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SUMMARY

In this paper we study solutions of an inverse problem for a global shallow water model controlling its
initial conditions specified from the 40-yr ECMWF Re-analysis (ERA-40) data sets, in the presence of full
or incomplete observations being assimilated in a time interval (window of assimilation) with or without
background error covariance terms. As an extension of the work by Chen et al. (Int. J. Numer. Meth.
Fluids 2009), we attempt to obtain a reduced order model of the above inverse problem, based on proper
orthogonal decomposition (POD), referred to as POD 4D-Var for a finite volume global shallow water
equation model based on the Lin–Rood flux-form semi-Lagrangian semi-implicit time integration scheme.
Different approaches of POD implementation for the reduced inverse problem are compared, including
a dual-weighted method for snapshot selection coupled with a trust-region POD adaptivity approach.
Numerical results with various observational densities and background error covariance operator are also
presented. The POD 4-D Var model results combined with the trust-region adaptivity exhibit similarity
in terms of various error metrics to the full 4D Var results, but are obtained using a significantly lesser
number of minimization iterations and require lesser CPU time. Based on our previous and current work,
we conclude that POD 4-D Var certainly warrants further studies, with promising potential of its extension
to operational 3-D numerical weather prediction models. Copyright � 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this article, we address a proper orthogonal decomposition (POD) model reduction along with
inverse solution of a two-dimensional global shallow water equations (SWE) model. Solutions
of SWE [1–3] exhibit some of the important properties of large-scale atmospheric flow and the
equations have certain important features (such as horizontal dynamical aspects) in common with
more complicated Numerical Weather Prediction (NWP) models. Therefore, derivation and testing
of various algorithms for solving SWE have often been a first step towards developing new
atmosphere and ocean general circulation models. The explicit flux-form semi-Lagrangian finite
volume (FV) scheme has been used to solve the SWE henceforth referred to as FV-SWE [4–8] in
the forward model integration.

Our intention here is to generalize the efficient state-of-the-art POD implementation from our
previous work on finite element SWE on the limited area [9, 10] (FE-SWE) to a global FV-SWE
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model with realistic initial conditions, i.e. combining efficient snapshot selection in the presence of
data assimilation system by merging dual weighting of snapshots with trust-region POD techniques.

The POD identifies basis functions or modes that optimally capture the average energy content
from numerical or experimental data. POD was introduced in the context of analysis of turbulent
flow by Holmes and Lumley [11]. Sirovich [12] introduced the idea of snapshots. See also the book
of Holmes [11]. In other disciplines, the same procedure goes by the names of Karhunen–Loeve
decomposition (KLD) (see [13, 14]) or principal component analysis (PCA). The method originated
in the work of Pearson [15] who invented the PCA which involves a mathematical procedure
that transforms a number of possibly correlated variables into a smaller number of uncorrelated
variables called principal components.

The trust-region method goes back to [16–18]. See also the work of Winfield [19] followed
by the important work of Powell [20, 21]. Finally, the terminology of trust region and Cauchy
point was put forward by Dennis [22] and systematized by More and Sorensen [23]. The trust-
region proper orthogonal decomposition (TRPOD) was recently proposed in [24–28] as a way
to overcome difficulties related to POD reduced order modeling (ROM) used for solving partial
differential equation (PDE)-constrained optimization problem. Combining the POD technique with
the concept of trust-region (see Toint and Conn [29–31] for a comprehensive survey or Nocedal
and Wright [32] for an introduction to trust-region methods) presents a framework for decision
as to when an update of the POD-ROM is necessary during the optimization process. Moreover,
from a theoretical point of view, we have a global convergence result for TRPOD [24] proving
that the iterates produced by the optimization algorithm, started at an arbitrary initial iterate, will
converge to a local optimizer for the original model.

In the previous work [10], we studied the effect of combining TRPOD in conjunction with
dual weighting Data Assimilation System (DAS) snapshot selection in the framework of Galerkin
projection-based POD-ROM for FE-SWE on the limited area without a background error covariance
term, in which the observations were available at all the time steps and distributed at all the grid
points during the entire window of assimilation. One of the goals of this article is to show that
dual-weighted TRPOD 4-D Var can also be applied to the global FV-SWE model with real initial
conditions. Even in a case where a Galerkin projection scheme is unavailable from full space
to the POD reduced space. We have considered cases of (a) complete observations distributed
in space and time with an unbalanced background error covariance term being provided, and
(b) incomplete observations in both time and space, with or without a balanced background error
covariance term being included in the cost functional. In the framework of TRPOD 4-D Var with
background error covariance term inclusion, an ideal preconditioning of the POD 4-D Var is derived
so that the Hessian matrix of the POD reduced order background error covariance matrix becomes
the identity matrix. In this paper we show that TRPOD 4-D Var performs satisfactorily in the
presence of incomplete observations, just as in the case of full 4-D Var, if a geostrophically balanced
background error covariance matrix is available during the implementation of data assimilation.

In the numerical experiments, we compared (I) the ad hoc update adaptivity of the POD 4-D
VAR, (II) the trust-region update adaptivity with or without dual weighting and (III) full 4-D Var
(high-fidelity model). We confirmed that the combination of TRPOD and dual-weighted snapshots
yields the best results in all error metrics (see [10, 33–35]). The advantage of TRPOD adaptivity
over ad hoc POD adaptivity is due to the fact that TRPOD can appropriately determine a trust
region within which the step size is not too small, so that it is guaranteed to compute a sufficient
decrease for the cost functional of the full model by projecting the Quasi–Newton direction of
POD reduced order cost functional into the trust-region box as a substitute for the Cauchy point
in the standard trust-region methods using quadratic approximation. Hence, TRPOD allows for
successively refreshing the POD basis by following iterates produced by the optimization algorithm
to converge to a local optimizer of the high-fidelity model [30, 31].

Also, we notice that there are almost twice as many outer projections (refreshing the snapshots)
related to TRPOD adaptivity compared to the number of projections in ad hoc adaptivity in the
framework of Galerkin projection in our previous work [10]. In this work there are almost thrice
as many outer projections related to TRPOD adaptivity as compared to ad hoc adaptivity without
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a Galerkin projection scheme in the presence of incomplete observations in time and space. The
CPU time required by TRPOD 4-D Var is still a fraction of the CPU time required by the full 4-D
Var, due to the fact that most of the functional evaluations are carried out in the lower dimensional
POD 4-D Var while the full model will be evaluated only when an appropriate descent direction
in the TRPOD reduced order space is obtained. Therefore, TRPOD avoids unnecessary full model
evaluations and also reduces the cost of minimization inside the inner TRPOD loop.

The plan of the paper is as follows: in Section 2 the FVSWE model description is followed
by a brief presentation of the POD model reduction method. For the sake of clarity and self-
containedness, in Section 3 we provide the framework of POD for reduced order 4-D Var data
assimilation. This section is comprised of subsections detailing dual weighting of snapshots and
implementation of the reduced order 4-D VAR, specifically for the FV-SWE model. Section 4
addresses the TR-POD methodology. Section 5 details the numerical experiments carried out in
order to validate the accuracy of the POD reduced order model and the POD 4-D VAR approach
for the various numerical methods enumerated above. For the recent work on POD 4-D VAR,
see [36–51]. In particular, we compare ad hoc adaptivity for POD 4-D VAR with trust-region
adaptivity in combination with dual-weighted snapshots when full observations are available in
our experiment. We also compared TRPOD 4-D Var with full 4-D Var for incomplete observations
in space, addressing this issue in the discussion of numerical results. Finally, the paper concludes
with a summary and conclusions.

