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Abstract

In statistics, many commonly encountered quantities take the form of den-
sity weighted integrals. This paper treats their numerical estimation within the
Chebyshev approximation framework. In particular, we discuss how a generic
one dimensional density function can be incorporated into the construction of
Clenshaw-Curtis type quadrature rules, either through an adjustment of the
quadrature weights or by generating a set of quadrature nodes that satisfies
the optimal spacing property in terms of the density-weighted uniform error.
We consider a variety of density functions, including those that are piecewise
continuous, or have unbounded support. The accompanying numerical exper-
iments illustrate the behavior and performance of the resulting quadrature
rules and offer a comparison with a variety of existing approaches for estimat-
ing density weighted integrals.

1 Introduction

For physical systems that are modeled by differential- or partial differential equations,
but whose input parameters can only be determined in a statistical sense, stochastic
simulations provide a means of computing statistical quantities of interest related
to the model response, such as its expectation or variance. Usually, the uncertain
input parameters can be approximated as functions of some random vector Y whose
distribution over its range Γ is determined by a joint density function ρ : Γ→ [0,∞).
The statistical quantity of interest Q then takes the form

Q =

∫
Γ

f(y)ρ(y)dy, (1)
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where f(y) is related to the system’s response to a given realization of the random
input. To be effective, numerical quadrature schemes that approximate Q should not
only be able to accommodate the potential high dimensionality and/or unbounded-
ness of the stochastic domain Γ, but should also aim to minimize the number of
function evaluations f(y), since these involve computing the numerical solution of a
partial differential equation at a substantial computational cost.

Unlike f , the density function ρ is usually known a priori and the comparative
cost of its evaluation is negligible. Moreover, the full incorporation of this readily
available information into the construction of a quadrature rule will almost certainly
improve its accuracy. Gaussian quadrature rules can accommodate the density ρ
naturally through construction of the orthogonal interpolating basis [1, 25]. This
paper treats the interpolation and numerical quadrature of such weighted integrals
within the Chebyshev approximation framework. In particular we discuss two mod-
ifications of the standard Clenshaw-Curtis type rules, through either an adjustment
of the quadrature weights, or through the placement of quadrature nodes, that lead
to the efficient approximation of ρ-weighted integrals for a general set of densities ρ.

Although this paper is motivated in part by applications in uncertainty quan-
tification, our results are also applicable in a variety of other settings, including
optimization and control, mathematical finance, and reduced order modeling, where
interpolation and numerical quadrature in the presence of density functions play an
important role, for instance in the construction of surrogate models.

We restrict our attention to integrals of functions that depend on a single random
variable Y whose distribution over the interval Γ is determined by a generic density
function ρ : Γ → [0,∞). For multidimensional integrals over hyperrectangles, i.e.
Γ =

∏K
k=1 Γk where Γk is an interval in R for k = 1, . . . , K, efficient sparse grid

quadrature rules ([7, 16]) can be constructed from one dimensional rules over each
interval Γk. If in addition the random vector Y = [Y1, ..., YK ]T has independent
components, then ρ(y) =

∏K
k=1 ρk(yk) for any point y = (y1, ..., yK) ∈ Γ, and hence

the sparse grid’s constituent one dimensional rules can be defined with respect to
the weighted measure ρkdyk. The growth in the number of sparse grid quadrature
nodes with increasing dimension places a limit on the order of its constituent one
dimensional rules. In this work we therefore consider only moderately sized rules
with up to about 30 nodes, for which no stability issues arise.

Let Γ = [a, b] be a bounded interval, ρ : [a, b]→ [0,∞) be a piecewise continuous
probability density function, and f : [a, b] → R be continuous. Conditional on the
change of variable y = b+a

2
+ b−a

2
x, we may assume without loss of generality that
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the integral we seek to approximate is of the form

Q =

∫ 1

−1

f(x)ρ(x)dx. (2)

We first discuss the case ρ(x) = 1. Let In[f ] denote the order (n − 1) Lagrange
interpolant of f over a given set of nodes {xi}ni=1, i.e.

In[f ](x) :=
n∑
i=1

f(xi)li(x), (3)

where each cardinal basis function li(x) is the uniquely defined order (n − 1) poly-
nomial satisfying li(xj) = δij for i, j = 1, . . . , n (δij is the Kronecker delta function).
The corresponding quadrature rule then takes the form∫ 1

−1

f(x)dx ≈
∫ 1

−1

In[f ](x)dx =
n∑
i=1

wif(xi), (4)

where wi :=
∫ 1

−1
li(x)dx represents the quadrature weights for i = 1, . . . , n. Clenshaw-

Curtis (CC) type rules are special interpolatory quadrature rules associated with
Chebyshev polynomials. Among many other useful properties, the Clenshaw-Curtis
rules of order 2k + 1, k = 0, 1, . . . are nested, allowing for the re-use of quadrature
nodes under refinement.

Various strategies exist for incorporating a nonuniform density function ρ. A
simple method for generating a CC-type quadrature rule for (2) for non-uniform ρ,
is to form the interpolant In[fρ](x), leading to the approximation∫ 1

−1

f(x)ρ(x)dx ≈
n∑
i=1

wif(xi), (5)

where wi = ρ(xi)
∫ 1

−1
li(x)dx. While the multiplication of f by ρ may have a mol-

lifying influence on the integrand, the extent of this effect is impossible to predict
if the precise form of f is unknown a priori. Moreover, using the same order of
approximation for f and ρ does not exploit the ready accessibility of ρ.

