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Abstract
The ultimate purpose of environmental studies is the forecast of its natural evo-

lution. A prerequisite before a prediction is to retrieve at best the state of the
environment. Data assimilation is the ensemble of techniques which, starting from
heterogeneous information, permit to retrieve the initial state of a flow. In the first
part, the mathematical models governing geophysical flows are presented together
with the networks of observations of the atmosphere and of the ocean. In varia-
tional methods, we seek for the minimum of a functional estimating the discrepancy
between the solution of the model and the observation. The derivation of the opti-
mality system, using the adjoint state, permits to compute a gradient which is used
in the optimization. The definition of the cost function permits to take into account
the available statistical information through the choice of metrics in the space of
observation and in the space of the initial condition. Some examples are presented
on simplified models, especially an application in oceanography. Among the tools
of optimal control, the adjoint model permits to carry out sensitivity studies, but if
we look for the sensitivity of the prediction with respect to the observations, then a
second-order analysis should be considered. One of the first methods used for assim-
ilating data in oceanography is the nudging method, adding a forcing term in the
equations. A variational variant of nudging method is described and also a so-called
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“back and forth” nudging method. The proper orthogonal decomposition method
is introduced in order to reduce the cost of the variational method. For assimilat-
ing data, stochastic methods can be considered, being based on the Kalman filter
extended to nonlinear problems, but the inconvenience of this method consists in
the difficulty of handling huge covariance matrices. The dimension of the systems
used for operational purposes (several hundred of millions of variables) requires to
work with reduced variable techniques. The ensemble Kalman filter method, which
is a Monte-Carlo implementation of the Bayesian update problem, is described. A
considerable amount of information on geophysical flows is provided by satellites
displaying images of their evolution, the assimilation of images into numerical mod-
els is a challenge for the future: variational methods are successfully considered in
this perspective.

1. Introduction: specificity of geophysical flows

The mathematical modeling of geophysical flows has experienced a tremendous devel-
opment during the last decades, mainly due to the growth of the available computing
resources and to the development of networks of remote or in situ observations. The
domain of modeling has been extended to complex flows such as the atmosphere with
some chemical species or coupled media such as the atmosphere and the ocean. A ten-
tative extension of the domain of prediction is also under way with seasonal prediction
on one hand and short term and very accurate prediction on the other hand: nowcasting
mainly devoted to extreme events. Geophysical fluids such as air, atmosphere, ocean,
surface, or underground water are governed by the general equations of fluid dynamics:
mass and energy conservation, behavior laws. Nevertheless some specific factors must
be taken into account such as follows:

• Uniqueness of a situation. Each geophysical episode is unique. A given situation
has never existed before and will not exist in the future. A field experiment cannot
be duplicated. It means that environmental sciences are not strictu sensu experi-
mental sciences: an hypothesis cannot be validated by repetitions of an experiment.
Geophysical models should be tested and validated with data associated to distinct
episodes.

• Nonlinearity. Geophysical processes are nonlinear due to their fluid component,
and furthermore, they include some other nonlinear processes such as radiative
transfer. Nonlinearity implies interactions and energy cascades between spatial and
temporal scales. Seeking a numerical solution to the equations requires discretizing
these equations and therefore cutting off some of the scales. A major problem
comes from the fact that subscale processes could be associated with large fluxes
of energy. For example, a cumulonimbus cloud has a characteristic size of 10 km in
the horizontal and vertical directions. The typical grid size of a general circulation
model (GCM) is of the order of 40 km, therefore, larger than the characteristic
dimension of a cumulonimbus, a thunderstorm cloud. The total energy (thermal
and mechanical) of such a cloud is considerable. By the same token typical vertical
velocities of a GCM are of the order of some centimeters or decimeters per second,



10-Ch09-N51893 [13:43 2008/9/13] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 379 377–434

Data Assimilation for Geophysical Fluids 379

in a cumulonimbus cloud there exist observations of vertical velocities of the order
of 100 meters per second. Therefore, it will be crucial to represent the fluxes of
energy associated to subgrid processes by some additional terms in the equations.
Parametrization of subgrid effects will include some empirical coefficients that
should be tuned in such a way that the model produces a good forecast.

• Initial and boundary conditions. The general equations are not sufficient to carry
out a prediction. Some additional information, such as initial and boundary con-
ditions, should be provided. Most of the geophysical fluids do not have any
natural boundaries. In the same way, there are no natural initial conditions.
Nevertheless, these conditions are essential for carrying out a prediction, more
especially as the system is turbulent and hence very much dependent on the initial
condition.

Therefore, it is crystal clear that modeling will have to take into account observations.
If, for instance, we consider a measurement of the wind at a given site, the same data
can be used either in a GCM or in a very local model. According to the context, i.e., the
model, a different confidence will be attributed to the observation. It does not make to
have a model without data or data without model (otherwise known as “Lions’theorem”).

Data assimilation is the ensemble of techniques combining in an optimal way (in a
sense to be defined) the mathematical information provided by the equations and the
physical information given by the observation in order to retrieve the state of a flow.
The concept of data assimilation can be extended to other sources of information, e.g.,
statistics of error on the observations and/or on the error of prediction. Another source
of information is provided by images originating from space observations, which as of
the present time are not optimally used. The goal of data assimilation is to link together
these heterogeneous (in nature, quality, and density) sources of information in order to
retrieve a coherent state of the environment at a given date.

The equations of the model (shallow water, quasi-geostrophic (QG), or general prim-
itive equations) are of the first order with respect to time. In a GCM, there is no lateral
boundary condition. Assuming that all the regularity conditions are fulfil (if they were
known), an initial condition will be sufficient to integrate the model and to get the
forecast.

Originally, the problem of data assimilation was to determine the initial condition
from observations. Since the same mathematical tools are used, data assimilation also
includes the estimation of some model parameters or of some boundary conditions.

As a first approximation, three types of methods are considered:

• Interpolation methods. These methods interpolate the measurement from the points
of observation toward the grid points. The interpolation can be weighted by the
statistics of the observations (covariance matrices). The method is simple to imple-
ment, but it is not justified by physical arguments: the retrieved fields will not be
necessarily coherent from the physical viewpoint, e.g., the initial condition may be
located outside of the attractor, therefore the associated solution will contain gravity
waves until it reaches the attractor. Until a recent date, these methods were the most
commonly used in operational meteorology. For a review on optimal interpolation,
one can refer to Kalnay [2003].
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• Variational methods. Data assimilation is set as being a problem of constrained
optimization, then the tools of optimal control are carried out to solve it. At present,
these methods are operationally used at the European Center for Medium Range
Weather Forecasting (ECMWF) (Reading, UK), Météo-France, the National Cen-
ter for Environmental Prediction (USA), Japan and Canada (see Rabier [2005],
Kalnay [2003]).

• Stochastic methods. The basic idea is to consider the fields as the realization of a
stochastic process and carry out Kalman filtering (KF) methods. The main difficulty
stems from the fact that the covariance matrices of the state variables have huge
dimensions for operational models.The ensemble Kalman filtering (EnKF) methods
were devised to address this issue and are presently seeing a major development at
different research centers.

Section 2 will be devoted to the presentation of a certain number of simplified models
for the geophysical flows and to a description, with appropriate figures, of data available
for the atmosphere or the ocean. In Section 3, the variational method, mentioned above
and often called Four-Dimensional Variatonal Data Assimilation (4D-VAR) is explained
in detail and two examples of solutions for shallow water or QG models will be given.
Section 4 is devoted to a second-order adjoint analysis, which enables in particular to
perform a sensitivity analysis on the results of the variational method. In Section 5, the
so-called nudging method is explained, with a special emphasis on the optimal nudging
method, which uses the variational technique. In order to reduce the cost of these 4D-VAR
methods, the Proper Orthogonal Decomposition (POD) is introduced in Section 6, and
the application of this reduced-space basis to variational methods is presented. In
Section 7, KF is introduced and a special emphasis is given to the EnKF, which is
widely used in operational data assimilation. Finally, the recent problem of assimila-
tion of images in meteorology or oceanography is tackled in Section 8 by a variational
technique.

2. Models and data for geophysical flows

2.1. Models

The equations governing the geophysical flows are derived from the general equations
of fluid dynamics. The main variables used to describe the fluids are as follows:

• The components of the velocity
• Pressure
• Temperature
• Humidity in the atmosphere, salinity in the ocean
• Concentrations for chemical species

The constraints applied to these variables are as follows:

• Equations of mass conservation
• Momentum equation containing the Coriolis acceleration term, which is essential

in the dynamic of flows at extra tropical latitudes

ismailkhans
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• Equation of energy conservation including law of thermodynamics
• Law of behavior (e.g., Mariotte’s Law)
• Equations of chemical kinetics if a pollution type problem is considered

These equations are complex; therefore, we cannot expect to obtain an analytical
solution. Before performing a numerical analysis of the system, it will be necessary to

• Simplify the equations. This task will be carried out on physical basis. For exam-
ple, three-dimensional (3D) fields could be vertically integrated using hydrostatic
assumptions in order to obtain a two-dimensional (2D) horizontal field which is
more tractable for numerical purposes.

• Discretize the equations. The usual discretization methods are considered: finite
differences, finite elements, or spectral methods.

Several of these techniques may be simultaneously used. For instance, in theARPEGE
model designed by Meteo-France, the horizontal discretization is spectral in longitude,
a truncated development in Legendre’s polynomial along latitude, while the vertical
one is based on a finite difference scheme. The horizontal nonlinear terms (advection)
are computed using finite differences and then transformed onto a spectral base. As
mentioned above, it will be necessary to estimate the subgrid fluxes of energy and
matter. A parametrization of these phenomena will be included in the model, which will
contain some empirical parameters, difficult to estimate and to adjust because they are
associated to some complex physical processes which cannot be directly measured.

In mathematics, it is usual to study the convergence of discrete models toward a
continuous one when the discretization parameter goes to zero. Does this approach
make sense for these problems? According to the value of this parameter, the physics of
the problem will change and another parametrization will be necessary. With a grid size
of 100 km, the cumulonimbus clouds will not be explicit in the model. With a grid size
of 100 m, the physics of convective clouds, including the water cycle under gaseous,
liquid, and solid phases, should be explicitly taken into account. According to the value
of the discretization parameter, the domain of validity of the approximation will change.
In this framework, the convergence of discretization schemes is beyond the scope of
actual problems.

In meteorology as well as in oceanography or hydrology, it is usual to use a basic
“toy” model for numerical experiments: the Saint-Venant’s equations (or shallow water
equations). These 2D horizontal equations are obtained after a vertical integration of
the 3D fields, assuming the hydrostatic approximation, this is equivalent to neglecting
the vertical acceleration. The density is supposed to be constant; therefore, there is no
thermodynamic effect. They assume the form:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + ∂φ

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu + ∂φ

∂y
= 0,

∂φ

∂t
+ ∂uφ

∂x
+ ∂vφ

∂y
= 0,

(2.1)
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where u and v are the horizontal components of the velocity, φ is the geopotential
(proportional to the pressure), and f is the Coriolis parameter for earth’s rotation.

An important property of these equations is the existence of an attractor, on which the
solution will orbit. For very simplified models such as Lorenz’ equations of 3Ds in the
space phase, the structure of this attractor is already topologically complex. For more
realistic models, it is known that the attractor is, at midlatitudes, in the vicinity of the
geostrophic equilibrium, which is defined by the equality of the gradient of pressure and
the Coriolis force. From a practical point of view, the attractor is characterized by a weak
development of gravity waves. Therefore, if the initial condition does not belong to a
close neighborhood of the attractor, then the integration of the model will give rise to
undue gravity waves until the solution reaches the attractor.

