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The astronomy we find in texts from ancient India is similar to that we know from 
ancient Greco-Roman sources, so much so that the prevailing view is that astronomy in 
India was in large part adapted from Greco-Roman sources transmitted to India.1 
However, there are sometimes differences in the details of how fundamental ideas are 
implemented. One such area is the technique for dealing with mean motions and 
longitudes. The Greek methods explained by Ptolemy are essentially identical to what we 
use today: one specifies a mean longitude 0λ  for some specific day and time – the epoch 
t0 – and uses known mean motions ω to compute the mean longitude λ at any other time 
from the linear relation 
 
     0 0( )t tλ λ ω= + − . 
 
Rather than specify a mean longitude 0λ for some epoch t0, the methods used in Indian 
texts from the 5th century and later instead assume the mean or true longitudes of all 
planets are zero at both the beginning and end of some very long time period of millions 
or billions of years, and specify the number of orbital rotations of the planets during those 
intervals, so that mean longitudes for any date may be computed using 
 

 0( )R t t
Y

λ = −  

 
where R is the number of revolutions in some number of years Y, and t – t0 is the elapsed 
time in years since some epoch time at which all the longitudes were zero. Such ‘great 
year’ schemes may have been used by Greco-Roman astronomers,2 but if so we have 
nothing surviving that explains in detail how such methods worked, or even if they were 
seriously used. Since the Indian texts give only computational algorithms, and those often 
cryptically, we never find any explanation of the underlying derivations of the techniques 
used in those texts. Hence it is of interest to understand is as much detail as possible the 
methods used to construct the revolution numbers R. 
 
In Greek astronomy as exemplified in the Almagest, the units of ω are generally 
revolutions per year or degrees per day, and the revolutions can be either sidereal (returns 
to a specific fixed star) or tropical (returns to a specific cardinal point of the Sun’s orbit). 
The mean motions ω are determined by dividing the total degrees traveled over many 
years by the number of days in the time interval or by specifying period relations giving 
the number of revolutions in longitude and anomaly in, typically, a few decades of years. 
In the case of the planets, small fractional corrections are also specified.3 These period 
relations are all seen first in Babylonian records and were certainly determined using 
empirical observations recorded over several centuries.4 The positions in mean longitude 
and anomaly are deduced from involved and complicated comparisons of observed true 
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longitudes and the assumed kinematical models. These comparisons give not only the 
mean positions but also the structural parameters of the models: the longitude of the 
apogee, the eccentricity of the deferent, and the radius of the epicycle.5

 
For all the planets there are relations between the mean motions in longitude ωp and 
anomaly ωa and the mean motion ωS of the Sun.  In the Almagest the mean position on 
the epicycle is reckoned with respect to the apogee of the epicycle, which is the point on 
the epicycle on the extension of the line from the center of uniform rotation to the center 
of the epicycle, and of course that line is rotating with constant speed. For the outer 
planets Saturn, Jupiter, and Mars – those that can achieve any elongation from the Sun – 
these mean motions satisfy the relation 
 
 S p aω ω ω= + . 
 
For the inner planets Venus and Mercury – those that achieve only limited elongations 
from the Sun – the conventional mean motion of the planet is exactly the mean motion of 
the Sun, so at some point it apparently became useful to specify the mean motion 
according to 
 
 p S aω ω ω= +  
 
so that the mean position on the epicycle is now reckoned with respect to a fixed 
direction in space, typically either a fixed star or a cardinal point. In modern terms, we of 
course recognize this as the heliocentric motion of the inner planets, and so in fact under 
this definition ωp is the heliocentric mean motion for both the inner and outer planets. 
 
One consequence of these relations is that an author need specify only ωp for each planet, 
and ωa can be immediately derived. In the Almagest, perhaps for convenience, Ptolemy in 
fact specifies and tabulates both the mean motion in longitude and anomaly for all the 
planets, while in the Planetary Hypotheses he is more economical, specifying only the 
single planetary mean motions ωp as defined above for each planet.6 All ancient Indian 
texts on astronomy follow exactly the same scheme of specifying just one mean motion 
per planet, the ωp mentioned above, although, just as in the Almagest, it is explicitly 
stated that for the outer planets the rotations of the epicycle equal the rotations of the Sun, 
and for the inner planets the mean motion of the planet equals the mean motion of the 
Sun.7  
 
 
The Literary Background 
 
The Indian astronomy texts not only mention very long time intervals, but also give some 
information on the structure of those intervals. In the Paitamahasiddhanta (hereinafter 
Paita) and the Brahmasphutasiddhanta (hereinafter BSS),8 the fundamental long time 
interval is a kalpa of Y = 4,320,000,000 years and the numbers of revolutions, which are 
the same in both documents, range from R = 146,567,298 for Saturn to 
R = 57,753,300,000 for the Moon.  In this system the kalpa is constructed from 
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mahayugas of 4,320,000 years according to a rather elaborate scheme: a kalpa consists of 
14 manvantaras, and each manvantara consists of 71 mahayugas, or 306,720,000 years. 
Each manvantara is preceded and followed by one of 15 sandhis or twilight periods 
consisting of 4/10th of a mahayuga, or 1,728,000 years, and so a kalpa consists altogether 
of exactly 1,000 mahayugas. Each mahayuga is itself divided into four parts with lengths 
in the ratios 4:3:2:1, hence a krtayuga of 1,728,000 years (so that a sandhi is a krtayuga), 
a tretayuga of 1,296,000 years, a dvaparayuga of 864,000 years, and a kaliyuga of 
432,000 years. Finally, to connect all this to a ‘modern’ date, it is said that what is 
effectively sunrise on –3101 Feb 18 occurred at the beginning of the kaliyuga of the 28th 
mahayuga of the seventh manvantara, hence after the lapse of six manvantaras and seven 
sandhis and 27.9 mahayugas, all of which together makes 4567 periods of 432,000 years, 
or 1,972,944,000 years in total, which is 0.4567 of a kalpa. As we shall see below, the 
number 4567 is intimately involved in the construction of the revolution numbers. The 
version of the Paita that survives does not give the connection to a modern date, but it is 
quite corrupted and from the great overlap with the BSS we can be sure that the Paita, or 
something closely related to it, was Brahmagupta’s source, and that the time details we 
find described by Brahmagupta were originally in the Paita or the closely related source. 
 
