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The most widely known solar theory from antiquity is that of Hipparchus. All ancient 
sources are agreed that Hipparchus’ model was a simple eccentric or an equivalent 
epicycle. The eccentric version of the model is shown in Figure 1. The Earth E is 
displaced a distance e from the center Z of the deferent. The purpose of the displacement 
is to allow the Sun at S to appear to move alternately slower and faster when seen from 
the Earth, even though it is at all times moving uniformly around the deferent as seen 
from the deferent center Z. Assuming a year length of 365¼ days and adjusting e and the 
direction of EZ with respect to the stars, one can account for the lengths of the seasons, 
which Hipparchus took as 94½ days for spring and 92½ days for summer, and it also 
follows that there are 88⅛ days in autumn and 90⅛ days in winter. 
 

Figure  1 
 
Geminus, writing about 50 B.C. and without explicit attribution to Hipparchus, gives the 
season lengths and describes how the varying speed of the Sun results from an eccentric 
deferent.1 Theon of Smyrna, writing about A.D. 120 and following a presentation by 
Adrastus of Aphrodisias,  

1) discusses the equivalence of eccentric and epicycle versions of the model; 
2) gives the season lengths that are the empirical input data for the model; 
3) gives a detailed diagram that is the basis for a geometrical derivation of the model 

parameters; 
4) indicates the strategy of the geometrical solution; and 
5) quotes the results: e/R = 1/24 and the direction of apogee is at Gemini 5½°.2 

 
In a later passage about models structures in general, Theon does mention that 
Hipparchus remarked that the equivalence of the eccentric and epicycle models was 
worthy of attention, and that Hipparchus preferred the epicycle version. 
 
Writing probably about one generation later than Theon, and about 265 years later than 
Hipparchus, Ptolemy gives in Almagest III the most detailed surviving account of the 
development of Hipparchus’ model, including specific attribution to Hipparchus.3 
Ptolemy’s discussion parallels Theon’s in some ways. He repeats the same empirical 
input data, and like Theon does not mention how Hipparchus arrived at the season 
lengths he used. He uses a very similar geometrical figure and apparently a similar 
solution strategy, the principal difference being that Ptolemy supplies all the steps in the 
trigonometrical calculation. 
 
Ptolemy’s derivation of the model parameters is both simple and elegant. Given the 
season lengths and knowing the mean speed of the Sun from the length of the year, it is 
straightforward to calculate the lengths of the arcs TN and PK (see Figure 2), and once 



these are known the eccentricity e = EZ and its direction relative to the vernal equinox 
follow immediately. 
 

Figure 2 
 
On the whole, Ptolemy’s presentation is much more coherent and mathematically 
sophisticated than Theon’s, but that might just be a consequence of different intended 
audiences, and so we really have no information about just how accomplished Adrastus 
might have been, compared say to Ptolemy. 
 
In all of the surviving accounts what we are missing is any information on the actual 
development of the solar theory, with the result that there are numerous unanswered 
questions, e.g. how were the season lengths determined. This creates a noticeable 
shortcoming in what we would like to understand about the history of ancient 
mathematical astronomy. It seems therefore appropriate and useful to try and piece 
together what we can of the otherwise lost solar history of actual model development, 
basing our efforts on whatever attested material we can find, supplemented with informed 
and plausible speculation. At least for the four episodes discussed below there is enough 
attested source material to support the idea that each episode might have actually 
happened. Whether any of the episodes is ever confirmed depends largely on whether or 
not any new source material is discovered, an event that unfortunately does not happen 
often. 
 
 
Lost Episode One: An Alternate Solution by Hipparchus 
 
Just prior to giving his trigonometrical analysis of the solar model in Almagest III 4, 
Ptolemy writes  
 

“In order not to neglect this topic, but rather to display the theorem worked out 
according to our own numerical solution, we too shall solve the problem, for the 
eccentre, using the same observed data [94½ days and 92½ days].”  