2. GLOBAL SHALLOW WATER EQUATION MODELS

In spherical coordinates the vorticity divergence form of the SWE can be written as the mass
conservation law for a shallow layer of water

�h

�t
+∇ ·(Vh)=0 (1)

and the vector-invariant form of momentum equations
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where h represents the fluid height (above the surface height hs), V= (u,v), u and v represents
the zonal and meridional wind velocity components, respectively, � and � are the latitudinal and
longitudinal directions, respectively, � is the angular speed of rotation of the earth, a is the radius
of earth. The free surface geopotential is given by �=�s +gh, where �s =ghs , �= 1

2 V ·V is the
kinetic energy and �=2�sin�+∇×V is the absolute vorticity.

In this paper we have used a discretized (FV, semi-Lagrangian) version of the above SWE model,
which serves as the dynamical core in the community atmosphere model (CAM), version 3.0, and
its operational version implemented at NCAR and NASA is known as FV-general circulation model
(FV-GCM). In brief, a two-grid combination based on C-grid and D-grids is used for advancing
from time step tn to tn +�t . In the first half of the time step, advective winds (time centered
winds on the C-grid: (u∗,v∗)) are updated on the C-grid, and in the other half of the time step,
the prognostic variables (h,u,v) are updated on the D-grid.

Using the FV method, within each cell of the discrete grid, if we consider a piecewise linear
approximation to the solution, whose slope is limited in a certain way depending on the values of
the solution at the neighboring grid cells, one can consistently derive a family of van Leer schemes.
We will follow the suggestion in [7] and always use the unconstrained van Leer [52–54] scheme
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to advect winds on the C-grid. The same advection scheme will be used on D-grid as well. This
strategy provides solutions whose accuracy is comparable to those obtained by using more CPU
demanding advection schemes, for e.g. constrained van Leer schemes.

3. DUAL-WEIGHTED POD METHOD

3.1. Method of snapshots

An ensemble of snapshots is chosen in the analysis time interval [0,T ] written as {y1, y2, . . . , yn},
where yi = (hi ,ui ,vi )T ∈RN , i =1, . . . ,n, n is the number of snapshots and N =3Nx Ny is triple
the dimension of discrete mesh, Nx and Ny are the mesh points of the latitudinal and longitudinal
directions, respectively. Our choice of snapshots number was to take a snapshot at each time
step (�t =450 s) of the window of assimilation whose length was taken in our case to be 15 h.
We could have chosen another snapshot distribution; however, we selected to implement this
choice as the most intuitive one (15 h=120 time steps of 450 s, each). Define the dual-weighted
ensemble average of the snapshots as ȳ =∑i=n

i=1 wi yi , where the snapshots weights wi are such that
0<wi<1 and

∑n
i=1 wi =1, and they are used to assign a degree of importance to each member

of the ensemble. Time weighting is usually considered, and in the standard approach wi = 1
n .

Subtracting the mean from each snapshot, we obtain the following N ×n-dimensional matrix
Y= [y1 − ȳ, y2 − ȳ, . . . , yn − ȳ].

The POD modes �={�1,�2, . . . ,�M } of order M�n provide an optimal representation of the
ensemble data in an M-dimensional state subspace by minimizing the averaged projection error

min
{�1,�2,. . .,�M }

n∑
i=1

wi‖(yi − ȳ)−��,M (yi − ȳ)‖2

s.t. 〈�i ,� j 〉l2 =	i j (4)

where ��,M is the projection operator onto the M-dimensional space Span {�1,�2, . . . ,�M }

��,M =
M∑

i=1
〈y,�i 〉l2�i

We define the dual-weighted spatial correlation matrix, A=YWYT, where W=diag{w1,w2, . . . ,
wn} is the diagonal matrix of weights.

To compute the dual-weighted POD modes �i ∈RN , one must solve an N -dimensional eigen-
value problem, A�i =�i�i .

In practice the number of snapshots is much less than the state dimension, n<<N , an efficient
way to compute the reduced basis is to introduce an n-dimensional matrix as follows:

Kn×n =W1/2YTYW1/2 (5)

and compute the eigenvalues �1��2� · · ·��n�0 of Kn×n with its corresponding eigenvectors
v1, . . . ,vn

Hence, the corresponding POD modes are thus obtained by defining

�i =
1√
�i

YW1/2vi , i =1, . . . , M (6)

where

〈�i ,� j 〉l2 =	i j =
{

1 i = j

0 i 	= j
(7)
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One can define a relative information content to choose a low-dimensional basis of size M 
n
by neglecting modes corresponding to the small eigenvalues. We define

I (m)=
∑i=m

i=1 �i∑i=n
i=1 �i

(8)

and choose M such that M =argmin{I (m) : I (m)>
}, where 0�
�1 is the percentage of total
information retained in the reduced space and the tolerance 
 must be chosen to be close to unity
in order to capture most of the energy of the snapshots basis.

3.2. POD reduced order model for the FV-SWE model

Define the following vectors:
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1 hk
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1 v∗
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thus h∗, u∗and v∗ are obtained on the C-grid [6, 7], in the following way:
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Define the following vectors:

�= (�h �u �v)T, ȳ = (h u v)T (10)

and we obtain the POD reduced order model on the C-grid by projection as follows, where the �
coefficients are the modal coefficients of the flow field with respect to the POD basis;
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Similarly, we can rewrite the D-grid [6, 7] time integration as the following vector formulation:
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and the POD reduced order model on the D-grid by projection as follows:
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where ak
h ∈ RMh , ak

u ∈ RMu and ak
v ∈ RMv , k =0,1,2, . . . ,n and initial values are

a0
h =�T

h (h0 −h), a0
u =�T

u (u0 −u), a0
v =�T

v (v0 −v) (14)

Formulas (11) and (13) are the POD reduced order model for the FV-SWE models (1) (2)
and (3), and it only includes (Mh + Mu + Mv)×n degrees of freedom, where Mh, Mu, Mv
N
compared to the numerical FV-SWE model that contains 3N ×n degrees of freedom.

3.3. The generation of dual-weighted POD basis

One of the goals of 4-D Var data assimilation is to obtain an ‘optimal’ representation of the state
of the atmosphere by fusing model predictions with observational data.

This is achieved by minimizing

J (y0)= 1

2
(y0 − yb)TB−1(y0 − yb)+ 1

2

k=n∑
k=0

(Hk yk − yo
k )TR−1

k (Hk yk − yo
k ) (15)

where yb is the background prior state estimation and B is the background error covariance matrix,
R is the observational error covariance matrix, H is the observation operator, y0 is a vector
containing control variables such as initial conditions, yk is a vector containing the solution of
variables from the model at the time level k, yo

k is the observation at time level k and n is the
number of time levels. By implementing a dual-weighted POD (DWPOD) method [10, 35], we
can incorporate the information from the 4-D Var into the POD reduced order model. The dual-
weighted approach makes use of the time-varying sensitivities of the 4-D Var cost functional with
respect to perturbations in the state at each time level where the snapshots are taken.

