
Tellus (2006), 58A, 456–460 Copyright C© Blackwell Munksgaard, 2006

Printed in Singapore. All rights reserved T E L L U S

A Note on the Particle Filter with Posterior
Gaussian Resampling

By X. XIONG 1, I . M. NAVON 1,2∗ and B. UZUNOGLU 1, 1School of Computational Science,
Florida State University, Tallahassee, FL 32306, USA; 2Department of Mathematics, Florida State University,

Tallahassee, FL 32306,USA

(Manuscript received 22 February 2005; in final form 6 February 2006)

ABSTRACT
Particle filter (PF) is a fully non-linear filter with Bayesian conditional probability estimation, compared here with
the well-known ensemble Kalman filter (EnKF). A Gaussian resampling (GR) method is proposed to generate the
posterior analysis ensemble in an effective and efficient way. The Lorenz model is used to test the proposed method.
The PF with Gaussian resampling (PFGR) can approximate more accurately the Bayesian analysis. The present work
demonstrates that the proposed PFGR possesses good stability and accuracy and is potentially applicable to large-scale
data assimilation problems.

1. Introduction

In recent years the ensemble filtering method has been the fo-
cus of increased interest in the meteorological community. The
ensemble Kalman Filter (EnKF) (see review by Evensen, 2003)
combines ensemble sampling and integration with Kalman filter-
ing method, providing an approximated least-square estimation
of underlying physical states based on Monte Carlo sampling
theory.

EnKF has been shown to be equivalent to the mean or max-
imal mode estimation of the posterior analysis under the as-
sumption of linearized dynamics and observations based on
Bayesian’s theory (see derivation by Cohn, 1997). It is well
known that, through direct evaluation of the Bayesian’s for-
mula at each prior sample point, a particle filter (PF) generates a
probability-weighted posterior sample. The evaluation does not
restrict the probability distribution of the prior sample and the
observation to be Gaussian. However, the probability weights
are computed based on the observation which normally has no
correlation with the dynamics. Therefore, the resulting weighted
sample is unlikely to provide an efficient sampling of a contin-
uous probability distribution like a standard Monte Carlo sam-
pling. In a sequential application the estimation error increases
as the filter applies at every step. A large enough estimation er-
ror can induce a so-called filter divergence or degeneracy prob-
lem, which refers to the fact that the ensemble sample diverges
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gradually from the true state and no longer produces a meaningful
forecast.

Although the PF showed varied degree of success, filter diver-
gence remains a major concern in realistic application of the PF.
Covariance inflation is the most common technique to stabilize
the PF(Anderson and Anderson, 1999; Whitaker and Hamill,
2002). Inflation factors are introduced to offset a tendency of
the ensemble forecast to become underdispersive. The cause of
such underdispersion can be attributed to a failure to adequately
represent model error, rank deficiency in the forecast error co-
variance model or misspecification of observation errors aspects
of the algorithm. One of the primary concerns regarding infla-
tion factors is that they do not address the root cause of ensemble
underdispersion—suboptimality in the filter. The inflation factor
as a tuning parameter is also model and observation dependent,
which can pose an extra layer of uncertainty in error sensitive
filter applications, for example, model error estimation. Other PF
relies on the intrinsic smoothing capability of the model where
the model noise and the non-linear interactions among the grow-
ing modes may produce enough chaotic behaviour to recover
lost degrees of freedom in PF(van Leeuwen, 2003).

This note proposes an a posteriori Gaussian resampling (GR)
method that aims to increase the stability of the PF and maintain
the ensemble spread, while allowing for a potential generaliza-
tion to higher-dimensional models. The rest of the paper is or-
ganized as follows: Section 2 introduces a PF with the posterior
Gaussian resampling (PFGR). Section 3 presents simulation re-
sults of a numerical test of the method using the Lorenz model
comparing PFGR and EnKF. Section 4 concludes the work and
discusses directions of future research effort.
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2. Particle Filter in Bayesian Framework

Dynamical evolution of discretized physical systems are de-
scribed by

xk = M(xk−1) + g(xk−1)εk−1, (1)

where xk represents the discretized true state of the system at time
tk,M is the evolution operator or propagator and g(x k−1)ε k−1

represents state-dependent model error. For a detailed expla-
nation of the discretization process and error term introduced,
please refer to Cohn (1997).

