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Abstract. Power-law noises abound in nature and have been observed extensively in both time series and
spatially varying environmental parameters. Although, recent years have seen the extension of
traditional stochastic partial differential equations to include systems driven by fractional Brow-
nian motion, spatially distributed scale-invariance has received comparatively little attention,
especially for parameters defined over non-standard spatial domains. This paper discusses the
extension of power-law noises to general spatial domains by outlining their theoretical underpin-
nings as well as addressing their numerical simulation on arbitrary meshes. Three computational
algorithms are presented for efficiently generating their sample paths, accompanied by numerous
numerical illustrations.
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1. Introduction. While the results of numerical simulations of physical systems may
depend profoundly on the underlying model parameters, these can often only be observed
partially and indirectly and arise within complex environments that cannot be described in
full deterministic detail. In these cases, parameters are more appropriately modeled as ran-
dom variables, -processes, or -fields. To be realistic, statistical models of these parameters
should ideally not only be consistent with available measurements, but also incorporate
broader, more qualitative information. Scale-invariance is one such property that has been
observed widely both in natural time series, as well as spatially varying random fields.
Traditionally, however, random perturbations appearing in stochastic differential equa-
tions (SDE’s) or stochastic partial differential equations (SPDE’s) were almost exclusively
modeled as white noise. Composed in equal parts of random fluctuations at all length
scales, white noise is relatively simple to generate and well understood, leading to its dis-
proportionate use in light of available experimental evidence. Over the past two decades, a
concerted effort was made to extend both the analysis and simulation of solutions of SDE’s
and SPDE’s to include more realistic statistical models for time-varying parameters that
exhibit scale invariance, such as fractional Brownian motion (fBm) [6]. Scale-invariant ran-
dom parameters over spatial domains on the other hand have received comparatively little
attention. They are difficult to analyze and simulate, partly due to fact that their covari-
ance function can often not be expressed explicitly. This paper describes the theoretical
underpinnings of scale-invariant-, or power-law noises and their numerical approximations,
over arbitrary spatial domains, and proposes three computational algorithms to simulate
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their sample paths over arbitrary meshes.

Power-law noise refers to a class of statistical signals whose power spectral density S,
a measure of the power carried by the signal per unit frequency, satisfies the power law
S(§) ox 1/&* for some a > 0 and frequency & > 0 within some range [{min,&max]|- Since
the first description of so called ‘pink noise’, following an experiment designed to test
Schottky’s theory of ‘shot noise’ in vacuum tubes (see [28], [42]), power spectral densities
exhibiting a power law decay have been observed experimentally in time series related to
the voltages of diodes and transistors, the resistance of semiconductors and thin films, the
average seasonal temperature, annual rainfall, traffic flows, action potentials in neurons,
and the timbre of musical notes, to name but a few (see review articles [29],[31],[39]). The
ubiquitous presence of power-law noise processes in such a wide range of natural- and
man-made phenomena has led some researchers to suggest the existence of an underlying,
characterizing statistical model for this type of noise that is independent of any specific
physical mechanism producing the noisy signal. The development of such a statistical
model would not only provide a foundation for understanding power-law noises, but would
also contribute to the establishment of numerical algorithms for simulating their sample
paths, which in turn can be used in aid of stochastic simulations. In light of the prevalence
of power-law noises in nature, replacing more traditional white noise fields with power-law
fields is likely to improve the validity of stochastic models and hence their predictive ability
[45].

Although a canonical model remains elusive, the past century has seen a wealth of
research devoted to the statistical description of power-law noise processes with a vari-
ety of different formulations, ranging from Poisson process models [36], fractional Brown-
ian motion [3, 37], stochastic differential equation models [30], fractional differencing and
ARFIMA (autoregressive fractional integration moving average) models [24], to approaches
based on wavelets [49, 16] and system theory [29]. A central theme in the literature on
1/£€“-noise is that of scale invariance or statistical self-similarity, referring to the fact that
essential statistical features remain unchanged as length scales vary. Indeed, for 1/£¢
power spectral densities, a change in the power per unit frequency due to a scaling of
the frequency (i.e. ‘zooming in’) can be undone by simply scaling the signal itself by an
appropriate constant. Since scale invariance occurs not only in time varying stochastic
processes, but can also be observed in numerous spatially distributed phenomena, such as
landscapes [38], glacial surface characteristics [1], fracture formation [23] and -surfaces [§],
interface growth and roughening phenomena [2] (see also Barkhausen noise [43]), as well
as various geophysical structures [40], including subsurface flow and transport parameters
[46], it is useful to extend statistical models of power-law noise to more general domains.