Another common approach to approximating (2) involves first transforming it to
the unit interval [0, 1] through the use of the cumulative density function F (x) :=∫ x
−1
ρ(τ)dτ . Let y = F (x) and note that dF

dx
(x) = ρ(x), yielding∫ 1

−1

f(x)ρ(x)dx =

∫ 1

0

f̃(y)dy, (6)
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where f̃(y) = f(F−1(y)). This transform ostensibly eliminates ρ(x) from the integral,
and allows for the use of standard Clenshaw-Curtis or Fejér rules to approximate
(6). However, the integrand f̃ that replaces f depends implicitly on ρ. The inverse
cumulative distribution function (ICDF) F−1 increases sharply in regions where ρ is

small, with jump discontinuities over intervals where ρ(x) = 0, and since df̃
dy

(y) =

f ′(F−1(y))dF
−1

dy
(y), this can result in sharp increases in f̃ , which has a direct bearing

on its integrability (see Equation (7)).
In the following sections we outline two alternative approaches to generating CC-

type numerical quadrature rules for the ρ-weighted integral (2). The first method,
discussed in Section 2, uses the standard CC-type quadrature nodes described above
but adjusts the quadrature weights to account for the density function ρ. The second
method, treated in Section 3, is based on a generalization of the optimal spacing
property of Chebyshev nodes to ρ-weighted uniform seminorm. Unlike in the case
of Chebyshev nodes, no explicit formulas for such nodes exist in this generalized
setting. We use the Remez algorithm to approximate them.

2 Incorporating the Density via QuadratureWeights

The following three variants of quadrature rules based on Clenshaw-Curtis type nodes
are commonly used: the Clenshaw-Curtis (CC) rule (see [8]), Fejér’s first rule (F1),
and Fejér’s second (F2) rule (see [11]), whose nodes are given respectively by xcci =

cos( (i−1)π
n−1

), xf1i = cos(
(i− 1

2
)π

n
), and xf2i = cos( iπ

n+1
) for i = 1, . . . , n. For each of these

sets of nodes, the Lagrange interpolant in 3 can also be expressed in terms the first
or second Chebyshev polynomials, given by Tk(x) := cos(k arccos(x)) and Uk(x) :=
sin((k + 1) arccos(x))/

√
1− x2 respectively, in a way that lays bare its connection

with trigonometric interpolation. Indeed, the change of coordinates x = cos θ renders
the function f(x) = f(cos θ) periodic over the interval [0, π], allowing it to be readily
approximated by trigonometric series. For example, the interpolant In[f ](x) over the
CC nodes, can then be written in terms of θ as

Iccn [f ](cos θ) =
n−1∑
k=0

acck cos(kθ) =
n−1∑
k=0

acck Tk(x),

where the kth coefficient acck is computed as the trapezoidal approximation of the
projection of f(cos θ) onto cos(kθ) (see [6]). Similarly, If1n [f ](x) =

∑n−1
k=0 a

f1
k Tk(x)

and If2n [f ] =
∑n−1

k=0 a
f2
k Uk(x), where af1k and af2k are computed analogously for k =

0, . . . , n − 1. In [12] and [24], the authors exploit these relations to construct fast
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and stable methods for computing CC type weights through the use of fast Fourier
transforms (FFTs).

Weighted CC-type rules are constructed by interpolating only f at the CC-type
nodes, which leads to the approximation∫ 1

−1

f(x)ρ(x)dx ≈
∫ 1

−1

In[f ]ρ(x)dx =
n∑
i=1

wρi f(xi),

where wρi :=
∫ 1

−1
ρ(x)li(x)dx for i = 1, . . . , n. This formulation effectively decouples

the approximation of ρ from that of f . The quadrature weights wρi can be evaluated
independently of f , either analytically (if possible), or through the use of unrelated
high order quadrature methods taylored to ρ, including specialized methods, such as
when ρ is highly oscillatory [10] or has an integrable singularity. Weighted rules also
boast convergence rates that resemble those of CC rules for integrals with ρ = 1, as
well as non-negative quadrature weights if ρ(x) ≥ 0 for x ∈ Γ. In [23], the author
generalizes FFT type the results of [24] to weighted CC-type rules. In this case, the
weights can be computed using discrete Fourier transforms, based on the density’s
moments γi =

∫ 1

−1
ρ(x)Ti(x)dx for i = 1, . . . , n− 1.

To compute weighted rules more or less automatically for a wide array of different
density functions, we make use of Chebyshev approximations in estimating both the
density function ρ and the function f , albeit to different degrees. Let Pk(x) be a
generic Chebyshev polynomial of order k (CC, F1, or F2). We now expand ρ using
the Chebyshev polynomials, while using the canonical basis to interpolate f , i.e.

Inρ [ρ](x) =

nρ−1∑
k=0

aρkPk(x), and Inf [f ](x) =

nf∑
i=1

f(xi)li(x).

Replacing f and ρ in (2) with their respective approximations yields the quadrature
rule ∫ 1

−1

f(x)ρ(x)dx ≈
nf∑
i=1

wρi f(xi),

where the quadrature weight wρi =
∑nρ−1

k=0 aρk
∫ 1

−1
li(x)Pk(x)dx can be computed ex-

actly for i = 1, ..., n, either by an interpolatory quadrature rule of sufficiently high
order, or explicitly. Indeed, expressing the canonical basis functions li(x) as linear
combinations of Chebyshev polynomials of either the first or second type reduces the
evaluation of the integrals

∫ 1

−1
li(x)Pk(x) dx for k = 0, ..., n − 1 and i = 1, ..., n to

integrals of the form
∫ 1

−1
P f
k′(x)P ρ

k (x) dx, where P f
k and P ρ

k are the order k Cheby-
shev polynomials used to approximate f and ρ respectively. Explicit formulas for
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the integrals of such products can be obtained by combining the known integrals of
Tk(x) and Uk(x) with the product formulas [6]

Tk(x)Tk′(x) =
1

2
(Tk−k′(x) + Tk+k′(x))

Uk(x)Uk′(x) =
n∑
l=0

Uk−k′+2l(x)

Tk(x)Uk′(x) =

{
1
2
(Uk+k′(x) + Uk−k′(x)), if k′ ≥ k − 1

1
2
(Uk+k′(x)− Uk′−k−2(x)), if k′ ≤ k − 2

,

where U−1(x) = 0.