Assume that the cost functional J (y(t)) is defined explicitly in terms of each state y(t) at time step
t . For any fixed time step �<t , the model can be written as, ∀�<t, y(t)= M�→t (y(�))= M�,t (y(�))
such that implicitly, the cost functional J can be viewed as a function of the previous state y(�)
to first-order approximation. The impact of small errors/perturbations 	yi in the state error at a
snapshot time ti�t on J may be estimated using the tangent linear model M(ti , t) and its adjoint
model MT(t, ti ), where the brackets stand for the l2 product.

	J ≈ 〈∇ Jy(t)(y(t)),	y(t)〉l2 =〈∇ Jy(t)(y(t)),M(ti , t)	y(ti )〉l2

= 〈MT(t, ti )∇ Jy(t)(y(t)),	y(ti )〉l2 =〈y∗∗
ti ,	y(ti )〉l2 (16)

where y∗∗
ti =MT(t, ti )∇ Jy(t)(y(t)) are the adjoint variables at time step ti .

In particular, the discrete model can be written as ∀k, yk = Mk−1→k(yk−1)= Mk(yk−1), where
Mk−1→k is defined as the model forecast operator from time k−1 to k.

In order to derive the algorithm for the computation of dual weights by using the adjoint
model, we explicitly choose �= ti =k−1 and t =k, to the first-order approximation, the impact of
perturbations 	yk−1 in state vectors on cost functional Jk may be estimated using tangent linear
model Mk and its adjoint model MT

k :

	Jk ≈〈∇ Jk,	yk〉l2 =〈∇ Jk,Mk	yk−1〉l2 =〈MT
k ∇ Jk,	yk−1〉l2 =〈y∗∗

k−1,	yk−1〉l2 (17)

where y∗∗
k−1 =MT

k ∇ Jk are the adjoint variables at time step tk−1.
Therefore, |	Jk |=|〈y∗∗

k−1,	yk−1〉l2 |�‖y∗∗
k−1‖l2‖	yk−1‖l2 .

Finally, the dual weights wk associated with the snapshots selection are thus defined as normal-
ized values, ck =‖y∗∗

k ‖l2wk =ck/
∑ j=n

j=1 c j ,k =1, . . . ,n, and provide a measure of the relative
impact of the perturbations of state variables on the cost functional. A large value of weight wk
indicates that state errors at time step tk play an important role in the optimization. In practice,
the evaluation of all dual weights requires only one adjoint model integration [10]; summarized
below are the steps involved in the computation of dual weights.

(1) Initialize the adjoint variables y∗∗ at the final time to zero, y∗∗
n =0.
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(2) At each time step, tk−1, the adjoint variables y∗∗
k−1 are obtained as, y∗∗

k−1 =MT
k y∗∗

k +
HT

k R−1
k (Hk yk − yo

k ), where Mk is the tangent linear model and H is the linearized observation
operator at tk .

(3) For initial time, t0, we obtain, y∗∗
0 = y∗∗

0 +B−1(y0 − yb).
(4) The weights are obtained as

ck =‖(A)−1 y∗∗
k ‖A and wk = ck∑ j=n

j=1 c j

, k =1, . . . ,n.

Since the adjoint model is available during the implementation of the full 4-D Var, no additional
cost is required for the development of DWPOD 4-D Var over the classic POD 4-D Var.

4. TRUST-REGION METHOD APPLIED TO POD

In the classical trust-region method [55] our goal is to define a region around the current iterate
within which we trust the model to be an adequate representation of the objective function, f, and
then choose a (direction and size of) step to be the approximate minimizer of the model in the
trust region. The algorithm approximates only a certain region (the so-called trust region) of the
objective function with a model function (often a quadratic). It is assumed that the first two terms
of the quadratic model function mk, at each iterate xk, are identical with the first two terms of the
Taylor-series expansion of f around xk in

mk(p)= fk +∇ f T
k p+ 1

2 pTBk p (18)

where fk = f (xk) and ∇ fk =∇ f (xk) and Bk is an approximation to the Hessian. Therefore, the
function and gradient values from the above model are same as the exact function and gradient
values, respectively.

In order to obtain each step, we seek a solution of the following subproblem for which we only
need an approximate solution to obtain convergence and good practical behavior [32]

min mk(p)= fk +∇ f T
k p+ 1

2
pTBk p (19)

s.t. ‖p‖�	k (20)

where 	k>0 is the trust-region radius.
In the strategy for choosing the trust-region radius 	k at each iteration, we define the ratio

k = f (xk)− f (xk + pk)

mk(0)−mk(pk)
(21)

where the numerator is called the actual reduction, and the denominator is called the predicted
reduction. We measure agreement between model function mk and the objective function f (xk)
as a criterion for choosing trust-region radius 	k>0. If the ratio k is negative, the new objective
value is greater than the current value so that the step must be rejected. On the other hand, if k is
close to 1, there is good agreement between the approximate model mk and the object function fk
over this step, so it is safe to expand the trust-region radius for the next iteration. If k is positive
but not close to 1, we do not alter the trust-region radius, but if it is close to zero or negative, we
shrink the trust-region radius.

Here, the POD-ROM is based on the solution of the original model for specified control variables:
the model initial conditions. It is therefore necessary to reconstruct the POD-ROM when the
resulting control variables from the latest optimization iteration are significantly different from the
ones upon which the POD model is based. Hence, it is natural to improve the POD reduced order
control model successively by updating the snapshots that are used to generate the POD basis in
the process of reduced order 4-D Var.
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The 4-D Var cost functional in (15),

J (y0)= 1

2
(y0 − yb)TB−1(y0 − yb)︸ ︷︷ ︸

Jb

+ 1

2

k=n∑
k=0

(Hk yk − yo
k )TR−1

k (Hk yk − yo
k )︸ ︷︷ ︸

Jo

can be separated into J = Jb + Jo, where Jb = 1
2 (y0 − yb)TB−1(y0 − yb) is the background cost

functional and

Jo = 1

2

k=n∑
k=0

(Hk yk − yo
k )TR−1

k (Hk yk − yo
k ) (22)

is the observational cost functional. Let 	y = y0 − yb, so that the background cost functional can
be rewritten as, Jb = 1

2 (	y)TB−1(	y).
Define an approximation to the control variable, y0 ≈��0 + ȳ, where the POD modes are given

by �={�1,�2, . . . ,�M } and the dual-weighted ensemble average of the snapshots is given as
before, in which �0 is the corresponding control variable in the M-dimensional POD reduced order
space. Define the coefficient, �b =�T(yb − ȳ), and we obtain the background term yb in terms of
POD modes, yb ≈��b + ȳ.

