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In four-dimensional variational data assimilation (4D-Var) an optimal estimate of the initial state of a
dynamical system is obtained by solving a large-scale unconstrained minimization problem. The
gradient of the cost functional may be efficiently computed using the adjoint modeling, at the expense
equivalent to a few forward model integrations; for most practical applications, the evaluation of the
Hessian matrix is not feasible due to the large dimension of the discrete state vector. Hybrid methods
aim to provide an improved optimization algorithm by dynamically interlacing inexpensive L-BFGS
iterations with fast convergent Hessian-free Newton (HFN) iterations. In this paper, a comparative
analysis of the performance of a hybrid method vs. L-BFGS and HFN optimization methods is
presented in the 4D-Var context. Numerical results presented for a two-dimensional shallow-water
model show that the performance of the hybrid method is sensitive to the selection of the method
parameters such as the length of the L-BFGS and HFN cycles and the number of inner conjugate
gradient iterations during the HFN cycle. Superior performance may be obtained in the hybrid approach
with a proper selection of the method parameters. The applicability of the new hybrid method in the
framework of operational 4D-Var in terms of computational cost and performance is also discussed.
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INTRODUCTION

Four-dimensional variational data assimilation (4D-Var)

aims to provide an optimal estimate of the initial state of

a dynamical system through the minimization of a cost

functional that measures the misfit between the modeled and

observed state of the system over an analysis time interval

(Kalnay, 2002). The implementation of the 4D-Var data

assimilation is based on an iterative optimization procedure:

each iteration requires (at least) a forward run of the model to

obtain the value of the cost functional and a backward

integration of the adjoint model to evaluate the gradient.

Due to the high computational burden, a key element of the

assimilation process is to select an efficient large-scale

optimization algorithm. In many practical applications (e.g.

oceanography, numerical weather prediction), the dimen-

sion of the discrete state vector may be as high as 106 –107

such that the explicit evaluation of the Hessian of the cost

functional is not computationally feasible.

The experience gained thus far treating variational data

assimilation problems, in particular large-scale uncon-

strained minimizations (Navon et al., 1992; Zou et al.,

1993; Wang et al., 1995; LeDimet et al., 2002), is that in

2D both the truncated Newton (TN) method (Dembo et al.,

1982; Nash, 1984; Schlick and Fogelson, 1992) and the

limited memory quasi-Newton method L-BFGS (Gilbert

and LeMarechal, 1989; Liu and Nocedal, 1989) are

powerful optimization algorithms which are more efficient

than other techniques (Wang et al., 1998).

The TN method is implemented as a Hessian-free

Newton (HFN) method (see Nocedal and Wright, 1999)

requiring only the products of the Hessian times a vector

which may be approximated by finite differences or may

be exactly evaluated using a second-order adjoint model

(LeDimet et al., 2002). The HFN method tends to blend

the rapid (quadratic) convergence rate of the classical

Newton method with feasible storage and computational

requirements.
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The L-BFGS algorithm is simple to implement and

uses a cost-effective formula that requires only first

order derivative (gradient) information. Furthermore,

the amount of storage required to build an approxi-

mation of the inverse Hessian matrix can be controlled

by the user. It has been found that, in general, HFN

performs better than L-BFGS for functions that are

nearly quadratic, while for highly nonlinear functions

L-BFGS outperforms TN (Nash and Nocedal, 1991).

HFN requires less iterations than L-BFGS to reach the

solution, while the computational cost of each iteration

is high and the curvature information gathered in

the process is lost after the iteration has been

completed. L-BFGS, on the other hand, performs

inexpensive iterations, with poorer curvature infor-

mation—a process that may become slow on ill-

conditioned problems.

Recently, Morales and Nocedal (2002) have developed

a hybrid method that consists of interlacing in a dynamical

way L-BFGS and HFN iterations. The hybrid method aims

to alleviate the shortcomings of both L-BFGS and HFN

and for this reason Morales and Nocedal (2002) called it

an “enriched method”. A powerful preconditioning

method is used for the conjugate gradient algorithm in

the inner iteration of the HFN (Morales and Nocedal,

2000). The limited memory matrix constructed in the

L-BFGS iterations is updated during the cycle of HFN

iterations thus playing a dual role in the optimization

process: to precondition the inner conjugate gradient

iteration in the first iteration of the HFN cycle as well as to

provide the initial approximation of the inverse of the

Hessian matrix for the next L-BFGS cycle. In this way

information gathered by each method improves the

performance of the other without increasing the

computational cost.