Example 1. In Figure 1, we compare the accuracy of the weighted Clenshaw-Curtis
rule (the Fejér rules behave similarly) with approximations (6) and (5). For all
three functions f , the weighted rule exhibits the same convergence behavior as the
standard CC rule applied to the ρ = 1 case (included here as a reference), while the
accuracy for both the ICDF transform and the product interpolant vary significantly.
This confirms that, while f may be unknown, the influence of ρ on the error can be
mitigated. A list of the density functions we use in this paper, is included in Appendix
A.

2.1 Piecewise Continuous Densities

The above method can readily be extended to piecewise continuous densities. In
particular, suppose the standard interval [−1, 1] can be partitioned into sub-intervals
{[aj, bj]}mj=1 so that ρ is continuous over each (aj, bj) for i = 1, . . . ,m. We can then
form the order nρj Clenshaw-Curtis type interpolant of ρ over each sub-interval, giving
rise to the piecewise defined polynomial interpolant

Ipw
nρ [ρ](x) =

m∑
j=1

nρ−1∑
k=0

aρk,j1[aj ,bj ](x)Pk,j(x),

where 1[aj ,bj ] is the characteristic function over [aj, bj], j = 1, . . . ,m. Combining this
approximation with the same standard polynomial interpolation for f as before, we
obtain ∫ 1

−1

f(x) ρ(x) dx ≈
∫ 1

−1

Inf [f ](x) Ipw
nρ [ρ](x) dx =

nf∑
i=1

f(xi)wi,
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Figure 1: The absolute errors in approximating the integral (2) for different numbers
of nodes, using either i) the weighted Clenshaw-Curtis rule (wcc), or applying the
standard Clenshaw-Curtis rule to ii) the interpolant of the product (cc-prod), or
iii) the ICDF transformed integral (cc-icdf). As a reference, we include the error
associated with the standard CC rule applied to the associated ρ = 1 case (cc-ref).

where

wi =
m∑
j=1

nρ∑
k=0

aρk,j

∫ bj

aj

li(x)Pk,j(x) dx.

Again, the weights require the computation of integrals of products of pairs of Cheby-
shev polynomials, although in this case the factors are defined over different intervals.
Evaluating these integral ultimately amounts to computing integrals of the form∫ bj

aj

Pk′(x) Pk,j(x) dx, for k, k′ = 0, . . . , n− 1.

This can be achieved by simply invoking the appropriate Gaussian quadrature rule.
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Example 2. The benefits of using a weighted Clenshaw-Curtis rule, as opposed to
approaches (5) or (6), become abundantly clear when considering piecewise continu-
ous or -smooth density functions. In this case, the discontinuities in the density (or
in its derivatives) can be treated explicitly, once again ensuring a convergence rate
in accordance with the ρ = 1 case (see Figure 2).
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Figure 2: Absolute errors for piecewise defined density functions.

2.2 Unbounded Intervals

The construction of quadrature rules over unbounded domains, such as the infinite
interval Γ = (−∞,∞) or the semi-infinite one Γ = [0,∞), is usually accomplished
either through the use of a polynomial basis that is intrinsic to the domain, such as
Hermite or Laguerre polynomials, or by first transforming the unbounded interval to
a bounded one, where a standard polynomial basis, such as Chebyshev polynomials,
can be used. The ICDF is one such mapping that is specific to ρ. Applying its inverse
to a set of quadrature nodes in [0, 1] naturally spreads them over the unbounded
interval in accordance with ρ. However, the caveats of this approach mentioned in
Section 1 still apply.

Here, we make use of well-known family of algebraic mappings [3, 5, 4], defined
for the semi-infinite domain by ζ(x) = L(1 + x)/(1 − x), x ∈ [−1, 1), and for the
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infinite domain by η(x) = Lx/
√

1− x2, x ∈ (−1, 1), where L > 0 represents a
scaling parameter that can be calibrated to different problems (we will use L = 1
throughout). These mappings give rise to rational basis functions over the unbounded
interval that, among other useful properties, are preferrable to Hermite polynomials
when interpolating functions that decay algebraically at infinity (see e.g. Chapter
17, [6]). This approach was employed in the Chebfun package [22], for the treatment
integrals over unbounded intervals. To illustrate the construction of weighted CC-
type quadrature rules over unbounded domains, we focus on the semi-infinite interval,
the unbounded interval being similar. The change of variables y = ζ(x) yields∫ ∞

0

f(y)ρ(y)dy =

∫ 1

−1

f(ζ(x))
Lρ(ζ(x))

(1− x)2
dx.

If the mapped density ρ(ζ(x)) is bounded and converges to 0 at least quadratically as
x→ 1−, we can use techniques described above to compute the appropriate weights
by evaluating wρi =

∫ 1

−1
li(x)Lρ(ζ(x))

(1−x)2
dx, or approximating this integral numerically.

Since the mapped density ρ(ζ(x)) and the Jacobian of ζ(x) are non-negative, the
resulting quadrature weights are guaranteed to be positive.

Another approach, which we do not discuss here, is to simply truncate the inter-
val, i.e. disregard part of the domain beyond a given cut-off. If the integrand decays
rapidly as y → ±∞, the truncation will have a negligible effect on the error.

Example 3. For smooth functions, the weighted CC rule does as well as the case
ρ = 1. For functions with convergence-limiting singularities such as f(x) = sin(x)/x
and 1/(1 + x2)1/3, incorporating the density function improves accuracy, provided
the density’s support is concentrated away from the singularity, as is the case for the
Weibull- or Pareto densities, but not for the Gamma(7,1) density. Here it becomes
apparent how the introduction of a density function generally has a mollifying effect
on the integrand.