Another “toy” model, which filters the gravity waves, is the QG model where the
dominant terms are the pressure gradient and the Coriolis force, which cancel each other
in the geostrophic balance. It consists in a first-order expansion of the Navier-Stokes
equation with respect to the Rossby number. It is an approximate model with respect to
the full primitive equation model, in particular because thermodynamics are discarded.
However, it has been shown to be able to realistically reproduce the statistical properties
of midlatitude ocean circulation including the very energetic jet and mesoscale features,
typical of regions like the Gulf Stream. The equations of this model will be given in the
next section.

Operational models in meteorology and oceanography are of very large dimension
with 107 to 109 variables, hence the implementation of efficient numerical methods is
a challenge for high performance computing. Future developments of coupled models
ocean-atmosphere will dramatically increase the need for efficient numerical methods
for coupled models.

2.2. Data

At the present time, many sources of data are used. Around 300 millions of data are
screened every day by the ECMWF located in Reading (UK). An exhaustive infor-
mation can be found on the ECMWF site http://www.ecmwf.int/products/forecasts/d/
charts/monitoring/coverage/.

In meteorology, the data collected for operational use are as follows:

• Ground observations: wind, temperature, pressure, humidity. These data are col-
lected on a dedicated network, on ships, and also in airports (see Fig. 2.1). The
number of observations varies from day to day. To give an order of magnitude,
about 200,000 data are measured daily, but after a quality control process, only
30,000 are used in the assimilation.

• Pilot balloons provide information on the wind.
• Radiosondes provide data on the vertical structure of the atmosphere: wind, tem-

perature, pressure, and humidity. This network is displayed in Fig. 2.2. The figures
of synoptic measurements and radiosonde clearly show the heterogeneity of the
data density: North America and Europe have a good coverage, while information
is very sparse on the oceans. This lack of information is compensated by drifting
buoys.
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Fig. 2.1 SYNOP/SHIP data: synoptic networks in red, airport data in blue, and ship data in green.
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Fig. 2.2 Radiosonde measurements.



10-Ch09-N51893 [13:43 2008/9/13] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 384 377–434

384 J. Blum et al.

ECMWF Data Coverage (All obs DA) -BUOY
27/OCT/2007; 00 UTC

Total number of obs � 5882

217 MOORED5665 DRIFTER

60˚N

30˚N

0˚ 0˚

30˚S

60˚S

60˚N

30˚N

30˚S

60˚S

150˚W 120˚W 90˚W 60˚W 30˚W 0˚ 30˚E 60˚E 90˚E 120˚E 150˚E

150˚W 120˚W 90˚W 60˚W 30˚W 0˚ 30˚E 60˚E 90˚E 120˚E 150˚E

Obs Type

Fig. 2.3 Drifting and moored buoys.

• Drifting buoys measure the temperature of the air and of the ocean, salinity, and
wind. The network is completed by moored buoys, mainly located in the most
energetic part of the ocean (see Fig. 2.3). These data are also used for oceanic
models. Around 6000 data provided by buoys are daily assimilated at ECMWF.

At the present time (2007), around 99 percent of screened data originates from 45 satel-
lites, but only 94 percent of assimilated data comes from satellites. Two main categories
of satellites are used:

• Geostationary satellites provide information on the wind by estimating the shifting
of clouds considered as Lagrangian tracers. To make this measurement useful,
the altitude of the clouds must be known (it is derived, by solving an inverse
problem, from the vertical temperature profiles). Figure 2.4 displays the areas of
observation covered by ten geostationary satellites. Around 300,000 observations
are assimilated.

• Polar-orbiting satellites (NOAA, EUMETSAT) are used for the estimation of the
vertical temperature profiles, basically radiances are measured, then temperatures
are estimated as the solution of an inverse problem. Figure 2.5 displays the tra-
jectories of six satellites on October 27th 2007. Around 400,000 observations are
assimilated.

In oceanography, data are much scarcer than in meteorology. Electromagnetic waves
do not penetrate deeply in the ocean; therefore, remote sensing is much more difficult. The
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Fig. 2.4 Observations from ten geostationary satellites.
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Fig. 2.5 Trajectories of six polar-orbiting satellites.
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Fig. 2.6 Satellite altimetry (from Aviso web site).

development of operational oceanography is based on in situ measurements (temperature,
salinity) and on altimetric satellites (ERS, Topex-Poseidon, Jason) measuring the surface
elevation of the ocean with precision on the order of some centimeter (see Fig. 2.6).
Lagrangian floats measure also the position of the drifting buoys with a given time
periodicity (Nodet [2006]).

Both in meteorology and oceanography, observations are heterogeneous in nature,
density, and quality. A rough estimation of the number of screened data is 300 millions
and of assimilated data is around 18 millions. This number has to be compared with
the 800 millions of variables of the ECMWF operational model in 2007. Therefore,
retrieving the state of the atmosphere from observations is clearly an ill-posed problem.
Some a priori information has to be provided to estimate an initial state.

3. Variational methods

Variational methods were introduced by Sasaki [1958]. These methods consider the
equations governing the flow as constraints, and the problem is closed by using a
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variational principle, e.g., the minimization of the discrepancy between the model and
the observations. In the following, we will consider that the model is discrete with
respect to space variables. Optimal Control Techniques (Lions [1971]) were proposed
by Le Dimet [1980], Le Dimet and Talagrand [1986], and Courtier and Talagrand
[1987].

3.1. Ingredients

The various ingredients of a variational method are as follows:

• A state variable X ∈ X which describes the evolution of the medium at the grid
points. X depends on time and is for operational models of large dimension (3.107

for the ECMWF model).
• A model describing the evolution of the fluid. Basically, it is a system of nonlinear

differential equations which is written as⎧⎨⎩
dX

dt
= F (X, U)

X (0) = V

. (3.1)

• A control variable (U, V) ∈ P space of control. Most of the time the control is
the initial condition or/and some internal variables of the model: parameters or
boundary conditions. We will assume that when a value has been fixed for the
parameter, then the model has a unique solution. For sake of simplicity, we will
not consider constraints on the state variable. Nevertheless, humidity and salinity
cannot be negative; therefore, the set of controls does not necessarily have the
structure of a vector space.

• Observations Xobs ∈ Oobs. They are discrete and depend on time and space and
are not, from either geographical or physical point of view, in the same space
as the state variable. Therefore, we will introduce some operator C mapping the
space of state into the state of observations. In practice, this operator can be
complex.

• A cost function J measuring the discrepancy of the solution of the model associated
to (U, V) and the observations.

J (U, V) = 1

2

T∫
0

‖C.X(U, V) − Xobs‖2dt (3.2)

The choice of the norm is important because it allows introduction of some a priori
information like the statistics of the fields through the covariance matrix which is
positive definite. In practice, some additional term is added to the cost function,
e.g., the so-called background term which is the quadratic difference between the
initial optimal variable and the last prediction. This term acts like a regularization
term in the sense of Tikhonov (Tikhonov and Arsenin [1977]).
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Then the problem of variational data assimilation (VDA) can be set as⎧⎨⎩
Find U∗, V ∗ ∈ P such that

J(U∗, V ∗) = Inf
(U,V)∈P

J(U, V ).
(3.3)

3.2. Optimality system

With respect to (U, V), we have a problem of unconstrained optimization. Problem in
Eq. (3.3) will have a unique solution if J is strictly convex, lower semicontinuous and if

lim||(U,V)||→+∞ J(U, V) → +∞.

When J is differentiable, a necessary condition for (U∗, V ∗) to be a solution is given
by the Euler-Lagrange equation:

∇J(U∗, V ∗) = 0,

where ∇J is the gradient of J with respect to (U, V).
Furthermore, the determination of∇J permits one to implement optimization methods

of gradient type.
Let (u, v) ∈ P , X̂ be the Gâteaux-derivative (directional derivative) of X in the

direction (u, v) that is the solution of⎧⎪⎨⎪⎩
dX̂

dt
=

[
∂F

∂X

]
.X̂ +

[
∂F

∂U

]
.u,

X̂(0) = v

(3.4)

where

[
∂F

∂X

]
is the Jacobian of the model with respect to the state variable. This Eq. (3.4)

is known as the linear tangent model.
By the same token, we get the directional derivative of J :

Ĵ (U, V, u, v) =
T∫

0

(
C.X − Xobs, CX̂

)
dt.

We will get the gradient by exhibiting the linear dependence of Ĵ with respect to (u, v).
For this purpose, we introduce P ∈ X the so-called adjoint variable, to be defined later.
Let us take the inner product of Eq. (3.4) with P , then integrate between 0 and T . An
integration by part shows that if P is defined as the solution of⎧⎪⎨⎪⎩

dP

dt
+

[
∂F

∂X

]T

.P = Ct
(
C.X − Xobs

)
P (T ) = 0,

(3.5)
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then the gradient is given by

∇J =
( ∇UJ

∇V J

)
=

⎛⎜⎝−
[

∂F

∂U

]t

.P

−P (0)

⎞⎟⎠.

Therefore, the gradient is obtained by a backward in time integration of the adjoint
model.

3.3. Optimization

The determination of
(
U∗, V ∗) is carried out by performing a descent-type unconstrained

optimization method. Given a first guess (U0, V0), we define a sequence by(
Un

Vn

)
=

(
Un−1
Vn−1

)
+ ρnDn.

Dn is the direction of descent. Usually conjugate gradient or Newton type methods are
used. ρn is the step size defined by

ρn = ArgMinJ

((
Un−1
Vn−1

)
+ ρDn

)
,

This problem looks simple: it is the minimization of a function of one variable. For a
nonlinear problem, it entails a high computational cost since several integrations of the
model are required for the evaluation of J . Optimization libraries, e.g., MODULOPT
(Gilbert and Lemarechal [1989]), are widely used and are efficient.

For a comprehensive test of powerful large-scale unconstrained minimization meth-
ods applied to VDA, see Zou, Navon, Berger, Phua, Schlick and Le Dimet [1993].

3.4. Implementation

A major difficulty encountered in the implementation of this method is the derivation of
the adjoint model. A bad solution would be to derive the adjoint model from the contin-
uous direct model, then to discretize it. The convergence of the optimization algorithm
requires having the gradient of the cost function with a precision of the order of the
computer’s roundoff error.
Two steps are carried out for the derivation of the adjoint:

• Differentiation of the direct model. This step serves to determine the linear tangent
model. This task is easily carried out by differentiating the direct code line by line.

• Transposition of the linear tangent model. Transposition with respect to time is
simply the backward integration. To carry out the transposition, one should start
from the last statement of the linear tangent code and transpose each statement. The
difficulty stems from the hidden dependencies.

If some rules in the direct code are adhered to, then the derivation of the adjoint
model can be made simpler, otherwise it is a long and painful task. Nevertheless, we
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can use some automatic differentiation code such as Odyssee (Rostaing-Schmidt and
Hassold [1994]) (see also Tapenade, TAMC, FastOpt). Recent developments on these
techniques can be found in Mohammadi and Pironneau [2001].

3.5. Remarks

• If the model is nonlinear, then the cost function is not necessarily convex, and
the optimization algorithm may converge toward a local minimum. In this case,
one can expect convergence toward a global optimum only if the first guess is
in the vicinity of the solution. This may occur in meteorology where the former
forecast is supposed to be close to the actual state of the atmosphere. In practice,
a so-called background term is added to the cost function, measuring the quadratic
discrepancy with the prediction. In terms of control, this term could be considered
as a regularization in the sense of Tikhonov.

• The optimization algorithm could converge to a correct mathematical solution but
would be physically incorrect (e.g., negative humidity).The solution may be far
away from the attractor, the regularization term will force the model to verify
some additional constraints, e.g., for the solution to remain in the vicinity of the
geostrophic equilibrium.

• Regularization terms permit to take into account the statistical information on the
error by an adequate choice of the quadratic norm including an error covariance
matrix.

• If the control variable U is time dependent, which is the case if boundary conditions
are controlled, then we may get problems with a huge dimension. In this case, it
will be important to choose an appropriate discretization of the control variable in
order to reduce its dimension.

