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ABSTRACT: The Maximum Likelihood Ensemble Filter (MLEF) equations are derived without the differentiability
requirement for the prediction model and for the observation operators. The derivation reveals that a new non-differentiable
minimization method can be defined as a generalization of the gradient-based unconstrained methods, such as the
preconditioned conjugate-gradient and quasi-Newton methods. In the new minimization algorithm the vector of first-order
increments of the cost function is defined as a generalized gradient, while the symmetric matrix of second-order increments
of the cost function is defined as a generalized Hessian matrix. In the case of differentiable observation operators, the
minimization algorithm reduces to the standard gradient-based form.

The non-differentiable aspect of the MLEF algorithm is illustrated in an example with one-dimensional Burgers model
and simulated observations. The MLEF algorithm has a robust performance, producing satisfactory results for tested
non-differentiable observation operators. Copyright  2008 Royal Meteorological Society
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1. Introduction

The maximum likelihood ensemble filter (MLEF) is an
ensemble data assimilation algorithm based on control
theory (Zupanski, 2005; Zupanski and Zupanski, 2006).
The MLEF is a posterior maximum likelihood approach,
in a sense that it calculates the optimal state as the max-
imum of the probability density function (PDF), while
most of the ensemble data assimilation methodologies
used in meteorology and oceanography are based on
the minimum variance approach (e.g. Evensen, 1994;
Houtekamer and Mitchell, 1998; Bishop et al., 2001;
Whitaker and Hamill, 2002; Anderson, 2003; Ott et al.,
2004). The maximum of the PDF is found by an iter-
ative minimization of the cost function derived from a
multivariate posterior PDF. The iterative minimization is
an important component of the MLEF since it provides
practical means for finding the nonlinear analysis solu-
tion. The process of minimization produces both the most
likely state and associated uncertainty.

The MLEF was successfully tested in applications
with various weather prediction and related models, such
as the Korteweg–de Vries–Burgers model (Zupanski,
2005; Zupanski and Zupanski, 2006), the Colorado State
University (CSU) global shallow-water model (Zupanski
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et al., 2006; Uzunoglu et al., 2007), the Large-Eddy Sim-
ulation (LES) model (Carrio et al., 2008), the National
Aeronautics and Space Administration GEOS-5 column
precipitation model (Zupanski et al., 2007b), and the
CSU Lagrangian Particle Dispersion Model (LPDM)
(Zupanski et al., 2007a). In all those applications, a non-
linear conjugate-gradient method (e.g. Gill et al., 1981)
was used for minimization of the cost function. As with
all other unconstrained gradient-based minimization algo-
rithms, the nonlinear conjugate-gradient method requires
the cost function to be at least twice differentiable. The
first derivative of the cost function is required for the
gradient, and the second derivative, or its approximation,
is required for the Hessian preconditioning.

Unfortunately, the differentiability requirement is not
necessarily satisfied in applications to realistic problems.
In particular, the physical processes related to clouds and
precipitation typically include non-differentiable opera-
tors. For example, it is known that cumulus convection
parametrization in weather and climate introduces a sig-
nificant discontinuity in the first and higher-order deriva-
tives (e.g. Verlinde and Cotton, 1993; Zupanski, 1993;
Tsuyuki, 1997; Xu and Gao, 1999; Zhang et al., 2000). A
similar discontinuity problem can be identified for obser-
vation operators as well. In satellite radiance assimilation,
for example, a forward model for all-weather conditions
is a non-differentiable observation operator. This follows
from the fact that, depending on the value of the state
vector (i.e. cloudy or clear), various forms of the forward
operator will be chosen. For example, the cloud property

Copyright  2008 Royal Meteorological Society
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model and the gas extinction model are only included
in the presence of clouds, leading to different formula-
tions of the forward operator in the presence of clouds
and without clouds (Greenwald et al., 2002). Other non-
differentiable operator examples can be found whenever
a weather regime defined by the state vector defines dif-
ferent forms of the observation operator.

Common methods for solving non-differentiable (non-
smooth) minimization are based on sub-differentials and
bundle algorithms (Clarke, 1983; Lemarechal and Zowe,
1994; Nesterov, 2005). Bundle algorithms were tested
in optimal control problems of flow with discontinuities
(Homescu and Navon, 2003) using the PVAR software
(Luksan and Vlcek, 2001), and also in variational data
assimilation (Zhang et al., 2000) using the bundle algo-
rithm of Lemarechal (1977). An explicit knowledge of
the minimization space (e.g. its basis or span-vectors),
known in ensemble data assimilation, creates an oppor-
tunity to exploit alternative means for non-differentiable
minimization without the need to define gradients, sub-
gradients, or their approximations. Such an approach will
be pursued here.

In this paper we address the differentiability require-
ment for the cost function by presenting an alternative
derivation of the MLEF. For the first time, the valid-
ity of the Taylor series expansion is not assumed, thus
the differentiability of the cost function is not required.
Since no limitation of using the first- or second-order
Taylor formula approximation is imposed, the analysis
and forecast ensemble perturbations are not restricted to
be small. Under these relaxed conditions, the MLEF is
formulated as a nonlinear filtering algorithm that allows
non-differentiable models and observation operators.