From the above equations we obtain, 	y = y0 − yb ≈ (��0 + ȳ)−(��b + ȳ)=�(�0 −�b).
Let 	�=�0 −�b, so that 	y =�	�.
Hence, the 4-D Var cost functional in (15) can be approximated by

J (y0)≈ Ĵ (	�)= Ĵb(	�)+ Ĵo(	�) (23)

where

Ĵb(	�)= 1
2 (	�)T(�TB−1�)(	�) (24)

Ĵo(	�)= 1

2

k=n∑
k=0

(HkMk(yb +�	�)− yo
k )TR−1

k (HkMk(yb +�	�)− yo
k ) (25)

Since the inverse of the background error covariance matrix B−1 is a symmetric positive-definite
matrix (SPD), it is easy to verify that �TB−1� is SPD from the fact that �T�=I.

Define

B̂−1 =�TB−1�. (26)

Therefore B̂−1 is SPD and (24) can be written as,

Ĵb(	�)= 1
2 (	�)TB̂−1(	�) (27)

Since B̂−1 is SPD, we can find the square-root matrix

B̂= B̂
1
2 B̂

T
2 (28)

using the inverse Cholesky decomposition methodology without finding B̂ itself. Define a trans-
formation 	�= B̂1/2v�.

Hence, we obtain that

J̃b(v�) = Ĵb(	�)= Ĵb(B̂
1
2 v�)= 1

2 (	�)TB̂−1(	�)= 1
2 (B̂

1
2 v�)TB̂−1(B̂

1
2 v�)

= 1
2 (B̂

1
2 v�)T(B̂

1
2 B̂

T
2 )−1(B̂

1
2 v�)= 1

2 (v�)TB̂
T
2 B̂− T

2 B̂
1
2 B̂

1
2 v�

= 1
2 (v�)Tv�. (29)
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The methodology of construction of B1/2 and BT/2 using univariate correlation and multivariate
geostrophic balancing operators is detailed in an Appendix A (see also [56]). Therefore, the gradient
of the background cost functional, J̃b(v�) with respect to v� is given by

∇v� J̃b =v� (30)

and the Hessian of the background cost functional, J̃b(v�), with respect to v� is given by,

∇2
v� J̃b =IM . (31)

To summarize, we obtain that the cost functional can be approximated by,

J (y0)≈ J̃ (v�)= J̃b(v�)+ J̃o(v�)= 1
2 (v�)Tv�+ J̃o(v�) (32)

and the gradient of the cost functional with respect to v� is given by the chain rule,

∇v� J̃ = v�+(∇v��0)T((∇�0 y0)T∇y0 Jo)

= v�+B̂
T
2 �T∇y0 Jo. (33)

4.1. Trust-region POD optimal control

From (24) and (25), we obtain the POD reduced order cost functional [28, 57] in terms of 	�,

Ĵ (	�) = 1

2
(	�)T(�TB−1�)(	�)

+1

2

k=n∑
k=0

(HkMk(yb +�	�)− yo
k )TR−1

k (HkMk(yb +�	�)− yo
k ). (34)

Or from (32), we obtain POD reduced order cost functional in terms of v�,

J̃ (v�) = 1

2
(v�)Tv�

+1

2

k=n∑
k=0

(HkMk(yb +�(B̂1/2v�))− yo
k )TR−1

k (HkMk(yb +�(B̂1/2v�))− yo
k )

From an implementation point of view, we first start with a random perturbation of given initial
condition y(0)

0 = yb and compute the snapshots Y(0) and dual-weighted ensemble average ȳ(0) that

correspond to the flow behavior forced by y(0)
0 . We then use these snapshots and dual-weighted

ensemble average to compute the first POD basis W(0) and build up the corresponding POD-
based background term forced by applying inner projection �(0)

b = (W(0))T(yb − ȳ). Also, from (26)

and (28), we can find (B̂(0))1/2.

Since initially we have y(0)
0 = yb, we obtain the initial guess of the initial condition for the POD

reduced order model

�(0)
0 = (W(0))T(y(0)

0 − ȳ(0))=�(0)
b (35)

and 	�(0) =�(0)
0 −�(0)

b =0, trivially; also, we obtain v�(0) = (B̂(0))−
1
2 �(0) =0. Therefore, at the begin-

ning of minimization of the POD reduced order cost functional J̃ (v�), we initialize POD reduced
order control variable v� =0.

We now implement the inner minimization iteration based on W(0) to obtain the new control
variable v�(1) in the reduced order space. Thus, we can compute 	�(1) = (B̂(0))1/2v�(1) and update
the initial condition using �(1)

0 =�(0)
b +	�(1) for the POD reduced order model.

Copyright � 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2012; 68:377–402
DOI: 10.1002/fld



386 X. CHEN, S. AKELLA AND I. M. NAVON

Finally, when we carry out an outer iteration, we obtain y(1)
0 = ȳ(0)+W(0)�(1)

0 . If we use y(1)
0 for

the computation of new snapshots and a new POD basis W(1), we can improve the initial condition
of the PDE and thus improve the POD-based model.

Therefore, to find a new step sk , we minimize with respect to s,

min mk(v�(k) +s) := J̃ (v�(k) +s) (36)

s.t. ‖s‖�	k (37)

Recall mk(p)= fk +∇ f T
k p+ 1

2 pTBk p, where fk = f (xk) and ∇ fk =∇ f (xk) and Bk is an approx-
imation to the Hessian, from (18).

Furthermore, from (33), we have the gradient of subproblem above,

∇v�(k)mk =v�(k) +(B̂(k))
T
2 (�(k))T∇y0 Jo

Using y(k)
0 = ȳ(k)+W(k)(�(k)

b +(B̂(k))1/2v�(k)), we can define

y∗
0 = ȳ(k)+W(k)(�(k)

b +(B̂(k))1/2(v�(k) +sk)) (38)

Based on the trust-region strategy from optimization [25, 57], we can decide to increase or decrease
the trust-region radius by comparing the actual (for the full-order model), J (y(k)

0 )− J (y∗
0 ), with the

predicted decrease (for the reduced order model), mk(v�(k))−mk(v�(k) +sk). Algorithmic details
of the steps involved are summarized below. Let 0<�1<�2<1 , 0<
1<
2<1�
3 and y(0)

0 = yb and
	0 be given, set k =0.

(1) Compute snapshot set YSNAP
k based on initial condition y(k)

0 .
(2) Compute the POD basis W(k) and dual-weighted ensemble average ȳ(k).
(3) Compute POD-based background term �(k)

b = (W(k))T(y(k)
0 − ȳ(k)) and build the POD-based

background covariance matrix (B̂(k))
1
2 .

(4) Initialize v�(k) =0 and compute the minimizer sk of

min mk(v�(k) +s)

s.t. ‖s‖�	k

(5) Compute the new J (y∗
0 ) of the full model so that we obtain

k = J (y(k)
0 )− J (y∗

0 )

mk(v�(k))−mk(v�(k) +sk)
(39)

where y∗
0 = ȳ(k) +W(k)(�(k)

b +(B̂(k))1/2(v�(k) +sk)).
(6) Update the trust-region radius:

• If k��2: implement outer projection y(k+1)
0 = ȳ(k) + y∗

0 and increase trust-region radius 	k+1 =

3	k and GOTO 1

• If �1<k<�2: implement outer iteration y(k+1)
0 = ȳ(k) + y∗

0 and decrease trust-region radius
	k+1 =
2	k and GOTO 1

• If k��1: set y(k+1)
0 = y(k)

0 and decrease trust-region radius 	k+1 =
1	k and GOTO 3

See Figure 1 for a flow chart of the methodology combining dual-weighted snapshots and TRPOD
adaptivity.
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Initial conditions

Dual weighted snapshots

POD reduced-order modelling

Trust region POD 4-D VAR

Trust region ratio 1

Full adjoint to generate dual weights

Cost functional tolerance

DW TRPOD 4-D VAR is completed

Figure 1. Flowchart of the methodology combining dual-weighted snapshots and TRPOD adaptivity.