• Puel [2002] has proposed a new approach to determine the final state, instead of the
initial condition, that makes the inverse problem well-posed, thanks to Carleman
inequalities.

3.6. Example 1: Saint-Venant’s equations

Saint-Venant’s equations, also known as shallow water equations, are used for an
incompressible fluid for which the depth is small with respect to the horizontal dimen-
sions. General equations of geophysical fluid dynamics are vertically integrated using
the hydrostatic hypothesis; therefore, vertical acceleration is neglected. In Cartesian
coordinates, they are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + ∂φ

∂x
= 0, (3.6)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu + ∂φ

∂y
= 0, (3.7)

∂φ

∂t
+ ∂uφ

∂x
+ ∂vφ

∂y
= 0. (3.8)
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In this system, X = (u, v, φ)T is the state variable, u and v are the components of the
horizontal velocity; φ is the geopotential (proportional to the height of the free surface)
and f the Coriolis parameter. For sake of simplicity, the following hypotheses are used:

a) The error of the model is neglected. Only the initial condition will be considered
as a control variable.

b) Lateral boundary conditions are periodic. This is verified in global models.
c) Observations are supposed to be continuous with respect to time. Of course, this

is not the case in practice. C ≡ I, where I is the identity operator. If U0 = (u0, v0, φ0)
T

is the initial condition and if the cost function is given by

J(U0) = 1

2

∫ T

0
[‖u − uobs‖2 + ‖v − vobs‖2 + γ‖φ − φobs‖2]dt, (3.9)

where γ is a weight function, then the directional derivatives X = (ū, v̄, φ̄)T in the
direction h = (hu, hv, hφ)T (in the control space) will be solutions of the linear tangent
model:

∂ū

∂t
+ u

∂ū

∂x
+ ū

∂u

∂x
+ v

∂ū

∂y
+ v̄

∂u

∂y
− f v̄ + ∂φ̄

∂x
= 0, (3.10)

∂v̄

∂t
+ u

∂v̄

∂x
+ ū

∂v

∂x
+ v

∂v̄

∂y
+ v̄

∂v

∂y
+ f ū + ∂φ̄

∂y
= 0, (3.11)

∂φ̄

∂t
+ ∂ūφ

∂x
+ ∂uφ̄

∂x
+ ∂v̄φ

∂y
+ ∂vφ̄

∂y
= 0. (3.12)

The adjoint model is obtained by transposition of the linear tangent model. Let P =
(ũ, ṽ, φ̃)T be the adjoint variable and after some integrations by parts both in time and
space, we see that the adjoint model is defined as being the solution of

∂ũ

∂t
+ u

∂ũ

∂x
+ v

∂ũ

∂y
+ ũ

∂v

∂y
− ṽ

∂v

∂x
− f ṽ + φ

∂φ̃

∂x
= u − uobs, (3.13)

∂ṽ

∂t
− ũ

∂u

∂y
+ u

∂ṽ

∂x
+ ṽ

∂u

∂x
+ v

∂ṽ

∂y
+ f ũ + φ

∂φ̃

∂y
= v − vobs, (3.14)

∂φ̃

∂t
+ ∂ũ

∂x
+ ∂ṽ

∂y
+ u

∂φ̃

∂x
+ v

∂φ̃

∂y
= γ(φ − φobs), (3.15)

with final conditions equal to 0.
Then the gradient of J is given by

∇J(U0) = −P (0) = −
⎛⎝ũ (0)

ṽ (0)

φ̃ (0)

⎞⎠. (3.16)
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In Vidard [2001], a square oceanic shallow water model (2000 km) is studied, it is
discretized with a grid size of 25 km. The period of assimilation lasts one month, and
the time-step is 90 mn. Fictitious data provided by the true solution are used after a
random perturbation. The optimization code M1QN3 is issued from the MODULOPT
optimization library (Gilbert and Lemarechal [1989]): it is a quasi Newton algorithm.

3.7. Example 2: a QG model

The oceanic model used in this study is based on the QG approximation obtained by
writing the conservation of the potential vorticity (Holland [1978]). The vertical struc-
ture of the ocean is divided into N layers. Each one has a constant density ρk with a
depth Hk (k = 1, . . . , N). We get a coupled system of N equations:

Dk(θk(�) + f)

Dt
+ δk,N C1	�N − C3	

3�k = Fk dans 
 × [0, T ],
∀k = 1, . . . , N,

(3.17)

where

• 
 ⊂ IR2 is the oceanic basin, and [0, T ] the time interval for the study;
• �k is the stream function in the layer k;
• θk(�) is the potential vorticity in the layer k, given by⎛⎜⎝θ1(�)

...

θN(�)

⎞⎟⎠ = [	 − [W ]]
⎛⎜⎝�1

...

�N

⎞⎟⎠,

where [W ] is a N × N tridiagonal matrix, whose entries depend on physical parameters:

Wk,k−1 = − f 2
0

Hkg
′
k− 1

2

, Wk,k+1 = − f 2
0

Hkg
′
k+ 1

2

, Wk,k = f 2
0

Hk

( 1

g′
k− 1

2

+ 1

g′
k+ 1

2

)
,

where f0 is the value of the Coriolis parameter at the middle latitude of 
, g′
k+ 1

2
=

g (ρk+1 − ρk)/ρ is the reduced gravity at the interface k-k + 1 (g is the earth gravity and
ρ the mean density of the fluid).

• f is the Coriolis force. According to the β-plane approximation, it linearly varies
with latitude: f(x, y) = f0 + β.y, where (x, y) are the Cartesian coordinates in 
;

• Dk.

Dt
is the Lagrangian derivative in layer k, given by

Dk.

Dt
= ∂.

∂t
− ∂�k

∂y

∂.

∂x
+ ∂�k

∂x

∂.

∂y
= ∂.

∂t
+ J(�k, .),

where J(., .) is the Jacobian operator J(ϕ, ξ) = ∂ϕ

∂x

∂ξ

∂y
− ∂ϕ

∂y

∂ξ

∂x
;
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• C1	�N is the dissipation on the bottom of the ocean;
• C3	

3�k is the parametrization of internal and subgrid dissipation;
• Fk is a forcing term. In this model, only the tension due to the wind, denoted τ, is

taken into account. Therefore, we get

F1 = Rotτ and Fk = 0, ∀k ≥ 2.

The Eq. (3.17) is written in vector form:

∂

∂t
(	 − [W ])

⎛⎜⎝�1
...

�N

⎞⎟⎠ =
⎛⎜⎝G1

...

GN

⎞⎟⎠, (3.18)

with Gk = Fk − J(�k, θk(�) + f) − δk,NC1	�N + C3	
3�k.

We are going to consider altimetric measurement of the surface of the ocean given
by satellite observations (Topex-Poseidon, Jason). The observed data is the change in
the surface of the ocean. According to the QG approximation, it is proportional to the
stream function in the surface layer:

hobs = f0

g
�obs

1 .

Therefore, we will assimilate surface data in order to retrieve the fluid circulation
especially in the deep ocean layers.

The control vector is the initial state on the N layers:

u =
(
�k(t = 0)

)
k=1,...,N

∈ Uad.

The state vector is(
�k(t)

)
k=1,...,Ṅ

.

We assume that the stream function is observed at each point of the surface layer at
discrete times tj . Then the cost function is defined by

Jε(u) = 1

2

n∑
j=1

∫



(
�1(tj) − �obs

1 (tj)
)2

ds + ε

2
‖ R(u) ‖2

T .

The second term in the cost function is the regularization term in the sense of Tikhonov.
It renders the inverse problem well posed, by taking into account the square of the
potential vorticity of the initial state:

‖ R(u) ‖2
T =

N∑
k=1

Hk

[∫



(
(	�k)(0) − [W ]k.(�)(0)

)2
ds

]
.
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The parameter ε in the cost function is the relative weight of the regularization
with respect to the quadratic distance between the observations and the computed
state.

The direct and the adjoint models are discretized using finite difference discretization
for space and a leap-frog scheme for time.

As above, minimization is carried out with M1QN3. An important point is the choice
of the inner product for the space of control.Asystematic study was carried out in Luong,
Blum and Verron [1998] showing that the best choice is the inner product associated to
the natural norm corresponding to the square root of the energy of the system, providing
a good preconditioner for the optimization algorithm. Figures 3.1 and 3.2, showing the
exact and the identified flow at the beginning and at the end of the assimilation period,
prove that the reconstruction method is satisfactory.

The management of various time intervals, in order to improve the penetration of
information in the deep layer, is presented in Blum, Luong and Verron [1998]. A main
difficulty comes from the dimension of the control space making this method costly
from a computational viewpoint. Starting from a statistical analysis of the trajectory of
the model, Blayo, Blum and Verron [1998] proposed a method for the reduction of
this space using POD vectors, which take into account the dynamics of the system (see
Section 6).

For operational purpose, 4D-VAR methods have been implemented on the primitive
equations model, by using an incremental method in order to reduce the cost of the reso-
lution of the variational problem (Thepaut and Courtier [1987], Courtier, Thepaut
and Hollingsworth [1994]).

4. Second-order methods

4.1. Hessian

The optimality system, the Euler-Lagrange equation, provides only a necessary condition
for optimality. In the linear case, the solution is unique if the Hessian is definite positive.
From a general point of view, the information given by the Hessian is important for
theoretical, numerical, and practical issues. For operational models, it is impossible to
compute the Hessian itself as it is a square matrix with 1016 terms; nevertheless, the
most important information can be extracted from the spectrum of the Hessian which
can be estimated without an explicit determination of this matrix. This information is of
importance for estimating the condition number of the Hessian for preparing an efficient
preconditioning.

A general method to get this information is to apply the techniques described above to
the couple composed of the direct and adjoint models (Le Dimet, Navon and Daescu
[2002], Wang, Navon, Le Dimet and Zou [1992]), leading to a so-called second-order
adjoint. The following steps are carried out:

• Linearization of the direct and adjoint models with respect to the state variable.
Since the system is linear with respect to the adjoint variable, no linearization is
necessary.



10-Ch09-N51893 [13:43 2008/9/13] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 395 377–434

Data Assimilation for Geophysical Fluids 395

Fig. 3.1 True initial condition (left) and exact solution at the end of the assimilation period (right) for the
three (from top to bottom) layers of a quasi-geostrophic model.
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Fig. 3.2 4D-VAR data assimilation results identified initial condition (left) and corresponding solution at the
end of the assimilation period (right) for the three (from top to bottom) layers of a quasi-geostrophic model.
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• Introducing two second-order adjoint variables.
• Transposition to exhibit the linear dependence with respect to the directions.

If the model (Eq. (3.1)) has the form⎧⎨⎩
dX

dt
= F(X) + B.U

X(0) = V

,

U and V being the control variables, and if we consider the cost function defined by
Eq. (3.2) and the adjoint equation given by Eq. (3.5), from a backward integration of
this adjoint model, the gradient is deduced

∇J =
(∇UJ

∇V J

)
=

(−BT P

−P (0)

)
.

To calculate the second-order derivative of J with respect to U and V , we have to
derive the optimality system (i.e., the model plus the adjoint system). By analogy to the
first-order case, we introduce two so-called second-order adjoint variables R and Q as
the solution of the system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dR

dt
=

[
∂F

∂X

]
.R + B.�

dQ

dt
+

[
∂F

∂X

]T

.Q = −
[
∂2F

∂X2
.R

]T

.P + CT CR,

(4.1)

where � has the dimension of U.
If the Hessian of J is written

H(U, V ) =
(

JU,U JU,V

JU,V JV,V

)
and if system (Eq. (4.1)) is integrated with the conditions:

Q(T) = 0

R(0) = �

and � = 0, then

JV,V .� = −Q(0),

JV,U.� = −BT .Q.