An important consequence of this derivation is that the
optimization algorithm used within the MLEF can be now
viewed as a non-differentiable minimization algorithm.
For differentiable functions the minimization reduces
to standard gradient-based algorithms, with an implicit
Hessian preconditioning. In particular, the MLEF algo-
rithm is presented as a non-differentiable generalization
of the nonlinear conjugate-gradient and the BFGS quasi-
Newton algorithms (Gill et al., 1981; Luenberger, 1984).
In order to illustrate the potential of the non-differentiable
minimization used in the MLEF, a one-dimensional Burg-
ers model simulating a shock wave is employed. Unlike
in previous MLEF applications, we include a challenging
non-differentiable observation operator with discontinu-
ities in the function and in all its derivatives.

The paper is organized as follows. The new MLEF
derivation under relaxed conditions is presented in section
2. In section 3 we describe the experimental design,
model and observations. The results are presented in
section 4, and the conclusions are drawn in section 5.

2. Non-differentiable MLEF formulation

Let the state space be denoted � ∈ �NS , where NS

denotes its dimension, and let x ∈ � be a state vector. We

refer to the set of state vectors {xi ∈ �; (i = 1, . . . , NE)}
as ensembles, and to the space Ɛ ∈ �NE of dimension NE

as an ensemble space.
In order to begin ensemble data assimilation, the initial

state vector and its uncertainty need to be specified.
Let the initial state vector be denoted x0, and let the
initial NS × NE square-root error covariance be denoted
P1/2

0 : Ɛ → � with columns {p0
i ∈ �; (i = 1, . . . , NE)}.

The initial state vector and the initial square-root error
covariance define a set of initial conditions

x0
i = x0 + p0

i ; (i = 1, . . . , NE). (1)

2.1. Prediction

The predictive step of the MLEF (and any other filter)
addresses the means of transporting the uncertainty
span-vectors from the current analysis time to the next
analysis time. A nonlinear dynamical model M : � → �
transports the state vector according to

xt = M(xt−1), (2)

where t − 1 and t refer to the current and the next
analysis times, respectively. Note that the model error
is neglected in Equation (2) to simplify the derivation.
In order to keep the notation manageable, we omit the
time index in the remainder of the paper, unless suggested
otherwise. The forecast increment resulting from the ith
analysis increment is

�ixf = xf
i − xf = M(xa

i ) − M(xa)

= M(xa + pa
i ) − M(xa), (3)

where the superscripts a and f refer to analysis and fore-
cast, respectively. The vectors {pa

i ∈ �; (i = 1, . . . , NE)}
represent the columns of the square-root analysis error
covariance. After defining pf

i = �ixf, the square-root
forecast error covariance is

P1/2
f = [pf

1, pf
2, . . . , pf

NE
];

pf
i = M(xa + pa

i ) − M(xa), (4)

where P1/2
f : Ɛ → � is a NS × NE matrix with columns

{pf
i ∈ �; (i = 1, . . . , NE)}.
Equation (3) represents the transport of uncertainty

span-vectors in time by nonlinear model dynamics. The
MLEF forecast step allows the nonlinear model operator
and large analysis increments to be included without
typical restrictions, such as linearity and differentiability.
For small analysis increments, however, the forecast-error
covariance formulation (4) reveals that the forecast step
of the MLEF is closely related to the Kalman filters (e.g.
Jazwinski, 1970), and to the SEEK filter (Pham et al.,
1998; Rozier et al., 2007).
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2.2. Analysis

The analysis is corrected in the subspace defined by
the forecast-error covariance matrix (Jazwinski, 1970).
Using Equation (4) one can define the analysis correction
subspace

� = span{pf
1, pf

2, . . . , pf
NE

}; � ⊆ �. (5)

Then, an arbitrary vector x − xf ∈ � can be expressed as
a linear combination

x − xf = w1pf
1 + w2pf

2 + · · · + wNE
pf

NE
= P1/2

f w;
w = (w1, w2, . . . , wNE

)T ∈ Ɛ. (6)

The transformation (6) links the analysis correction sub-
space with the ensemble space, and shows that P1/2

f :
Ɛ → �.

Until now, the differentiability of the dynamical model
M was not required, and no specific assumption about the
probability distribution of the analysis or forecast incre-
ments was necessary. In the analysis, however, some
assumptions will be required. Often assumed, as done
here, is that probability distribution of the initial condi-
tions errors and the observation errors are Gaussian. The
novelty is that a commonly used differentiability assump-
tion will be relaxed, thus a more general formulation of
the MLEF analysis solution will be derived. Note that it
is possible to relax the Gaussian assumption and develop
a non-Gaussian data assimilation framework (e.g. van
Leeuwen, 2003; Abramov and Majda, 2004; Haven et al.,
2005; Fletcher and Zupanski, 2006a,b), but this will not
be pursued here in order to simplify the presentation.

2.3.1. Cost function

In the MLEF, the optimal set of coefficients {wi : i =
1, . . . , NE} is obtained by maximizing the posterior
conditional probability. In practice this is achieved by
an iterative minimization of a cost function (e.g. Lorenc,
1986)

J (x) = 1

2
(x − xf)TP−1

f (x − xf)

+ 1

2
[y − H(x)]TR−1[y − H(x)], (7)

where R : Ɔ → Ɔ is the observation error covariance,
Ɔ ∈ �NO is the observation space, NO is the dimension
of Ɔ, y ∈ Ɔ is the observation vector, and H : � → Ɔ is
a nonlinear and/or non-differentiable observation opera-
tor. Since the matrix Pf is defined using ensemble forecast
increments, the minimization of the cost function will
involve a search in the analysis correction subspace �.