5. NUMERICAL EXPERIMENTS

5.1. ERA-40 observations and POD reduced order model

Reanalyzed data on a 2.5o ×2.5o grid (500 hPa pressure level-geopotential height and velocity
fields) from the ERA-40, 40-yr re-analysis system (http://www.ecmwf.int/research/era/), valid at
0000 UTC 2 February 2001 was used to specify the initial conditions for forward model integration.
These initial conditions were unchanged in all the following test cases. As for boundary conditions,
since the domain being considered is spherical, it is obvious that the boundary conditions remain
unchanged. The unconstrained van Leer scheme with a 2.5o ×2.5o (144×72 cells) grid resolution
and time step of �t =450 s, has been used in this article, to generate a reference trajectory.
Synthetic observations are obtained by randomly perturbing the reference trajectory, in which
the observational error covariance matrix has been taken to be a block diagonal matrix R =
[104 I 102 I 102 I ]. For the entries in R, the values of the variances are specified based on typical
values of the variables. The zonal and meridional winds vary on a scale of 10–100 m/s. Hence, a
value of 100 was specified for their variances. For the geopotential height field, �=gh varies on
a scale of 104 m2/s2.

In the numerical experiment, we carried out a 1% normally distributed random perturbation on
the true initial conditions over the entire vector X = [u,v,h] field in Figure 2(a) specified from
ERA-40 in order to provide twin-experiment ‘observations’. Also, the 18-h forecast of the FV-SWE
model was taken to be forecast verification time displayed in Figure 2(b). The 4-D Var optimization
loop was stopped when the l2 norm of the gradient was less than a tolerance of 10−3. Since we
did not change the tolerance, the results we obtained are not affected. It is obvious that if we were
to make the tolerance more stringent, the optimization would have required more iterations. The
reduction of the cost functional is measured by the value of the current cost functional normalized
by the initial one with or without the logarithmic scale. We computed the errors between the true
initial conditions and the retrieved initial conditions related to a 1% normally distributed random
perturbations of the true initial conditions as the initial guess of the reduced order 4-D Var. The
data assimilation was carried on a 15 h window using the �t =450 s in time and a mesh of 144×72
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(a)

(b)

Figure 2. Isopleths of the geopotential height for the reference trajectory. (a) The configuration at the
initial time specified from ERA-40 data sets and (b) the 18-h forecast of the FV-SWE model using the

unconstrained Van–Leer advection scheme.

grid points in space and the observations are available every 3 h in time including the initial time.
Thus, we have 144×72×3×6 observations distributed in time and space.

Now, we generated 120 snapshots by integrating the full FV-SWE model forward in time, from
which we choose 15 POD modes or 15 DWPOD modes for each of the (u(x, y),v(x, y),�(x, y))
to capture over 99.9% of the energy. The singular value decomposition for both POD modes
and DWPOD modes from the snapshots is displayed in Figure 3(a). The energy captured by the
leading POD modes or DWPOD modes from the snapshots as a function of the dimension of
the POD reduced space is displayed in Figure 3(b). Also, the isopleths of the POD modes of
dimensions 1, 5 and 10 are displayed in Figure 4. The other POD modes, though not plotted show
a gradual shift in where most energy is localized; that is, the leading POD modes display most
energy uniformly distributed almost on the entire globe, whereas the latter POD modes show a
shift toward the north and south poles, we attribute this observation to our particular FV-SWE
model. Similar observation was made by Akella and Navon [58] in terms of where the largest
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Figure 3. Singular value decomposition. (a) Unweighted SVD and dual-weighted SVD and (b) the
percentage of energy captured by POD modes.

Figure 4. Isopleths of the POD modes of dimension 1, 5 and 10 respectively. (a) 1st POD mode; (b) 5th
POD mode; and (c) 10th POD mode.

errors in the retrieved initial conditions were obtained in their 4-D Var twin experiments using
the FV-SWE model. Furthermore, the dimension of control variables vector for the POD reduced
order 4-D Var thus is 15×3=45 compared to 144×72×3=31104 for the full 4-D Var.

5.2. POD reduced order model 4-D Var using full observations

5.2.1. POD reduced order 4-D Var experiments. Two POD reduced order 4-D Var experiments
are set up, in which the first experiment, hereafter referred as DAS-I, had no background term
included in the POD reduced order cost functional and the second, hereafter referred as DAS-II,
had the background error covariance term included in the POD reduced order cost functional. The
background state was generated using a 1% normal random perturbations on the initial conditions,
in which the background error covariance matrix has been taken to be a block diagonal matrix
B = [2×104 I 102 I 102 I ]. In practice, by applying random number generator using CPU clock
cycle, we made sure that the seeds used to generate pseudonormal random perturbations for twin-
experiment ‘observations’ are nearly uncorrelated with the seeds used to generate normal random
perturbations for background terms in the reduced order cost functional.

In the process of POD 4-D Var, the resulting control variables from the latest optimization
iteration are projected to the full model to generate new POD bases. The new POD bases then
replace the previous ones resulting in a new POD reduced order model. We found that the root
mean-square error (RMSE) metrics between the full-model solutions and reduced order solutions
were consistently improved after each outer projection was carried out.

The limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) update algorithm for quasi-
Newton minimization [59] was employed for high-fidelity full-model 4-D Var and all variants of
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Figure 5. Comparison of the performance of the iterative minimization process of the scaled
cost functional for unweighted ad hoc POD 4-D Var, dual-weighted ad hoc POD 4-D Var,
unweighted trust-region POD 4-D Var, dual-weighted trust-region 4-D Var, and full-model

4-D Var, respectively. (a) DAS-I and (b) DAS-II.

ad hoc POD 4-D Var, while a variant of the LBFGS, called LBFGS-B [60, 61] which can handle
box-constraints on the variables was employed for the trust-region POD 4-D Var within the trust-
region radius and provides a sufficient reduction of the high-fidelity model quantified in terms of
the Cauchy point [32]. In the ad hoc POD 4-D Var [41, 43], the POD bases are re-calculated when
the value of the cost function cannot be decreased by more than a factor of 0.5 for ad hoc POD
4-D Var and 0.1 for ad hoc DWPOD 4-D Var between consecutive minimization iterations. The
reason for the particular choice of these values is based on numerical experience and relative rate
of convergence of the ad hoc and dual-weighted POD methods, respectively. In the trust-region
4-D Var, the POD bases are re-calculated when the ratio k is larger than the trust-region parameter
�1 in the process of updating the trust-region radius.