In the Aryabhatiya Aryabhata uses a very similar scheme. He keeps the same mahayuga 
of 4,320,000 years and gives the revolutions of each planet in a mahayuga, with numbers 
ranging from 146,564 for Saturn to 57,753,336 for the Moon. However, he then declares 
that a kalpa is 14 manvantaras and each manvantara is 72 mahayugas, so for him a kalpa 
is 1,008 mahayugas or 4,354,560,000 years. He further divides the mahayuga into four 
equal kaliyugas, each of 1,080,000 years. Finally, in his sunrise scheme he says that the 
same date Brahmagupta used, sunrise on –3101 Feb 18, occurs at the beginning of the 
final kaliyuga of the 28th mahayuga of the seventh manvantara, hence after the lapse of 
six manvantaras and 27.75 mahayugas or 1,986,120,000 years, which is about 0.4561 of 
his kalpa, and which is about as close to Brahmagupta’s 0.4567 as Aryabhata could get, 
given his system. However, as we shall see below, the number 4561 plays no role 
whatsoever in Aryabhata's construction of the revolution numbers. 
 
The parallels in all these astronomy texts – the final kaliyuga of the 28th mahayuga of the 
7th manu of the current kalpa – are obviously striking, and in fact mirror well–established 
tradition in older Indian literary texts.9 The Hindu epic poem Mahabharata, probably 
compiled in the second half of the first millennium B.C., describes the general scheme of 
yugas and kalpas in a section that is generally thought to be a late interpolation.10 The 
entire scheme for constructing the kalpa and locating the current kaliyuga within it is 
described in the Vishnu Purana,11 probably compiled sometime between the 1st century 
B.C. and the 4th century A.D., and everything except the position in the 28th mahayuga is 
described in the Law Code of Manu,12 probably compiled in the first or second century 
A.D. What is missing from all the literary texts is any information tying the events in 
those texts, most importantly the date of the battle of Bharata, which occurred at the 
beginning of the current kaliyuga, with any modern date. However, as we shall see 
below, the 3600 year interval between the beginning of the current kaliyuga and 499 Mar 
21 is given directly or indirectly in the Paita, the BSS, the Aryabhatiya, and in early 
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commentaries, so it seems this interval may have been contributed by some astronomer, 
but we have no way of knowing who it was or when he did it. 
 
 
Aryabhatiya Revolution Numbers R 
  
Our task now is to understand the construction of the revolution numbers in both systems. 
The short tradition, exemplified in Aryabhata’s sunrise and midnight systems, is to give 
ω, the mean motion in sidereal longitude, as the ratio of two large integers, 
 

 R
Y

ω =  

 
where R is the integral number of sidereal revolutions in each mahayuga of length Y 
years. Aryabhata stipulates that all the mean longitudes are zero at the beginning and end 
of each mahayuga, and in addition, at the beginning of the 4th of the four equal kaliyugas 
that make up each mahayuga. This condition requires that R must be divisible by four. 
The beginning of the fourth kaliyuga is at the date 
 
                                                t0 =  –3101 Feb 18 , 
 
either midnight or sunrise, at approximately 76° east longitude. Thus the mean longitude 
in revolutions after an interval  = t – ttΔ 0  will be of the form 
 
 0( )t t R rλ ω ′ ′= − = + , 
 
where R´ is the integral number of revolutions accomplished and r′  is the fraction of a 

revolution accomplished over and above R´, and so λ  in degrees is just 360 . As 
explained above, for Mercury and Venus the mean longitude is just the mean longitude of 
the Sun, so instead 

r′×

λ  refers to the longitude of the epicycle radius, referred to a fixed 
direction in space (i.e. not the epicycle apogee, as we see in the Almagest). 
 
Now Aryabhata asserts that in the sunrise system 4,320,000 years contains 1,577,917,500 
days, while the same number of years in the midnight system contains 1,577,917,800 
days. Thus the sidereal year length in the sunrise system is 365;15,31,15 days, while in 
the midnight system it is 365;15,31,30 days, and so in both cases adding 3,600 of the 
respective years brings us to the same modern date: 499 Mar 21 at noon. Both year 
lengths are longer than the real sidereal year of 365;15,22,54 days.  
 
We can therefore determine the mean longitudes of the planets in Aryabhata’s systems on 
499 Mar 21 at noon by computing 3,600λ ω= × . Since 3,600 is sexagesimally expressed 
as 1,0,0 the calculation is most transparent if we also express ω in a sexagesimal base. 
Since in both systems R must be an integer divisible by 4, ω must be of the form 
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 ; , , ,nω α β γ δ=  
 
where δ must be either 0, 12, 24, 36, or 48. Then we can find λ  by a simple double left-
shift: 
 
 0( ) 1,0,0 , , ; ,t t nλ ω ω α= − = × = β γ δ  
 
so , ,R n α β′ = revolutions and 0; ,r γ δ′ = revolutions, or, in degrees,  
 
 360 0; , 6 ;λ γ δ γ δ= × = × . 
 