Let consider an increment of the cost function,
�J(x) = J (x + �x) − J (x), for �x ∈ �. In principle,

the minimization of �J(x) is equivalent to minimiz-
ing J (x) (e.g. Luenberger, 1984). Direct substitution of
x + �x in Equation (7) results in

J (x + �x) = J (x) + (�x)TP−1
f (x − xf)

− [H(x + �x) − H(x)]TR−1[y − H(x)]

+ 1

2
(�x)TP−1

f (�x)

+ 1

2
[H(x+�x)−H(x)]TR−1[H(x+�x)−H(x)]. (8)

Note that for differentiable operator H , the expansion
(8) reduces to

J (x + �x) = J (x) + (�x)TP−1
f (x − xf)

− (�x)T
[
∂H

∂x

]T

R−1[y − H(x)]

+ 1

2
(�x)TP−1

f (�x)

+ 1

2
(�x)T

[
∂H

∂x

]T

R−1
[
∂H

∂x

]
(�x)

+ O(||�x||3), (9)

which is equivalent to a second-order Taylor series expan-
sion of J (x) in the vicinity of x. One can note that the
Taylor expansion (9) has a remainder O(||�x||3), due
to neglecting the higher-order nonlinear terms (where
|| . . . || denotes a norm). On the other hand, the expan-
sion (8) does not have a remainder since the use of total
increments accounts for all higher-order nonlinear terms.
Therefore, formula (8) may be viewed as a generalization
of the Taylor expansion of J . This apparent similarity
can be used to define a generalization of the gradient
vector and the Hessian matrix that could be used in min-
imization, to include the nonlinear and non-differentiable
operator H .

Since the analysis correction subspace � is already
defined (Equation (5)), the increments �x in the direction
of known span-vectors �ixf = {pf

i ∈ �, i = 1, . . . , NE}
are considered. By comparing Equations (8) and (9), one
can identify the ith component of a generalized first
derivative of J , denoted ∇iJ ,

∇iJ (x) = (�ixf)TP−1
f (x − xf )

− [H(x + �ixf) − H(x)]TR−1[y − H(x)] (10)

and the (i,j )th element of a generalized second derivative
of J , denoted ∇2

i,j J ,

∇2
i,j J (x) = (�ixf)TP−1

f (�j xf)

+ [H(x + �ixf) − H(x)]TR−1[H(x + �j xf) − H(x)],

(11)
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where {∇2
i,j = ∇i (∇j ) : i, j ≤ NE}. If we define an

NO × NE observation perturbation matrix, Z : � → Ɔ

Z(x) = [z1(x), z2(x), . . . , zNE
(x)];

zi(x) = R−1/2[H(x + pf
i ) − H(x)], (12)

the generalized first and second derivatives are

∇GJ (x) = P−1/2
f (x − xf)

− (Z(x))TR−1/2[y − H(x)], (13)

∇2
GJ (x) = I + (Z(x))TZ(x). (14)

Note that the generalized first derivative is a NE-
dimensional vector, and the generalized second derivative
is a NE × NE matrix, i.e. both are defined in ensemble
space Ɛ. Equations (13) and (14) are not approxima-
tions to the true derivatives since all nonlinear terms
are included in the matrix Z(x). In the absence of
better terminology, the term ‘derivative’ is used only
to indicate that for differentiable cost function and for
small perturbations pf

i , Equations (13) and (14) would
reduce to finite-difference approximations of directional
derivatives.

The similarity of the generalized gradient (Equa-
tion (13)) with the generalized gradient in the subgra-
dient method (e.g. Zhang et al., 2000), [∂J (x)]T�ixf,
reveals that the formulation adopted here does satisfy
the requirement for the subgradient, i.e. J (x + �ixf) ≥
J (x) + [∇GJ (x)]i since ∇2

GJ (x) ≥ 0 for all �ixf ∈ �.
However, in our formulation the increments �ixf are
included in the nonlinear perturbation of the observation
operator through Equation (12), and thus cannot be sep-
arated into the subgradient and the perturbation. In other
words, our method includes the minimization space span
(or basis) vectors as inseparable components of the gen-
eralized derivatives definition.

Since the MLEF formulation employs forward finite
differences (i.e. increments), it is interesting to com-
pare the MLEF derivatives (Equations (13)–(14)) with
the finite-difference approximations of directional deriva-
tives. For example, the finite-difference representation of
the first derivative in the direction �ix is J (x + �ix) −
J (x). Since the finite-difference approximation to deriva-
tives is a linear approximation, the critical requirement
for the finite-difference approximation is that the per-
turbation �ix is small (Wang et al., 1995). If this is
satisfied, one can see that there is equivalence between
the first derivative in the MLEF formulation, the finite-
difference approximation to first derivative, and the exact
first derivative (if it exists). For large perturbations, how-
ever, there is no equivalence between these various for-
mulations of first derivative. This is exactly the situation
in which the MLEF is expected to perform well, since
it does not include any restrictions regarding the size of
perturbations. For the second derivative there is also a
similar equivalence for very small perturbations, but no

equivalence for large perturbations. Therefore, in gen-
eral the MLEF is not equivalent to the finite-difference
approximation to derivatives. Only for small perturba-
tions, when linear approximations are valid, the MLEF
formulation is conveniently reduced to standard direc-
tional derivatives, including the finite-difference approx-
imation.