3 Incorporating the Density through Node Place-

ment

As the discussion in the previous section shows, a simple modification of the quadra-
ture weights of traditional CC-type quadrature rules allows us to estimate density
weighted integrals with almost the same accuracy as the corresponding rules for
ρ = 1 and with little additional cost. Choosing the quadrature nodes independently
of the density ρ may however be problematic, potentially resulting in a significant
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Figure 3: Absolute errors in approximating (1) for density functions with unbounded
support.

number of quadrature points that lie in regions where ρ is small or even zero, i.e.
where the random variable is unlikely or even impossible to occur. This in turn, can
lead to evaluations of the integrand f that are costly, vis-à-vis their contribution to
the overall accuracy, or at worst, points at which f is not even defined.

In this section we construct a set of nodes whose spread reflects the distribution
of the underlying random variable, by seeking to reproduce the optimal spacing
property of Clenshaw Curtis nodes (see Theorem 4.12, in [2]) for a ρ-weighted L∞

seminorm error. Unlike in the unweighted case, no explicit formulas exist for the
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positions of these optimal nodes. Here we resort to a weighted form of the well-
known Remez algorithm ([19]) to approximate them numerically.

Let Γ = [a, b] be a closed bounded interval and consider the interpolation of
f ∈ Cn([a, b]) by the polynomial p ∈ Pn−1([a, b]) through a set of points {xi}ni=1.
Recall that the approximation error is given explicitly by the expression

f(x)− p(x) =
f (n)(ξx)

n!

n∏
i=1

(x− xi) (7)

for some ξx ∈ [a, b]. As is readily apparent from (7), a point set {xi}ni=1 that
is optimally spaced in the sense of minimizing the quantity Θ(x; {x1, . . . , xn}) :=∏n

i=1(x− xi) uniformly, i.e.

min
x1,...,xn

‖Θ(·; {x1, . . . , xn})‖∞ (8)

is likely to produce an interpolant with good uniform accuracy for a generic, suffi-
ciently differentiable function f . The set of points that satisfy (8) are precisely the
Clenshaw-Curtis points.

To reflect the presence of the density ρ, we propose measuring the approximation
error f(x)−p(x) in the ρ-weighted uniform semi-norm | · |ρ,∞, which we define for any
f ∈ C([a, b]) by |f |ρ,∞ := sup[a,b] |f(x)|ρ(x). In regions where the random variable
is unlikely to lie, ρ(x) is small and therefore the mismatch between p and f is less
prone to affect the overall error, whereas regions in which ρ(x) is relatively large
carry a more substantial weight. Throughout we allow ρ to be piecewise continuous
over [a, b] but assume that it is also bounded above, which ensures |f |ρ,∞ < ∞ for
all f ∈ C([a, b]). Since modifying ρ at the points of discontinuity does not affect
its underlying probability measure (and hence (1)), we may assume that |f(x)ρ(x)|
attains both of its global extrema, either within the sub-intervals in which ρ is con-
tinuous or at one of the one-sided limits at the sub-interval endpoints. The fact that∫ b
a
ρ(x)dx = 1 guarantees ρ(x) > 0 within some open interval in [a, b]. Note that

unless ρ is strictly positive over the entire interval [a, b], the condition |f |ρ,∞ = 0
does not necessarily imply f = 0 in which case | · |ρ,∞ does not define a norm on
C([a, b]). It does however define a norm on the space Pn([a, b]).

Multiplying both sides of (7) by ρ(x) yields the weighted difference

(f(x)− p(x))ρ(x) =
f (n)(ξx)

n!

(
n∏
i=1

(x− xi)

)
ρ(x). (9)
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As before, we seek a set of nodes that are optimally spaced, albeit in a weighted
sense. Unlike for the unweighted case, the minimization problem

min
x1,...,xn

|Θ(·; {x1, . . . , xn})|ρ,∞ = min
x1,...,xn

max
x∈[a,b]

ρ(x)
n∏
i=1

|x− xi| (10)

no longer necessarily has a closed form solution and must be solved computationally.
To this end, we reformulate (10) as a best polynomial approximation problem in the
seminorm | · |ρ,∞ and estimate its solution by means of a modified form of the Remez
algorithm (see [19, 20, 21]). Recall the traditional best minimax approximation
problem for a function f ∈ C([a, b]): Find p∗ ∈ Pn([a, b]) so that

‖f − p∗‖∞ ≤ ‖f − p‖∞ for all p ∈ Pn([a, b]). (11)

It is readily apparent that solving problem (8) is equivalent to finding the best min-
max approximation of a monic polynomial in Pn([a, b]) by polynomials in Pn−1([a, b]).

A unique solution p∗ of (11) is known to exist and is characterized, by virtue
of the Chebyshev equioscillation theorem, by the existence of n + 2 equioscillation
points z1, . . . , zn+2 for which

f(zi)− p∗(zi) = σ(−1)i inf
p∈Pn
‖f − p‖∞ (12)

holds, where σ = ±1, depending on f and n. In a seminal series of papers, Remez
developed an iterative algorithm to estimate this set of equioscillation points. The
method received widespread interest in the 1950’s with the increased availability of
computational resources and became a fundamental tool in digital signal processing
and filter design in the 1970’s, forming the basis for the Parks McClellan algorithm
[18]. In [18], the authors relied on a weighted version of the equioscillation theorem for
trigonometric polynomials. To the best of our knowledge, no proof of the density-
weighted equioscillation theorem has been given for regular polynomials. In the
following sections we extend the weighted equioscillation theorem to polynomials
and use the result as the foundation for a weighted version of the Remez algorithm
for polynomials. The paper [17] provides an excellent introduction to the Remez
algorithm and its approximation through barycentric interpolation in the unweighted
case.