Since δ is a multiple of 12, λ  will be an integral multiple of 1;12°, and if R changes by 
±4 revolutions, then λ  changes correspondingly by ±1;12°. Note also that if Aryabhata 
had kept the traditional 4:3:2:1 ratios his kaliyuga would have been 432,000 years instead 
of 1,080,000 years, and hence his rotation numbers must have been divisible by 10 and 
his granularity would be 3°, which he might have regarded as too large for useful work. 
There is some evidence that such a scheme was at some point related to the midnight 
system and was influential in the creation of the zij al-Arkand, which is one of the earliest 
transmissions of Indian astronomy into Islam.13

 
Using the R values from Aryabhata’s sunrise system, one finds for Saturn 
 

 146,564 0;2,2,8,12
4,320,000

ω = =  

 
so the mean longitude is simply 6 8  and the leading two digits (2,2) are 

what one expects from the well-known period relation  

;12 49;12× =
59 57 0;2, 2, 2....

59
−

=  

 
For Jupiter one finds 
 

 364,224 0;5,3,31,12
4,320,000

ω = =  

 
so the mean longitude is , and the leading two digits 5,3 are 

consistent with the well-known period relation 

6 31;12 187;12× =
83 76 0;5,3,36...

83
−

=  For the midnight 

system R for Jupiter is 364,220, and so the corresponding mean longitude is decreased to 
186°. 
 
 
 
For Mars,  
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 2, 296,824 0;31,54,1,12
4,320,000

ω = =  

 
so the mean longitude is . The leading two digits 31,54 are consistent with 
the common period relations for Mars: 

6 1;12 7;12× =

 
79 37 284 1330;31,53,55..., 0;31,54,5...

79 284
− −

= =  

 
 
For Venus, 
 

 7,022,388 1;37,31,59,24
4,320,000

ω = =  

 
so the mean longitude is . Using Venus’ familiar short period 

relation gives

6 59;24 356;24× =
5 8 1;37,30

8
+

= (exactly), while a longer one gives 152 243 1;37,31
243
+

= ,51 

suggesting that the longer relation for Venus was used to construct R. 
 
 
For Mercury, 
  

 17,937,020 4;9,7,31,0
4,320,000

ω = =  

 
so the mean longitude is , and the leading digits 4;9,7 are consistent with 

the period relation  

6 31;0 186× =
46 145 4;9,7, 49

46
+

= . For the midnight system R for Mercury is 

17,937,000, and so the corresponding mean longitude is decreased to 180°. 
 
For the Sun, there is one revolution per year, and so the longitude of the Sun is zero on 
both –3101 Feb 18 at sunrise and 499 Mar 21 at noon, the first by construction, the 
second as a consequence of being exactly 3,600 years later. 
 
For the Moon the short systems specify 57,753,336 rotations in longitude, 488,219 
rotations of the lunar apogee, and 232,226 rotations of the lunar node. The node rotates in 
the clockwise direction, so the rotations will be counted as negative. While the longitudes 
of the Sun and Moon are, like the five planets, zero on –3101 Feb 18, the Moon’s apogee 
is at 90° and the ascending node is at 180°. Thus the rotations in longitude are divisible 
by four as usual, while the rotations of the apogee are three plus some multiple of four, 
and the rotations of the node are two plus some multiple of four. 
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For the Moon, 
  

 57,753,336 13;22,7,46,48
4,320,000

ω = =  

 
so the mean longitude is , and the leading digits 13;22,7 are 

consistent with the period relation  

6 46;48 280;48× =
235 19 13;22,6

19
+

= . 

 
For the Moon’s apogee, the revolutions are three plus some multiple of four in order that 
the longitude of the apogee be 90° on –3101 Feb 18. Hence 
  

 488,219 0;6,46,50,57
4,320,000

ω = =  

 
and so the mean longitude of the apogee is 90 , and the leading 

digits 0;6,46 are consistent with the relation  

6 50;57 35;42+ × =
254 235 269 0;6, 46
19 19 251

− × =  obtained by using 

the well-known relation 269 anomalistic months equals 251 synodic months. 
 
For the Moon’s node, the revolutions are two plus some multiple of four in order that the 
longitude of the node be 180° on –3101 Feb 18. Hence 
  

 232,226 0;3,13,31,18
4,320,000

ω −
= = −  

 
so the mean longitude of the node is 180 , and the leading digits –

0;3,13 are consistent with the period relation  

6 31;18 7;48− × = −
254 235 5923 0;3,13
19 19 5458

− × = −  obtained by 

using the well-known relation 5923 draconitic months equals 5458 synodic months. 
 
These deconstructions of the rotation numbers R for the five planets clearly suggest how 
the numbers might have been originally constructed: from the period relations one would 
compute n;α,β, from the mean longitudes, rounded to the nearest multiple of 1;12°, one 
would get γ,δ, and thus compute R as 
 
 4,320,000 ; , , , 20,0,0 ; , , ,R n nα β γ δ α β γ δ= × = × . 
  
Clearly the revolution numbers R contain exactly two components: (1) knowledge of 
widely known planetary period relations, and (2) rounded mean longitudes at noon on 
499 Mar 21. The perfectly clean separation of these components in the sexagesimal 
construction certainly suggests a strong Greek influence. Also note that because of the 
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required rounding, we know only intervals of width 1;12° that the author thought the 
mean longitudes were in on 499 Mar 21, and so we have no information where in those 
intervals his assumed mean longitudes might lie. 
 