2.3.2. Generalized Hessian preconditioning

A common starting point of minimization is the state
vector x = xf (corresponding to w = 0 in Equation (6)),
since it represents the best knowledge of the dynamical
state prior to taking into account the observations. Since
the optimal preconditioning is defined as an inverse
square-root Hessian matrix (e.g. Axelsson and Barker,
1984), one can utilize Equation (14) to define Hessian
preconditioning as a change of variable

w = [∇2
GJ (xf)]−1/2ζ

= [I + (Z(xf))TZ(xf)]−1/2ζ, (15)

where ζ ∈ Ɛ is the control vector of dimension NE ,
and Z(xf) is obtained by substituting x = xf in Equa-
tion (12). As explained in Zupanski (2005), and equiv-
alent to the procedure used in the ensemble transform
Kalman filter (ETKF; Bishop et al., 2001), one can per-
form an eigenvalue decomposition of ∇2

GJ (xf) to obtain
[∇2

GJ (xf)]−1/2 = V(I + �)−1/2VT, where V is the eigen-
vector matrix and � is the eigenvalue matrix of ∇2

GJ (xf).
Note that the MLEF transformation calculates a sym-
metric square-root matrix, corresponding to the ETKF
transform with simplex improvement (Wang et al., 2004;
Wei et al., 2006).

By combining Equations (6) and (15), one obtains the
generalized Hessian preconditioning in state space, in the
form of the change of variable

x − xf = G1/2ζ ;
G1/2 = P1/2

f [I + (Z(xf))TZ(xf)]−1/2. (16)

The matrix G1/2 : Ɛ → � is a NS × NE matrix, and it
represents the inverse of the square-root generalized Hes-
sian matrix estimated at the initial point of minimization.

Once the Hessian preconditioning is accomplished, one
can begin with calculation of preconditioned general-
ized gradients. An iterative minimization produces ζk

at iteration k according to ζk = ζk−1 + αk−1dk−1, where
αk−1 ∈ �1 and dk−1 ∈ Ɛ are the step-length and the
descent direction at the (k − 1)th iteration, respectively.
Using the change of variable (16), the state vector at kth
minimization iteration is related to the control vector as

xk = xf + G1/2ζk (17)
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The preconditioned generalized gradient at the kth
minimization iteration is obtained by employing the Hes-
sian preconditioning formulation (16) and evaluating (13)
at xk

∇GJ (xk) = [I + (Z(xf))TZ(xf)]−1ζk

− (Z(xk))
TR−1/2[y − H(xk)], (18)

where Z(xk) is obtained by substituting x = xk in Equa-
tion (12).

2.3.3. Analysis error covariance

In order to complete the non-differentiable formulation of
the MLEF, an analysis (e.g. posterior) error covariance
matrix, quantifying the uncertainties of the analysis, is
required. The equivalence between the inverse Hessian at
the optimal point and the posterior error covariance (e.g.
Fisher and Courtier, 1995; Veersé, 1999) is exploited in
the MLEF algorithm. More detailed examination of the
relation between the inverse Hessian and analysis error
covariance in nonlinear problems can be found in Gejadze
et al., (2007). Since the generalized Hessian in ensemble
space is given by Equation (16), the analysis (posterior)
error covariance in ensemble space is defined as

(Pw)a = (∇2
GJ (xa))−1

= [I + (Z(xa))TZ(xa)]−1, (19)

where Z(xa) is obtained by substituting x = xa in Equa-
tion (12). The analysis error covariance in state space
can be obtained by utilizing the change of variable (6) to
define the true and optimal state vectors, xt and xa, as
xt − xf = P1/2

f wt and xa − xf = P1/2
f wa, where wt and wa

are the true and optimal control vectors in ensemble
space, respectively. Then, the error of the state vector
is related to the error of the control vector in ensemble
space according to

xa − xt = P1/2
f (wa − wt). (20)

By taking the mathematical expectation of an outer
product of (20), and utilizing (19), one obtains the
analysis error covariance in state space

Pa = P1/2
f [I + (Z(xa))TZ(xa)]−1PT/2

f (21)

As suggested in section 2.2, the columns of the
square-root analysis error covariance, denoted P1/2

a , are
used to define the initial perturbations for the ensemble
forecast. Then, the matrix P1/2

a can be written in a column
form as

P1/2
a = [pa

1, pa
2, . . . , pa

NE
];

pa
i =

(
P1/2

f

[
I + (Z(xa))TZ(xa)

]−1/2
)

i
(22)

The matrix P1/2
a is a NS × NE matrix. In principle, instead

of the relation (19) for the inverse generalized Hessian in

ensemble space, one could use the BFGS inverse Hessian
update (e.g. Veerse, 1999), or some other estimate of the
inverse Hessian at the optimal point (e.g. Gejadze et al.,
2007). The expression (19) is currently used in the MLEF
algorithm.