3.1 Best Approximation in the Weighted Uniform Error

The ρ-weighted best approximation problem for f ∈ C([a, b]) is formulated as follows:
Find p∗ ∈ Pn([a, b]) so that

|f − p∗|ρ,∞ = inf
p∈Pn
|f − p|ρ,∞. (13)

12



In the following, we generalize the Chebyshev equioscillation theorem to characterize
the solution of (13). For notational convenience, we let dn := infp∈Pn |f − p|ρ,∞.
Since ρ is bounded above, the embedding (C([a, b]), ‖ · ‖∞) ↪→ (C([a, b]), | · |ρ,∞) is
continuous, allowing us to readily extend the Weierstrass approximation theorem to
| · |ρ,∞. We set out to prove the following theorem.

Theorem 1 (Weighted Equioscillation Theorem). For any f ∈ C([a, b]) and n ≥ 0,
there exists a unique minimizer p∗ ∈ Pn([a, b]) of (13). Moreover, p∗ is uniquely
characterized by the existence of a sequence of at least n + 2 uniformly alternating
points a ≤ z1 < . . . < zn+2 ≤ b satisfying,

(f(zj)− p∗(zj))ρ(zj) = σ(−1)j|f − p∗|ρ,∞ for j = 1, . . . , n+ 2, (14)

where σ = ±1, depending on f and n.

Our proof follows the standard arguments (see [14]). After establishing the ex-
istence of minimizer, we prove a version of the de la Valeé-Poussin theorem, which
asserts that a uniformly alternating sequence gives rise to the best approximating
polynomial. To prove the converse, we first show that the optimal polynomial ap-
proximant generates a uniformly alternating set of length 2 and then demonstrate
that unless the set is of length n + 2 the approximation can always be improved.
Uniqueness is trivial.

Lemma 1. For every n ∈ N, there exists a polynomial p∗ ∈ Pn([a, b]), so that

|f − p∗|ρ,∞ = dn

Proof. The proof is almost identical to that in [14]. We omit it here in the interest
of brevity.

The de la Valée-Poussin Theorem, which relates the best approximation error
dn to the oscillations of any (not necessarily uniform) alternating sequence, readily
extends to the weighted problem.

Theorem 2 (de la Valée-Poussin). Let p be any order n polynomial and let a ≤ z1 <
. . . < zn+2 ≤ b be any alternating sequence, i.e. points satisfying

(f(zi)− p(zi))ρ(zi) = (−1)iei, i = 1, 2, . . . , n+ 2, (15)

where the ei’s are either all strictly negative or all strictly positive. Then

min
1≤i≤n+2

ρ(zi)|f(zi)− p(zi)| ≤ dn ≤ max
1≤i≤n+2

ρ(zi)|f(zi)− q(zi)| (16)

for any other polynonial q ∈ Pn([a, b]).
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Proof. Suppose to the contrary that dn < |ei| for all i = 1, . . . , n+ 2. By Lemma 1,
there then exists a polynomial q ∈ Pn([a, b]) satisfying |f − q|ρ,∞ = dn < |ei|. Let
r(x) = p(x)− q(x) and suppose ei > 0, the case ei < 0 being similar. Then

r(zi)ρ(zi) = (f(zi)− q(zi))ρ(zi)− (f(zi)− p(zi))ρ(zi)

= (f(zi)− q(zi))ρ(zi)− (−1)i+1ei,

which implies r(x)ρ(x), and hence r(x), changes signs n + 2 times. This means the
polynomial r has n + 1 zeros and must therefore be identically zero, which implies
q(x) = p(x) on [a, b].

As a consequence, if the sequence {zi}n+2
i=1 in Theorem 2 is uniformly alternating

with levelled error e > 0, it follows

dn ≤ |f − q|ρ,∞ ≤
(
|f − q|ρ,∞

e

)
dn, (17)

where |f−q|ρ,∞
e

≥ 1. If moreover e = |f − q|ρ,∞, then |f − q|ρ,∞ = dn and hence q
minimizes (13). This proves Theorem 1 in one direction. It now remains to show
that this minimizer gives rise to a uniformly alternating sequence of length n + 2
that satisfies (14). We first prove that there exists such a sequence of length 2.

Lemma 2. If p ∈ Pn([a, b]) minimizes (13), then there exists a uniformly alternating
sequence of length 2, with uniform levelled error e = |f − p|ρ,∞.

Proof. Under the assumptions made above, the expression (f(x)−p(x))ρ(x) achieves
both its minimum m0 and its maximum m1 respectively at some points z1 and z2

in [a, b]. We show that z1, z2 forms an alternating sequence for f, p by proving
that m0 = −m1. Assume to the contrary that m0 + m1 6= 0. We define the new
polynomial q(x) = p(x)− m0+m1

2ρmax
, where ρmax is the maximum of ρ on [a, b], and show

that |f − q|ρ,∞ < |f − p|ρ,∞, contradicting the fact that p is the polynomial of best
approximation. We first treat the case |f − p|ρ,∞ = m1, the case |f − p|ρ,∞ = −m0

being similar. Then m0 > −m1 and hence

ρ(x)(f(x)− q(x)) = ρ(x)(f(x)− p(x))− m0 +m1

2ρmax

ρ(x) ≥ m0 −
m0 +m1

2ρmax

ρ(x)

≥ m0 −
m0 +m1

2
=
m0 −m1

2
> −m1

for every x ∈ [a, b]. To prove (f(x) − q(x))ρ(x) has an upper bound that is strictly
less than m1, we consider the subset A = {x ∈ [a, b] : (f(x)−p(x))ρ(x) ≥ m1

2
}. Since
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f − pn is continuous, it has an upper bound M on [a, b]. Consequently, Mρ(x) ≥
(f(x)−p(x))ρ(x) ≥ m1

2
and hence ρ(x) ≥ m1

2M
> 0 on A. It follows that for all x ∈ A,

(f(x)− q(x))ρ(x) = (f(x)− p(x))ρ(x)− m0 +m1

2ρmax

ρ(x)

< (f(x)− p(x))ρ(x) ≤ m1,

since m1 +m0 > 0, while for x ∈ [a, b]\A,

(f(x)− p(x))ρ(x)− m0 +m1

2ρmax

ρ(x) ≤ m1

2
− m0 +m1

2ρmax

ρ(x) ≤ m1

2
< m1.