The unweighted ad hoc POD 4-D Var as a reduced order approach required a smaller computa-
tional cost but could not achieve the same cost functional reduction as the high-fidelity model 4-D
Var. The dual-weighted ad hoc POD 4-D Var achieves a better reduction of the cost functional.
However, neither of the above mentioned methods can attain the minimum of the high-fidelity
4-D Var model cost functional. Furthermore, the unweighted snapshots trust-region POD 4-D Var
yields an additional cost functional reduction compared to the ad hoc approach, albeit at a higher
computational cost. Finally, the dual-weighted trust-region POD 4-D Var achieves almost exactly
the same cost functional reduction as the full high-fidelity 4-D Var model, resulting in an addi-
tional decrease in four orders of magnitude compared to the minimization of the cost functional
obtained by applying the unweighted ad hoc POD 4-D Var (see Figures 5(a) and (b)), showing
that the combination of the dual-weighted approach and trust-region method to model reduction
is significantly beneficial in attaining a local minimum of the cost functional almost identical to
one obtained by the high-fidelity full 4-D Var, while the computation of effort for dual-weighted
trust-region POD 4-D Var is much less than the one required for full 4-D Var (see Tables I(a)
and (b)).

In Figure 6(a) and (b), we found that the minimization of the cost functional using full 4-D Var
will be terminated if the scaled norm of the gradient of the cost functional can decrease by 2 orders
of magnitude, while the one using DWTRPOD 4-D Var will be terminated if the corresponding
scaled norm of the gradient can decrease by 3 orders of magnitude, which can be explained by
the fact that the POD reduced order space is dimensionally lower than the full space.

Once the retrieved initial condition is obtained by implementing the dual-weighted trust-region
4-D Var, we can compare the results from the POD reduced model with those from the full model.
To quantify the performance of the dual-weighted trust-region 4-D Var, we used the metric namely
the RMSE of the difference between the POD reduced order simulation and high-fidelity model.
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Table I. Comparison of iterations, outer projections, error, and CPU time for ad hoc POD 4-D Var,
trust-region POD 4-D Var, trust-region dual-weighted POD 4-D Var and full 4-D Var.

UWAHPOD DWAHPOD UWTRPOD DWTRPOD Full

(a) DAS-I
Iterations 23 24 16 23 42
Outer projections 2 2 14 14 NA

log
(

J f
J0

)
10−0.37 10−0.69 10−1.78 10−2.32 10−2.50

CPU time (s) 117.1 149.2 143.2 181.7 601.7

(b) DAS-II
Iterations 14 59 50 62 100
Outer projections 2 2 15 16 NA
J f
J0

0.72 0.54 0.17 0.13 0.10
CPU time (s) 100.3 207.7 280.1 352.5 966.7
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Figure 6. Comparison of the performance of the iterative minimization process of the
scaled norm of the gradient of the cost functional for dual-weighted trust-region 4-D Var

and full model 4-D Var. (a) DAS-I and (b) DAS-II.

In particular, the RMSE between variants of the POD reduced model solution and the true one
at the time level i is used to estimate the error of the POD model.

RMSEi =
√∑ j=N

j=1 (Ui, j −U POD
i, j )2

N
, i =1, . . . ,n (40)

where Ui, j and U P O D
i, j are the state variables obtained by the full model and ones obtained by

optimal POD reduced order model of time level i at node j , respectively, and N is the total number
of nodes over the domain. U and U POD are used to either denote the geopotential or the velocity
of the full model and those corresponding to the POD reduced order model, respectively.

Although it turned out to be advantageous to combine the dual-weighed approach with the trust-
region POD 4-D Var, it should be emphasized that this advantage diminishes when we increase
the number of POD bases for each component of the (u(x, y),v(x, y),�(x, y)) from 15 to 25. This
remark is based on RMSE and also the difference between the 18-h forecast using true initial
conditions and the one using retrieved initial condition after data assimilation. However, increasing
the dimension of the POD reduced order space from 45 to 75 can increase the computational
cost of POD reduced order 4-D Var. This agrees with results obtained in [35] that for practical
applications, the dual-weighted procedure may be of particular benefit for use only with small
dimensional bases in the context of adaptive order reduction as the minimization approaches the
optimal solution. For other beneficial effects of POD 4-D Var related to its use in the framework
of second-order adjoint of a global shallow water equation models, see Daescu and Navon [34].
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Figure 7. Comparison of the RMSE in DAS-II experiments among unweighted ad hoc POD 4-D
Var, dual-weighted ad hoc POD 4-D Var, unweighted trust-region POD 4-D Var, dual-weighted
trust-region 4-D Var, and full-model 4-D Var, respectively. (a) RMSE of Geopotential in DAS-II

and (b) RMSE of wind velocity in DAS-II.

Finally, in Figures 8(a) and (b) we compared the errors in retrieved initial conditions without and
with background error covariance terms (i.e. DAS-I and DAS-II experiments). Notice that in both
cases the largest errors occur in the polar regions (see, note in Section 5.1). With the background
term, we obtained an improved estimation of the true initial condition in DAS-II, compared to
DAS-I, as evident through the RMSE plots (Figures 7(a) and (b)) as well. Such advantages of the
background term in ‘full’ 4-D Var are well documented in [62].

5.2.2. Nonlinearity in the projection. Owing to the complexity of the Lin–Rood FV code, the
numerical fluxes had to be computed at the element boundaries. This required us to go back to
the full model in order to evaluate the numerical fluxes, in order to deal with the nonlinearity in the
projection. The numerical problem of reducing the complexity of evaluating the nonlinear terms
of the POD reduced model in the context of FV requires for this quadratic nonlinearity a pre-
computing of a special POD-Galerkin projection. However, the pre-computing technique proved
to be very difficult to implement due to the algorithmic features of the Lin–Rood FV scheme. This
explains why we obtained only a speed up of a factor of order 3 as shown in Table I(a) and (b).

An elegant solution to this problem was put forward by Chaturantabut [63], Chaturantabut and
Sorensen [64, 65] where they proposed a method referred as a Discrete Empirical Interpolation
Method (DEIM). DEIM achieves a complexity reduction of the nonlinearities which is proportional
to the number of reduced variables while POD retains a complexity proportional to the original
number of variables. The DEIM approach approximates a nonlinear function by combining projec-
tion with interpolation. DEIM constructs specially selected interpolation indices that specify an
interpolation-based projection so as to provide a nearly l2 optimal subspace approximation to the
nonlinear term, without the expense of orthogonal projection.

5.3. Results with incomplete observations

5.3.1. The observations of height field only. In DAS-II, meteorological observations are
temporarily available every 3 h but spatially distributed at all the grid points. So the question arises
as to what will happen if we decrease the number of observations in space [66], i.e. observational
operator in the cost functional becomes a sparse matrix.
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(a)

(b)

Figure 8. Isopleths (scaled by multiplying 1000) of the geopotential height for the difference between
the 18-h forecast using true initial conditions and the one using retrieved initial condition after

DWTRPOD 4-D Var. (a) DAS-I and (b) DAS-II.