 
It is not entirely clear what Ptolemy is trying to tell us in this passage. He could be 
referring to earlier summaries such as Geminus’ or Theon’s, which, as discussed above, 
do not include numerical details, or he could be referring to the fact that Theon’s 
approach differs in at least one numerical convention from his standard, namely that 
Theon divides the circle into 365¼ parts, clearly days, rather than the standard 360 
degrees. But more likely Ptolemy could be saying that he is providing his solution 
because it is either different from that of Hipparchus, or he does not know the details of 
Hipparchus’ solution, and so, presumably, would no one else in his time. For example, 
since Theon is only summarizing Adrastus, and possibly not doing that particularly well, 
there is no strong reason to suppose that Theon actually knew how Hipparchus solved the 
problem. Thus, in absence of further information, the actual method used by Hipparchus 
might be considered an open question. 
 



Therefore, as our first ‘lost solar episode’, it seems of some interest to ask what type of 
solution Hipparchus might have used if he did not use the solution described by Theon 
and Ptolemy. Now it happens that we do have reliable source material that at the very 
least suggests an answer to that question. From Ptolemy’s report in Almagest IV 11 we 
know with considerable certainty that Hipparchus knew and used a method for solving 
the general problem of determining the elements of an eccentric or epicycle model using 
three timed longitudes.4 Here Hipparchus is seen applying this method to the Moon, 
using three longitudes associated with lunar eclipses, but clearly he could also use the 
same geometrical solution for the Sun when the three solar longitudes are at the cardinal 
points: the vernal and autumnal equinoxes and the summer solstice. 
 

Figure 3 
 
If he did solve the problem using the same geometrical steps, then his solution would 
proceed something like the following (see Figure 3). Let the vernal equinox, summer 
solstice, and autumn equinox be at T, K, Q, respectively. The deferent circle has center Z, 
radius R, and eccentricity e = EZ. Extend the line KE to B and let the distance d = EB set 
the scale of the diagram. The angles TZK, KZQ, and QZT are all known from the season 
lengths. Then the angles ETB and EQB may be computed, from which one determines 
QB, TB, and hence TQ, which gives the deferent radius R in terms of d. Angles QZB and 
TZB are then computed, and so KB is determined, whence one finds R/e and the angle 
TEZ (both independent of the value of d, of course).5

 
Naturally Hipparchus gets the same answers as always, since the problem is completely 
determined. This solution is undeniably less elegant than the solution given by Ptolemy, 
but there is really no question that Hipparchus knew how to solve the problem this way, 
and in the early days of trigonometry, the most elegant solution might not even be 
known. In addition, however, as we are about to see, there are definite advantages 
available to any analyst who did understand the analysis of more general longitude trios. 
 
 
Lost Episode Two: Notebooks of Solar Position Data 
 
So far we have been silently assuming that Hipparchus knew the dates of equinoxes and 
solstices, and those gave him the season lengths. We know from Almagest III 1 that 
Hipparchus knew the times of equinoxes and summer solstices to an average accuracy of 
about ¼ day (see Table 1).6 Since no ancient source explains how these times were 
determined, our second ‘lost solar episode’ will consider just how an ancient astronomer 
would determine the time of an equinox or a solstice to that level of accuracy.  
 
     Table 1 
 
By definition, an equinox occurs at the moment the Sun’s declination is 0°, and a solstice 
occurs when the Sun’s declination is at an annual maximum or minimum, i.e. ± ε, where ε 
is the obliquity of the ecliptic, about 23;43° in Hipparchus’ time. It is clear from multiple 
practical considerations that no one could have reliably and routinely simply noted the 



moment when the Sun’s declination was at a given value: 0° for an equinox or ±23;43° 
for a solstice.7 On the one hand, about half of the events will occur at night, when the Sun 
is of course not visible. On the other hand, even if the event happens in daylight, it is not 
always the case that the Sun will be unobscured by clouds and in a position in the sky 
favorable for measuring the declination accurately. Ptolemy's remarks in Almagest III 1 
show that he  was aware that equatorial rings could yield conflicting data, though  it is not 
clear whether the multiple shadow crossings that he refers to were the result of distorted 
rings, as he believed, or an effect of refraction.8 In addition, for the solstices it is 
impossible to achieve ¼ day accuracy with naked eye observations of any kind within a 
day or so of the event since the declination of the Sun is changing extremely slowly near 
a solstice. 
 