Now if the system is integrated with the conditions:

Q(T) = 0,

R(0) = 0,
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then we obtain

JU,U.� = −BT .Q.

Therefore, without an explicit computation of the Hessian, it is possible to compute
the product of the Hessian by any vector and consequently, using classical methods of
linear algebra, to evaluate its eigenvalues and eigenvectors and also to carry out Newton-
type methods. It is worth pointing out that the R variable is the solution of the linear
tangent model (when � = 0), and therefore no extra code has to be written in this case.
The left-hand side of the equation verified by Q is the adjoint model, and only the code
associated to its right-hand side has to be written.

In the case of the shallow water equations with the initial condition V as unique
control vector (no model error), the state variable is X = (u, v, φ), the adjoint variable is
P = (ũ, ṽ, φ̃), which is solution of Eqs. (3.13)–(3.15). For the second order, the variable
R = (ū, v̄, φ̄) is the solution of the linear tangent model (Eqs. (3.10)–(3.12)), while the
variable Q = (û, v̂, φ̂) is the solution of the equations:

∂û

∂t
+ u

∂û

∂x
+ v

∂v̂

∂y
+ û

∂v

∂y
− v̂

∂v

∂y
− f v̂ + φ

∂φ̂

∂x

= ṽ
∂v̄

∂x
− ū

∂ũ

∂x
− v̄

∂ū

∂y
+ ũ

∂v̄

∂y
− φ̄

∂φ̃

∂x
− ū, (4.2)

∂v̂

∂t
+ û

∂u

∂y
− u

∂v̂

∂x
+ v̂

∂u

∂x
+ v

∂v̂

∂y
+ f û + φ

∂φ̂

∂y

= ũ
∂ū

∂x
− ū

∂ṽ

∂x
− ṽ

∂ū

∂y
+ ū

∂ṽ

∂y
− φ̄

∂φ̃

∂y
− v̄, (4.3)

∂φ̂

∂t
+ ∂û

∂x
+ ∂v̂

∂y
+ u

∂φ̂

∂x
+ v

∂φ̂

∂y
= −ū

∂φ̃

∂x
− v̄

∂φ̃

∂x
− γφ̄. (4.4)

From a formal point of view, we see that first-and second-order adjoint models differ
by second-order terms which do not take into account the adjoint variable. The com-
putation of second derivatives requires storing both the trajectories of the direct and
adjoint models. For very large models, it could be more economical to recompute these
trajectories.

The system obtained, i.e., the second-order adjoint, is used to compute the product
of the Hessian by any vector. Of course, if we consider all the vectors of the canonical
base, then it will be possible to obtain the complete Hessian.

The determination of this product permits access to some information.

• By using Lanczos type methods and deflation, it is possible to compute the
eigenvectors and eigenvalues of the Hessian.

• To carry out second-order optimization methods of Newton-type for equations of
the form:

∇J(X) = 0.
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The iterations are

Xn+1 = Xn − H−1 (Xn) .∇J (Xn),

where H is the Hessian of J . At each iteration, a linear system should be solved.
This is done by carrying out some iterations of a conjugate gradient method which
requires computing the product Hessian-vector.

4.2. Sensitivity analysis

In the environmental sciences, the mathematical models contain parameters which cannot
be estimated very precisely either because they are difficult to measure or because they
represent some subgrid phenomena. Therefore, it is important to be able to estimate the
impact of uncertainties on the outputs of the model. Sensitivity analysis is defined as
follows:

• X is the state vector of the model and K a vectorial parameter of the model
F(X, K) = 0.

• G(X, K) the response function: a real value function
• By definition, the sensitivity of the model is the gradient of G with respect to K.

The difficulty encountered comes from the implicit dependence of G on K through
X solution of the model.

Several methods can be used to estimate the sensitivity:

• By finite differences, we get

∂G

∂ei

 G (X(K + αei), K + αei) − G (X(K), K)

α
.

The main inconvenience of this method is its computational cost: it requires solving
the model as many times as the dimension of K. Furthermore, the determination
of the parameter α may be tricky. If it is too large, the variation of G could be
nonlinear, while for small values roundoff errors may dominate the variation of G.
The main advantage of this method is that it is very easy to implement.

• Sensitivity via an adjoint model. Let F(X, K) = 0 be the direct model. We introduce
its adjoint:[

∂F

∂X

]T

.P = ∂G

∂X
.

Then the gradient is given by

∇G = ∂G

∂K
−

[
∂F

∂K

]T

.P.

The advantage of this method is that the sensitivity is obtained by only one run of the
adjoint model. The price to be paid is the derivation of the adjoint code.
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In geophysics, a usual request is the estimation of the sensitivity with respect to
observations. What will be the impact of an uncertainty on the prediction? It is clear
that observations are not directly used in the direct model, and they take place only as a
forcing term in the adjoint model. Therefore, to apply the general formalism of sensitivity
analysis, we should apply it not to the model itself but to the optimality system, i.e., the
model plus the adjoint model. A very simple example with a scalar ordinary differential
equation is given in Le Dimet, Ngodock, Luong and Verron [1997] showing that the
direct model is not sufficient to carry out sensitivity analysis in the presence of data.
Deriving the optimality system will introduce second-order derivatives as it has been
seen in the previous subsection.

An important problem is the propagation of errors from models and observations
toward the predicted fields. Second-order methods provide important tools for this pur-
pose, especially for the estimation of the covariance of errors for the background term
(prediction error) and the model error (see Le Dimet, Shutyaev and Gejadze [2006],
Parmuzin, Le Dimet and Shutyaev [2006], Gejadze, Le Dimet and Shutyaev
[2007]).

5. Nudging method

Nudging is a four-dimensional data assimilation (NDA) method that uses dynamical
relaxation to adjust toward observations (observation nudging) or toward an analysis
(analysis nudging).

Nudging is accomplished through the inclusion of a forcing term in the model dynam-
ics, with a tunable coefficient that represents the relaxation time scale. Computationally
inexpensive nudging is based on both heuristic and physical considerations.

The NDA method relaxes the model state toward the observations during the assim-
ilation period by adding a nonphysical diffusive-type term to the model equations. The
nudging terms are defined as the difference between the observation and the model
solution multiplied by a nudging coefficient. The size of this coefficient is chosen by
numerical experimentation so as to keep the nudging terms small in comparison to the
dominating forcing terms in the governing equations, in order to avoid the rebounding
effect that slows down the assimilation process, yet large enough to impact the simulation.
NDA techniques have been used successfully on the global scale by Lyne, Swinbank
and Birch [1982] and Krishnamurti, Jishan, Bedi, Ingles and Oosterhof [1991]
and in a wide variety of research applications on mesoscale models (Hoke and Anthes
[1976], Ramamurthy and Carr [1987], Ramamurthy and Carr [1988], Wang and
Warner [1988], Stauffer and Seaman [1990], Verron, Molines and Blayo [1992]
to cite but a few).

The NDA method is a flexible assimilation technique which is computationally much
more economical than the VDA method. However, results from NDA experiments are
quite sensitive to the adhoc specification of the nudging relaxation coefficient, and it is
not at all clear how to choose a nudging coefficient so as to obtain an optimal solution
(Lorenc [1986], Lorenc [1988]).
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5.1. Optimal nudging specification

We assume that the model equations have been discretized in space by a finite difference,
finite element, or spectral discretization method. The time continuous model satisfies
dynamical equations of the form

∂X

∂t
= F(X), (5.1)

X(0) = V, (5.2)

where X represents the discretized state variable of the model atmosphere, t is time,
and V represents the initial condition for the model. Say, for instance, Xo(t) is a given
observation, then the objective of VDA is to find model initial conditions that minimize
a cost function defined by

J(V) =
∫ T

0

〈
W(X − Xo), X − Xo

〉
dt, (5.3)

where W is a diagonal weighting matrix. Note that J is only a function of the initial
state because X is uniquely defined by the model equations (Eqs. (5.1) and (5.2)). An
implicit assumption made in VDA is that the model exactly represents the state of the
atmosphere. However, this assumption is not true.

The NDAtechnique introduced byAnthes [1974] consists in achieving a compromise
between the model and the observations by considering the state of the atmosphere to
be defined by

∂X

∂t
= F(X) + G(Xo − X), (5.4)

where G is a diagonal matrix.
Together with the initial conditions

X(0) = V, (5.5)

the system (Eq. (5.1)) has a unique solution X(V, G). The main difficulty in the NDA
scheme resides in the estimation of the nudging coefficient G (Stauffer and Sea-
man [1990]). If G is too large, the fictitious diffusion term will completely dominate
the time tendency and will have an effect similar to replacing the model data by the
observations at each time-step. Should a particular observation have a large error that
prevents obtaining a dynamic balance, an exact fit to the observation is not required
since it may lead to a false amplification of observational errors. On the other hand,
if G is too small, the observation will have little effect on the solution. In general,
G decreases with increasing observation error, increasing horizontal and vertical dis-
tance separation, and increasing time separation. In the experiment of Anthes [1974],
a nudging coefficient of 10−3 was used for all the fields for a hurricane model and
was applied on all the domain of integration. In the experiment of Krishnamurti,



10-Ch09-N51893 [13:43 2008/9/13] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 402 377–434

402 J. Blum et al.

Jishan, Bedi, Ingles and Oosterhof [1991], the relaxation coefficients for the esti-
mated NDA experiment were kept invariant both in space and time, and their values
were simply determined by numerical experience. The implicit dynamic constraints of
the model then spread the updated information to the other variables (temperature and
moisture) resulting eventually in a set of balanced conditions at the end of the nudging
period.

In the work of Zou, Navon and Le Dimet [1992], a new parameter estimation
approach was designed to obtain optimal nudging coefficients. They were optimal in the
sense that the difference between the model solution and the observations will be small.
For a comprehensive review of parameter estimation addressing issues of identifiability,
see Navon [1998].

5.2. Parameter estimation of optimal nudging coefficients

The application of the variational approach to determine model parameters is concep-
tually similar to that of determining the initial conditions. Here, we present a brief
illustration of the method. For the parameter estimation of the nudging coefficients, the
cost function J can be defined as

J(G) =
∫ T

0

〈
W(X − Xo), X − Xo

〉
dt +

〈
K(G − Ĝ), G − Ĝ

〉
, (5.6)

where Ĝdenotes the estimated nudging coefficients, andW andK are specified weighting
matrices. The second term plays a double role. On one hand, it ensures that the new value
of the nudging parameters is not too far away from the estimated quantity. On the other
hand, it enhances the convexity of the cost function since this term contributes a positive
term K to the Hessian matrix of J . An optimal NDA procedure can be defined by the
optimal nudging coefficients G∗ such that

J(G∗) ≤ J(G), ∀G. (5.7)

The problem of extracting the dynamical state from observations is now identified
as the mathematical problem of finding initial conditions or external forcing parameters
that minimize the cost function. Due to the dynamical coupling of the state variables
to the forcing parameters, the dynamics can be enforced through the use of a Lagrange
function constructed by appending the model equations to the cost function as constraints
in order to avoid the repeated application of the chain rule when differentiating the cost
function. The Lagrange function is defined by

L(X, G, P) = J +
∫ T

0

〈
P,

∂X

∂t
− F(X) − G(Xo − X)

〉
dt, (5.8)

where P is a vector of Lagrange multipliers. The Lagrange multipliers are not specified
but computed in determining the best fit. The gradient of the Lagrange function must be
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zero at the minimum point. This results in the following first-order conditions:

∂L

∂X
= 0 ∼ adjoint model forced by 2W(X − Xo), (5.9)

∂L

∂P
= 0 ∼ direct model (Eq. (5.4)), (5.10)

∂L

∂G
= 0 ∼

∫ T

0
− < P, Xo − X) > dt + 2K(G − Ĝ) = 0. (5.11)

The solution of equations (Eqs. (5.9)–(5.11)) is called a stationary point of L. Even if the

dynamical evolution operator is nonlinear, the equation

(
∂L

∂X
= 0

)
will be the same as

those derived by constructing the adjoint of the linear tangent operator; the linearization
is automatic due to the Lagrange function L being linear in terms of the Lagrange
multipliers P . An important relation between the gradient of the cost function (Eq. (5.7))
with respect to parameters G and the partial derivative of the Lagrange function with
respect to the parameters is

∇GJ(G) = ∂L

∂G
|at stationary point, (5.12)

i.e., the gradient of the cost function with respect to the parameters is equal to the left
hand side of Eq. (5.11) which can be obtained in a procedure where the model state P

is calculated by integrating the direct model forward and then integrating the adjoint
model backward in time with the Lagrange multipliers as adjoint variables. Using this
procedure, we can derive the following expressions of the adjoint equation and gradient
formulation:⎧⎪⎨⎪⎩

dP

dt
+

[
∂F

∂X

]T

.P − GT .P = 2W(X − Xo)

P (T ) = 0,

(5.13)

and

∇GJ = −
∫ T

0

〈
Xo − X, P

〉
dt + 2K(G − Ĝ). (5.14)

We see that the adjoint equation of a model with a nudging term added is the same as that
without a nudging term except for the additional term −GT P added to the left hand side of
the adjoint equation. Having obtained the value of cost function by integrating the model
(Eq. (5.4)) forward and the value of the gradient ∇GJ by integrating the adjoint equation
(Eq. (5.13)) backward in time, any large-scale unconstrained minimization method can
be employed to minimize the cost function and to obtain an optimal parameter estimation.