The analysis presented by Morales and Nocedal

(2002) revealed that on a large number of test problems

the hybrid method outperformed the HFN method, but

not the L-BFGS method. In this paper, we investigate

the potential benefits that may be achieved by using the

hybrid method vs. L-BFGS and HFN methods in

variational data assimilation. In the second section, we

outline the L-BFGS and HFN methods as well as the

hybrid algorithm. In the third section, we present a two-

dimensional shallow-water model and consider the

variational data assimilation problem in an idealized

(twin experiments) framework. Properties of the cost

functional with high impact on the optimization process

such as the deviation from quadratic and the condition

number of the associated Hessian matrix are analyzed.

Numerical results comparing L-BFGS, HFN, and the

hybrid method are presented in the fourth section

for various hybrid method controlling parameters.

The performance of each method is analyzed in terms

of the CPU time and number of function/gradient

evaluations required during the minimization. A summary

and a brief discussion of their adequacy in terms of

computational effort for minimizing cost functionals

arising in 4D variational data assimilation are presented

in the fifth section.

LARGE-SCALE MINIMIZATION METHODS

In this section, we outline the algorithms used in this study

to solve the large-scale unconstrained optimization

problem

x[R n
min f ðxÞ:

The cost functional f is assumed to be smooth, and we

will further assume that the gradient gðxÞ ¼ 7f ðxÞ may be

efficiently provided, whereas explicit evaluation of the

Hessian matrix GðxÞ ¼ 72f ðxÞ is prohibitive due to the

large number n of variables.

The Limited Memory BFGS Algorithm

The L-BFGS method (Liu and Nocedal, 1989) is an

adaptation of the BFGS method to large problems,

achieved by changing the Hessian update of the latter

(Nocedal, 1980; Byrd et al., 1994). Thus, in BFGS we use

an approximation ~Hk to the inverse of the Hessian matrix

72f(xk) which is updated by

~Hkþ1 ¼ VT
k
~HkVk þ rksksT

k ð1Þ

where Vk ¼ I 2 rkyksT
k ; sk ¼ xkþ1 2 xk; yk ¼ gkþ1 2 gk;

rk ¼ 1=ðyT
k skÞ; and I is the identity matrix. The search

direction is given by

pkþ1 ¼ 2 ~Hkþ1gkþ1:

In L-BFGS, instead of forming the matrices ~Hk

explicitly (which would require a large memory for a

large problem) one only stores the vectors sk and yk

obtained in the last m iterations which define ~Hk

implicitly; a cyclical procedure is used to retain the latest

vectors and discard the oldest ones. Thus, after the first m

iterations, Eq. (1) becomes

~Hkþ1¼ðVT
k ...V

T
k2mÞ

~H
0

kþ1ðVk2m...VkÞ

þrk2mðV
T
k ...V

T
k2mþ1Þsk2msT

k2mðV
T
k2m21...VkÞ

þrk2m21ðV
T
k ...V

T
k2mþ2Þsk2mþ1sT

k2mþ1
ðVT

k2mþ2...VkÞ

þ···þrksksT
k

with the initial guess ~H
0

kþ1 which is the sparse matrix

~H
0

kþ1 ¼
yT

k sk

yT
k yk

I:

Previous studies have shown that storage of a small

number m of correction pairs is in general sufficient to

provide good performance.
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The Truncated Newton Algorithm

In this method, a search direction is computed by finding

an approximate solution to the Newton equations

Gkpk ¼ 2gk; ð2Þ

where pk is a descent direction and Gk is the Hessian

matrix of the cost function Gk ¼ 72f ðxkÞ:
The use of an approximate search direction is justified

by the fact that an exact solution of the Newton equation at

a point far from the minimum is computationally wasteful

in the framework of a basic descent method. Thus, for

each outer iteration (2) there is an inner iteration loop

applying the conjugate gradient method that computes

this approximate direction, pk, and attempts to satisfy a

termination test of the form:

krkk # hkkgkk

where

rk ¼ Gkpk þ gk

and the sequence {hk} satisfies 0 , hk , 1 for all k.