Thus, |f − q|ρ,∞ < m1 = |f − p|ρ,∞.

The following Lemma shows that if the approximation of f ∈ C([a, b]) by p ∈
Pn([a, b]) gives rise to a uniformly alternating sequence {zi}mi=1 of length m < n+ 2
with levelled error e = |f − p|ρ,∞, then p is not optimal. To this end, we partition
the interval [a, b] into sections, each of which contains only a single point zi of the
alternating sequence. By possibly extending the alternating set, we can further
ensure that no section contains both an upper point, a point at which the upper
limit is achieved, and a lower point, one at which the lower limit is achieved (see
[14]). With a possible modification of ρ at its points of discontinuity, we may further
subdivide the interval into closed subintervals in which ρ(x)(f(x)−p(x)) is uniformly
continuous. Then there exists a δ > 0 so that

|ρ(x)(f(x)− p(x))− ρ(y)(f(y)− p(y))| < e/2 whenever |x− y| < δ.

This gives a lower bound on the distance between the points in the alternating
sequence and therefore an upper bound on the number of sections.

Lemma 3. Let f ∈ C([a, b]), p ∈ Pn([a, b]) and {zi}mi=0 be a sectioned, uniformly
alternating set with levelled error satisfying e = |f − p|ρ,∞ > 0. If m < n + 2, then
there exists a polynomial q ∈ Pn([a, b]) so that |f − (p+ q)|ρ,∞ < e.

Proof. Let s1 < s2 < . . . < sn be the section endpoints that are interior to [a, b], i.e.
the sections are [a, s1], [s1, s2], . . . , [sm−1, sm], [sm, b]. Let r(x) = σ

∏m
i=1(x−si), where

σ = ±1 is chosen to ensure that r(x) > 0 is positive on the interior of the upper
sections (sections containing an upper point) and r(x) < 0 on the interior of the lower
sections (sections containing a lower point). Since none of the upper sections contain
lower points and vice versa, there exists an ε > 0 so that −e + ε ≤ ρ(x)(f(x) −
p(x)) ≤ e for every x in an upper section and −e ≤ ρ(x)(f(x) − p(x)) ≤ e − ε for
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every x in a lower section. Choose a scaling k > 0 so that |kρ(x)r(x)| < ε for all
x ∈ [a, b] and let q(x) = kr(x). Since ρ is bounded above, such a constant exists.
We now prove that −e < ρ(x)(f(x) − (p(x) + q(x))) < e for all x ∈ [a, b]. We
only show how this holds for any x in a lower section, the proof for upper sections
being analogous. Since the inequality is trivially satisfied when ρ(x) = 0, we assume
henceforth that ρ(x) > 0. If x 6= si for any i = 1, . . . ,m then q(x) < 0 and therefore
ρ(x)(f(x)− p(x)− q(x)) > ρ(x)(f(x)− p(x)) ≥ −e. If x = si for some i = 1, . . . ,m,
then x cannot be a lower point (by construction). Moreover, q(x) = 0 and hence
ρ(x)(f(x)− p(x)− q(x)) = ρ(x)(f(x)− p(x)) > −e. To establish the upper bound,
we note that since |ρ(x)q(x)| < ε, we must also have

ρ(x)(f(x)− p(x)− q(x)) ≤ |ρ(x)(f(x)− p(x)− q(x))|
< |ρ(x)(f(x)− p(x))|+ |ρ(x)q(x)| < e− ε+ ε = e.

We are now in a position to prove the weighted version of the Chebyshev equioscil-
lation theorem.

Proof. If f is a polynomial of degree n or less, then the proof is trivial. Assume
f /∈ Pn([a, b]), in which case dn > 0. As mentioned earlier, Theorem 2 asserts that if
ρ(x)(f(x)− p(x)) has a uniformly alternating sequence of size n+ 2 that satisfies 14,
then |f−p|ρ,∞ = dn. To prove the converse, assume p is a polynomial of best approx-
imation to f . Lemma 2 asserts that there exists a uniformly alternating sequence of
length 2 for ρ(x)(f(x)−p(x)) with levelled error e = |f−p|ρ,∞. According to Lemma
3, its length must be at least n + 2 to guarantee optimality. To show uniqueness,
suppose that both q and p are best approximating polynomials in Pn([a, b]) for f .
Then ∣∣∣∣f − p+ q

2

∣∣∣∣
ρ,∞
≤ 1

2
|f − p|ρ,∞ +

1

2
|f − qn|ρ,∞ = dn.

By the first part of this proof, there must be an alternating set {zi}n+2
i=1 at which

ρ(zi)

(
f(zi)− p(zi)

2

)
+ ρ(zi)

(
f(zi)− q(zi)

2

)
= ±dn.

Since ρ(zi) > 0 for i = 1, . . . , n + 2, this is only possible if p(zi) = q(zi) for i =
1, . . . , n+ 2 and hence p = q.