Strictly speaking, no physical signal obeys the power-law 1/£% over its entire frequency
spectrum [0, 00), since this would have unphysical implications for its energy, computed as
the integral of its power spectral density over its frequency spectrum. For values of a > 1,
the energy in a 1/£“-noise signal defined over the frequency range [Emin, Emax] diverges as
Emin — 07, as does that in the power-law noise signal with 0 < o < 1 when &, — 00.



In practice, restrictions on both the length of the signal and the sampling frequency, limit
physical observations to a frequency interval bounded away from both zero and infinity.
Periodogram estimates of S often look flat in the low frequency range, while taking the
form S(€) oc 1/€2 for high frequencies (see [39]), although evidence of the persistence of
power laws over large time periods, also known as infra-red divergence, has been reported in
[31]. In light of the variety of physical systems that exhibit scale invariance, it is therefore
important to choose a colored noise model that is both compatible with observations of the
system as well as the scientific needs of the modeler. In the simulations of long memory
processes such as network traffic trace processes [48] for example, it is important for the
signal to adhere to the power law 1/£% in the low frequency spectrum, while numerical
studies of local statistical self-similarity tend to focus on the high frequency range.

This paper discusses the numerical simulation of power-law noise fields over general
multidimensional regions. We restrict ourselves to centered Gaussian noise fields, since
these are used widely in practice and are uniquely determined by their covariance function.
There are multiple possibilities for defining power laws over higher dimensional frequency
domains, some of which are illustrated in Figure 1. The field may obey a different power
law in each of its components (see Figures la and 1b), or the power law may be written
in terms of the frequency vector’s radial distance from the origin (see Figure 1c). Other
forms are also possible. The fundamental challenge in generating power-law noises, even
in one dimension, stems from the difficulty of translating requirements on the signal’s
power spectral density, i.e. the requirement S(§) o 1/£%, into quantifiable properties
that are useful for construction of the signal, in this case the form of the covariance.
This is partly due to the fact that different values of a give rise to signals with widely
divergent statistical properties. While the Wiener-Khinchine Theorem [47, 32] relates auto-
covariance functions of stationary processes to their power spectral densities via Fourier
transform, this assumption does not hold for all a > 0. For an intuition of the correlation
structure of a general power-law noise process, it is useful to consider again the signal’s
energy. For small values of «, high frequencies contribute significantly to the total energy,
suggesting erratic, uncorrelated behavior and hence stationarity, the extreme case of which
is white noise (v = 0) where all frequencies contribute equally to the total energy. As «
increases, the contribution of the high frequency components is diminished, compared to
that of the low frequencies and the signal tends to become smoother, more correlated, as
well as non-stationary (see Brownian noise, a = 2).

Considering the above-mentioned subtleties, many colored noise models are formulated
by directly specifying the covariance structure of the field, instead of deducing its form
based on specifications of the power law. Fractional Brownian motions, as well their multi-
dimensional analogues, fractional Brownian surfaces and -sheets, form a widely used class
of such noise models. In a sense they can be said exhibit power law behavior [15], in
addition to having other desirable properties, such as Holder continuous sample paths and
stationary increments. Moreover, efficient algorithms, such as the circulant embedding
method [10, 12], have been adapted [44] to generate fast, exact numerical simulations of
fractional Brownian surfaces on equispaced rectangular grids defined over certain standard



(a) Fractional Brownian sheet (b) Fractional Brownian sheet (c) Fractional Brownian sur-
over a square with power law over a quarter disc with power face over a square with power
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Figure 1: Different power law noises over two dimensional domains

domains, such as rectangles or circles (see Figures 2a and 2b). The covariance function
of the standard fractional Brownian surface, however, does not depend on the region’s
underlying geometry, which can lead to unrealistic models for fields defined over non-convex
regions (see Figure 2c and Subsection 3.1). Moreover, if the field represents the input for
a complex physical system that needs to be solved numerically, the meshes imposed on
the region are often non-uniform for the sake of computational expediency. Depending on
the application, it may also be more appropriate for the field to be stationary, in which
case the power law no longer holds in the low frequency range. Elliptic Gaussian fields
[5] generalize fractional Brownian motion, based on its spectral characterization in terms
of the fractional Laplace operator. They are self-similar random fields (at least locally)
and have Holder continuous sample paths. Furthermore, this theoretical framework allows
for the definition of colored noise fields with prescribed values in certain regions, and has
even been used to define colored noise fields over manifolds ([18, 19]), by means of the
Laplace-Beltrami operator.