The conjugate gradient inner algorithm is precondi-

tioned by a scaled two-step limited memory BFGS method

in Nash TN method with Powell’s restarting strategy used

to reset the preconditioner periodically. A detailed

description of the preconditioner may be found in Nash

(1985).

In the TN method, given a vector v, the Hessian/vector

product Gkv required by the inner conjugate gradient

algorithm may be obtained by a finite difference

approximation,

Gkv < ½gðxk þ hvÞ2 gðxkÞ�=h:

A major issue is how to adequately choose h; in this

work we use

h ¼
ffiffiffi
e

p
ð1 þ kxkk2Þ

where e is the machine precision. The inner algorithm is

terminated using the quadratic truncation test, which

monitors a sufficient decrease of the quadratic model

qk ¼ pT
k Gkpk=2 þ pT

k gk

£ ð1 2 qi21
k Þ=qi

k # cq=i

where i is the counter for the inner iteration and cq is a

tolerance, satisfying 0 , cq , 1:
If

cq # k7f ðxkÞk

then the truncated-Newton method will converge

quadratically (see Dembo et al., 1982; Nash and Sofer,

1990; 1996). This fact explains the faster rate of

convergence and the better quality of results obtained

with the TN method. For similar results in optimal control

see LeDimet et al. (2002).

The Hybrid Method

The hybrid method aims at dynamically combining the

best features of both systems in the manner of alternating

l steps of L-BFGS with t steps of HFN

l*ðL–BFGSÞ! t*ðHFNðPCGÞÞ! HðmÞ; repeat

where H(m) is a limited memory matrix approximating the

inverse of the Hessian while m denotes the number of

correction pairs stored.

In the L-BFGS cycle, H(m) (starting say from the initial

unit, or weighted unit matrix) is updated using most recent

m pairs. The matrix obtained at the end of L-BFGS cycle is

used to precondition the first of the t HFN iterations. In the

remaining t 2 1 iterations the limited memory matrix

H(m) is updated using information generated by the inner

preconditioned conjugate-gradient (PCG) iteration and it

is used to precondition the next HFN iteration. A detailed

description of the preconditioning process is presented

by Morales and Nocedal (2001). At the end of t HFN steps,

the most current H(m) matrix is used as the initial matrix

in a new cycle of L-BFGS steps.

THE OPTIMIZATION PROBLEM

In this section, we present the variational data assimilation

problem for a two-dimensional shallow-water model.

The simplicity of the shallow water equations facilitates

a thorough investigation of various numerical methods

(Williamson et al., 1992) while capturing important

characteristics present in more comprehensive oceano-

graphic and atmospheric models.

The Shallow Water Model

In a Cartesian coordinate system, the dynamical model is

represented as a system of nonlinear partial differential

equations

›u

›t
þ u

›u

›x
þ v

›u

›y
2 fv þ

›f

›x
¼ 0 ð3Þ

›v

›t
þ u

›v

›x
þ v

›v

›y
þ fu þ

›f

›y
¼ 0 ð4Þ

›f

›t
þ

›uf

›x
þ

›vf

›y
¼ 0 ð5Þ

where u and v are the components of the horizontal

velocity, f is the geopotential and f the Coriolis

parameter. The spatial domain considered is a 6000 km £

4400 km channel with a uniform 21 £ 21 spatial grid, such

that the dimension of the discrete state vector x ¼ ðu; v;fÞ
is 1083. The initial conditions are specified as in

Grammeltvedt (1969) and the model is integrated for

10 h using a leap-frog scheme with a time increment

Dt ¼ 600 s: The geopotential at t0 ¼ 0 and t ¼ 10 h is

displayed in Fig. 1.
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4D-Var Data Assimilation