If both the initial condition and the parameter are controlled, the gradient of the cost
function for performing the minimization would be

∇J = (∇V J, ∇GJ)T, (5.15)
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where

∇V J = −P(0). (5.16)

Zou, Navon and Le Dimet [1992] have shown that estimated NDA, optimal NDA,
and KF differ from each other in the choice of the weight matrix often called the gain
matrix:

G∗
n ≡ Wf

n HT
n

(
HnW

f
n HT

n + Rn

)T
. (5.17)

The VDA, on the other hand, takes both the model forecasts and the observations as
perfect. It attempts to obtain an optimal initial condition which minimizes the cost
function

Jf = E
(
Xf

n − Xo
n

)T (
Xf

n − Xo
n

)
. (5.18)

The theoretical framework of estimation and control theory provides the foundation of
data assimilation techniques. The estimated NDA and the KF are closer to the estimation
theory, the VDA to the optimal control aspect while optimal NDA is a combination of
both (see also Lorenc [1986]).

See also work of Vidard, Piacentini and Le Dimet [2003] on optimal estimation
of nudging coefficients.

5.3. Back-and-forth nudging

The backward nudging algorithm consists in solving the state equations of the model
backwards in time, starting from the observation of the state of the system at the final
instant. A nudging term, with the opposite sign compared with the standard nudging
algorithm, is added to the state equations, and the final obtained state is in fact the
initial state of the system (Auroux [2008]). The idea is to consider that we have a final
condition VT in Eqs. (5.1) and (5.2) instead of an initial condition V and then to apply
nudging to this backward model with the opposite sign of the feedback term (in order to
have a well-posed problem). We obtain⎧⎪⎨⎪⎩

∂X̃

∂t
= F(X̃) − G′(Xo − X̃), T > t > 0,

X̃(T) = VT .

(5.19)

The back and forth nudging algorithm, introduced in Auroux and Blum [2005], con-
sists in solving first the forward nudging equation and then the direct system backwards
in time with a feedback term whose sign is opposite to the one introduced in the forward
equation. The “initial” condition of this backward resolution is the final state obtained
by the standard nudging method. After resolution of this backward equation, one obtains
an estimate of the initial state of the system. We repeat these forward and backward
resolutions (with the feedback terms) until convergence of the algorithm:⎧⎨⎩

∂Xk

∂t
= F(Xk) + G(Xo − Xk),

Xk(0) = X̃k−1(0),

(5.20)



10-Ch09-N51893 [13:43 2008/9/13] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 405 377–434

Data Assimilation for Geophysical Fluids 405⎧⎪⎪⎨⎪⎪⎩
∂X̃k

∂t
= F(X̃k) − G′(Xo − X̃k),

X̃k(T) = Xk(T ),

(5.21)

with X̃0(0) = V . Then, X1(0) = V , and a resolution of the direct model gives X1(T )

and hence X̃1(T ). A resolution of the backward model provides X̃1(0), which is equal
to X2(0), the new initial condition of the system, and so on.

This algorithm can be compared with the 4D-VAR algorithm, which consists also in
a sequence of forward and backward resolutions. In this algorithm, even for nonlinear
problems, it is useless to linearize the system, and the backward system is not the adjoint
equation but the direct system with an extra feedback term that stabilizes the resolution
of this ill-posed backward resolution.

Auroux and Blum [2005] proved the convergence of the BFN algorithm on a linear
model, provided that the feedback term is large enough. Auroux and Blum [2008]
discussed the choice of the gain matrices G and G′ and tested the algorithm for Lorenz,
Burgers and QG models. This algorithm is hence very promising to obtain a correct
initial state, with a very easy implementation because it does not require neither the
linearization of the equations to obtain the adjoint model nor any minimization process.

6. POD model reduction methods application to geosciences and 4D-VAR
data assimilation

6.1. Introduction

Interest in reduced cost of implementation of 4D-VAR data assimilation in the geo-
sciences motivated research efforts aimed toward reducing dimension of control space
without significantly compromising quality of the final solution. POD, also known, when
restricted to a finite dimensional case and truncated after a few terms, as equivalent to
principal component analysis (PCA) and as empirical orthogonal function (EOF) in
oceanography and meteorology, has emerged as a method of choice to be employed in
flow control and optimization.

POD is a procedure for extracting a basis for a modal decomposition from an ensemble
of signals. POD was introduced in the context of analysis of turbulent flow by Lumley
[1967], Berkooz, Holmes and Lumley [1993].

In other disciplines, the same procedure goes by the names of Karhunen-Loeve
decomposition or PCA.

The POD method was independently rediscovered several times: Kosambi [1943],
Loeve [1945], and Karhunen [1946]. For introductory discussion for POD in fluid
mechanics, see Sirovich [1987a,b,c] and Holmes [1990]. The mathematical theory
behind it is the spectral theory of compact, self-adjoint operators.

The POD is equivalent to PCA methodology which originated with the work of
Pearson [1901], a means of fitting planes by orthogonal least squares also put forward
by Hotelling [1933].
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If the POD spectrum decays fast enough, practically all the support of the invariant
measure is contained in a compact set. Roughly speaking, all the likely realizations in
the ensemble can be found in a relatively small set of bounded extent. “Regularity of
solutions” is a mathematical property describing, essentially, the rate of decay of the tail
of the wave number spectrum of instantaneous solutions of a partial differential equation.
The method of snapshots introduced by Sirovich [1987] is a numerical procedure for
saving time in computation of empirical eigenfunctions. Kirby and Sirovich [1990]
applied the POD procedure directly to the reconstruction of images of human faces. See
also Kirby [2001].

Snapshot bases consist of the flow solution for several flow solutions corresponding
to different sets of parameter values evaluated at different time instants of the model
evolution. This involves solving the fully discretized model and saving states at various
time instants in the time interval under consideration.

POD approximation can be thought of as a Galerkin approximation in the spatial
variable, with basis functions corresponding to the solution of the physical system at
prespecified time instances. These are called the snapshots.

Due to possible linear dependence or almost linear dependence, the snapshots them-
selves are not appropriate as a basis. Rather singular value decomposition (SVD) is
carried out and the leading generalized eigenfunctions are chosen as a basis, referred to
as the POD basis.

6.2. POD: the discrete case

We consider the discrete Karhunen-Loeve expansion to find an optimal representation
of the ensemble of snapshots. In general, each sample of snapshots ui(�x) (defined on a
set of m nodal points �x) can be expressed as a dimensional vector as follows:

�ui = [ui1, . . . , uim]T, (6.1)

where uij denotes the jth component of the vector �ui. The mean vector is given by

ūk = 1

n

n∑
i=1

uik, k = 1, . . . , m. (6.2)

We also can form a new ensemble by focusing on deviations from the mean value as
follows:

vik = uik − ūk, k = 1, . . . , m (6.3)

Let the matrix A denotes the new ensemble

A =

⎛⎜⎜⎜⎝
v11 v21 · · · vn1
v12 v22 · · · vn2
...

...
...

...

v1m v2m · · · vmm

⎞⎟⎟⎟⎠
m×n

,
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where the discrete covariance matrix of the ensemble u may be written as

Cyk = AAT yk = λkyk. (6.4)

Thus, to compute the POD mode, one must solve an eigenvalue problem.
For a discretization of an ocean problem, the dimension often exceeds 104 so that a

direct solution of this eigenvalue problem is often not feasible. We can transform the
m × m eigenvalue problem into an n eigenvalue problem. In the method of snapshots,
one then solves the n × n eigenvalue problem

Dwk = AT Awk = λkwk, wk ∈ Rn, (6.5)

where 1 ≤ λk ≤ n are the eigenvalues. The eigenvectors wk may be chosen to be
orthonormal, and the POD modes are given by φk = Awk/

√
λk. In matrix form, with

� = [φ1, . . . , φn], and W = [w1, . . . , wn], this becomes � = AW .
The n × n eigenvalue problem (Eq. (6.4)) is more efficient than the m × m eigenvalue

problem (Eq. (6.4)) when the number of snapshots n is much smaller than the number
of states m.

6.3. POD 4D-VAR

In order to reduce the computational cost of 4D-VAR data assimilation, we consider
minimization of the cost functional in a space whose dimension is much smaller than
that of the original one. A way to drastically decrease the dimension of the control
space without significantly compromising the quality of the final solution but sizably
decreasing the cost in memory and CPU time of 4D-VAR motivates us to choose to
project the control variable on a basis of characteristic vectors capturing most of the
energy and the main directions of variability of the model, i.e., SVD, EOF, Lyapunov,
or bred vectors. One would then attempt to control the vector of initial conditions in the
reduced space model.

In the 1990s, most efforts of model reduction have been centered on KF and extended
Kalman filter (EKF) data assimilation techniques, see Todling and Cohn [1994],
Todling, Cohn and Sivakumaran [1998], Pham, Verron and Roubaud [1998],
Cane, Kaplan, Miller, Tang, Hackert and Busalacchi [1996], Fukumori and
Malanotte-Rizzoli [1995], Verlaan and Heemink [1997] and Hoteit and Pham
[2003]. In particular, Cane, Kaplan, Miller, Tang, Hackert and Busalacchi [1996]
employed a reduced-order method in which the state space is reduced through the pro-
jection onto a linear subspace spanned by a small set of basis functions, using an EOF
analysis. This filter is referred to as the reduced rank EKF (see next section).

Some initial efforts aiming at the reduction of the dimension of the control variable,
referred to as reduced-order strategy for 4D-VAR ocean data assimilation, were put
forward initially by Blayo, Blum and Verron [1998] and Durbiano [2001] and more
recently by Hoteit and Kohl [2006] and Robert, Durbiano, Blayo, Verron, Blum
and Le Dimet [2005]. They used a low dimension space based on the first few EOFs,
which can be computed from a sampling of the model trajectory. Hoteit and Kohl
[2006] used the reduced-order model for part of the 4D-VAR assimilation then switched
to the full model in a manner done earlier by Peterson [1989].
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For a comprehensive description of POD theory and state of the art research, see
Gunzburger [2003].