After some preliminary remarks and establishing notation in Section 2), we review
fractional Brownian surfaces and their generalizations, the elliptic Gaussian fields over Eu-
clidean space R? in Section 3. Section 4 treats the Riesz fields, generalizations of elliptic
Gaussian fields to arbitrary bounded regions. The numerical simulation of Riesz fields is
the subject of Section 5. We discuss numerical simulations based on the approximation
of the discretized fractional Laplace operator, either through the eigen-decomposition of
the finite element Laplace matrix or the contour integral method [9], as well as simula-
tions based on a modified form of the Riesz potential, which allows for the simulation of
multi-fractional fields for which the level of roughness may vary throughout the domain.
Numerical illustrations accompany the discussion throughout. For the sake of visualiza-
tion, all of our computational results are based on regions in R?. The algorithms discussed,
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(a) A regular grid on a rect- (b) A regular grid on a circu- (c) A finite element mesh over
angular region lar region a general region

Figure 2: Colored noise can be synthesized efficiently on regular grids over simple domains.
However, non-uniform meshes over general domains are often preferred.

however, extend readily to three spatial dimensions. Finally, Section 6 contains concluding
remarks. Since this paper focuses on the generation of sample paths over general regions,
we do not discuss here the construction and analysis of scale-invariant noises by means of
wavelets (see [16] and [49]).

2. Notation and Preliminaries. Let (2, F,P) be a complete probability space and
D C R% a bounded region acting as the index set for our random field. Throughout, we
use X and Y to denote generic random fields, while X and Y represent random vectors. A
Gaussian random field {X (x)}ep is a collection of random variables so that for any finite
subset {z;}; C D, the vector X = [X(21), ..., X (z,,)]? has a joint Gaussian distribution.
A random field is said to be centered if its expectation E[X(z)] = 0 for all x € D,
an assumption we make throughout for the sake of simplicity. The covariance function
Cx : D xD — R of a centered random field X is defined pointwise for any two points
x and y by the covariance Cx(x,y) := Cov(X(z),X(y)) = E[X(x)X(y)]. Fractional
Brownian motions as well as -surfaces with Hurst parameter H are denoted by By. White
noise fields By are mostly denoted by W, especially when referring to the isotropic white
noise process. The random vector Z = [Z1, ..., Zn]T always represents a vector of identically
distributed (i.i.d.) Gaussian random variables. To prevent unnecessary ambiguity, we use
the variables t or s to index stochastic processes and z or y to index random fields over
higher dimensional regions.

The power spectral density of a deterministic signal {z(¢)}+>0 at a given frequency &,
is simply the magnitude of its Fourier transform squared, i.e. S(¢) = |F(x)(£)|?, where
F(z)(&) == [;° z(t)e"" dt. Since the Fourier transform of a random signal {X (t)}¢>0 over



[0,00) does not exist for many signals of practical importance, the power spectral density
is often defined via the truncated Fourier transform

1 T ,
Fr(X) (6, w) = \/T/o X(t,w)e € dt, forweQ and £ >0,

and hence

S() = Jim E [|F7(X)()]"].

In our numerical calculations, we approximate the power spectrum by simply computing
the discrete Fourier transform of its sample paths over a finite domain, using fast Fourier
transforms, and averaging the square of their magnitudes. In multi-dimensional domains
in R?, we use the multi-dimensional fast Fourier transform.

For a stationary time series { X (¢) }1er, the Wiener-Khintchine Theorem can be used to
directly relate its power spectrum to its auto-covariance function p(7) := Cov(X (t), X (t +
7)) via the Fourier transform, i.e. S(§) = p(¢) := [ p(T)e ™™™ dr. Although no equiv-
alent relation exists for non-stationary processes { X (¢)};cr, the time dependent Wigner-

Ville spectrum

SWV(t,¢€) = /_Z Cov (X (t + %) , X (t — %)) e T dr,

presents a convenient generalization. In [15], this version of the power spectrum is used to
show that fractional Brownian motion is a 1/{%-process.

It is often convenient to define a Gaussian random field as the convolution of a deter-
ministic kernel function with white noise. To make this construction rigorous, we make
use of the Skorokhod integral with respect to the isotropic white noise process W, de-
fined on Hilbert space H as the mapping W : H — L?(Q) so that i) for any h € H,
W (h) ~ N(O, ||h||?) and ii) for any hy,he € H, E[W (h1)W (ha)] = (h1, ho) g (see [41]). Let
S be the set of H-valued random variables of the form F' = f(W(h1),..., W(h,)), where
hi,...,hn, € H and f : R™ — R is infinitely differentiable with partial derivatives that grow
at most polynomially at infinity. Further, denote by D(F') the Malliavin derivative of F,
ie. D(F)=>7",0if(W(h1),..., W(hy))h;, which can be extended to a closed unbounded
operator D : L?(2) — L?(, H) with domain D2, the Sobolev-Watanabe space. Since
D2 is dense in L?()), there exists a unique adjoint operator & : dom(d) — L?(2) defined
for each u € dom(6) by the relation