As an illustration of how the density ρ affects the best approximation of a func-
tion, consider the following example.
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Example 4 (Best Approximation). Let f(x) =
√
|x− 0.1| and ρ(x), depicted in

Sub-figure 4a, be the density function corresponding to the random variable X =
−1+2Y , where Y ∼ Beta(2, 5). Figure 4b shows the best polynomial approximations
p∗ and p̃∗ of f in P5([−1, 1]), using the ρ-weighted seminorm and the standard
uniform norm respectively. The red circles in Figure 4b represent the interpolation
points of p∗. In Figure 4c, the error f(x)− p̃∗ equioscillates at the points denoted by
‘o’, while f(x)− p∗(x) grows in regions where ρ is small. On the other hand, Figure
4d shows how the weighted error ρ(x)(f(x)−p∗(x)) of p∗ equioscillates at the circled
equioscillation points (which have a more limited spread than those in Figure 4c),
while that of p̃∗ is sub-optimal.

−1 −0.5 0 0.5 1
0

1

2

3

 

 

ρ(x)

(a) The density function.

−1 −0.5 0 0.5 1
0

0.5

1

1.5

 

 

f
p
∗

p̃
∗

(b) f with best approximation p∗.

−1 −0.5 0 0.5 1

−0.2

0

0.2

 

 

p
∗

p̃
∗

(c) The unweighted error f(x)− p∗(x).

−1 −0.5 0 0.5 1
−0.4

−0.2

0

0.2

0.4

 

 

p
∗

p̃
∗

(d) Weighted error ρ(x)(f(x)− p∗(x)).

Figure 4: The best approximating polynomial of f(x) =
√
|x− 0.1| in the weighted

seminorm | · |ρ,∞.

3.2 Point Selection Using the Remez Algorithm

The weighted Remez algorithm approximates the set of equioscillation points (and
hence the best polynomial approximation) iteratively from an initial set of n + 2
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trial points. At the kth step, a given a set of trial points {zk1 , . . . , zkn+2} is used to
determine the unique polynomial pk and uniform levelled error ek > 0 so that

ρ(zki )(f(zki )− pk(zki )) = σiek, (18)

for i = 1, . . . , n+2, where σi = λ(−1)i and λ = ±1. These are then used to adjust the
set of trial points, to obtain a new set {zk+1

1 , . . . , zk+1
n+2} at which the error oscillates

(it need not equioscillate) and so that ek < mini ρ(zk+1
i )|f(zk+1

i ) − pk(z
k+1
i )|. The

latter step can be achieved by means of the Remez exchange algorithm and ensures
that ek < ek+1. Indeed, applying the de la Valée-Poussin Theorem to pk, alternating
on the set {zk+1

1 , . . . , zk+1
n+2}, and using q = pk+1 gives

ek < min
0≤i≤n+1

ρ(zk+1
i )|f(zk+1

i )− pk(zk+1
i )|

≤ max
0≤i≤n+1

ρ(zk+1
i )|f(zk+1

i )− pk+1(zk+1
i )| = ek+1.

This is guarantees that the error |f − pk|ρ,∞ decreases monotonically to dn.
Our implementation of the weighted Remez algorithm is based largely on that of

[17], which treats the unweighted Remez algorithm within the setting of the Chebfun
project [9]. We make a few notable adjustments which we discuss here briefly. Con-
sider the estimation of the equioscillating polynomial p(x) and levelled error e > 0
from a set {zk1 , ..., zkn+2}, based on condition (18). Through the use of Lagrange bases
centered on different subsets of the trial set, the authors in [17] derive an explicit
formula for e. Trial polynomials, expressed in Chebyshev form can then be defined
directly via (18). In this form, the trial polynomial can not only be evaluated ef-
ficiently by means of the barycentric interpolation formula, which is forward stable
for point sets with small Lebesgue constants [13], but also effectively differentiated,
and solved. In the weighted case, the same approach yields an explicit expression for

e =

∑n+2
j=1 wjf(zkj )∑n+2

j=1 σjwj/ρ(zkj )
, where wj =

n+2∏
i=1
i 6=j

1

2
(zki − zkj )−1

is the jth barycentric weight. However, depending on the density function, the trial
set may no longer produce a small Lebesgue constant (see Remark 1 below). More-
over, polynomials that are optimal approximations in the weighted uniform seminorm
usually deviate strongly in regions where ρ is small, by design. In our computations,
we have found the modified Lagrange interpolant [13] to give more accurate results
for a wide array of densities. As a consequence, we forgo the convenience of the
Chebfun library and must resort to less efficient, brute force search methods in our
implementation of the exchange algorithm and in locating the interpolation points.
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Remark 1. Let {xj}nj=1 ⊂ [a, b] be a set of quadrature nodes at which ρ(xj) > 0, and
{`j}nj=1 be the associated Lagrange basis. It is well known that the ∞-norm of the
interpolation operator L : C([a, b]) → Pn([a, b]) is given by the Lebesgue constant
Λ = supx∈[a,b]

∑n
j=1 |`j(x)|. When ‖ · ‖∞ is replaced with the density-weighted semi-

norm | · |ρ,∞, it can readily be seen that the analogous weighted Lebesgue constant
takes the form

Λρ = sup
x∈[a,b]

n∑
j=1

|`j(x)|
ρ(xj)

ρ(x).

While the point sets generated by the weighted Remez algorithm (as well as the
weighted Léja nodes) exhibit low weighted Lebesgue constants, their unweighted
Lebesgue constants are usually large, since the associated Lebesgue functions typi-
cally grow outside the support of ρ. This limits the use of fast numerical methods
such as barycentric interpolation. The development of efficient interpolation algo-
rithms that are stable for point sets with low weighted Lebesgue constants would be
an interesting avenue for further research.

Remark 2. Our numerical experiments suggest that the optimally spaced nodes also
give rise to quadrature weights that are positive, although we have so far been unable
to prove this assertion.

3.2.1 Nested Points

Due to the importance of nesting in the context of both high dimensional- and
adaptive quadrature methods and the need for high granularity, i.e. the ability to
add just a small number of additional points at each refinement level, quadrature
rules based on the Léja nodes have steadily been gaining traction (see [15]). These
are generated sequentially, the first being chosen arbitrarily, while each successive
node is placed where Θ attains its maximum, i.e. xi+1 satisfies

xi+1 = argmaxx∈[a,b]|Θ(x; {x1, . . . , xi})|.