At the analysis time [0, TN ], strong constraint 4D-VAR looks to minimize a cost
function

J(U0) = (U0 − Ub)
T B−1(U0 − Ub) + (HU − y0)T O−1(HU − y0). (6.6)

In POD 4D-VAR, we look to minimize the cost function

J(c1(0), . . . , cM(0)) = (UPOD
0 − Ub)B

−1(UPOD
0 − Ub)

+ (HUPOD − y0)O−1(HUPOD − y0), (6.7)

where UPOD
0 is the control vector, H is an observation operator, B is the background

error covariance matrix, and O is the observation error covariance matrix. In Eq. (6.7),

UPOD
0 (x) = UPOD

0 (0, x) = U(x) +
M∑
i=1

ci(0)�i(x), (6.8)

UPOD(x) = UPOD(t, x) = U(x) +
M∑
i=1

ci(t)�i(x). (6.9)

In POD 4D-VAR, the control variables are c1(0), · · · , cM(0). As shown later, the
dimension of the POD reduced space could be much smaller than that of the original
space. In addition, the forward model is the reduced model which can be very efficiently
solved. The adjoint model is used to calculate the gradient of the cost function (Eq. (6.7))
and that will greatly reduce both the computational cost and coding effort.

To establish POD model in POD 4D-VAR, we need first to obtain an ensemble of
snapshots, which is taken from the background trajectory, or integrate original model
with background initial conditions.

6.4. Adaptive POD 4D-VAR

Since the POD model is based on the solution of the original model for a specified
initial condition, it might be a poor model when the new initial condition is significantly
different from the one on which the POD model is based upon. Therefore, an adaptive
POD 4D-VAR procedure is as follows:

(i) Establish POD model using background initial conditions and then perform opti-
mization iterations to approximate the optimal solution of the cost function
(Eq. (6.7)).

(ii) If after a number of iterations, the cost function cannot be reduced significantly as
measured by a preset criterion, we generate a new set of snapshots by integrating
the original model using the newest initial conditions.

(iii) Establish a new POD model using the new set of snapshots and continue
optimization iteration.

(iv) Check if the optimality conditions are reached, if yes, stop; if no, go to step (ii).
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6.5. Methods for 4D-VAR POD adaptivity

Working with a low-dimensional model during the computation of a control problem
solution has to face the problem that these reduced models are possibly unreliable models
if they are not correctly updated during the optimization process.

Consequently, some iterative technique is required, in which the construction of
reduced-order models is coupled with the progress of the optimization process. Such
an approach leads to the use of reduced-order models that adequately represent the flow
dynamics as altered by the control. Crucial at this point is to decide whether or not the
reduced-order model has to be adapted to a new flow configuration.

In adaptivity based on a trust-region method (Fahl and Sachs [2003]), the range of
validity of a reduced-order model is automatically restricted, and the required update
decision for the reduced-order models can be made by employing information that is
obtained during the control problem solution.

Ravindran [2002] and Ravindran [2006] propose an adaptive procedure that
successively updates the reduced-order model to be used in a sequential quadratic
programming constrained optimization algorithm.

6.6. Goal-oriented model-based reduction

Bui-Thanh, Willcox, Ghattas and Van Bloemen Waanders [2007], Willcox,
Ghattas, Van Bloemen Waanders and Bader [2005], and Daescu and Navon
[2008] proposed an alternative method to determine the reduced-space basis. This
method seeks to minimize an error similar in form to Eq. (6.7) to be presented below;
however, it will improve upon the POD, first, by minimizing the error in the out-
puts (as opposed to states) and, second, by imposing additional constraints that ûk(t)

should result from satisfying the reduced-order governing equations for each parameter
instance k.

For a fixed basis size, the POD basis therefore minimizes the error between the original
snapshots and their representation in the reduced space defined by

E =
S∑

k=1

T∑
j=1

[uk(tj) − ũk(tj)]T [uk(tj) − ũk(tj)], (6.10)

where

ũk(tj) = ��T uk(tj), (6.11)

Here, uk(tj), j = 1, · · · , T ; k = 1, . . . , S is a snapshot, i.e., the solution of the gov-
erning equations at time tj for parameter instance k. T time instants are considered for
each parameter instance, yielding a total of ST snapshots.

The projection matrix � ∈ RN×m contains as columns the basis vectors φi, i.e.,

� = [φ1, φ2, . . . , φm], (6.12)



10-Ch09-N51893 [13:43 2008/9/13] Temam & Tribbia: Computational Methods for the Atmosphere and the Oceans Page: 410 377–434

410 J. Blum et al.

This error is equal to the sum of the singular values corresponding to those singular
vectors (SVs) not included in the POD basis:

E =
ST∑

i=m+1

σi, (6.13)

where σi is the ith singular value of U. The POD is an optimal basis in the sense
that it minimizes the data reconstruction error given by Eq. (6.7). The goal-oriented,
model-based optimization approach presented here provides a general framework for
construction of reduced models, and is particularly applicable for optimal design, optimal
control, and inverse problems. The optimization approach provides significant advan-
tages over the usual POD by allowing the projection basis to be targeted to output
functionals, by providing a framework to consider multiple parameter instances, and by
incorporating the reduced-order governing equations as constraints in the basis deriva-
tion (see also Meyer and Matthies [2003]). Using this method, it is possible to obtain
an a priori error estimate for a certain target functional of the solution. This error esti-
mate can be used for adaptively resizing the number of basis vectors and the length of
the time-step to satisfy a given error tolerance. It can also be used to form a very effi-
cient low-dimensional basis especially tailored to the target functional of interest. This
basis yielded a significantly better approximation of the functional when compared with
conventionally chosen bases (see Daescu and Navon [2008]).

6.7. State of the art of POD research

Robert, Durbiano, Blayo, Verron, Blum and Le Dimet [2005] apply POD reduced-
order modeling in a twin experiment setup for a primitive equation model of the equatorial
Pacific Ocean model using an incremental formulation and using a background covari-
ance matrix in the reduced space, obtaining a fast convergence of the minimization of
the cost functional.

In a related work, Robert, Blayo andVerron [2006] applied reduced-order 4D-VAR
as a preconditioner to incremental 4D-VAR data assimilation method. They used a low-
dimensional space based on first few EOFs chosen from sampling of the model trajectory.
See also work of Lawless, Nichols, Boess and Bunse-Gerstner [2006] using a linear
balanced truncation reduced-order modeling as the preconditioner of the inner iteration
of an incremental 4D-VAR using a 1D shallow water equation model.

Cao, Zhu, Luo and Navon [2006] proposed for the first time a 4D-VAR approach
based on POD. Their proposed POD-based 4D-VAR methods are tested and demon-
strated using a reduced gravity wave ocean model in Pacific domain in the context of
identical twin data assimilation experiments.

Luo, Chen, Zhu, Wang and Navon [2007] present an error estimate of a new
reduced-order optimizing finite difference system (FDS) model. Numerical examples are
presented illustrating that the error between the POD approximate solution and the full
FDS solution is consistent with previously obtained theoretical results. The precondition-
ing aspect of POD for efficient optimization is another topic of active research. Daescu
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and Navon [2008] use a POD approach to model reduction to identify a reduced-order
control space for a 2D global shallow water model. A reduced second-order adjoint
model is developed and used to facilitate the implementation of a Hessian-free truncated-
Newton (HFTN) minimization algorithm in the POD-based space. The HFTN algorithm
benefited most from the order reduction since computational savings were achieved both
in the outer and inner iterations of the method.

For use of centroidal Voronoi tessellations (CVT) combined with POD, see the work
of Burkardt, Gunzburger and Lee [2006]. Here, POD and CVT approaches to
reduced-order modeling are provided, including descriptions of POD and CVT reduced-
order bases, their construction from snapshot sets, and their application to the low-cost
simulation of a Navier-Stokes system (see also Gunzburger, Peterson and Shadid
[2007]). Direct and inverse POD model reduction was applied to a 3D time-dependent
finite element adaptive ocean model (Imperial College Ocean Model, ICOM) (Fang,
Pain, Navon, Piggott, Gorman and Goddard [2008 ]) (see Fig. 6.1).

A novel POD model has been developed for use with an advanced unstructured mesh
finite element ocean model, the ICOM, which includes many recent developments in
ocean modeling and numerical analysis. The advantages of the POD model developed
over existing POD approaches are the ability to increase accuracy when representing
geostrophic balance (the balance between the Coriolis terms and the pressure gradient).
This is achieved through the use of two sets of geostrophic basis functions where each
one is calculated by basis function for velocities u and v.

When adaptive meshes are employed in both the forward and adjoint models, the
mesh resolution requirements for each model may be spatially and temporally different
as the meshes are adapted according to the flow features of each model. This unavoidably
brings to difficulties in the implementation of a POD-based reduced model for an inverse
adaptive model. Such challenges include snapshots can be of different length at different
time levels and the POD base of the forward model can differ from the POD base of

Fig. 6.1 Application of POD model reduction method to Imperial College Ocean Model (ICOM) adaptive
finite element ocean Model. Full model and reduced-order model based on first 30 base functions.
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the adjoint model. To overcome these difficulties, a standard reference fixed mesh is
adopted for both the forward and adjoint reduced models. The solutions for both are
interpolated from their own mesh onto the same reference fixed mesh at each time level.
This allows the same number of base modes for both reduced forward and adjoint models.
The referenced mesh can also be obtained by superimposing the resolution at each mesh
level associated with a goal-based function.

7. Data assimilation with EnKF

7.1. Introduction

In recent years, two trends for operational data assimilation are prevalent for the data
assimilation practitioners.

On one hand are the variational methods subdivided between computationally eco-
nomical 3D-VAR methods which exclude the flow-dependent forecast errors (see
Parrish and Derber [1992]) while few centers endowed with powerful computing
resources adopted 4D-VAR, requiring availability and constant updating of an adjoint
model. The latter requires a computationally demanding effort but is significantly more
accurate than 3D-VAR (Kalnay, Li, Miyoshi, Yang and Ballabrera-Poy [2007])
in pretest implementation comparisons. Moreover 4D-VAR allows the assimilation of
asynoptic data at their correct observation time along with other advantages such as
possibility of inclusion of model error term as a weak constraint 4D-VAR.

On the other hand, in view of the obvious shortcomings of usual KF and EKF, more
efficient filter methods have emerged, obviating the prohibitive storage and computa-
tional time due to explicit treatment of the state error covariance matrix for KF and EKF
such as the EnKF. These new filter algorithms are of special interest due to their simplic-
ity of implementation since no adjoint operators are required, along with their potential
for efficient use on parallel computers with large-scale geophysical models (Nerger,
Hiller and Schrater [2005]). Research on EnKF started with work of Evensen [1994],
Evensen and Leeuwen [1996], Burgers, Van Leeuwen and Evensen [1998], and
Houtekamer and Mitchell [1998]. Their methods can be classified as perturbed obser-
vations (or stochastic) EnKF and are essentially a Monte-Carlo approximation of the KF
which avoids evolving the covariance matrix of the pdf of the state vector x. A sec-
ond type of EnKF is a class of square-root (or deterministic) filters (Anderson [2003],
Bishop, Etherton and Majumdar [2001], Whitaker and Hamill [2002], see review
of Tippett, Anderson, Bishop, Hamill and Whitaker [2003]), which consist of a
single analysis based on the ensemble mean, and where the analysis perturbations are
obtained from the square root of the KF analysis error covariance.

Several variants of the EnKF have been proposed (Anderson [2003], Bishop,
Etherton and Majumdar [2001], Whitaker and Hamill [2002]) which can be inter-
preted as ensemble square-root KFs. For an improved treatment of nonlinear error
evolution in EKF, the singular evolutive interpolated Kalman filter (Pham, Verron
and Roubaud [1998]) was introduced as a variant of the singular evolutive extended
Kalman (SEEK) filter. It combines the low-rank approximation with an ensemble rep-
resentation of the covariance matrix. This idea has also been followed in the concept
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of error subspace statistical estimation (Lermusiaux and Robinson [1999]). Another
approach is based on a low-rank approximation of the state covariance matrix of the
EKF to reduce the computational costs. Using finite difference approximations for the
tangent linear model, these algorithms display better abilities to treat nonlinearity as
compared with the EKF. Examples of low-rank filters are the reduced rank square-root
algorithm (Verlaan and Heemink [1995]) and the similar SEEK filter (Pham, Verron
and Roubaud [1998]).