3. Non-differentiable minimization algorithms

In this section, two non-differentiable minimization algo-
rithms generalized using the derivation from section 2
will be formulated. The first algorithm is the gener-
alized nonlinear conjugate-gradient minimization algo-
rithm, presented for both the Fletcher–Reeves and the
Polak–Ribiere formulations (e.g. Luenberger, 1984).

Algorithm 1
(Generalized nonlinear conjugate-gradient)
Choose starting point x0 = xf ⇔ ζ0 = 0
and define d0 = −(∇GJ )0 = −∇GJ (x0);
k ← 0;

repeat

• Compute (∇GJ )k+1 = ∇GJ (xk+1);
• Set dk+1 = −(∇GJ )k+1 + βkdk,

where βk = (∇GJ )T
k+1(∇GJ )k+1

(∇GJ )T
k (∇GJ )k

(Fletcher–Reeves), or

[(∇GJ )k+1 − (∇GJ )k]T(∇GJ )k+1

(∇GJ )T
k (∇GJ )k

(Polak–Ribiere)

• Update ζk+1 = ζk + αkdk and xk+1 = xf + G1/2ζk+1,
where αk minimizes J (xf + G1/2ζk+1)

until convergence.

The second minimization algorithm is the general-
ized BFGS quasi-Newton algorithm developed from the
differentiable form (Nocedal, 1980; Liu and Nocedal,
1989). The limited-memory formulation is a straightfor-
ward extension, obtained by discarding some terms in the
inverse Hessian (e.g. Nocedal and Wright, 1999).

Algorithm 2
(Generalized quasi-Newton)
Choose starting point x0 = xf ⇔ ζ0 = 0
and define d0 = −(∇GJ )0 = −∇GJ (x0);
k ← 0;

repeat

• Compute (∇GJ )k+1 = ∇GJ (xk+1);
• Set sk = ζk+1 − ζk and yk = (∇GJ )k+1 − (∇GJ )k;
• Set ρk = 1/yT

k sk and υk = (I − ρkyksT
k );

• Compute

Hk+1 = υT
k υT

k−1 · · · υT
0 υ0 · · · υk−1υk

+ υT
k υT

k−1 · · · υT
1 ρ0s0sT

0 υ1 · · · υk−1υk + · · ·
+ υT

k ρk−1sk−1sT
k−1υk + ρksksT

k ;
• Set dk+1 = −Hk+1(∇GJ )k+1;
• Update ζk+1 = ζk + αkdk and xk+1 = xf + G1/2ζk+1,
where αk minimizes J (xf + G1/2ζk+1);

until convergence.

The above minimization algorithms show that the
MLEF could be used as a stand-alone non-differentiable
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minimization algorithm in applications other than ensem-
ble data assimilation. In principle, there are two possible
means to perform minimization using the MLEF: (i) if
relevant directions are known, the MLEF can be used as
a reduced-rank minimization algorithm in the subspace
spanned by relevant directions, and (ii) if relevant direc-
tions are not known, one can define a basis representing
the full space and use it to perform a regular, full-rank
minimization with MLEF. If there are means to define
the set of relevant directions, computational savings due
to the reduced-rank formulation would make this option
advantageous. On the other hand, the full-rank option (ii)
is a straightforward extension of the standard conjugate-
gradient and quasi-Newton algorithms, thus it may be
easier to apply in principle. In this paper we chose the
option (i), since the columns of the square-root forecast-
error covariance represent relevant directions.

In the above formulations we did not specify the
line-search algorithm. Although this is an important
aspect of non-differentiable minimization, in our current
implementation a simple line-search method is used (e.g.
Derber, 1989), which involves one function evaluation
per minimization iteration. The same line-search method
was used in all experiments.

The computational cost of the MLEF minimization is
NE + 2 function evaluations per minimization iteration.
This estimate includes the gradient and the Hessian calcu-
lations. The computational cost increases almost linearly
with the number of ensembles. As for other ensemble
data assimilation algorithms, parallel processing can sig-
nificantly increase the speed of the MLEF minimization
since the communication between processors is almost
negligible.

On the other hand, the computational cost of the
gradient-based minimization depends mostly on the cost
of the gradient calculation. In our implementation of the
gradient-based method, the cost per iteration is 2NE + 2,
i.e. about two times more than the MLEF cost. In mete-
orological applications, the adjoint model (e.g. LeDimet
and Talagrand, 1986) is typically used to compute the
gradient. Its cost per iteration is about 2–5 function
evaluations, depending on the complexity of the oper-
ator. This means that the cost per iteration minimiza-
tion is 4–7 function evaluations. In typical operational
meteorological applications (without the Hessian calcu-
lation) there are about 60–80 minimization iterations,
making the cost of minimization about 300–500 func-
tion evaluations. For similar complexity of the problem,
the MLEF minimization requires only one minimization
iteration. This approximate calculation makes the cost of
the gradient-based and MLEF minimization similar for
the ensemble size of 300–500. With Hessian calculation
included, the number of iterations would be smaller, but
the total cost would likely increase. One should keep
in mind, however, that the actual cost would strongly
depend on the complexity of the problem and on the
computational capabilities.

