problem

minJ(v) =
1
2
(x−xb)T B−1(x−xb)+

1
2
(Hx−y)T O−1(Hx−y) (141)

where xb is the unbiased background field and y the set of unbiased observations,
both being realizations of random variables of covariances B and O respectively and
where the operator H computes the model equivalent Hx of the observation y . Then
the Hessian J′′ of the cost function J at the minimum is given by

J′′ = B−1 + HT O−1H (142)

obtained by differentiating (141) twice.
Moreover the analysis error covariance matrix is the inverse of the Hessian as

shown in Appendix B of Rabier and Courtier (1992). Calling xa the result of the
minimization (i.e. the analysis) and xt the truth, one has

E
[
(xa − xt)(xa − xt)T ]= (J′′)−1 = (B−1 + HT O−1H)−1 (143)

A requirement is that the background error and the observation error are un-
correlated (Rabier and Courtier 1992; Fisher and Courtier 1995). See also work of
Thepaut and Moll (1990) pointing out that the diagonal of the Hessian is optimal
among all diagonal preconditioners.
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20 Hessian Singular Vectors (HSV)

Computing HSV’s uses the full Hessian of the cost function in the variational data
assimilation which can be viewed as an approximation of the inverse of the analysis
error covariance matrix and it is used at initial time to define a norm. The total
energy norm is still used at optimization time. See work by Barkmeijer et al. (1998,
1999). The HSV’s are consistent with the 3-D VAR estimates of the analysis error
statistics. In practice one never knows the full 3-D VAR Hessian in its matrix form
and a generalized eigenvalue problem has to be solved as described below.

The HSV’s are also used in a method first proposed by Courtier et al. (1993)
and tested by Rabier et al. (1997) for the development of a simplified Kalman fil-
ter fully described by Fisher (1998) and compared with a low resolution explicit
extended Kalman filter by Ehrendorfer and Bouttier (1998). See also Buizza and
Palmer (1995).

Let M be the propagator of the tangent linear model, P a projection operator
setting a vector to zero outside a given domain. Consider positive-definite and sym-
metric operators including a norm at initial and optimization time respectively. Then
the SV’s defined by

< Pε(t),EPε(t) >

< ε(t0),Cε(t0) >
(144)

under an Euclidean norm are solution of generalized eigenvalue problem.

M∗P∗EPMx = λCx (145)

In HSV, the operator C is equal to the Hessian of the 3-D Var cost function. As
suggested by Barkmeijer et al. (1998), one can solve (145) by using the generalized
eigenvalue algorithm (Davidson 1975). See also Sleijpen and Van der Vorst (1996).
Using

C ≡ ∇2J = B−1 + HT O−1H (146)

and carrying out a coordinate transformation

x = L−1x,L−1L = B (147)

Then we obtain a transformed operator

(L−1)T CL (148)

and the Hessian becomes equal to the sum of identity and a matrix with rank less or
equal to the dimensions of the vector of observations (Fisher and Courtier 1995).

Veerse (1999) proposes to take advantage of this form of the appropriate Hessian
in order to obtain approximations of the inverse analysis error covariance matrix,
using the limited memory inverse BFGS minimization algorithm.

Let H be (∇2J)−1 the inverse Hessian and H+ the updated version of the inverse
Hessian.
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s = xn+1 −xn (149)

where s is the difference between the new iterate and the previous one in a limited-
memory quasi-Newton minimization procedure.

y = gn+1 −gn (150)

is the corresponding gradient increment. One has the formula

H+ = U(H,y,s) =
(

I− s⊗y
< y,s >

)
s⊗ s

< y,s >
(151)

where <,> is a scalar product with respect to which the gradient is defined and ⊗
stands for the outer product.

The method is implemented by using the inverse Hessian matrix-vector product
built in the minimization code and based on Nocedal’s (1980) algorithm. These
methods are useful when the second order adjoint method is not available due to
either memory or CPU limitations.

21 4-D VAR Status Today

4-D VAR data assimilation is available and implemented today at several operational
numerical weather prediction centers starting with European Centre for Medium-
Range Weather Forecasts (ECMWF), (Rabier et al. 2000; Klinker et al. 2000) while
a similar system was operational at Meteo-France in 2000 (Janiskova et al. 1999;
Gauthier and Thepaut 2001; Desroziers et al. 2003). More recently 4-D VAR was
implemented at UK Met office, Japan and Canada.

Park and Zupanski (2003) survey the status and progress of the four-dimensional
variational data assimilation with emphasis on application to prediction of meso-
scale/storm-scale atmospheric phenomena. See also Zupanski and Zupanski et al.
(2002)

The impact of adopting 4-D VAR was qualified as a substantial, resulting in an
improvement in NWP quality and accuracy (see Rabier (2005) in special Issue of
QJRMS 2005).

4-D VAR combined with improvement in error specifications and with a large
increase in a variety of observations has led to improvements in NWP accuracy
(Simmons and Hollingsworth 2002).