It is most likely, then, that equinoxes and solstices were determined by observing noon 
solar altitudes for a series of days before and after the events. When the Sun is crossing 
the meridian at noon, it is relatively easy to measure its altitude h, and then knowing the 
geographical latitude φ, to compute the declination δ using 
 
 . 90hδ ϕ= + −
 
But it is only at noon that such an easy determination is possible. Thus, one data 
collection strategy that was available at least from the time of Hipparchus and that would 
have worked well is the measurement of a daily series of solar altitudes at noon, when the 
Sun is crossing the meridian. A variety of instruments for making the observations could 
have been used, and I have verified that something as simple as a pierced gnomon, i.e. a 
rod with a pinhole at the top, gives h to more than adequate accuracy. 
 
With a series of such measurements for a number of days before and after a cardinal 
event, it is fairly straightforward to use interpolation and the method of equal altitudes to 
estimate the time that the Sun’s declination reaches some specific targeted value: 0° for 
an equinox, and maximum or minimum for a solstice. An example using simulated data 
for the vernal equinox in –134, which in reality occurred on March 24 at about 6:43 AM 
local time in Rhodes, is shown in Figure 4 and Table 2. Hipparchus reports that it 
occurred at midnight on March 23/24. From modern theory we can compute the true 
declination of the Sun at noon on the days before and after this equinox, and to simulate 
measurement errors we add to each declination a random error drawn from a normal 
distribution with mean zero and standard deviation ¼°. By simply looking at the trend of 
the declinations – they are monotonically increasing from negative to positive values – it 
is easy to estimate the approximate day of the equinox. An ancient analyst might then 
take pairs of declinations at equal intervals before and after the day of the equinox and 
estimate the hour of the event by linear interpolation, an arithmetic technique that we 
know was widely used in tabular calculations. Taking, say, eleven such estimates from 
intervals of ±2 days, ±4 days,…, ±22 days, the analyst would get eleven estimates of the 
hour, and the simplest final step would be to take the median of those values, as shown in 
Table 2.  
 
     Figure 4 



 
     Table 2 
 
It is easy to estimate the average accuracy that results from such an algorithm by 
simulation of several hundred trial sets of data, and it turns out that if the standard 
deviation of a single measurement of the solar declination is ¼° then the standard 
deviation of a single median determination of the time of the equinox is about 4 hours. If 
the latitude φ is too large, then all the declinations will be too large by the same amount, 
and the times of vernal equinox will be too early, the times of autumn equinox too late. 
This is the pattern seen in the equinox times Ptolemy reports from Hipparchus (see Table 
1). If the latitude is too small, the situation is reversed. As specifically noted by Ptolemy 
in Almagest III 1, an error of 1

10  in declination in a single measurement leads to an error 
of ¼° in longitude or ¼ day in time, but as we have demonstrated with direct simulation, 
the use of repeated measurements implies that the errors in individual declination 
measurements could be 2½ times larger, or ¼°, and still allow the analyst to achieve a 
final error of only ¼ day in time. 
 
During a solstice the declination of the Sun changes by less than 1° for about 17 days 
before and after the cardinal event, so the algorithm just described for equinoxes must be 
adapted. One simple adaptation is to measure solar declinations for some sequence such 
as 20, 25,…,50, 55 days before and after the solstice, and use that data to make multiple 
estimates of the times when the Sun is at equal altitudes, and hence declinations, before 
and after the solstice. The midpoints of such time intervals are then estimates of the time 
of the solstice, and as above a simple data reduction procedure would be to take the 
median value of the estimates. The standard deviation of the solstice time that results, if 
as above the standard deviation of a single measurement of the solar declination is ¼°, is 
found by simulation to be about 5 hours. The estimated solstice times are not affected by 
a systematic error in the declination due to a misspecified latitude, but they are fairly 
strongly affected by the changing speed of the sun over the weeks preceding and 
following the solstice. 
 