We will first present in a short section the basic linear KF (Kalman [1960]) followed
by the EKF and then devote our attention to a brief survey of various flavors of EnKF
and its state-of-the-art implementation. See Ghil and Manalotte-Rizzoli [1991] for
equivalence between 4D-VAR with strong constraint and the linear KF and Li and Navon
[2001].

Finally, some open issues of advantages of EnKF versus 4D-VAR as have emerged
from recent work of Kalnay, Li, Miyoshi, Yang and Ballabrera-Poy [2007] will be
briefly addressed.

7.2. The KF

The KF is an efficient recursive filter that estimates the state of a dynamic system from a
series of incomplete and noisy measurements. It was developed by Kalman [1960]. The
KF has been derived in a number of books on control theory, e.g., Gelb, Kasper, Nash,
Price and Sutherland [1974] and Jazwinski [1970] to mention but a few. See also
early work of Du Plessis [1967]. In oceanography, the KF has been used by Budgell
[1986] to describe nonlinear and linear shallow water wave propagation in branched
channels, using one-dimensional (1D) cross-sectionally integrated equations. Miller
[1986] used a 1D linear barotropic QG model to investigate the properties of the KF. He
provided a derivation of the KF equations. In meteorology, Ghil [1980] and Ghil et al.
[1981] promoted first the use of KF along with Cohn, Ghil and Isaacson [1981] and
Cohn [1997]. See also Miller, Ghil and Gauthiez [1994]. Ghil [1989] discussed
the KF as a data assimilation method in oceanography and used it with a simple linear
barotropic model. The KF for use in meteorology has recently been addressed in work
of Cohn and Parrish [1991] who discussed the propagation of error covariances in a
2D linear model.

7.3. The KF formulation

The KF is a recursive filter that estimates the state of a dynamic system from a series of
incomplete and noisy measurements.

Consider a linear observation process described by

y0
k = Hkx

t
k + ek, (7.1)

where k is a multiple of the number of time-steps between two consecutive observations in
time. y0

k is the vector of observations while the vector ek is an additive noise representing
the error in observations due for instance to instrumental error. Random noise ek is
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assumed white in time with mean 0 and covariance Rk, i.e.,

E(eke
T
k ) = RkdkdT

k , (7.2)

All the time, we consider a discrete in time stochastic dynamic system

xt
k = Mk−1x

t
k−1 + ηk−1, (7.3)

where Mk represents model dynamics while ηk is model error white in time with mean
zero and covariance Qk,

E(hkh
T
k ) = QkdkdT

k , (7.4)

One can show that the linear KF (Gelb, Kasper, Nash, Price and Sutherland
[1974], Jazwinski [1970], Todling [1999]) consists of following stages:

• Advance in time:⎧⎪⎨⎪⎩
x
f

k = Mk−1x
a
k−1

P
f

k = Mk−1P
a
k−1M

T
k−1 + Qk−1,

(7.5)

where the forecast and analysis error covariance matrices at time k are given by⎧⎨⎩P
f

k = E{(xt
k − x

f

k )(xt
k − x

f

k )T }

Pa
k = E{(xt

k − xa
k)(x

t
k − xa

k)
T }.

(7.6)

Qk−1 is the model error covariance matrix at time t = tk−1, and Mk−1 is the model
dynamics. xa

k−1 and x
f

k−1 are the analysis and the forecast at time t = tk−1.
• Compute the Kalman gain:

Kk = P
f

k HT
k (HkP

f

k HT
k + Rk)

−1. (7.7)

The matrix Kk is the optimal weighting matrix known as the Kalman gain matrix.
• Update the state:

xa
k = x

f

k + Kk(y
0
k − Hkx

f

k ), (7.8)

where y0
k is the observation at time t = tk, Hk is the observation matrix at time

t = tk.
• Update error covariance matrix:

Pa
k = (I − KkHk)P

f

k . (7.9)
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7.4. Computational cost of KF

The KF assuming the dynamical model has n unknowns in the state vector then error
covariance matrix has n2 unknowns. The evolution of the error covariance in time
requires the cost of 2n model integrations. Thus, KF in usual form can only be used
for rather low-dimensional dynamical models.

The basic KF is limited to a linear assumption. However, most non-trivial systems
are nonlinear. The nonlinearity can be associated either with the process model or with
the observation model or with both. In EKF, the state transition and observation models
need not be linear functions of the state but may instead be functions.{

xk = f(xk−1, uk, wk)

zk = h(xk, vk).
(7.10)

The function f can be used to compute the predicted state from the previous estimate,
and similarly, the function h can be used to compute the predicted measurement from the
predicted state. However, f and h cannot be applied to the covariance directly. Instead,
a matrix of partial derivatives (the Jacobian or Tangent Linear Model) is computed. At
each time-step, the Jacobian is evaluated with current predicted states. These matrices
can be used in the KF equations. This process essentially linearizes the nonlinear function
around the current estimate. This results in the following EKF equations:

• Predict:{
xk|k−1 = f(x̂k−1|k−1, uk, 0)

Pa
k|k−1 = FkPk−1|k−1F

T
k + Qk,

(7.11)

• Update:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ỹk = zk − h(x̂k|k−1, 0)

Sk = HkPk|k−1H
T
k + Rk

Kk = Pk|k−1H
T
k S−1

K

xk|k−1 = f(x̂k−1|k−1, uk, 0)

Pk|k = (I − KkHk)Pk|k−1,

(7.12)

where the state transition and observation matrices are defined to be the following
Jacobians⎧⎪⎨⎪⎩

Fk = ∂f

∂x
|x̂k−1|k−1,uk

Hk = ∂h

∂x
|x̂k|k−1 ,

(7.13)

For use in meteorology, see Ghil and Manalotte-Rizzoli [1991], Gauthier,
Courtier and Moll [1993], and Bouttier [1994].
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7.5. Shortcomings of the EKF

Unlike its linear counterpart, the EKF is not an optimal estimator. In addition, if the
initial estimate of the state is wrong, or if the process is modeled incorrectly, the filter
may quickly diverge, owing to its linearization. We have really effectuated a closure by
discarding moments of third and higher order giving us an approximate equation for the
error variance. Usefulness of EKF will depend on properties of the model dynamics. See
discussion of Miller, Ghil and Gauthiez [1994]. Evensen [1992] provided the first
application of EKF on a nonlinear ocean circulation model. Another problem with the
EKF is that the estimated covariance matrix tends to underestimate the true covariance
matrix and therefore risks becoming inconsistent in the statistical sense without the
addition of “stabilizing noise.”

7.6. EnKF

Here, we follow algorithmic presentation of Mandel [2006]. The EnKF is a Monte
Carlo approximation of the KF avoiding evolving the covariance matrix of the pdf of
the state vector x. Instead, the probability distribution is represented by a sample

X = [x1, x2, . . . , xN ] = [xi]. (7.14)

X is an n × N matrix whose columns are the ensemble members, and it is called the prior
ensemble. Ideally, ensemble members would form a sample from the prior distribution.
However, the ensemble members are not in general independent except in the initial
ensemble since every EnKF step ties them together. They are deemed to be approximately
independent, and all calculations proceed as if they actually were independent. Replicate
the data d into a m × N matrix

D = [d1, d2, . . . , dN ] = [di] (7.15)

so that each column consists of the data vector d plus a random vector from the
n-dimensional normal distribution N (0, R).

Because randomness is introduced in ENKF at every assimilation cycle, the
algorithm updates every ensemble member to a different set of observations perturbed
by a random noise.

For details, see work of Houtekamer and Mitchell [1998, 2001], Hamill
and Snyder [2000, 2002], and more recently Houtekamer, Mitchell, Pellerin,
Buehner, Charron, Spacek and Hansen [2005]. If, in addition, the columns of X are
a sample from the prior probability distribution, then the columns of

X̂ = X + K(D − HX) (7.16)

form a sample from the posterior probability distribution. The EnKF is now obtained
simply by replacing the state covariance Q in Kalman gain matrix

K = QHT (HQHT + R)−1 (7.17)

by the sample covariance C computed from the ensemble members (called the ensemble
covariance).
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7.7. Implementation

7.7.1. Basic formulation
Suppose the ensemble matrix X and the data matrix D are as above. The ensemble mean
and the covariance are

E(X) = 1

N

N∑
k=1

xk, C = AAT

N − 1
, (7.18)

where

A = X − E(X) = X − 1

N
(XeN×1)e1×N, (7.19)

and e denotes the matrix of all ones of the indicated size. The posterior ensemble Xp is
then given by

X̂  Xp = X + CHT (HCHT + R)−1(D − HX), (7.20)

where the perturbed data matrix D is as above. Since C can be written as

C = (X − E(X))(X − E(X))T , (7.21)

one can see that the posterior ensemble consists of linear combinations of members
of the prior ensemble. Note that since R is a covariance matrix, it is always positive
semidefinite and usually positive definite, so the inverse above exists and the formula
can be implemented by the Cholesky decomposition. In Evensen [2004], R is replaced

by the sample covariance
DDT

N − 1
and the inverse is replaced by a pseudoinverse, com-

puted using the SVD. Since these formulas are matrix operations with dominant Level 3
operations, they are suitable for efficient implementation using software packages such
as LAPACK (on serial and shaby it, it is much better (several times cheaper and also
more accurate) to compute the Cholesky decomposition of the matrix anred memory
computers). Instead of computing the inverse of a matrix and multiplying d treat the
multiplication by the inverse as solution of a linear system with many simultaneous
right-hand sides. For complex Numerical Weather Prediction (NWP) models, deriv-
ing explicitly the background error covariance estimate from original method will be
prohibitive

P̂b = X̃b(X̃b)T

m − 1
, (7.22)

where X̃b = (x̃b
1K, x̃b

m) and x̃b
i = xb

i − x̄b. Where the ensemble mean is defined by

x̄b = 1

m

m∑
i=1

xb
xi
.
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Different parallel implementations of parallelized EnKF were proposed by Keppenne
and Rienecker [2002] and other method by Reichle, McLaughlin and Entekhabi
[2002], Reichle, Walker, Koster and Houser [2003]. Ensemble data assimilation
algorithms with the assumptions of linear error dynamics and Gaussian error statis-
tics will converge as the number of members of the ensemble increases to the state
and covariance estimate of those of the EKF (Burgers, Van Leeuwen and Evensen
[1998]).

7.8. Reduced rank KFs

Due to the expense involved in EKF, many simplified approaches have been proposed
attempting to capture only a subset of the flow-dependent error covariances. The covari-
ances evolve with the model dynamics within a specified reduced dimension subspace
defined by a fixed set of basis functions (Todling and Cohn [1994]). Possible choices
for the basis functions include EOFs (Cane, Kaplan, Miller, Tang, Hackert and
Busalacchi [1996]), SVs (Cohn and Todling [1996], Fisher [1998]), or a balanced
truncation of the Hankel operator (see Farrell and Ioannou [2001]). The EOF basis
may not be optimal in the sense of providing the best subsequent forecast, which is often
the goal of assimilating data. SVs or partially evolved SVs turn out to be more effective.
SVs represent the directions that will evolve to optimally account for the error at a future
time.

The SEEK filter for data assimilation in oceanography is a variant of the EKF with a
low-rank error covariance matrix. It is quite similar in some aspects to reduced rank KF
introduced by Cohn and Todling [1996], but differs in some aspects. It is derived from
the EKF by approximating the state error covariance matrix by a matrix of reduced rank
and evolving this matrix in decomposed form.