4. Experimental design and results

Two nonlinear observation operators will be tested, a
quadratic and a cubic operator. In addition, each of
the operators will have a differentiable and a non-
differentiable form. The differentiable observation oper-
ators are defined as

(a) H(x) = x2; (b) H(x) = x3, (23)

while the corresponding non-differentiable observation
operators are defined as

(a) H(x) =
{

x2 f or x ≥ 0.5
−x2 f or x < 0.5;

(b) H(x) =
{

x3 f or x ≥ 0.5
−x3 f or x < 0.5

. (24)

The non-differentiable operators given by
Equation (24) are shown in Figure 1. Although they may
appear relatively simple, both observation operators do
have discontinuities in the function and its derivatives. It
is interesting to note that the quadratic non-differentiable
operator has a more pronounced discontinuity than the
cubic operator. This makes the use of quadratic non-
differentiable operator more challenging for minimiza-
tion. The opposite is expected for differentiable operators,
since the quadratic operator is less nonlinear than the
cubic operator.

The prediction model we use is the one-dimensional
Burgers equation (Burgers, 1948)

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2 , (25)

where ν is a viscosity coefficient and u is the veloc-
ity. This equation is often used in fluid dynamics for
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0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1

X

Figure 1. Non-differentiable observation operators: (a) quadratic (full
line) and (b) cubic (dashed line). The discontinuous point at x = 0.5
represents a discontinuity in the function and its first and second

derivatives.
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simulation of nonlinear waves, shock formation, and tur-
bulence. Equation (25) is solved numerically using cen-
tred space differences and Lax–Wendroff time integrat-
ing scheme (Fletcher, 1991). In this paper we use the
Burgers equation to simulate a propagating shock wave
(Akella and Navon, 2006). The dimension of the state
vector is 81.

We conduct a twin model experiment, in which the
prediction from one set of initial conditions is defined as
‘truth’ (denoted TRUE), while the prediction from a dif-
ferent set of initial conditions is defined as ‘experimental’
(denoted EXP). In our case the EXP initial conditions
are defined as a 40-time-step old TRUE forecast. The
TRUE and EXP initial conditions are shown in Figure 2.
The figure indicates that the velocity values are typically
between 0 and 1, and that the forecast lag is about 20 grid
points. Also, one can notice a steep velocity gradient that
is simulating a shock wave. The observations are created
by adding Gaussian random perturbation to the TRUE
model first guess, H(xtrue), with zero mean and standard
deviations of 8.0 × 10−2 (when using the quadratic obser-
vation operator), and 7.0 × 10−4(when using the cubic
observation operator). Random perturbations are added at
each grid point, implying that there are 81 observations.
The time frequency of observations is 20 model time
steps, which also defines the length of data assimilation
cycle. We create observations during 20 data assimilation
cycles, but most relevant adjustments happen during the
first 5–10 data assimilation cycles.

All data assimilation experiments are done with 4
ensemble members, without error covariance localiza-
tion and/or inflation. The initial ensemble perturbations
are defined using lagged (time-shifted) forecasts that
correspond to the EXP model run, centred about the
initial time of the data assimilation cycle No.1. This
approach employs the so-called ergodic hypothesis, in
which the time differences are used to represent the spa-
tial differences. This initial set-up creates dynamically

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

1 11 21 31 41 51 61 71 81

Grid Points

Figure 2. The ‘truth’ (TRUE) and the ‘experimental’ (EXP) initial
conditions before data assimilation. The true state (dashed line) was
used to initiate the true forecast from which the observations are
created, while the initial conditions in the experiment are defined as a
20-point shift of the truth (solid line), obtained as a lagged forecast.

balanced perturbations, thus less noisy initial error covari-
ance. In all other data assimilation cycles, the ensemble
perturbations are updated using Equation (22).

In order to test the non-differentiable and/or nonlinear
minimization performance, for each of the two observa-
tion operators we conduct two data assimilation exper-
iments using the Fletcher–Reeves nonlinear conjugate-
gradient algorithm described in previous section: (i) with
generalized Hessian preconditioning and generalized gra-
dient (Equations (16) and (18), respectively), and (ii)
with regular derivatives. The first experiment is denoted
MLEF, since this is the standard form of the MLEF algo-
rithm, and the second experiment is denoted GRAD to
reflect its gradient-based characteristics. The regular (e.g.,
GRAD) derivatives are obtained by employing a linear
approximation

H(x + pf
i) − H(x) ≈

(
∂H

∂x

)
pf

i

in the definition of the observation perturbation matrix
(Equation (12)), i.e. by using

zi(x) = R−1/2
(

∂H

∂x

)
pf

i

in Equations (16) and (18).
The difference between the observation operator gra-

dients in the MLEF and the GRAD formulations comes
from the higher-order terms in Taylor expansion, assum-
ing that the function H(x) is differentiable. Let consider
the cubic observation operator (Equation (23b)) as an
example. By direct substitution, one can see that the dif-
ference between the MLEF and the GRAD formulations
is 3x(pf

i )
2 + (pf

i )
3. For nonlinear problems, the perturba-

tion pf
i can be large, thus making the difference between

the gradients large. The difference becomes even more
relevant for non-differentiable operators near the discon-
tinuous point. Let consider an example with x = 0.4 and
pf

i = 1.0 (such that the perturbed operator crosses the dis-
continuity), again using the cubic observation operator as
an example. Following from the above considerations and
from Equation (24b), the MLEF gradient at point x = 0.4
is equal to

H(x + pf
i ) − H(x) = (0.4 + 1.0)3 − (0.4)3 = 2.68,

while the GRAD gradient is equal to

(
∂H

∂x

)
pf

i = −3x2pf
i = −(0.4)2 × 1.0 = −0.16.