Although the Léja nodes are not optimally spaced, they are relatively simple to
compute and are not only nested but also highly granular (see [15]).

The above procedure can readily be extended to construct nested rules in a greedy
way. Consider an existing quadrature rule with nodes y1, . . . , ym and suppose we want
to add an additional n points x1, . . . , xn so as to minimize

min
x1,...,xn

|Θ(x; {y1, . . . , ym, x1, . . . , xn})|ρ,∞. (19)
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To obtain this new set of nodes, we apply the Remez algorithm to find the best
polynomial approximation to f(x) = xn

∏m
i=1(x− yi) using polynomials of the form

p(x)
∏n

i=1(x − yi), where p ∈ Pn−1([a, b]). In this case, the weighted error |Θ|ρ,∞
takes the form

|Θ(·; y1, . . . , ym, x1, . . . , xn)|ρ,∞

= max
−1≤x≤1

ρ(x)

∣∣∣∣∣(xn − p(x))
m∏
i=1

(x− yi)

∣∣∣∣∣ = max
−1≤x≤1

ρ̃(x)|xn − p(x)|,

where ρ̃(x) := ρ(x) (
∏n

i=1 |x− yi|). As before, we need to find the best polynomial
approximation to xn, albeit now with respect to a different weighted error.

Example 5. Here we compare the distribution of quadrature nodes as well as the
‘spread’ function Θ of the Léja points with those obtained by using the Remez
algorithm to greedily generate a sequence of nested points x1, x2, . . ., each successive
member xi+1 of which solves

min
xi+1

|Θ(·; {x1, . . . , xi})|ρ,∞.

As in Example 4, ρ is given by the Beta(2,5) density function. Figure 5 shows how
the points obtained from the greedy algorithm tend to cluster in the region where ρ
is large, while the Léja points, chosen successively at the point of highest error, have
a more even spread.

3.2.2 Accuracy of Quadrature Rules Based on ρ-Optimal Point Sets

In the following numerical tests, we compare the accuracy of quadrature rules based
on the ρ-optimal nodes (or on the ρ-weighted Léja nodes) with that of the ρ-weighted
Clenshaw-Curtis type rules discussed in Section 2. Figure 6 shows the error for den-
sities with support over bounded domains, while Figure 7 shows analogous results
for densities defined on semi-infinite domains. As before, we use the algebraic map
introduced in Section 2 to transform the semi-infinite intervals to the standard inter-
val [-1,1]. The weighted Clenshaw-Curtis type rules are based on the Féjer type II
nodes to avoid evaluating functions at infinity. The results of our experiments lead
us to make the following observations. The quadrature rules based on the weighted
Léja nodes exhibit errors that are strikingly similar to those associated with the
ρ-optimal point set. These errors also tend to be at least as small as those of the
weighted Clenshaw-Curtis type rules. Moreover, for functions with singularities, the
rules based on ρ-optimal node placement have much better convergence whenever
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|Θ|ρ,∞ = 0.017925 |Θ|ρ,∞ = 0.0147373 |Θ|ρ,∞ = 0.0072418

|Θ|ρ,∞ = 0.000248318 |Θ|ρ,∞ = 0.000493673 |Θ|ρ,∞ = 6.19191e − 05

|Θ|ρ,∞ = 1.44312e − 06 |Θ|ρ,∞ = 2.57808e − 05 |Θ|ρ,∞ = 6.98419e − 07

Figure 5: The function Θ for the nested Léja points (left column), for the nested
points generated by the greedy strategy outlined above (center column), and for the
ρ-optimal points (right column). The number of points in rows 1,2, and 3 are 3,6,
and 9 respectively.

the support of the density is located away from the singularity. As an example
in the bounded case, consider the logit normal density function. It is small near
x = 0.5, leading to much improved estimates of the integrals of functions such as
f(x) = exp(−1/(x− 0.5)2) and f(x) = |x− 0.5|3, compared to the rule based on the
standard point set. As an example in the semi-infinite case, compare the errors of
standard weighted rule with the ρ-optimal node rules for the gamma, lognormal, and
pareto densities, when f(x) = sinx/x or f(x) = x2. Both these functions are sin-
gular near the right endpoint when mapped to [−1, 1]. The mapped gamma density
has support near x = 1 and the mapped pareto density decays slowly as x→ 1−, re-
sulting in errors determined largely by the singularities of f(x) (although still better
than the weighted F2 rule for f(x) = x2). The lognormal density on the other hand,
decays rapidly as |x| → 1, leading to excellent convergence rates for the ρ-optimal
node rules.
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Figure 6: Absolute quadrature errors for the weighted CC-type, -Remez, and -Léja
rules on bounded domains.

4 Conclusion

Density functions can readily be incorporated into the construction of CC-type rules,
leading to more efficient quadrature schemes. An adjustment in the weights of the
standard Clenshaw-Curtis type rules results in errors that are comparable to those
in the ρ = 1 case. If, moreover, the quadrature nodes are chosen to optimize the
ρ-weighted seminorm of the spread function Θ, they tend to concentrate in regions
where the underlying random variable is likely to lie. This leads to further improve-
ments in accuracy, especially when the density’s support is away from the location of
the integrand’s singularities. One remaining numerical challenge is the efficient eval-
uation of polynomial interpolants of functions centered at the ρ-optimal nodes, where
high lebesgue constants limit the use of traditional algorithms like the barycentric
interpolation formula.
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Figure 7: Absolute quadrature errors for the density weighted Féjer II, -Remez, and
-Léja rules over semi-infinite domains.

A List of Density Functions

The following table offers an overview of the density functions used in this paper.
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