We know from the comments of Ptolemy and his quotes of Hipparchus that calculation of 
some sort was used in conjunction with observations to determine Hipparchus’ solstice 
and equinox times. Ptolemy first writes that in On the displacement of the solsticial and 
equinoctial points Hipparchus ‘sets out those summer and winter solstices which he 
considers to have been observed accurately’, and then quotes Hipparchus as follows: 
‘Now from the above observations it is clear that the differences in the year-lengths are 
very small indeed. However, in the case of the solstices, I have to admit that both I and 
Archimedes may have committed errors of up to a quarter of a day in our observations 
and calculations [emphasis added]’.9 A few pages later Ptolemy writes ‘For Hipparchus 
noted that in the thirty-second year of the Third Kallipic Cycle he had made a very 
accurate observation of the autumnal equinox, and says that he calculated [emphasis 
added] that it occurred at midnight, third-fourth epagomenal day.’10 From these 
statements of Ptolemy and Hipparchus we can therefore be fairly sure that for both 
equinoxes and solstices series of daily altitude measurements were used to determine the 
time of cardinal events, even though no surviving ancient source has documented the 



details of such episodes. For all the equinox events that occur after dark or near the 
horizon, and for all the solstices, it is essentially the only viable option for achieving ¼ 
day accuracy, which, as discussed above, can be achieved with some persistence.  
 
Beyond these solar measurements we can also mention the use of very similar techniques 
for the planets. For the inner planets Ptolemy cites some 14 instants of greatest elongation 
from the mean Sun for Mercury and 8 such events for Venus. However, to actually know 
that these are greatest elongations some analyst must have made a series of timed position 
measurements both before and after each event, just as discussed above for the equinoxes 
and solstices.11 For the outer planets Ptolemy cites 9 oppositions from the mean Sun, 3 
for each planet. Some of these actually occur during daylight hours, and for the same 
reasons as discussed above, all of them were certainly computed, as Ptolemy vaguely 
mentions in passing,12 from a series of timed position measurements of each planet. 
 
Thus we can be fairly sure that the method was used extensively by ancient Greek 
astronomers, starting no later than the time of Hipparchus, if not Archimedes. However, 
while we can be fairly certain that some ancient astronomer was determining equinox and 
solstice positions from sequences of observations, we must admit to being much less 
certain about the motivation. It is possible that the goal was, as Ptolemy clearly implies, a 
genuine desire for empirical determinations of the length of the tropical year, whether or 
not that length was constant, and of the season lengths for use as input to the 
determination of the solar orbit parameters. On the other hand, many people have 
suggested that Greek solar theory was strongly influenced by the transmission from 
Babylon of arithmetical schemes for luni–solar syzygy,13 and that, for example, a major 
route of such transmission might have been a visit to Babylon by Hipparchus.14 
Regardless of how the transmission was achieved, it could well be that Greek 
astronomers had some level of a priori expectation for the season lengths as derived from 
the Babylonian models, and in such case the motivation for the solar observations could 
have been some mixture of trying to confirm their expectations as well as an empirical 
determination. 
 
It might help to put the accuracy of the Greek measurements in perspective by comparing 
them to better documented but later results. By the ninth century A.D. several Arabic 
astronomers were measuring meridian solar altitudes with an average error of about 1 
arcmin, near the resolution of the unaided eye.15 Therefore it is not unreasonable to think 
that Greek astronomers working about one millennium earlier might have been able to 
make the same measurements with an average error of about 10–15 arcmin, and this is 
probably a very conservative estimate. This conclusion is supported by Ptolemy’s reports 
in Almagest VII 3 of 18 stellar declinations measured by Timocharis and Aristyllos in 
about 290–260 B.C., and again by Hipparchus in about 130 B.C., that are on average 
accurate to about 10 arcmin.16

 
 
 
 
 



 
Lost Episode Three: Trio Solutions of Solar Position Data 
 
We know that ancient astronomers determined the times of equinox and solstice many 
times. In Almagest III 1 Ptolemy reports 21 such determinations from Hipparchus alone – 
6 autumnal equinoxes, 14 vernal equinoxes, and a summer solstice –  and he implies that 
Hipparchus in fact determined many additional cardinal dates, especially for the solstices. 
Hipparchus himself says that Archimedes determined multiple solstice dates. It is clear 
from his Commentary to Eudoxus and Aratus that at least from the time of Hipparchus 
astronomers understood how, given the declination of any point on the ecliptic, to find 
the longitude of that point.17 In modern notation the relationship is 
 

 sin sin / sinλ δ ε= . 
 