Suppose that only the geopotential field is observed but the observations for the wind field are
unavailable (i.e. the number of observations is decreased from 144×72×3×6 to 144×72×6).
We refer to this case by DAS-III(a), in which the initial perturbed field is the same as the one
used to start DAS-I. In DAS-III(a), the numerical results in Figure 9(a) show that it takes more
iterations for the cost functional of full 4-D Var with only incomplete observations to converge than
the one with full observations. Furthermore, the POD reduced cost functional in DAS-III(a) using
the UWTRPOD 4-D Var can be reduced to almost the same degree of magnitude as full 4-D Var
in DAS-III(a) displayed in Figure 9(a). Also, in DAS-III(a) the norm of the gradient of the POD
reduced cost functional using UWTRPOD 4-D Var and the cost functional using full 4-D Var both
decrease by only 2 orders of magnitude, displayed in Figure 9(b). In Figure 10(a), an additional
experiment was carried out comparing results for UWTRPOD 4-D Var, DWTRPOD 4-D Var as well
as full 4-D Var in the case of observations being available only for the geopotential field. It was also
found out that the results for DWTRPOD 4-D Var produced similar results as those obtained in the
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Figure 9. DAS-III(a) (Observations of height field only): comparison of the performance of the
iterative minimization process of the scaled cost functional and the scaled norm of the gradient
of the cost functional for unweighted trust-region POD 4-D Var and full 4-D Var. (a) Scaled cost

functional and (b) scaled norm of the gradient.
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Figure 10. DAS-III(a) (Observations of height field only): comparison of the performance of the iterative
minimization process of the scaled cost functional and the scaled norm of the gradient of the cost functional
for unweighted trust-region POD 4-D Var, dual-weighted trust-region POD 4-D Var and full 4-D Var.

(a) Scaled cost functional and (b) scaled norm of the gradient.

case of DAS III (b) (c) (d) (not shown) experiments with incomplete observations. In Figure 10(b),
corresponding results were displayed for the scaled norm of the gradient for DWTRPOD 4-D Var
and full 4-D Var. Again, the other experiments (not shown) exhibited similar results of incomplete
observations. In Figure 11, we obtained the errors in retrieved initial conditions using UWTRPOD
4-D Var with incomplete observations (i.e. only the geopotential observations are available). Notice
that in this case the largest errors are still dominant in the polar regions, while the overall RMSE
becomes larger than the results obtained in DAS-II.

5.3.2. Incomplete observations in space. Next, we consider fewer observations along the longi-
tudinal direction. From the earlier number of 144 observations, we specified only 72. Hence, the
observational resolution is 72×72. But we have observations for [h,u,v] at every 3 h as in DAS-II.
The reduction in cost functional and scaled gradient norm are plotted in Figures 12(a) and (b),
respectively. Notice that the performance of both the full 4-D Var and UWTRPOD is affected due
the alternating observations in one direction.

We follow on the above approach and test what happens when instead of having fewer observa-
tions along the longitudinal direction, we have lesser observations along the latitudinal direction,
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Figure 11. DAS-III(a): Isopleths (scaled by multiplying 1000) of the geopotential height for the
difference between the 18-h forecast using true initial conditions and the one using retrieved initial

condition after UWTRPOD 4-D Var.
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Figure 12. DAS-III(b) (5×2.5 Resolution): comparison of the performance of the iterative mini-
mization process of the scaled cost functional and the scaled norm of the gradient of the cost
functional for unweighted trust-region POD 4-D Var and full 4-D Var. (a) Scaled cost functional

and (b) scaled norm of the gradient.

i.e. instead of 72, have only 36 observations, which implies an observational resolution of 144×36.
Notice that the performance is not as severely impacted (see Figures 13(a) and (b)) as in earlier
results with 5×2.5 observational resolution. Based on the above two experiments, with observations
at 5×2.5 and 2.5×5 grid resolutions, though the cost functional and gradient norm could mini-
mized, as remarked for e.g. [66], such alternating sparsity of the observations affects the condition
number of the Hessian of cost functional, resulting in a poorly conditioned minimization problem.
Based on our results, we remark that the POD 4-D Var also suffers from the ill-conditioning as
the full 4-D Var for such an observational grid resolution.

In addition, we conducted another experiment where we retained observations of height field at
all grid points, whereas the wind components, u and v were observed as follows. The observations
for the winds fields were not available from 20◦ North/South to the North/South poles, that is, we
masked the observations for u and v fields near the poles. The decrease in scaled cost and gradient
norm are plotted in Figures 14(a) and (b), respectively. We note a comparable performance of the
TRPOD 4D-Var and the full 4D-Var. This example illustrates that the background error covariance
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Figure 13. DAS-III(c)(2.5×5 Resolution): comparison of the performance of the iterative
minimization process of the scaled cost functional and the scaled norm of the gradient of
the cost functional for unweighted trust-region POD 4-D Var and full 4-D Var: (a) Scaled

cost functional and (b) scaled norm of the gradient.
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Figure 14. DAS-III(d): 2.5×2.5 Resolution with incomplete observations for u and v wind fields from
20◦ north to north pole and 20◦ south to south pole and complete observations for geopotential field,
over entire globe. Comparison of the performance of the iterative minimization process of the scaled cost
functional and the scaled norm of the gradient of the cost functional for unweighted trust-region POD

4-D Var and full 4-D Var. (a) Scaled cost functional and (b) scaled norm of the gradient.

(Appendix A, Section A), which was implemented using geostrophic balance assumptions is
beneficial in POD 4-D Var case, just like it is for the full 4-D Var.

6. CONCLUSIONS

In this paper, we solved an inverse problem for the POD reduced order global shallow water
equations model using an FV formulation, controlling its initial conditions in the presence of
observations being assimilated in a time window. In this POD 4-D Var, we developed the full
adjoint of the FV-SWE and by projection we obtained the reduced order adjoint for POD reduced
order model. We integrated the full adjoint model backward in time to compute the time-varying
sensitivities of the full 4-D Var cost functional with respect to time-varying model states, from
which we derived the dual weights of the ensemble of snapshots. Also, we projected the gradient
of the full cost functional onto the gradient of the POD reduced order cost functional. Furthermore,
after the projection of full background error covariance matrix to low-dimensional reduced space,
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an ideal preconditioning of the POD 4-D Var was obtained so that the Hessian matrix of the POD
reduced order background error covariance matrix became the identity matrix.

In the numerical experiments, we set up two types of 4-D Var experiments, namely,
DAS-I without background terms and DAS-II with background terms. For both DAS-I and
DAS-II, we compared several variants of POD 4-D Var, namely unweighted ad hoc POD 4-D Var,
dual-weighted ad hoc POD 4-D Var, unweighted trust-region POD 4-D Var and dual-weighted
trust-region POD 4-D Var, respectively. We found that the ad hoc POD 4-D Var version yielded
the least reduction of the cost functional compared with the trust-region 4-D Var. We assume
that this result may be attributed to lack of feedbacks from the high-fidelity model. On the
other hand, the trust-region POD 4-D Var version yielded a sizably better reduction of the cost
functional, due to inherent properties of TRPOD allowing local minimizer of the full problem to
be attained by minimizing the TRPOD subproblem. Thus, trust-region 4-D Var resulted in global
convergence to the high-fidelity local minimum starting from any initial iterates. The experiments
carried out in DAS-III with incomplete observational data indicate that in the case of insufficient
data, the minimization is slower. Nevertheless many experiments with incomplete observations
show satisfactory performance of the POD reduced 4-D Var, indicating its robustness to lack of
observations.