If the author had some estimate of a mean longitude at some date other than 499 Mar 21 
he could still easily construct the R values. For example, let us use Saturn as an example. 
In Y = 4,320,000 years Saturn must make about 
 

 0
2int( )

59
R Y=  

revolutions plus some fractional rotation, and similarly in 3,600y t= +  years it will make 
about  

 0
2int( )

59
r y=  

 
revolutions plus some fraction c of an additional revolution. Then on the date t years, 
positive or negative, from 499 Mar 21 noon, we must have 
 

 0
0

4R nR y y r
Y Y

c+
= +  

for some integer n, from which, since c is known (it is just the mean longitude on the date 
y), one can easily solve for n, and hence know 0 4R R n= + . 
 
There are two simple consequences of this procedure. First, there is no requirement that 
the mean longitudes be known on the same date. In fact, they can all be known on 
different dates, and those can be any date whatsoever. Second, whatever the date and 
whatever the fraction c, at the end of the procedure the only thing we know is the value of 
R. All knowledge of the date t, the value of c, and even the exact details of the period 
relation (i.e. the 2/59 used above) have been completely erased except for the obvious 
fact that whatever they were, they led our author to the text value of R. And as we have 
seen above, the only information in R is the leading digits of a period relation and the 
interval of width 1;12° into which the mean longitude falls on exactly 499 Mar 21 noon. 
 
 
Paitamahasiddhanta and Brahmasphutasiddhanta Revolution Numbers R 
 
The system for constructing the revolution numbers for the long time intervals is similar 
to the short time interval systems, but differs in details and is generally more complex. 
The revolution numbers in the Paita and the BSS are identical. The fundamental period is 
4,320,000,000 years, or 1,000 times longer. Not only are the mean longitudes zero at the 
beginning and end of this period, but so also are the apogees and nodes of all the planets, 
and so the beginning and end of the kalpa is a true conjunction of all the planets, not just 
a mean conjunction. As explained earlier, the beginning of the current kaliyuga is said to 
occur when  years have passed. The number of 
rotations in 4,320,000,000 years is adjusted so that (a) the mean longitude of each planet 

0.4567 4,320,000,000 1,972,944,000× =
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lies in a desired interval at some contemporary date, and (b) the mean longitudes are all 
near, but not exactly equal to, zero at the beginning of the current kaliyuga. The number 
of days in 4,320,000,000 years is said to be 1,577,916,450,000, implying a sidereal year 
length of 365;15,30,22,30, slightly shorter than the year lengths in the short system, and 
3,600 of these years brings us to 499 Mar 20 at 3 PM, or 21 hours earlier than 
Aryabhata's modern date. 
 
The construction of the R values in the long system is perhaps best explained with an 
example. Let us use Saturn, which according to the texts makes 146,567,298 rotations in 
4,320,000,000 years. We can find the implied mean longitude at the modern date by 
computing 
 

 146,567,298 (1,972,944,000 3,600) 66,937,407.136
4,320,000,000

+ =  

 
so that 
 
 360 0.136 48;58λ = × = , 
 
which is close to the value 49;12° that results in Aryabhata’s systems, and in fact, given 
the ≤0;36° degree granularity in those systems, it is effectively the same value. For the 
long system the implied mean longitude of Saturn on –3101 Feb 18 is about –1;13°, and 
thus fairly close to the target value (and Aryabhata’s enforced value) of 0°. Of course, 
both the mean and true longitudes of Saturn and indeed all the planets are exactly zero at 
the beginning and end of each kalpa. 
 
Since Saturn makes about 2 revolutions in longitude in 59 years, we might expect that R 
will be about 2 / 59 4,320,000,000 146,440,678×  revolutions. However, using that 
number of revolutions, after 1,972,944,000 years Saturn will have made some 
66,879,457.6426 revolutions, and so have a mean longitude of about 

 on –3101 Feb 18, very far from the target value of zero. 
Furthermore, after an additional 3,600 years Saturn will have made an additional 
122.0339 revolutions and so have a mean longitude of about 243.32°, while we know that 
the mean longitude should be about 49°. 

360 0.6426 213;20× =

 
Clearly we must adjust the number of revolutions, and the first thing to do is to add 
enough revolutions to our initial estimate, 146,440,678, to eliminate the fractional part of 
the revolutions at –3101 Feb 18.14 To this end, let ρ = 146,440,678 and let us imagine 
adding p revolutions to ρ so that 0.4567( )pρ +  is some integer m. We already know that 
0.4567ρ is an integer n plus a fractional part c = 0.6426, so altogether we must have 
 

 
0.4567( )

0.4567
m p

n c p
ρ= +

= + +
 

or 
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 0.4567
0.6426 0.4567

q m n
c p

p

= −
= +
= +

 

 
Multiplying through by 10,000 we see that we must solve the indeterminate equation 
 
 10,000 4567 6426q p− = . 
 
Now Greek and Indian mathematicians were certainly able to solve indeterminate 
equations such as 
 
 aq bp c− =  
 
where a, b, and c are given integers. One method is to expand the rational fraction a/b in 
a continued fraction series, which is in itself a simple extension of Euclid’s algorithm. 
The resulting series of convergents will of course terminate in a/b itself, and the 
penultimate convergent, p/q, will be the solution of 
 
 1aq bp− = .  
 
Letting p0, q0 be the particular solution with smallest positive values of p, q, general 
solutions may be found from 
 

  0

0 , 0, 1, 2,...
p p at
q q bt t
= +
= + = ± ±

 
So having found p0, q0, clearly cp0, cq0 will be a general solution to and other 
solutions will be of the form 

aq bp c− =

 

 0

0 , 0, 1, 2,...
cp at
cq bt t

+
+ = ± ±

 

 
and the smallest positive solution will be when –t is the integer part of the smaller of 

and .  0 /cp a 0 /cq b
 
Applying this to the equation at hand, we find that the particular solution of  is 
(p

1aq bp− =
0, q0) = (1097, 501). Then cp0 = 7,049,322 and so the smallest positive solution for p in 

is 9,322 so we now know that aq bp c− =
 

 146,440,678+9,322
=144,450,000

R pρ= +
=  
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is a number of revolutions that will give a mean longitude of zero after 1,972,944,000 
years. 
 