The data assimilation problem is implemented in an

idealized framework (twin experiments) by considering a

truth and a control experiment with the initial conditions

as control parameters. We assume that the initial

conditions described in the previous section represent

the true (reference) state xref
0 and the model trajectory

x ref(t) obtained during the reference run is used to provide

observations. Next, the initial conditions xref
0 are perturbed

with random values chosen from a uniform distribution to

obtain a perturbed state x
p
0 that serves as initial conditions

for the control run. In Fig. 2, we show the configuration of

the perturbed geopotential at t0 and after a 10 h run. A cost

functional that measures the least-squares distance

between the reference run x ref and the control run x in

the assimilation window ½0; 10� h is defined as follows:

f ðxÞ ¼
1

2

Xn

i¼0

xðtiÞ2 xrefðtiÞ
� �T

Wi xðtiÞ2 xrefðtiÞ
� �

: ð6Þ

In this study, we selected time-invariant diagonal

weight matrices Wi ¼ diagð1; 1; 0:01Þ:

The data assimilation procedure aims to provide an

optimal analysis of the state evolution by minimizing the

cost functional (6). Numerical integration of the model

equations (3)–(5) provides an explicit dependence of

the state evolution in terms of the initial conditions xðtiÞ ¼

Miðx0Þ: Therefore, an optimal initial state x	
0 is obtained

by solving the unconstrained optimization problem

x0
min f ðx0Þ: ð7Þ

For our idealized experimental settings, x	
0 ¼ xref

0 such

that the value of the cost functional at the optimal point

must be zero.

Characteristics of the Cost Functional

In this section, we investigate several properties of the

optimization problem that have a high impact on

the performance of the optimization algorithm: the cost

of the function-gradient evaluation, the “degree of

nonlinearity” of f, convexity, and the condition number

of the Hessian matrix GðxÞ ¼ 72f ðxÞ:

FIGURE 2 The configuration of the geopotential (m2 s22) for the initial guess run at the initial time t ¼ 0 and at t ¼ 10 h:

FIGURE 1 The configuration of the geopotential (m2 s22) for the reference run at the initial time t ¼ 0 h and at t ¼ 10 h:
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Implementation of large-scale minimization algorithms

for the data assimilation procedure requires the evaluation

of both the cost functional (7) and its gradient 7x0
f. Each

evaluation of the cost functional requires an integration of

the model equations (3)–(5), whereas the gradient is

obtained through the backward integration of the adjoint

model associated with the forward model equations

(3)–(5) as explained in LeDimet et al. (2002). Using a

hand-coded discrete adjoint model, we obtained an

average ratio CPUð7x0
f Þ=CPUðf Þ < 2:4 of the CPU

time required to evaluate the gradient to the CPU time

required to evaluate the cost functional.

The degree of nonlinearity of the cost function may be

assessed by considering the “deviation from quadratic”

DQ ¼
kgðx0Þ2 gðx	

0 Þ2 Gðx	
0 Þðx0 2 x	

0 Þk1

kðx0 2 x	
0 Þjj

2
1

ð8Þ

which gives a measure of the size of the third-order

derivatives. If DQ has a small value, then the problem

is approximately quadratic. The evolution of the

deviation from quadratic of the functional (7) during

the L-BFGS iteration is shown in Fig. 3 and reveals a

small degree of nonlinearity. For this type of problem,

the results presented in the study of Nash and Nocedal

(1991) suggest that the TN method is expected to

outperform L-BFGS.

Hessian information is crucial in many aspects of both

constrained and unconstrained minimization. To obtain

sufficient conditions for the existence of the minimum of

the multivariate unconstrained problem, the Hessian

matrix must be positive definite at x	
0 : Iterative methods

(e.g. the Lanczos method) that require only matrix/vector

products may be used to evaluate few extremal

eigenvalues of the Hessian matrix and its condition

number kðGÞ ¼ lmax=lmin: This information may be used

to predict the behavior and convergence rate for

unconstrained optimization algorithms. Using the

ARPACK package (Lehoucq et al., 1998), we evaluated

the largest and smallest Hessian eigenvalues. We obtained

at the initial guess point lmax < 529:4; lmin < 0:03 and at

the optimal point lmax < 512:9; lmin < 0:014: The

condition number is kðGÞ ¼ Oð104Þ and a slow conver-

gence rate is expected for optimization methods that use

only gradient information.