The TRPOD approach for the optimal flow control problem can be viewed as a modification of
classical trust-region method with a non-quadratic POD model function. In our context, TRPOD
was thus implemented for FV-SWE model in order to obtain the robust global convergence based
on only a small number of POD basis function. The dual-weighted POD selection of snapshots
allows propagation of information from the data assimilation system onto the reduced order model,
possibly capturing lower energy modes that may play a significant role in successful implementation
of 4-D Var data assimilation. Combining the dual-weighted approach with the trust-region POD
approach to model reduction results in a significant enhanced benefit achieving a local minimum
of reduced cost function optimization almost identical to the one obtained by the high-fidelity full
4-D Var model. Hence we achieve a double benefit while running a reduced order inversion at an
acceptable computational cost, at least for the shallow water equation models in a two-dimensional
spatial domain. Therefore, the advantage of the dual-weighted TRPOD can be viewed as either the
economization of the full 4-D Var without sacrificing the global convergence or as the feasibility
of implementation of optimal control of a large dynamical models based on a relatively lower
dimensional POD control space.

In particular, we observed that a similar reduction in cost functional and RMSE could be
obtained using the POD 4-D Var method, such as the dual-weighted TRPOD compared to the full
4-D Var, but at a significantly less computational effort and reduced storage requirements (about
1/3 CPU-time less compared to full 4-D Var). These results indicate a potential for huge benefits
within operational 4-D Var data assimilation systems with state-of-the-art NWP models. In order
to obtain a drastic speed up of CPU time by at least an order of magnitude, we plan to explore
implementation of DEIM to exploit the full potential of the POD reduced order model in the
framework of dual-weighted TRPOD in our future research work.

APPENDIX A: FORMULATION OF BACKGROUND ERROR COVARIANCE TERMS

From Section 4.1, the cost functional is given by, J = Jb + Jo. A static-in-time B is constructed in
the grid point space as an operator, which is based on the formulation provided in [67] and [68].

Let 	x=x(t0)−xb, and define a transformation, v=B−1/2 	x, which implies that 	x=B1/2v.
Where the B1/2 is taken to be any square-root matrix, such that B=B1/2 BT/2; BT/2 denotes the
transpose of B1/2. Therefore the background cost functional can be rewritten as,

Jb = 1
2	xT B−1 	x= 1

2	xT (B1/2 BT/2)
−1

	x= 1
2 vT v.
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Hence, the contribution to the gradient of the cost functional, J from the background cost func-
tional is equal to ∇v Jb =v, and to the Hessian of the cost functional, ∇2

v Jb = I . At the beginning
of the minimization, v=	x=0, such that the initial guess for x(t0) is xb. This transformation
of variables preconditions the minimization problem for faster convergence of the minimization
algorithm. An ideal preconditioning is obtained if the Hessian matrix is an identity matrix. A good
approximation to this is to ensure that the Hessian of Jb is equal to I , which is indeed the case
here, since the minimization is performed in the v space. To summarize,

J = Jb + Jo = 1
2 [x(t0)−xb]

T
B−1[x(t0)−xb]+ Jo = 1

2 vT v+ Jo.

Therefore, the gradient of the cost functional with respect to v is given by,

∇v J =v+∇v Jo =v+BT/2 ∇x0 Jo.

Thus every minimization iteration requires application of B1/2 to obtain the analysis increment 	x
from v and BT/2 to get the gradient ∇vJo from ∇x0 Jo (which is computed by a single integration
of the adjoint model backward in time). As evident, we do not require inverse of B in the above
formulation.

The model variables (h,u,v) are partitioned into balanced and unbalanced components. The
so-called balancing operator, Kb acts on the unbalanced components of the model variables and
in turn, Kb =K′

b + I. Following [68], K′
b is formulated using the linear balance equations, based

on geostrophic balance (written in spherical coordinates) and hydrostatic hypothesis.
Geostrophic balance:

u = − 1

 f

[
1

a

�p

��

]
,

v = 1

 f

[
1

a cos�

�p

��

]
.

Hydrostatic hypothesis: p=gh.

Which implies,

u = − g

f

[
1

a

�h

��

]
,

v = g

f

[
1

a cos�

�h

��

]
.

Therefore,

Kb =K′
b + I =

⎛
⎜⎜⎜⎜⎜⎜⎝

I 0 0

− g

a f

�
��

I 0

g

a f cos�

�
��

0 I

⎞
⎟⎟⎟⎟⎟⎟⎠

which is a lower triangular matrix, since our control vector is of the form (h, u,v)T.

Remark
At the north and south poles, one-sided differences have been used for computing the above
derivative with respect to the latitude and at the equator, where �=�/2, we have used the average
values of the derivative (with respect to the longitude) from the two neighboring latitude circles,
above and below the equator.

Using the balance operator, we can write B=Kb Bu KT
b , where Bu is a block diagonal error

covariance matrix for the unbalanced component of the variables (see, [67]), which implies that the
cross-covariances between the unbalanced variables is taken to be negligible. Thus, Bu =Rb CRb,
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(a) (b)

Figure A1. Result obtained by operating with B on a single Dirac delta pulse in the height field (a),
isolines of the height field (b), geostrophic wind plotted along with the isolines of the height field.

where Rb is a block-diagonal matrix of the background error variances in the grid point space, such
that the diagonal entries represent error variances at every grid point (in this work, we prescribed
�b = [2000 I,100 I,100 I ]).

C is a symmetric matrix of background error correlations for the unbalanced component of the
variables. Assuming that C is block-diagonal, which is a valid assumption, since Bu has already
been assumed to be block-diagonal, we obtain the square-root factorization C=C1/2 CT/2.

Thus, the square-root factorization of the background error covariance can be written as,

B = Kb Bu KT
b =Kb (Rb CRb) K T

b =Kb (Rb C1/2 CT/2Rb)KT
b

= (KbRb C1/2) (CT/2Rb K T
b )

= B1/2 BT/2. (A1)

Notice that the above formulation ensures that B is symmetric and positive definite, both of these
properties are usually required to be satisfied by any preconditioning matrix. The analysis increment
is given by 	x=B1/2v=KbRb C1/2v. Since C is block-diagonal, the operation C1/2 v can be split
into individual operators C1/2

� v�, that act independently on different components of the variable
v, such as v�. For each variable, the univariate operator can be factorized into C� =C1/2

� CT/2
� .

The procedure suggested by Weaver and Courtier [67] and Derber and Bouttier [68] has been
implemented to model the univariate correlation operator has been implemented to model the
univariate correlation operator, C� as an isotropic diffusion operator, assuming Gaussianity with a
decorrelation length equal to 500km.

We considered height field which was comprised a single Dirac delta pulse located at equator
and longitude 180◦, and prescribed no wind field, the action of B on such a field is shown in
Figure A1(a). We see the effect of the correlation operator on the Dirac pulse and also on the
wind field obtained under geostrophic balance assumption (Figure A1(b)), which is parallel to
the isobars of the pressure. Since there is a high pressure at the center, the direction of the
wind is clockwise in the Northern hemisphere and anti-clockwise in the Southern hemisphere;
at the equator due to the balancing of the pressure gradient and Coriolis forces, the wind blows
straight.
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