Of course these trailing zero digits are obvious in hindsight, and might well have been 
obvious to whoever invented this scheme. Because 1,972,944,000/4,320,000,000 is 
exactly a four-digit decimal fraction, namely 0.4567, if we choose for R any multiple 
whatsoever of 10,000, then 
 

 1,972,944,000
4,320,000,000

R×  

 
will always be an integer number of rotations, and the mean longitude on –3101 Feb 18 
will always be zero. 
 
Our final step is to adjust the trailing digits of R =146,450,000 to give a desired mean 
longitude at our ‘modern’ date, 3,600 years after –3101 Feb 18. It would be nice if we 
could adjust only the integers just before the final four zeros, but as it happens, adjusting 
those digits by one unit changes the mean longitude at our modern date by ≤3°, which is 
rather coarse. In fact, if we set 146,400,000 10,000 , 0...119R t t= + = , so that R ranges 
between 146,400,000 and 147,590,000, then the mean longitude at the modern date will 
assume the 120 values 0°, 3°, 6°,…., 354°, 357°. Now the sexagesimal expansions of 
146,400,000 and 147,590,000 divided by 4,320,000,000 are precisely 0;2,2,0,0 and 
0;2,2,59,30, so we see that exactly as in the analysis of the short systems built on 
4,320,000 years, the first two sexagesimal digits, and only those two (plus the units digit, 
if it happens to be present), are determined exclusively by the period relation, and all 
further digits are used simply to encode into R the value of the mean longitude at the 
modern date. Therefore the separation in function of the sexagesimal digits that we 
observed in Aryabhata’s systems is duplicated exactly in the systems with a factor 1,000 
longer time period. 
 
We can encode the mean longitude of Saturn at 3,600 years past –3101 Feb 18 to 48° by 
choosing R provisionally as 146,560,000. To finally adjust the mean longitude at the 
modern date to some granularity smaller than 3° we must adjust the final four digits, 
which are now zero, but this must be done carefully. For example, if we simply add one 
rotation to get R = 146,560,001, then the mean longitude at the modern date will be 
212;24° and the mean longitude at –3103 Feb 18 will be 164;25°. 
 
The key clue we need to deal with this extreme sensitivity is already implicit in the 
analysis given above, where it was shown that the solution of 
 
 10,000 4567 1q p− =   
 
is  (p0, q0) = (1097, 501), or 
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 10.4567 1097 501
10,000

× = − . 

 
This means that if we add the final four digits of a small multiple of 1097 to our 
provisional R = 146,560,000 we can keep the mean longitude at –3103 Feb 18 close to 
zero (we lower it by 1/10,000 rotation, or 0;2,9°, for each added multiple of 1097). 
 
Furthermore, we see that 
 

 3,600360 1097 0;19,44
4,320,000,000

× × =  

 
and so the net increase above 48° in mean longitude after 146,561,097 rotations over 
1,972,944,000 + 3,600 years is 0;19,44° – 0;2,9° = 0;17,35°. Each additional multiple of 
1097 rotations that we add increases the net mean longitude by that same amount, and so 
at the modern date we can get a value between 48° and 51° that is acceptably close to our 
target value for the mean longitude. In the case of Saturn, our author chose 34 multiples 
of 1097, which is 37,928, and the final four digits match exactly those in 146,567,298, 
the number found in the texts. This multiple adds a net 0;58° to the provisional 48° for 
499 Mar 20, and the mean longitude at –3101 Feb 18 is reduced to 358;47°. 
 
We have seen that adding a single multiple of 1097 to any R (or equivalently, subtracting 
the same multiple of 8903 = 10,000 – 1097) will change the resulting mean longitude by 
about 0;18° (more accurately, 0;17,35°) in these schemes, about ¼th the 1;12° granularity 
in Aryabhata’s schemes. Note that if not for the requirement in the shorter system that the 
revolutions R be divisible by four, the granularities in both systems would be very nearly 
equal. 
 
The numbers actually used for each planet in the Paita and the BSS are 
 
Saturn    34×1097   yielding        146,567,298    and   λ =   48;58° (  49;12°), 
Jupiter    15×1097   yielding        364,226,455    and   λ = 187;24° (187;12° or 186°), 
Mars       26×1097  yielding     2,296,828,522     and   λ =     7;37° (    7;12°), 
Venus     36×1097  yielding     7,022,389,492    and    λ = 355;33° (356;24°), 
Mercury 72×1097  yielding   17,936,998,984     and   λ = 177;06° (186° or 180°), 
 
where the crucial final four digits are in italics and the mean longitudesλ are for 3600 
years following –3103 Feb 18 at 6AM, which is 499 Mar 20 at 3 PM. This means that to 
compare mean longitudes with the short systems we have to add increments to the results 
in the long system: 0;26° for Mars, 1;24° for Venus, and 3;35° for Mercury, the 
increments for Jupiter and Saturn being negligible. The resulting values then agree 
reasonably well with the mean longitudes for the sunrise and midnight systems, given in 
parentheses above, for the same date. 
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In the long period system the Moon’s apogee makes 488,105,858 revolutions, and its 
node makes –232,311,168 revolutions. At –3101 Feb 18, the longitude of the apogee is 
about 125;30°, and the longitude of the node is about –153;13°. Since the author requires 
those longitudes to be far from 0°, the final four digits must be related to some large 
multiple of 1097, and indeed they are: 6514×1097 = 7145858 and 
5744×1097 = 6301168.15 After another 3,600 years the longitude of the apogee is about 
37;15° and the longitude of the node is about –6;34°, so both are fairly close to 
Aryabhata’s values 35;42° and –7;48°, the adjustments for the 21 hour time difference 
being small ( ). Note that the long and short period values disagree substantially at  
–3101: 90° vs. 125;30° for the apogee and –180° vs. –153;13° for the node, so there was a 
lot of error to recover in the intervening 3600 years. 