Also, we know that this method of routinely determining solar longitude from noon 
altitudes is explicitly attested in many ancient Indian texts, all presumably of Greco-
Roman origin and probably pre–Ptolemaic.18 Altogether, this suggests that there might 
have been notebooks full of noon, and thus well-timed, solar altitudes and declinations 
for the days and weeks before and after the cardinal events, all of which could be easily 
converted to solar longitudes. And since noon altitude and declination measurements are 
so easy to make, solar longitudes might well have been determined on many, if not most, 
sunny days throughout the year. 
 
Any trio of such well–timed longitudes would be appropriate input to a general trio 
analysis to determine the elements of the solar orbit, just as any trio of timed lunar 
eclipses can be analyzed to determine the lunar orbit elements. In fact, Ptolemy provides 
two such lunar analyses in Almagest IV 6, and the identical algorithm is used to 
determine the orbit elements of Mars, Jupiter and Saturn in Almagest X–XI (although 
here some additional iteration is needed to get the equant parameters).19 Since we know 
that Hipparchus and his successors, and perhaps his predecessors, knew how to use the 
general trio method, and since there would likely have been an abundance of data as a 
by–product of determining the large number of cardinal dates, just counting the ones we 
have, then it seems possible, if not outright likely, that that data was used many times to 
directly determine solar model parameters, and so these multiple determinations 
constitute our third ‘lost solar episode’. 
 
These solar analyses would be no more or less complicated than the analysis outlined in 
the first episode above. The same algorithm applies, the only difference being that the 
angles BET and TEK are no longer 90°, but they are still accurately known. 
 
Assuming that astronomers did make many solar longitude measurements and used these 
as input for many trio analyses, what would they find? We can estimate this by once 
again turning to simulation, and generating hundreds of trios of noon declination 
measurements which, when converted to solar longitudes by the method discussed in 
episode two, can be used to estimate solar orbit elements. Since there will be unavoidable 
statistical and systematic errors in these empirical values, the resulting solar orbit 



elements – the eccentricity e, the apsidal direction A, and the Sun’s mean longitudeλ  at 
some reference time – will also show some scatter and systematic shift from the true 
values. In addition, since the assumed model is not really the correct one, essentially a 
Keplerian ellipse with a speed variation determined by the equal area in equal time law, 
there will also be some scatter in the determined values of e and A from the mismatch of 
the model and the data. 
 
Thus, the analysts would have noticed that orbit elements seemed to vary from one 
analysis to the next, probably somewhat irregularly. Since there was no systematic 
understanding of statistical variation in measurement at that time, we cannot be sure how 
the analysts would have responded, although if the Almagest is a reliable guide, the 
response might well have been fairly pragmatic. In any event, the power of repeated 
measurement would have eventually asserted itself, and they would have noticed that 
while the Hipparchan value A = 65½° is rather accurate, at least near Hipparchus’ time, 
the value e = 2;30 is not at all accurate, and should instead be about 2;10. It is then 
conceivable that this variation might undermine their confidence in the solar model, and 
perhaps lead them to consider model complications beyond the single anomaly of the 
eccentricity (or epicycle). It therefore seems reasonable to suppose that one result of the 
experiences implied by this episode was the motivation and development of alternate 
models. 
 
 
Lost Episode Four: The Concentric Equant 
 
Although Hipparchus’ eccentric/epicycle model is the best documented model from 
antiquity, it was not the only solar (or lunar) model used. The concentric equant model 
for the Sun is repeatedly attested in Indian texts, all of which are generally supposed to be 
of Greco-Roman origin, and the accurate value e = 2;10 is routinely used.20 These 
concentric equant solar models therefore constitute our fourth ‘lost episode’. 
 

Figure 5 
 
In the concentric equant model the Earth is at the center E of the deferent, but the center 
of uniform motion Z of the Sun at S is displaced some distance e from the center (see 
Figure 5). Even though the Sun is now always at the same distance R = ES from the 
Earth, the model still produces an apparent speed variation in the motion of the Sun such 
that in one direction (the direction EZ) the Sun seems to be moving slowest, and in the 
opposite direction it seems to be moving fastest. For the same season lengths used in 
Hipparchus’ model, the concentric equant gives 2;27,12e =  and , virtually 
indistinguishable in practice from the exact results for the eccentric, 