We have an estimate for the analysis probability distribution,

Pa(x |y) ≈ 1

nN

n∑
j=1

Po(y − H(η j ))δ(x − η j ), (2)

where η j , j = 1, . . . , n are the positions of the prior ensemble
members, x is the state variable at time tk with an observation
y at time tk and N is the normalization constant. The right-hand
side actually represents a probability-weighted ensemble with

Fig. 1. Results of data assimilation
experiments with EnKF and PFGR. System
variables x, y, z, reference solution,
observations and ensemble mean prediction.
160 observations within 40 s run time. Zero
model error variance. Measurements on x
only with observation variance 2.0.
Ensemble size 1000. The performance of
two filters is comparable, producing similar
number of spikes (mispredictions).

unnormalized weight Po(y − H(η j )) associated with each po-
sition η j . It is well known that a weighted sample is inefficient
compared with a true Monte Carlo sample in general. A resam-
pling method is needed to locally smooth the weighted sample
and recover a Monte Carlo or quasi-Monte Carlo sample. The
simplest way of drawing a random sample from the η j ’s based
on the associated weights does not work very well. The problem
is that high weighted points may be duplicated and low weighted
points may be lost in the stochastic drawing. After repeating the
integration and resampling for a few steps the effective ensemble
size reduces and the ensemble fails to remain a valid approxi-
mation to continuous analysis probability distribution Thus, the
filter would suffer from filter divergence problem because of
insufficiency of local smoothing.

In the following we propose the posterior GR method that gen-
erates the updated ensemble with estimated mean and variance
(2) computed from the distribution (2) in matrix form, which is
to find ξ i , i = 1, . . . , n so that

�ξ = ηMηT (3)
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η = [η1, η2, . . . , ηn] is a L × n matrix where L is the number of
system variables and n is the number of the ensemble members
and j is the ensemble member indices where �ξ represent the
the variance of ξ i ’s associated with each position η j . M is a
symmetric matrix with elements

M jk = f jδ jk − f j fk (4)

where fj’s are the normalized weights,

f j = Po(y − H(η j ))∑
j

Po(y − H(η j )
. (5)

In practice a large portion of fj’s are small enough to be ignored,
and only a subset of the ensemble members are summed over in
eq. (3).

In particular eq. (3) can be considered as a non-linear gener-
alization of the well-known Kalman filter analysis covariance.
In higher-order realistic systems, phase space dimension may be
much larger than the size of the ensemble.

M is a symmetric matrix that can be factorized with a singular
vector decomposition method,

M = V �V T . (6)

Then

�ξ = ξ ′ξ ′ T , (7)

with ξ ′ = ηV �1/2. The row dimension of ξ ′ is phase space
dimension. The column dimension of ξ ′ is m, which is smaller
than the prior ensemble size n due to the rank reduction of M with
some fj’s (5) being very close to zero. Now randomly generate a
m × n matrix X with all elements drawn from a one-dimensional
Gaussian sampling with mean zero and variance 1. Construct a
matrix ξ , such that

ξ = ξ ′ X + ξ̄ . (8)

The sample positions specified by the columns of ξ have an
estimated mean ξ̄ and variance �ξ , i.e.,∑

j

ξ j ≈ ξ̄ (9)

∑
j

ξ jξ
T
j ≈ �ξ . (10)

It can be verified with standard techniques that the estimation
error is proportional to 1/n�ξ , which decreases as the sample
size n increases. The X matrix adjusts the mean, and acts as a
smoothing factor. The updated sample is also an estimation of a
Gaussian distribution with desired mean and variance.

The GR method has some similarity with the ensemble trans-
form Kalman filter (ETKF) (Bishop et al., 2001). The ETKF
proposes a sampling method that preserves the mean and vari-
ance derived from the EnKF, which allows rapid generation of
posterior ensembles.

3. Numerical Experiments with the
Lorenz Model

Lorenz-63(Lorenz 1963) stochastic model, described by eqs.
(11), is used here to test the data assimilation performance of
the PFGR, with three parameters specified as follows: σ = 10.0,
ρ = 28.0 and β = 8/3.

dx = −σ (x − y)dt + gdw1,

dy = (ρx − y − xz)dt + gdw2,

dz = (xy − βz)dt + gdw3.

(11)

Model error variance per assimilation cycle can be adjusted as
the stochastic forcing coefficient g changes. The initial ensem-
ble is obtained as the perturbation of the true state (reference
solution), with a 3 × 3 diagonal error covariance matrix, diag
(2, 2, 2). The size of the ensemble is set to 1000 or 100 in the
experiments. Model error is not estimated but simulated as a
Gaussian random perturbation with variance varying from 0 to
10. The measurement is performed on the state variable x only.
Measurement data is obtained as a perturbation of the reference
solution at measurement times with variance 2.

Figure 1 compares data assimilation results from the PFGR
and the EnKF methods with 40 s run time and 800 time-steps. The
observation is measured on x available every 0.25 s. The model

error variance is 0. The ensemble size is 1000. The ensemble
mean is computed as the prediction. One of the characteris-
tics of the performance of the filter is the number of the spikes
(mispredictions) that appear in the ensemble mean curve. Both
filters yield similar performance and generally produce spikes

Table 1. Mean rms error of the ensemble mean as a function of the
model error variance for 1000- or 100-member EnKF and PFGR
assimilations of the Lorenz-63 system with measurement error variance
2.0.