3 6′ − ′

 
For all of the revolution numbers in the long period system it is clear that once again they 
contain exactly two, and only two, components: (1) knowledge of widely known 
planetary period relations, and (2) rounded mean longitudes at 3 PM on 499 Mar 20. All 
other information that might have been used to compute the R values has been lost. 
 
 
The Apogees and Nodes of the Planets 
 
The apogees and nodes of the planets in the early texts are given in Table 1. For the short 
period systems Aryabhata keeps the apogees and nodes at constant longitude, but 
acknowledges that they have moved to their current positions. His meaning becomes 
clear when we consider the long period systems, which put all the apogees and nodes at 
the origin at the beginning of the kalpa, and then specify a few hundred rotations for each 
one to bring them to their modern position. Since they are moving so slowly it hardly 
matters whether we compute them at the beginning of the current kaliyuga, –3101 Feb 
18, or 3600 years later. For technical reasons that will become clear below, we have 
chosen the earlier date for Table 1. 
 
 

APOGEES 
 rotations longitude 
 BSS BSS midnight sunrise 

Mercury 332 224;47 220 210 
Venus 653 81;02 80 90 
Sun 480 77;46 80 78 
Mars 292 128;18 110 118 
Jupiter 855 172;16 160 180 
Saturn 41 260;54 240 236 

 

NODES 
 rotations longitude 
 BSS BSS midnight sunrise 
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Mercury -521 21;20 20 20 
Venus -893 60;05 60 60 
Mars -267 22;00 40 40 
Jupiter -63 82;03 80 80 
Saturn -584 103;23 100 100 

 
 
The computation of the rotation numbers for the apogees and nodes is closely related to 
the method used for the longitudes. Let us take Mercury’s apogee as an example. Since 
the computed longitude is 224;47° in –3101, and 224;53° in A.D. 628, let us suppose that 
the author was in fact trying to target the round number 225° (= 0.625 rotations), i.e. he 
wants a number of rotations R such that 
 
 0.4567 0.625 0.375R m n= + = −  
and so he needs to solve 
 
 10,000 4567 3750n R− = . 
 
Just as discussed above, he would first solve 0 010,000 4567 1n R− =  and get . 
He would then compute and subtract off enough multiples of 
10,000 to get the minimum positive R = 3750. Apparently although this is a relatively 
small number of rotations, it was not small enough to satisfy our author, for he adjusted c 
slightly to , which gives R = 332. He could just as well have 
used , which gives R = 459, but apparently he did not. 
Clearly the key is to pick a multiple of 1097 that gives a zero in the 4

0 1097R =
1097 3750 4,113,750c = × =

1097 3756 4,110,332c = × =
1097 3647 4,110,459c = × =

th decimal place of c 
(moving right to left), which will happen about every 9th multiple. The target longitudes 
were apparently 225°, 81°, 78°, 128°, 172°, and 261° for the apogees, and –20°, –60°, –
22°, –80°, and –103° for the nodes. There is a certain amount of post hoc reasoning in 
this argument, but it is clearly consistent with what we saw above regarding the 
construction of the R values for the mean longitudes. 
 
 
Source of the Mean Longitudes 
 
We have seen that the rotation numbers in the Indian systems contain two pieces of 
information: the two leading sexagesimal digits are the same as those arising in standard 
period relations, and the remaining digits encode the mean longitude at a date 3,600 years 
after the beginning of the current kaliyuga on –3101 Feb 18. Ideally, we would like to 
understand the source of the Indian values for mean longitude. There are two extreme 
possibilities: either the mean longitudes were taken from some available astronomical 
tables, e.g. those in the Almagest or the Handy Tables, or they were derived from 
observations made in India around A.D. 500. The principal advocate for the case that 
tables were used was Pingree,16 while the principal advocates for observation in India 
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were Billard17 and van der Waerden.18 It is, of course, also possible that some 
combination of those strategies was used. 
 
The mean longitudes for 499 Mar 21 noon at 76°E from modern theory, the Almagest, 
and the three major Indian models are given in Table 2. The deviations of the Almagest 
values and the Indian values from modern theory are given in Table 3. When comparing 
the Indian values to any system we must remember that the sunrise and midnight values 
are always multiples of 1;12° and the BSS values are always multiples of about 0;18°. 
In addition, to compare the Indian values to either the modern or Almagest values we 
must first take into account that the modern values are given in a tropical coordinate 
system relative to an accurate vernal equinox, the Almagest values are also tropical but 
relative to a vernal equinox that is inaccurate by several degrees in A.D. 499, while the 
Indian values are probably sidereal but the texts give no direct information about the 
location of the zero point. It has been speculated by many people that the Indian zero 
point is the star z Pisces, or possibly some unstarred point nearby it, but as far as I can tell 
the only rationale is that in A.D. 499 z Pisces was very near the ecliptic and its longitude 
was about 359°. However, with a visual magnitude of 5.2 it is extremely dim and would 
be very difficult to use as a reference star. 
 