7.9. Algorithm of SEEK

For initialization, choose the initial estimate for the model state and an approximate state
covariance matrix of low Rank in the decomposed form LULT . For forecast, evolve the
guessed state with the full nonlinear model and the column vectors Li with the tangent-
linear model. For analysis, compute the updated state covariance matrix by an equation
for the matrix U which relates the model state error to the observation error in the
spirit of the Riccati equation. With this updated covariance matrix, the state update is
given by the analysis step of the EKF. To avoid successive alignment of the vectors
Li, occasionally perform a reorthogonalization of these vectors (see Pham, Verron and
Roubaud [1998], Carme, Pham and Verron [2001], Hoteit, Pham and Blum [2002,
2001], Hoteit and Pham [2003]).

7.10. Deterministic update ensemble filters

There is also a family of nonstochastic filters (see for instance Tippett, Anderson,
Bishop, Hamill and Whitaker [2003]). These filters do not use perturbed observations,
which, it is argued, can be a source of sampling error when ensembles are small. Instead,
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they deterministically transform the ensemble of background fields into an ensemble of
analyses using

Pa(t) = (I − K(t)H(t))Pf (t), (7.23)

without adding random noise. However, this equation is valid only when the gain K is
optimal, which depends, in turn, on Q and R being accurately known. A more general,
but more complicated, equation for Pa, which reduces to this equation when the gain
is optimal, is given by Cohn [1982, Eq. (2.10b)], Daley [1991, Eq. (13.3.19)], and
Ghil and Manalotte-Rizzoli [1991, Eq. (4.13b)]. The performance of stochastic and
deterministic filters has been compared in a hierarchy of perfect-model scenarios by
Lawson, and Hansen, [2004].

7.11. Ensemble square-root filter

The serial ensemble square-root filter (EnSRF) (Whitaker and Hamill [2002]) algo-
rithm has been used for the assimilation at the scale of thunderstorms by Snyder
and Zhang [2003], Zhang, Snyder and Sun [2004], and Dowell, Zhang, Wicker,
Snyder and Crook [2004]. Whitaker, Compo, Wei and Hamill [2004] used the algo-
rithm for the global data assimilation of surface pressure observations. Similar to EnKF,
the EnSRF conducts a set of parallel data assimilation cycles. In the EnSRF, one updates
the equations for the ensemble mean (denoted by an overbar) and the deviation of the
ith member from the mean separately:{

x̄a = x̄b + K̂(y − Hx̄b)

x̄a
i = x̄b

i − K̃Hx̄b
i .

(7.24)

Here, K̂ is the traditional Kalman gain, and K̃ is the reduced gain used to update
deviations from the ensemble mean. In the EnSRF, the mean and departures from the
mean are updated independently according to Eq. (7.24). If observations are processed
one at a time, the EnSRF requires about the same computation as the traditional EnKF
with perturbed observations, but for moderately sized ensembles and processes that are
generally linear and Gaussian, the EnSRF produces analyses with significantly less error
Whitaker and Hamill [2002]. Conversely, Lawson, and Hansen, [2004] suggest that
if multimodality is typical and ensemble size is large, the EnKF will perform better. For
details, see review of Hamill [2006] in book of Palmer and Hagedorn [2006].

7.12. Local ensemble Kalman filtering

Local ensemble Kalman filtering proposed by Ott, Hunt, Szunyogh, Zimin,
Kostelich, Corazza, Kalnay, Patil and Yorke [2004] and Szunyogh Kostelich
and Gyarmati et al. [2005] treats local patches surrounding every grid point indepen-
dently, thus avoiding correlations between distant points. This is preferable in view of the
low-rank assumption for the error covariance matrix. These local patches are analyzed
independently and are then combined to yield the global analysis.
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7.13. Covariance localization

One aspect of ensemble assimilation methods is the requirement of accuracy for
covariance matrices. Erroneous representation of error statistics affects the analysis-error
covariance, which is propagated forward in time.

The covariance estimate from the ensemble is multiplied point by point with a corre-
lation function that is 1.0 at the observation location and zero beyond some prespecified
distance (correlation length).

Two approaches are used : one consists in a cut-off radius so that observations are
not assimilated beyond a certain distance from the grid point (see Houtekamer and
Mitchell [1998], Evensen [2003]). This may introduce spurious discontinuities.

The second approach is to use a correlation function that decreases monotonically
with increasing distance. This results in the Kalman gain

K = PbHT (HPbHT + R)−1, (7.25)

being replaced by a modified gain

K = (ρs ◦ Pb)HT (H(ρs ◦ Pb)HT + R)−1, (7.26)

where the operation ρs◦ denotes a Schur product (an element-by-element multiplication)
of a correlation matrix S with local support with the covariance model generated by the
ensemble. The Schur product of matrices A and B is a matrix C of the same dimension,
where cij = aijbij. When covariance localization is applied to smaller ensembles, it may
result in more accurate analyses than would be obtained from larger ensembles without
localization Houtekamer and Mitchell [2001]. Localization increases the effective
rank of the background error covariances Hamill, Whitaker and Snyder [2001].

Generally, the larger the ensemble, the broader the optimum correlation length scale of
the localization function (Houtekamer and Mitchell [2001], Hamill, Whitaker and
Snyder [2001]). See Whitaker, Compo, Wei and Hamill [2004] and Houtekamer,
Mitchell, Pellerin, Buehner, Charron, Spacek and Hansen [2005] for examples
performing ensemble assimilations that also include a vertical covariance localization.

8. Assimilation of images

The observation of the Earth by geostationary or polar-orbiting satellites clearly displays
the evolution of some characteristics features such as fronts, the color, or the temperature
of the ocean. Figure 8.1 represents the sea surface temperature (SST) of the Black Sea
observed by the satellite Moderate Resolution Imaging Spectroradiometer (MODIS),
and some geometric features are identified and their temporal evolution has an important
informative content. At the present time, this information is used more in a qualitative
fashion rather than in a quantitative one. The question arising is: is it possible to couple
this information with a numerical model, i.e., how to assimilate images?

Two basic approaches can be considered:

• The first one (Herlin, Le Dimet, Huot and Berroir [2004]) consists, in a first step,
to extract from the images some “pseudo” measurements (e.g., surface velocity in
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Fig. 8.1 Sea surface temperature in the Black Sea from MODIS.
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oceanography, wind components in meteorology), then these measurements will be
used in a classical scheme of VDA. For instance, in meteorology some identified
clouds can be used as Lagrangian tracers, and assimilated as such. This information
makes sense only if the altitudes of the clouds are known, it can be done by an
evaluation of the temperature of the cloud and a comparison with the vertical
profile of temperature.

• The second approach (Ma, Antoniadis and Le Dimet [2006]) consists to consider
images as objects and insert them directly in the variational analysis.

8.1. Retrieving velocities from images

This approach is a classical one in computer vision, and it is based on the conservation
of grey level for individual pixels. Let us consider a pixel of coordinates (x(t), y(t)), if
I is the luminance of the pixel, this quantity is conservative and its total derivative is
equal to 0:

dI

dt
(x(t), y(t), t) = 0.

By developing this expression we get

∂I

∂x
.
dx

dt
+ ∂I

∂y
.
∂y

∂t
+ ∂I

∂t
= ∂I

∂x
u + ∂I

∂y
v + ∂I

∂t
= 0,

u and v are the components of the velocity of the flow and are unknown. This equation
is not sufficient to retrieve the velocity field, but it can be included in a variational
formulation: we will seek for the velocity field minimizing the functional J defined by

J(u, v) = E1 + E2,

with

E1 =
∫



(
∂I

∂x
u + ∂I

∂y
v + ∂I

∂t

)2

d
,

and

E2 =
∫



‖∇W‖2 d
,

with

W = (u, v).

E2 can be considered as a regularization term to smooth the retrieved fields. E1 is the
scalar product of the gradient of luminance with the velocity field, and if these vectors
are orthogonal, then the equation does not contain any quantitative information on the
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velocity field. Some other conservation laws can be considered according to the nature
of the image:

• With an image displaying the color of the ocean, an equation of chlorophyll conser-
vation must be used, and it will have to include sink and source terms, and therefore
an equation modeling biological processes must be added to the physical model.

• With an image of the SST, the Boussinesq approximation can be considered.

A selection of points on which the minimization of J is carried out to determine (u, v)

has to be done. The structures where the velocity and the gradient of luminance are
almost orthogonal must be discarded from the analysis, this being the case of filaments
which are elongated structures. These structures are detected by applying operators of
mathematical morphology: peak operator detecting brighter areas of maximum width
and valley operator detecting darker areas with the same characteristics.

After detection of these structures, a second selection is carried out according to two
criteria; the first one consists in removing the filaments having a large elongation – this
is done by evaluating the condition number of their inertia matrix, the second selection
will discard the quasi-steady state structures. At the pixel level, another selection is
done: only points with a significant displacement are considered. Once the pixels have
been selected, then an optimization procedure of the function J is performed and a field
of velocity is obtained. The result will be considered as pseudo-observation and then
included in a VDA scheme. The process is illustrated in Fig. 8.2. An inconvenience
of this method is its large number of degrees of freedom: in the choice of the laws of
conservation and also in the choice of threshold parameters for the selection of pixels.

8.2. Direct assimilation of images

In the former method, it is necessary to solve several problems of optimization, each
iterative algorithm requires the choice of at least one stopping criterion, the accumulation
of these quantities being detrimental to the control of the global algorithm. A way to
alleviate this difficulty is to consider some characteristic features of the images (e.g.,
fronts) as objects and they will be assimilated as such in addition to the usual state
variables.

In the cost function defining the VDA, an additional term will be added in the form:

J2(X) =
T∫

0

∫



‖DX − I‖2dtd
.

I is the image and D an operator from the space of the state variable of the model toward
the space of images. Therefore, the comparison between the images retrieved from the
model and the observed images is carried out in the space of images. The questions are

• How to choose the space of images?
• What metric must be used in this space for obtaining an efficient and pertinent

comparison?
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Original image obtained
from the oceanic OPA

model

Temporal evolution of filaments identified by
white contours

Selected points from
SST with OPA model

Estimated (left) and actual (right) velocities

Final identification of
filaments

Application of the peak
operator

Application of the valley
operator

Fig. 8.2 Retrieving velocities from images.

In Ma, Antoniadis and Le Dimet [2006], the choice has been done to use curvelets
(Candes, Demanet, Donoho and Ying [2006]). The features of interest in the images
are defined by contours: snakes. A snake is a virtual object which can be deformed
elastically (thus possessing an internal energy) and which is immersed in a potential
field. The main difficulties for applying a snake model to a temporal sequence of images
consist in the determination of an initial contour and the design of external forces.
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Evolution of a vortex in SST Tracking in triplet successive
frames using the curvelets

based method. The initial and
final snakes are displayed

Fig. 8.3 Direct assimilation of images.

The advantage of curvelet-based multiscale methods for snake modeling and tracking
is its ability for simultaneously detecting edges and suppressing noise. An example of
application of this method is given in Fig. 8.3.

Assimilating images is a generic problem with potential developments not only for
geophysical fluids but also in biology and medicine. With respect to the classical data
assimilation, due to the multiscale approach, it has the potential to focus on local features
such as storms or hurricanes in meteorology. We can expect that further developments
will be achieved in the following years.

9. Conclusion

Presently, data assimilation is a very active domain of research with extensions toward
several directions.
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• The domain of application of these methods has been extended to some other
domains in geophysics especially in hydrology for the water cycle surface and
underground water. Atmospheric chemistry is an important domain of potential
applications.

• From the computational point of view, there is a demand for efficient and fast
methods saving both storage and computing time.

• From the theoretical point of view, these methods are not always clearly justified,
especially in the nonlinear case. Many problems remain open such as the optimal
location of sensors.

Data assimilation has become an essential tool for modeling and prediction of the
evolution of geophysical fluids. In many other domains for which data and models are
the main sources of information, these methods could be developed in the near future.
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