NUMERICAL RESULTS AND DISCUSSION

In this section, we analyze the L-BFGS, TN, and hybrid

optimization algorithms when applied to the 4D-Var data

assimilation problem. The performance of each method is

evaluated in terms of the number of iterations NIT, number

of function/gradient evaluations NFG, and CPU time

FIGURE 3 Deviation from quadratic (DQ) of the cost functional (7) during the L-BFGS iteration. Small DQ values indicate that the optimization
problem is approximately quadratic.
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required to achieve a prescribed relative reduction in the

cost functional.

Each of the three optimization methods proceeds until a

relative reduction in the cost functional (7)

f ðxk
0Þ=f ðx0Þ # 10210 ð9Þ

is obtained.

The L-BFGS algorithm is sensitive to the number m of

correction pairs stored. We tested several values in the

range 4 # m # 10 and the best results were obtained with

m ¼ 10; as shown in Fig. 4. In Table I, we report the

performance of the algorithm to satisfy the criteria (9),

for each value m ¼ 4, 6, 8 and 10 we notice that the best

results were obtained for m ¼ 10: Further increasing m did

not exhibit any significant improvements and for the

hybrid code experiments presented next in this section we

selected m ¼ 10:
The TN iterations are highly sensitive to the termination

criteria used for the inner CG iteration, and a trade-off

between the computational cost and the performance must

be considered. The inner iteration was terminated if the CG

residual satisfied the convergence criteria

krk2 # hkkgkk2; hk ¼ minð0:5=k; kgkk2Þ

or a user specified maximum number of inner iterations

maxit was achieved. The impact of the selection of the

method parameter maxit on the performance of the

algorithm is shown in Fig. 5 where we show the number

of iterations and the CPU time vs. the relative reduction in

the cost functional for maxit ¼ 5, 10, 20 and 30. Increasing

maxit will result in a smaller number of HFN (outer)

iterations, since the Newton equation (2) is solved more

accurately. However, each CG (inner) iteration becomes

more expensive and choosing a large maxit may lower the

efficiency of the algorithm by increasing the number of

function/gradient evaluations (and therefore, the CPU

time). The performance of the HFN algorithm to satisfy the

criteria (9) is outlined in Table II for maxit ¼ 5, 10, 20

and 30. We notice that although using maxit ¼ 5 will

take more than twice as many outer iterations as with

maxit ¼ 20; the results are much closer in terms of the

overall CPU time required by optimization.

To implement the hybrid algorithm, in addition to m and

maxit the user must specify the initial number of L-BFGS

iterations (l) and HFN iterations (t). Afterwards, a

dynamic adjustment of the lengths (l, t) of the L-BFGS

and HFN cycles is implemented in the hybrid code as

explained by Morales and Nocedal (2002). If l ¼ 0

then the pure HFN method is implemented, whereas by

setting t ¼ 0 the standard L-BFGS method is performed.

We experimented with various settings of the parameters l

and t while keeping constant maxit and found that setting

l ¼ 20; t ¼ 10 provided in general the best performance.

FIGURE 4 The performance of the L-BFGS algorithm for various values of the number m of correction pairs stored. Relative reduction of the cost
functional is shown as a function of the number of iterations (left) and as a function of the CPU time (right) required by the optimization algorithm.
Results are displayed for m ¼ 4, 6, 8 and 10 and it can be seen that the selection of m has a significant impact on the algorithm performance in the vicinity
of the optimal point.

TABLE I The performance of the L-BFGS algorithm applied to the
variational data assimilation problem

m NIT NFG CPU (s)

4 296 316 25.3
6 214 222 17.8
8 248 257 20.6
10 211 213 17.5

Results displayed for m ¼ 4, 6, 8 and 10 show that the selection of the number m of
pairs stored has a significant impact on the algorithm performance.
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The results for maxit ¼ 20 are reported in Table III and a

graphical illustration is presented in Fig. 6. By comparison

with the results in Tables I and II, we notice that the hybrid

algorithm with m ¼ 10; maxit ¼ 20; l ¼ 20; t ¼ 10

outperformed the best results obtained with each of the

L-BFGS and TN methods implemented individually.