Let us first consider the case for adapting longitudes from tables. Setting aside for now 
the uncertainty in the various zero points, we note that on 499 Mar 21 noon the true mean 
Sun was only 0;14° shy of zero. If someone had estimated a more accurate length of the 
tropical year than Ptolemy did, or if relatively accurate sidereal tables from some earlier 
era were available, then it is possible that such a circumstance around noon on 499 Mar 
21 could have been widely expected. The Indian mean Sun was by construction at 0° 
longitude that noon, and so the true and Indian mean Suns would be aligned to a 
reasonable accuracy. At this point, the author of any of the Indian systems need only have 
an estimate of the elongation of the mean longitude of the planet from the mean Sun in 
any other system, and this elongation would be the mean longitude in the Indian system. 
For the planets, these elongations are simply the mean positions in anomaly. 
 
These errors in elongation from the Sun are shown in Table 4. We see that for the sunrise 
system all the errors except those for Mercury are smaller than the ≤0;36° spread, and the 
midnight system is similar except for an additional error for Jupiter. The BSS and 
Almagest errors are similar for most of the planets. The Almagest Mercury and Venus 
errors are due to inaccurate mean motions in anomaly and for Mercury are quite similar 
to the errors in the midnight and BSS systems. The Mercury error in the sunrise system is 
also large, but has the opposite sign. Mercury and Jupiter are the two cases where the 
mean longitudes change between the sunrise and midnight systems. The errors for Mars, 
Saturn, and the Moon, including its node and apogee, are in very good agreement for the 
Almagest, sunrise, and midnight systems, and the overall agreement is not as good with 
BSS. 
 
Overall, this pattern of errors is clearly consistent with a scenario which includes 
knowledge of a true mean solar longitude near 499 Mar 21 at noon, plus a set of fairly 
accurate tables for mean anomaly. Such tables would depend on good values for the 
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synodic periods of the planets, and the synodic, anomalistic, and draconitic months for 
the Moon, plus fairly accurate positions in anomaly at some epoch date. These tables 
would agree fairly well with the Almagest tables for Mars, Saturn, and the Moon, 
including its node and apogee, but would be somewhat improved for Venus and Jupiter. 
Mercury was apparently never gotten right by anyone, but the Almagest, midnight and 
BSS systems seem to have similar errors. 
 
Let us now consider the opposite extreme position, that all the required mean positions in 
anomaly were derived from contemporary observation in India. Billard’s thesis is that by 
plotting the deviations in mean longitude as a function of time, one could determine the 
date of the observations by finding when the deviations, or more precisely their standard 
deviation, were minimized. Such plots are shown in Figs. 1 and 2. 
 
Now generally speaking, mean longitudes are not directly observable. Rather it is 
necessary to observe true longitudes, and from these, using a model with known 
structural parameters such as eccentricity, epicycle radius, and longitude of the apogee, 
one can compute the desired mean longitudes. In the case of the Indian astronomers, there 
are at least three main problems: 

(1) there is no evidence that the astronomers would be able to measure true 
longitudes with any accuracy. The surviving lists of star coordinates in the Indian 
texts are very imprecise and so no measurement of a planet relative to a star 
would be accurate. Similarly, the Indian models of this era lacked the second 
lunar anomaly, so measures with respect to the Moon would show very large 
errors. 

(2) the structural parameters given in the texts are often not at all accurate, especially 
for the planets, and so show no evidence for underlying accurate observations. 

(3) the kinematic models used by the Indian astronomers are at best approximations 
to good models such as the equant, and for Mercury, Venus, and Mars, not very 
good approximations at that.19 Further, there is no known systematic way to 
derive structural parameters using the Indian approximations, i.e. there is nothing 
comparable to Ptolemy’s iteration scheme for the equant. 

 
These problems make determination of an accurate mean longitude from a set of 
observed true longitudes very difficult. Let us illustrate these difficulties with the case of 
Jupiter.20 In the midnight system we have R = 364,220 and the mean longitude is 186°. 
The comparison of the real longitudes and the predictions of the midnight system over the 
two synodic periods of the interval A.D. 508 – 510 is shown in Fig 3. Of course this 
figure is already greatly misleading since no observer in that time could possibly make 
enough observations to draw such smooth curves (nor could they even draw such a 
comparison graph), and even if they could, observation errors, very likely as large as 1°– 
2°, would induce substantial scatter not shown, but easily imagined, in our figure. 
Nevertheless, let us for now suppose that somehow our astronomer would realize that 
what is needed is to increase the mean longitude. The smallest adjustment possible is to 
add four revolutions, making R = 364,224 as in the sunrise system, and increasing the 
mean longitude by 1;12°. This gives the middle curve on the chart, which is indeed in 
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better agreement with reality, although nowhere near as good as it could be if the other 
parameter values were better adjusted. 
 
However, this is not all our astronomer actually changed in going to the sunrise system. 
Small adjustments are made to the eccentricity and the epicycle radius and small 
pulsations of both radii are added, but on the scale of the inherent uncertainties in the 
entire process, these changes are inconsequential. What is significant is that the apogee is 
moved from 160° to 180°. The resulting predictions of the full sunrise system are shown 
as the top curve in Figure 3, and if our astronomer really did understand how to adjust his 
parameters to get better agreement with observation, it is certainly not evident in his 
treatment of Jupiter. This is further illustrated in Fig 4, which shows the corresponding 
model errors for both systems for Jupiter over an entire 12-year sidereal period. Similar 
patterns are seen for the other planets in Figs 5 – 8. There is clearly no evidence of 
accurate observations being turned into excellent agreement with the sunrise or midnight 
systems. 
 
Beyond all this, however, the analysis given above of the information content in the 
revolution numbers R shows that Billard’s scheme was in fact futile from the very 
beginning. The revolution numbers contain exactly two, and only two, components: (1) 
knowledge of widely known planetary period relations, and (2) rounded mean longitudes 
on 499 Mar 21 or Mar 20. All other information that might have been used to compute 
the R values, including the date of any possible observations, has been lost. 
 