This implies that the MLEF and the GRAD would have
gradients in the opposite directions!

The experimental results will indicate which of the
two formulations has an advantage. Before we show
the results, however, it should be noted that for the
cubic observation operator, the maximum allowed size
of the control variable adjustment had to be restricted
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in the GRAD experiment, in order to prevent the min-
imization divergence. In the MLEF minimization this
was not necessary, presumably because the algorithm
is not relying on small perturbations of the Taylor
expansion.

4.1. Non-differentiable observation operator

The results of the two algorithms over all 20 data
assimilation cycles, using non-differentiable observation
operators (Equation (24)), are presented in terms of the
analysis root-mean-squared (RMS) errors in Figure 3.
Knowing the true state, xtrue, the analysis RMS error is
calculated as

RMS =
√√√√ 1

NS

NS∑
i=1

(xa
i − xtrue

i )2. (26)

For both observation operators the analysis RMS error
in the MLEF experiment is smaller than in the GRAD
experiment. For the quadratic observation operator, this
advantage is less obvious than for the cubic observation
operator. This could be related to a more pronounced
discontinuity noted for the quadratic non-differentiable
observation operator (e.g. Figure 1). For the cubic obser-
vation operator, the MLEF analysis errors are 2–3 times
smaller than GRAD errors during the first several cycles,
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Data Assimilation Cycle

(a)
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4.00E-02

8.00E-02

1.20E-01

1.60E-01

2.00E-01

1 6 11 16

Data Assimilation Cycle

(b)

Figure 3. Analysis root-mean-squared (RMS) error in the
non-differentiable observation operator examples: (a) quadratic, and
(b) cubic: MLEF results (solid line), and the gradient-based method

results (GRAD, dashed line).

eventually reaching 7 times smaller value in later cycles.
However, all experiments eventually achieve negligible
errors when the shock wave exits the right boundary of
the integration domain.

An example of the difficulties of the GRAD estimation
of the gradient is illustrated in Figure 4. The directional
gradients for the cubic non-differentiable operator and for
the ensemble member 2 are shown in the first minimiza-
tion iteration of the first data assimilation cycle. A vertical
dashed line, separating the two regions of the velocity
U , indicates the discontinuous point. In the region where
U < 0.5, the GRAD creates a gradient of the opposite
sign to the MLEF gradient, as suggested in our discus-
sion at the beginning of this section. In the region where
U > 0.5, gradients often change sign, sometimes having
an opposite sign as well, and the GRAD is generally
of larger magnitude than the MLEF gradient. The linear
approximation used in GRAD creates an apparent disad-
vantage of the gradient-based method, as implied from
the larger analysis RMS errors (Figure 3).

More details of the performance can be seen from
Figure 5, which shows the velocity analysis differences
between the MLEF and GRAD experiments in the cubic
non-differentiable observation operator experiment. Only
the first four data assimilation cycles are shown, since
the most important velocity adjustment occurs during
these cycles. One can see that the analysis errors are
systematically smaller in the MLEF experiment. It is also
interesting to note that analysis errors are becoming more
localized as new observations are assimilated, indicating
the self-localizing characteristic of the MLEF. By cycle 4,
the MLEF achieves five times smaller maximum analysis
error than the GRAD experiment. Since the only differ-
ence between the two experiments is in the minimization
procedure, this indicates a superior performance of the
MLEF non-differentiable minimization.

In order to further examine the impact of the MLEF
non-differentiable minimization algorithm, the cost func-
tion and the gradient norm in first data assimilation cycle
are shown in Figures 6 and 7, for quadratic and for cubic
non-differentiable operators, respectively. The gradient
norm is defined as ||g|| = (gTg)1/2, where g denotes

-4.0E-04

-2.0E-04

0.0E+00

2.0E-04

4.0E-04

1 21 41 61 81

Model grid

U>0.5 U<0.5

Figure 4. Directional gradient in the GRAD (dashed line) and the
MLEF (solid line) experiments. The discontinuous point at model value
U = 0.5 is denoted by a vertical dotted line. The encapsulated text

boxes define the values of the model variable U .
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Figure 5. The state vector analysis errors xa − xt in first four data assimilation cycles, for the MLEF (solid line) and the GRAD (dashed line)
experiments: (a) after cycle No.1, (b) after cycle No.2, (c) after cycle No.3, and (d) after cycle No.4.

the gradient. Note that the gradient norm refers to the
generalized gradient norm in the case of the MLEF. The
results are shown for the first 20 minimization itera-
tions, since the later iterations did not bring any relevant
change.