Hollingsworth et al. (2005) shows how observing system improvements led to
improvements of forecast scores while Bouttier and Kelly (2001) show that the im-
provement of forecast scores for the southern hemisphere are due to satellite data.

Also, error statistics for different sources of observation constitutes an active field
of research aimed mainly at obtaining better representation of the specific observa-
tion operators.
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22 Recent Algorithmic Developments of Note for 4-D VAR

Following an idea of Derber, Courtier et al. (1994) proposed and developed the in-
cremental 4-D VAR algorithm, where minimization is carried out at reduced resolu-
tion in the inner iteration and on a linear model. The 4-D VAR incremental algorithm
minimizes the following cost function (Rabier 2005)

J(δw0) =
1
2
δT

w0
B−1δw0 +

1
2

N

∑
I=1

(HiδXi −di)T R−1
i (HiδXi −di) (152)

with δw0 = s(X0 −Xb).
Simplified increment at initial time t0

di = yo
i −Hi(Xi) (153)

is the observation increment at time ti. The solution resulting from minimization of
the cost function is added to the background Xb to obtain analysis at t0 i.e

Xa
0 = Xb −S−Iδ a

w0
(154)

where S−I is the generalized inverse of operator S which projects from high to low
resolution (i.e S−I projects from low to high resolution). In an outer loop one updates
the high resolution reference trajectory and observation departures. A refinement of
the incremental 4-D VAR was proposed as a multi-incremental algorithm by Veerse
and Thepaut (1998).

Physical parameterizations that have been modified to allow use in the lin-
ear models used in the incremental procedure were implemented by Janiskova
et al. (2002), Lopez and Moreau (2005).

23 Impact of Observations

In view of high density of some observations horizontal thinning is performed on
data sets, and optimal observation density is found by trial and error.

Another approach called “super-obbing”, i.e. it averages neighboring observa-
tions. A new advance concerns the information content of the data. While usual
method of estimating data impact in a forecasting system consists in performing
observing system experiments (OSE) which turn out computationally expensive.
However, another diagnostic called the “degrees of freedom for signal (DFS)” has
been used by Rodgers (2000), Fisher (2003a, 2003b) and Cardinali et al. (2004).

Given an analysis xa, background xb and observation yo we have

xa = xb +(B−1 + HT R−1H)−1HT R−1(yo −H(xb)) (155)

which can be written compactly as
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xa = xb + Kd (156)

B-being the background error covariance matrix, R the observation error covariance,
H-linearized observation operator of H. K is called the Kalman gain matrix and d
innovation vector d = yo −H(xb).

The DFS is defined as

DFS = Tr(HK) (157)

where the trace of the matrix HK measures the gain in information due to the ob-
servations of how an assimilation system extracts information signal from the back-
ground. One way to calculate DFS is the use of estimation the Hessian of the cost
function provided. Fisher (2003a, 2003b) and Cardinali et al. (2004) used estimation
of Hessian of the cost function provided by the minimization algorithm. Chapnik
et al. (2006) use evaluation of trace of the KH matrix, using a method put forward
by Desroziers and Ivanov (2001) to evaluate trace of KH.

Computing sensitivity of forecast to the observations can be carried out by con-
sidering the adjoint of data assimilation together with the adjoint of the forecast
model. This allows use of adaptive observations which is a topic of increased re-
search efforts in 4-D VAR data assimilation (Berliner et al. 1999; Baker and Daley
2000; Daescu and Navon 2004; Langland and Baker 2004).

24 Conclusions

A condensed review of several aspects of 4-D VAR as it evolved in the last 30 or
so years is presented. It aims to present both the history of 4-D VAR as well as its
evolution by highlighting several topics of its application.

No attempt was made to cover here the vast ensemble Kalman filter data assimi-
lation and its various flavors due to space and time limitations. In the same vein this
review is not exhaustive as it is not covering all the issues dealing with 4-D VAR
applications.

It has become amply evident that in the last 15 years major improvements in
NWP are due to large extent to development of sources of observations and that
4-D VAR and sequential data assimilation can take advantage of them due to major
research efforts at universities, federal laboratories and operational centers.

For new opportunities for research see the article by McLaughlin et al. (2005)
that illuminates and outlines possibilities for enhanced collaboration within the data
assimilation community.

It is certain that data assimilation concepts will become widely applied in all the
geosciences as more geoscience scientific disciplines gain access to larger amounts
of data, from satellite remote sensing and from sensor networks, and as Earth system
models increase in both accuracy and sophistication.
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It is hoped that this review highlights several aspects of 4-D VAR data assimila-
tion and serves to attract interest of both atmospheric science practitioners as well
as real time PDE constrained optimization research scientists.
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formules indéfinies. Miscellanea Taurinensia, 2 (1762) Oeuvres 1:365–468

Lanczos C (1970) The variational principles of mechanics. University of Toronto Press, Toronto
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