Although Billard’s deviation plots provide no useful information for this analysis, they 
might still be useful in other circumstances in which specific dates are not deliberately 
encoded into the mean motions which determine the slopes of the lines in the plots.21
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499 Mar 21 
noon 

modern 
theory 

Almagest Sunrise Midnight BSS 

Mercury 183;25 178;01 185;24-186;36 179;24-180;36 180;32-180;50 

Venus 356;14 351;04 355;48-357;00 355;48-357;00 356;48-357;06 

Sun 359;46 357;08 0 0 0;52 

Mars 6;54 4;20 6;36-7;48 6;36-7;48 7;56-8;14 

Jupiter 186;51 185;21 186;36-187;48 185;24-186;36 187;19-187;37 

Saturn 48;56 45;56 48;36-49;48 48;36-49;48 49;00-49;09 

Moon 280;39 278;06 280;12-281;24 280;12-281;24 281;23-281;41 

apogee 35;26 32;24 35;06-36;18 35;06-36;18 37;12-37;30 

node 352;01 349;06 351;36-352;48 351;36-352;48 353;14-353;32 

 
Table 2. Mean longitudes on 499 Mar 21 at noon and 76°E from modern theory and 
ancient theories. As discussed in the text, the values for Mercury and Venus represent the 
mean longitude on the epicycle, which is to us the heliocentric mean longitude. For the 
three Indian theories, the only thing known is that the mean longitudes fall into the 
specified intervals on the date in question. 
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499 Mar 
21 noon 

Almagest Sunrise Midnight BSS 

Mercury −5;25 ( 1;59,3;11) (-4;01,-3;11) (-2;53,-2;35) 

Venus −5;09 (-0;26,0;46) (-0;26,0;46) ( 0;35,0;53) 

Sun −2;37 0;14 0;14 1;06 

Mars −2;34 (-0;18,0;54) (-0;18,0;54) ( 1;01,1;19) 

Jupiter −1;30 (-0;15,0;57) (-1;27,-1;45) ( 0;28,0;46) 

Saturn −2;60 (-0;20,0;52) (-0;20,0;52) (-0;05,0;13) 

Moon −2;34 (-0;27,0;45) (-0;27,0;45) ( 0;43,1;01) 

apogee −3;03 (-0;20,0;52) (-0;20,0;52) ( 1;46,2;04) 

node −2;55 (-0;25,0;47) (-0;25,0;47) ( 1;14,1;32) 

 
Table 3. The discrepancies in mean longitude of the four ancient theories with modern 
theory. The systematic discrepancy for the Almagest results from an overly-long tropical 
year.
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499 Mar 
21 noon 

Almagest Sunrise Midnight BSS 

Mercury −2;47 ( 1;45,2;57) (-4;15,-4;57) (-3;59,-3;41) 

Venus −2;32 (-0;40,0;32) (-0;40,0;32) (-0;32,0;14) 

Sun 0;00 0 0 0 

Mars 0;03 (-0;33,0;39) (-0;33,0;39) (-0;05,0;13) 

Jupiter 1;07 (-0;29,0;43) (-1;41,-1;31) (-0;38,0;20) 

Saturn 0;23 (-0;34,0;38) (-0;34,0;38) (-1;11,0;53) 

Moon −0;04 (-0;42,0;30) (-0;42,0;30) (-0;23,0;05) 

apogee 0;25 (-0;35,0;37) (-0;35,0;37) ( 0;40,0;58) 

node −0;18 (-0;39,0;33) (-0;39,0;33) (-0;07,0;25) 

 
Table 4. The discrepancies in mean longitude of the four ancient theories with modern 
theory after aligning the mean Sun in each theory with the modern theory for the Sun’s 
mean longitude on 499 Mar 21 at noon at 76E°.
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Figure 1. The discrepancies in mean longitude of the sunrise model with modern theory. 
The single outlier case is Mercury. The lines as shown are as Billard drew them, but are 
in fact somewhat deceptive, since the sunrise system mean longitudes on any given date 
are known only to be in an interval of total width 1;12°. The negative slope for each line 
is due to the fact that the modern mean motions are all less than the sunrise system mean 
motions. The two lines with small amplitude waves are for Jupiter and Saturn, whose 
mean longitudes oscillate around a mean value due to the so-called giant resonance.
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Figure 2. As in Figure 1 except that the lines correspond to the mean longitudes from the 
Paitamahasiddhanta and the Brahmasphutasiddhanta. The most visible outlier is 
Mercury, the next most visible is Venus.
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Figure 3. The errors in true longitude for Jupiter over two synodic periods from A.D. 508 
– 510. The lower and top curves are for the midnight and sunrise system, while the 
middle curve is for the midnight system with its revolution number R increased by 4 
units, the minimum allowable change.
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Figure 4. The errors in true longitude for Jupiter for the sunrise and midnight systems 
over a full longitudinal revolution of 12 years. 
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Figure 5. The errors in true longitude for Saturn for the sunrise and midnight systems 
over a full longitudinal revolution of 30 years.
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Figure 6. The errors in true longitude for Mars for the sunrise and midnight systems over 
a full longitudinal revolution of 2 years.

Dennis Duke Page 26 1/30/2008 



 
 
 
 
 
 
 

-2

-1

0

1

2

507 507.5 508 508.5 509
year

er
ro

rs
 (d

eg
re

es
)

midnight

sunrise

Venus 
 
 

 
 
 

 
 
 
 
 
Figure 7. The errors in true longitude for Venus for the sunrise and midnight systems 
over 2 years. These are longitudes on the epicycle, and so are heliocentric longitudes.
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Figure 8. The errors in true longitude for Mercury for the sunrise and midnight systems 
over 1 year. These are longitudes on the epicycle, and so are heliocentric longitudes. 
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