1000-member
Model error EnKF mean rms PFGR mean rms

variance x y z x y z

0 2.16 3.49 3.49 1.69 2.71 2.87
2 2.29 3.75 3.81 2.20 3.56 3.55
4 2.40 3.87 3.73 2.15 3.46 3.28
6 3.00 4.95 4.89 2.40 3.90 3.85
8 2.67 4.40 4.17 2.33 3.85 3.21

10 3.55 5.67 5.32 2.56 4.22 4.17

0 2.03 3.27 3.23 1.64 2.65 2.77
2 2.34 3.84 3.87 2.22 3.60 3.68
4 2.51 4.06 3.98 2.23 3.59 3.59
6 3.09 5.15 5.02 2.26 3.79 3.68
8 2.61 4.31 4.11 3.28 5.08 4.57

10 3.46 5.75 5.54 2.95 4.85 4.67
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Fig. 2. Kernel density estimate of the prior and posterior probability density function integrated over z direction (upper row) and y direction (lower
row). Observation value x = −3.884. EnKF, PFGR and Bayesian Analysis. The prior and posterior ensemble data obtained from the same run as of
Fig. 1 at t = 34.5 s. The probability profiles of the EnKF and the PFGR posterior ensembles show similarity.

at the same time (e.g. after t = 31 s). Similar results are ob-
tained with the model error variance up to 10 and the ensemble
size 100.

A quantitative measure of the filter performance is the root-
mean-square (rms) error of the ensemble mean prediction of
the reference solution. Table 1 shows a comparison of the en-
semble mean prediction rms error between the PFGR and the
EnKF (Evensen, 1994) The EnKF used in the experiment in-
duces observation perturbation to avoid an underestimated anal-
ysed covariance (Bürger and Cane, 1994). More recent variants
use square root methods instead (Tippett et al., 2003; Evensen,
2003). The model error variance per assimilation cycle is set to
vary from 0 to 10, thus producing an increasing level of noise in
the dynamical integration. An interesting result obtained is that
the PFGR yields a lower mean-square error most of the time. In
practice the performance difference between two filters should
be discussed on a case by case situation. Many factors, such as
the dynamics, the observations, the ensemble size and so on,
could affect the performance of an ensemble filter.

Kernel density estimation technique (Silverman, 1986) can
be used for detailed investigation of the data assimilation perfor-
mance in the low dimension model, which basically constructs a
smooth probability function based on the Monte Carlo sample.
Figure 2 illustrates the estimated probability density functions
of the prior and posterior ensemble sample obtained by the ker-
nel density estimation technique. The level curves in the figure

represent the 2-D probability density with the third state variable
integrated out, that is,

∫
dz P(x, y, z) and

∫
dy P(x, y, z).

The prior sample is selected from the data at assimilation in-
stant of a particular data assimilation run. With the same prior
sample and the measurement value x = −3.884, the posterior
sample probability density estimation by EnKF, PFGR and direct
Bayesian calculation are shown, respectively. The prior sample
probability density function shows typical non-Gaussian char-
acteristics, which is expected for the highly non-linear dynam-
ics of the Lorenz model. The most outer surrounding curve
and the small circles represent small probability density (less
than 10 %). Direct computation through Bayesian analysis for-
mula indicates that the region with the small prior probabil-
ity density could be emphasized and yields larger likelihood.
Both the EnKF and the PFGR can produce good posterior
Gaussian estimation with the mean consistent with the Bayesian
computation.

4. Conclusion

The PFGR yields satisfactory results when tested in the frame-
work of a low dimension Lorenz model. The most computa-
tionally expensive part involves the singular decomposition of a
matrix with dimensions of the ensemble sample size. The EnKF
(Evensen, 2004; Zupanski, 2004) is also subject to similar com-
putational constraints. It seems likely that the GRPF approach,
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however, would not solve the problems of long-distance spuri-
ous error correlations issue associated small ensemble size seen
in EnKFs.

The GR procedure, eq. (8), can lead to sampling errors when
a smaller size (say n = 100) is used. A possible solution is
to use the method put forward by (Evensen, 2004), in which the
eigenvectors of a larger Gaussian matrix are chosen. Specifically,
one can enlarge the matrix X in eq. (8) to a m × βn matrix, and
then perform SVD on the product ξ ′ X and retain only leading n
singular vectors.

It suffices to illustrate the difference between the better-known
SIR methods (Anderson and Anderson, 1999; van Leeuwen,
2003; Kivman, 2003) and the GR. Both the SIR and the GR are
resampling procedures applied to the posterior sample of the PF.
The SIR and its variants attempt to capture non-Gaussian char-
acteristics reflected in the posterior weighted-probability dis-
tribution with or without an extra reweighting to smooth out
the posterior sample. While the SIR and its variants are not
subject to Gaussian assumption on posterior analysis probabil-
ity distribution, the price paid is either a more complicated al-
gorithm or a less smoothed posterior ensemble. For example,
the SIR variant (van Leeuwen, 2003) replicates large weighted
members and generates small weighted members stochastically.
The posterior ensemble is not smoothed by reweighting and
the small weighted members may be ignored because of low
probability.
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