66;59,51A =
2;28,55e =  and 

. 65;25,43A =
 
Besides the mathematical details, Ptolemy’s principal addition in Almagest III 3 to Theon 
of Smyrna’s discussion of Hipparchus’ solar model is that the eccentric model, and its 
equivalent epicycle version, is empirically justified by the fact that for the Sun the time 



required to move from least speed to mean speed is greater than the time required to 
move from mean speed to greatest speed. It is somewhat curious that Ptolemy would 
mention this so emphatically, when in fact it would have been impossible to verify for the 
Sun in any empirical sense using the measurement technology of his time. It could be, of 
course, that Ptolemy was mentioning the pattern of speed variation to emphasize a related 
fact, that the Sun appears to move slowest at greatest distance (apogee) and fastest at 
nearest distance (perigee). Within the class of normal epicycle models, this only happens 
when the Sun moves clockwise on the epicycle, for if the Sun moved counterclockwise, 
we would observe maximum speed at apogee and minimum at perigee, a simpler point 
that Theon had already made quite forcefully. So the fact that Ptolemy discusses speed 
variation in such detail could suggest that he was at least aware that other kinds of models 
can give a different pattern of speed variation. Using the concentric equant, for example, 
one finds that the time from least speed to mean speed is equal to the time from mean 
speed to greatest speed. 
 
There is a clear reason that Ptolemy might have been aware of the concentric equant: he 
in fact uses a close variant of it to model the second lunar anomaly. His final lunar model 
is a concentric equant in that the center of uniform motion of the Moon is displaced from 
the center of the Moon’s deferent, just as in Figure 4. The difference, however, is that in 
Figure 4 the Earth is at the center of the deferent, while in Ptolemy’s final lunar model 
the Earth is at Z, the position of the equant.21  
 
Final Remarks 
 
There are, in addition, several other sources which clearly establish the existence of solar 
theories other than that of Hipparchus: 
 

(1) There are clear indications in the Almagest that Hipparchus himself used solar 
models different from that attributed to him by Theon and Ptolemy. For example, 
the two pairs of eclipse longitude differences that Hipparchus uses to find the 
unusual lunar eccentricities in Almagest IV 11 may also be used to deduce the 
underlying solar models, and the resulting parameters are equally unusual: e = 
7;48 and A = 76;25° for Trio A, and e = 3;11 and A = 46;09° for Trio B.22 
Although attempts have been made to understand the underlying models, the 
analyses are neither conclusive nor satisfying.23 The solar parameters are so 
bizarre that we might be tempted to speculate that Hipparchus is somehow trying 
to use a lunar theory to learn something about the time variation of solar theory 
(the trios date to about –380 and –200), and so it is perhaps significant that in both 
trio analyses the eclipses all occur near equinoxes and solstices. The same 
proximity to cardinal events is true for the old Babylonian trio from about –720 
that Ptolemy presents in Almagest  IV 6, using data he probably also obtained 
from Hipparchan records. 

 
(2) Almagest V 3 and V 5 give three timed solar longitudes due to Hipparchus, and 

these imply a solar model with parameters e = 2;16 and A = 69;05°, although it 
might be that the underlying model is actually based on season lengths of 94¼ 



days and 92½ days, for which the resulting parameters are instead e = 2;19 and A 
= 67;08° (as explained by Ptolemy in Almagest IV 11, the parameters deduced 
from trio analyses are very sensitive to small changes in the input data).24 Note 
that either value of e is significantly improved over the ‘standard’ Hipparchan 
value 2;30. 

 
(3) Theon of Smyrna mentions, quite routinely, a solar model with periods of 365¼ 

days in longitude, 365½ days in anomaly, and 1
8365 days in latitude. Whatever 

the empirical background of these numbers might be, the net progression of the 
fractions also suggests some degree of numerological tinkering. Theon also 
mentions that the Sun strays from the ecliptic by ±½°. Solar latitude was 
mentioned as early as Eudoxus, and must have had some level of use, since not 
only Theon but also Pliny mentions it, and Hipparchus felt compelled to deny its 
existence (although it is hardly clear from Theon that the model should or should 
not be associated with Hipparchus). Two papyrus fragments, P. Oxy LXI.4174a 
and PSI inv. 515, also known as PSI XV 1490, give solar motion tables that are 
clearly kinematic and are consistent with the model parameters mentioned by 
Theon, and so remove all doubt that the models mentioned by Theon were 
actively used.25  