For the quadratic operator, the cost functions in the
MLEF and the GRAD experiments become almost the
same (Figure 6(a)). The gradient norm (Figure 6(b)),
however, shows a better convergence of the MLEF
minimization, with gradient norm decreasing by several
orders of magnitude. One can note the irregular behaviour
of the cost function, with several jumps, as well as of the
gradient norm. One can see that the cost function jumps
match with the gradient norm jumps, suggesting that
GRAD minimization has difficulties due to the gradient
estimation. For the cubic operator, the GRAD cost
function decreased by one order of magnitude, while the
MLEF cost function decreased by more than three orders
of magnitude (Figure 7(a)). The gradient norm indicates
a serious problem in the GRAD minimization, without
an obvious reduction, while in the MLEF minimization
the gradient norm was reduced by almost five orders of
magnitude (Figure 7(b)).

4.2. Differentiable observation operator

One would expect that both experiments, especially
the GRAD minimization, would perform better if
non-differentiability of the observation operator were
removed. In order to test this assumption, and to
further examine the differences between the MLEF and
GRAD minimization algorithms, we repeated similar
experiments as in section 4.1, except using the cubic
differentiable observation operator given by Equation
(23b). As in section 4.1, we concentrate on minimization
performance in the first data assimilation cycle. The
results of the MLEF and GRAD minimization algorithms
are shown in Figure 8, in terms of the cost function
and the gradient norm. One can see somewhat similar
differences as in Figure 7, again indicating a superior
MLEF minimization performance. A closer inspection of
the cost functions in Figures 7(a) and 8(a) shows that
indeed differentiability did help. The MLEF minimization
did produce faster convergence than in the non-
differentiable operator case, and the shape of the cost
function decrease indicates a well-behaved minimization
without the difficulties observed in the cycles 2–9

Copyright  2008 Royal Meteorological Society Q. J. R. Meteorol. Soc. 134: 1039–1050 (2008)
DOI: 10.1002/qj



1048 M. ZUPANSKI ET AL.

of Figure 7(a). The cost function becomes flat after
only 3–4 iterations, while in the non-differentiable case
9–10 iterations were necessary. A careful inspection of
Figures 7 and 8 indicates that the GRAD cost function
shows a better performance than the non-differentiable
case, mostly by continuing to decrease throughout the
iterations, rather than reaching saturation as in the non-
differentiable case. The gradient norms are also showing
some improvement compared to the non-differentiable
case. In the GRAD minimization, there is a slight
overall decrease of the gradient norm, compared with
the gradient norm increase during iterations 10–16 in
the non-differentiable case. In the MLEF minimization,
there is also a larger decrease of the gradient norm, by
almost one more order of magnitude.

5. Conclusions

A new derivation of the MLEF algorithm is presented.
It is shown that the same final equations as in the
original formulation can be obtained without assuming
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Figure 6. Minimization in the quadratic non-differentiable observation
operator example: (a) cost-function, and (b) gradient norm: MLEF
results (solid line), and the gradient-based method results (GRAD,

dashed line).

differentiability and linearity of the prediction model and
observation operators, as it would be typically done using
the Taylor expansion. In order to generalize the nonlinear
conjugate-gradient and quasi-Newton minimization algo-
rithms we introduced a generalized gradient and gener-
alized Hessian as non-differentiable equivalents of the
standard gradient and the Hessian. For linear and differ-
entiable operator H , the generalized gradient and Hessian
formulations reduce to directional first and second deriva-
tives in the direction of �(xf

i ) (e.g. Gill et al., 1981).
An implicit inclusion of higher-order nonlinear terms

in the non-differentiable MLEF algorithm is important
for nonlinear observation operators, being more accurate,
but also by allowing larger perturbations to be included
in minimization. Therefore, the MLEF system has a
potential to work with challenging prediction models
and observation operators encountered in geophysical and
related applications, in principle non-differentiable and/or
nonlinear functions of the state vector.

The data assimilation results with two minimiza-
tion algorithms, one being the MLEF and the other
being a gradient-based minimization, indicate a clear

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

0 5 10 15 20

Iteration Number

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1 6 11 16

Iteration Number

(a)

(b)

Figure 7. As Figure 6, but in the cubic non-differentiable observation
operator example.
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Figure 8. As Figure 7, but for the differentiable observation operator.

advantage of the MLEF algorithm. For both the dif-
ferentiable and non-differentiable observation opera-
tors the MLEF was advantageous, showing a robust
performance.

Two minimization algorithms based on the MLEF
are schematically presented, the generalized nonlinear
conjugate-gradient and the generalized quasi-Newton
minimization algorithm. The algorithmic advantage of
the generalized minimization methods is that no changes
to the original unconstrained minimization algorithms
are necessary. Only the calculation of the generalized
gradient and of the generalized Hessian preconditioning
is changed to reflect the non-differentiable and nonlinear
character of the new method.

The presented MLEF minimization algorithm is
directly applicable to ensemble data assimilation
methods, and to medium-size minimization problems
with dimensions of up to O(104). For high-dimensional
operational applications, for example within the
variational data assimilation methods, there are possible
extensions of the generalized minimization algorithm
using the multi-grid methods and the decomposition into
local domains. The particular strategy would depend on
the actual minimization problem and the computational
environment.

In future work we plan to examine the MLEF perfor-
mance as a non-differentiable minimization algorithm in
more complex applications, such as the assimilation of

cloud and microphysics observations, inherently nonlin-
ear and potentially non-differentiable.
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