SUMMARY AND CONCLUDING REMARKS

A comparative analysis of the performance of a hybrid

method vs. L-BFGS and Hessian-free TN optimization

methods was presented in the context of 4D-Var data

assimilation. The study presented in this paper is of

particular interest since the optimization problem in

variational data assimilation is often characterized by a

large dimension of the vector of control variables, large

condition number of the Hessian (ill-conditioned), and

small deviation from quadratic. It is known that for

problems that share these properties TN methods are more

effective than L-BFGS (Nash and Nocedal, 1991). The

characteristics of the cost functional were illustrated for a

two-dimensional shallow-water model. All three optimiz-

ation methods successfully solved the assimilation

problem. However, the numerical experiments revealed

that the performance of the algorithms is highly influenced

by the selection of the method parameters. The L-BFGS

iteration provided a slow convergence and we found its

performance in the vicinity of the optimal point to be

sensitive to the number of correction pairs stored. The

HFN method provided in general the fastest convergence

with an appropriate specification of the number of inner

CG iterations. Due to the inherent algorithmic demands of

4D-Var data assimilation, the efficiency of the Hessian-

free TN method should be weighted against its

computational cost. Thus the number of inner precondi-

tioned CG iterations should be restricted since each such

iteration entails a function and gradient evaluation

requiring integration of the forward model and its adjoint.

This issue becomes of preponderant importance if we deal

with 3D numerical weather prediction models due to the

large computational burden. This explains why L-BFGS is

still prevalent in operational 4D-Var implementation at

major numerical weather prediction centers.

If a second-order adjoint of the model is available, the

number of required Hessian-free iterations may be reduced,

since exact Hessian/vector products are computed (LeDimet

et al., 2002). The hybrid approach was found to be superior

to the L-BFGS method and, with a proper tuning of

the parameters maxit, l and t, also to the HFN method.

However, finding the optimal values for the parameters is

a delicate issue and depends on the optimization problem

FIGURE 5 The performance of the TN algorithm for various specifications of the maximum number of iterations maxit used in the inner CG iteration.
Relative reduction of the cost functional is shown as a function of the number of outer iterations (left) and as a function of the CPU time (right) required
by the optimization algorithm. Results are displayed for maxit ¼ 5, 10, 20 and 30.

TABLE III The performance of the hybrid algorithm applied to the
variational data assimilation problem

l t NIT NFG CPU (s)

10 5 57 214 17.2
10 10 54 211 16.9
20 10 59 176 14.1
20 20 66 220 17.6

Results are shown for various specifications of the lengths (l, t) of the L-BFGS and
TN cycle while keeping constant m ¼ 10 and maxit ¼ 20: NIT represents the
number of L-BFGS iterations plus the number of outer TN iterations taken during
the optimization. By comparison with the results in Tables I and II, we notice that
the hybrid algorithm with l ¼ 20; t ¼ 10 provided the overall best performance.

TABLE II The performance of the truncated-Newton algorithm applied
to the variational data assimilation problem

Maxit NIT NFG CPU (s)

5 39 221 17.7
10 21 180 14.4
20 19 195 15.6
30 18 192 15.4

Results displayed for maxit ¼ 5, 10, 20 and 30 show that the selection of the
maximum number of inner CG iterations maxit has a significant impact on the
algorithm performance. Best trade-off between the accuracy and the computational
cost to solve for the Newton direction was obtained for maxit ¼ 10:
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characteristics. For practical applications, the success of the

hybrid code will largely depend on its efficient implemen-

tation in conjunction with the availability of second-order

adjoint to 4D-Var with simplified physics using global

circulation models.

The issue of dimensionality in 3D operational models

will also be compounded by the impact of nonlinearity due

to physical processes such as precipitation and radiation.

Moreover, if an adjoint with physics is used for data

assimilation with an operational model, and in particular if

full physics is used, we may still encounter the issues of

on/off processes. This in turn may require (if a version

with simplified physics was not developed) the use of non-

smooth optimization. The issue of proper preconditioning

will also take another aspect since due to the higher

dimensionality of the problem we should expect much

larger condition numbers. Hence, further experiments are

needed for 3D operational models where we may reach

different conclusions than those reached here.
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FIGURE 6 The performance of the hybrid algorithm for various specifications of the initial lengths (l, t) of the L-BFGS and HFN cycles. Relative
reduction of the cost functional is shown as a function of the number of the L-BFGS þ outer TN iterations (left), and as a function of the CPU time
required by the optimization algorithm (right).
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