 
(4) P. Oxy LXI.4163 is a fragment of a papyrus table from Oxyrhynchus that gives a 

template for daily longitudes of the Sun to degrees and minutes starting from the 
day of summer solstice, when the Sun is at Gemini 30°, i.e. Cancer 0°, and so the 
cardinal points are at the beginning of the signs. The recovered fragment covers 
only two months of motion so it is difficult to uncover the underlying solar 
theory, but all indications are that it is not based on the usual Hipparchan 
parameters. Indeed, it cannot be conclusively established that the model is even 
kinematical and not some variant of a Babylonian arithmetical scheme.26 

 
(5) P. Oxy LIX.4162 is similar to P. Oxy LXI.4163 but appears to count days starting 

when the Sun is at perigee and puts the cardinal points at 8° of the signs. In this 
case the indications are strong that the underlying theory is kinematical, but even 
if it is, it seems not likely to be based on the usual Hipparchan parameters.27 

 
(6) P. Oxy LXI.4148 is a table of epoch values of summer solstices over a series of 

years. The dates are in error by about five days in the years covered in the 
fragment and are based on a year of length 365;15,22,46 days, which is almost 
certainly a sidereal year. Whether this table of epoch values was intended to be 
used with the template of P. Oxy LXI.4163 cannot be established.28 

 
In addition, there is reason to believe that complicated models of trepidation were 
developed, in which the position of the vernal equinox executes long period 
oscillations.29 Altogether then, it is clear that throughout early Greek astronomy the 
development of a variety of solar theories was an active process.  
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Figure 4. The boxes show simulated declinations of the Sun at local noon in Rhodes 
every second day for 24 days before and after noon of –134 Mar 24. The line shows the 
true declination of the Sun. The scatter in the data is due to assumed 1

4  measurement 
errors in the declinations and rounding to the nearest 1

4 . The true vernal equinox 
occurred at about 6:43 AM. 



 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 
 
 
 
 
 

Accurate Dates Hipparchus Error (hrs)
-161 9 27.09 27.75 -15.8 
-158 9 26.82 27.25 -10.3 
-157 9 27.06 27.50 -10.6 
-146 9 26.73 27.00 -6.5 
-145 9 26.98 27.25 -6.5 
-142 9 26.70 26.75 -1.2 

     
-145 3 24.62 24.25 8.9 
-144 3 23.86 23.50 8.6 
-143 3 24.10 23.75 8.4 
-142 3 24.34 24.00 8.2 
-141 3 24.59 24.25 8.2 
-140 3 23.83 23.50 7.9 
-134 3 24.28 24.00 6.7 
-133 3 24.53 24.25 6.7 
-132 3 23.77 23.50 6.5 
-131 3 24.01 23.75 6.2 
-130 3 24.25 24.00 6.0 
-129 3 24.49 24.25 5.8 
-128 3 23.74 23.50 5.8 
-127 3 23.98 23.75 5.5 

     
-134 6 26.30 26.50 -4.8 

 
 
Table 1. The times of Hipparchus’ solstice and equinox determinations as reported by 
Ptolemy in Almagest III 1, and compared to the actual times from modern theory. 



 
days 

before 
declination days 

after 
declination equinox time 

relative to noon 
-2 -0.75 2 1.25 -0.50 
-4 -1.75 4 1.25 0.67 
-6 -2.00 6 2.50 -0.67 
-8 -3.00 8 3.50 -0.62 
-10 -3.75 10 3.25 0.71 
-12 -4.25 12 4.50 -0.34 
-14 -5.50 14 5.50 0.00 
-16 -6.50 16 6.25 0.31 
-18 -6.75 18 7.50 -0.95 
-20 -7.75 20 8.00 -0.32 
-22 -8.25 22 8.75 -0.65 

   average -0.21 
   median -0.34 

 
 
Table 2. Column 5 gives the estimate of the time, relative to noon on day 0 (–134 Mar 
24), that the declination of the Sun was 0°. The median puts the equinox at about 

1
48 hours before noon, the average puts it at about 5 hours before noon. 
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