E[Fé(u)] = E[(D(F),u)y] for all F € D2

where dom(8) = {u € L*(Q, H) : F + E[(D(F),u)y] is bounded }. This operator is also
known as the Skorokhod integral, written as [ u dW := §(u). For deterministic integrands
u € H, the isometry || [u dW| 20 ) = |ullg allows these integrals to be approximated
by integrals of simpler functions. Let V™ C H be a finite dimensional subspace, spanned



by basis functions {¢;}? ;. Then
n n
/Zcm dW = ¢;Zi, where [Z1, ..., Zn] ~ N(0,%), with Sij = (¢i, ¢;)n
i=1 i=1

for 7,7 = 1,...,n. In particular, when this basis consists of simple functions over a
bounded domain, then the isotropic white noise process W takes the form of the white
noise measure, defined on the set of Borel measurable subsets of R? with finite vol-
ume (see [26]). For any such Borel set A with volume |A| < oo, W(A) ~ N(0,|A4|),
and for any finite collection Ay, ..., A, of disjoint sets, the W (A;) are independent and
W (U A;) = >0 W(A;). In this case, the white noise integral of a simple function
Folw) = 0y cixa, (@) [ fule) dW () = Yy e W (A)).

3. Models for Power-Law Noises over R?. In certain simple cases, statistical models
for power-law noises can be developed directly, based on specifications of their desired
properties. In this section, we introduce the fractional Brownian motion (fBm) over the
interval [0,00) as the unique self-similar Gaussian process with stationary increments.
Although the self-similarity required by Definition 3.2 does not involve the power spectral
density, it can be shown that the Wigner-Ville spectra of fBm’s do indeed exhibit a power
law decay. The covariance function of fBm can directly be generalized to Euclidean space,
giving rise to the fractional Brownian surface (fBs) over R?. This extension is too rigid,
however, rendering fBs unsuitable to model spatially correlated noise in many practical
applications. Their spectral characterization nevertheless identifies them as members of
the family of elliptic Gaussian fields, Gaussian fields defined in terms of pseudo-differential
operators with positive symbol. Using these operators (and in particular the fractional
Laplace operator) as the basis for the generalization of power-law noises gives rise to models
suitable for arbitrary domains that share the salient properties of fBs, such as Holder
continuity, while also allowing for additional flexibility, such the imposition of boundary
conditions.

3.1. Fractional Brownian Motion. Fractional Brownian motion, a family of Gaussian
random processes parameterized by the Hurst parameter H € (0,1), has become a partic-
ularly widespread model for time dependent power-law noises. In the seminal paper [37],
the authors introduce scale invariance directly through the definition of self-similarity with
respect to a Hurst parameter H.

Definition 3.1. A random process X : [0,00) — R is said to be self-similar with Hurst
parameter H € (0,1) (H-s.s.) if for every ¢ > 0, we have X(ct) 4 cH X (t), where <>
denotes equality in distribution.

This definition generalizes the well-known self-similarity property of Brownian motion,
whose Hurst parameter H = 1/2. For any t € [0, 00), let AX(¢,h) = X (t+h)— X (t) denote
the h-increment process related to X. If in addition to H-s.s., we assume that X (0) = 0
almost surely (a.s.) and that the increments AX (¢, h) are stationary (i.e. the distribution
of the increment depends only on h), then we automatically arrive at the following explicit



form for its covariance function, namely

E[X(£)X(s)] = % (E[X(1)?] + E[X(5)?] — E[AX(s,t — )?])
= ¢ (B[X(0] +E[X(5)°] ~E[(X( - 5))?))
= % (*PE [X(1)?] + *PE [X(1)%] — (t — s)*PE [X(1)?])
— E [X2(1)2] (t2H + 82H _ |t _ S|2H),

for any points s,t € [0,00). The above equations also serve to prove the converse, namely
that any zero mean stochastic process with this covariance matrix necessarily has stationary
increments and is H-s.s.. For simplicity, we assume henceforth that E [X(1)?] = 1. The
definition of fractional Brownian motion is given by the following.

Definition 3.2 (Fractional Brownian MotionA fractional Brownian motion By (t) with
Hurst parameter H € (0,1) is a continuous and centered Gaussian process, i.e. By (0) =0
and E [Br(t)] =0 for t > 0, with covariance function given by
(3.1) Cpy (s, t) :=E[Bu(s)Bu(t)] = % (s*H + 27 — |t —s*) | t,s>0.

Although fractional Brownian motion is not mean square differentiable, it does admit a
Holder continuous modification [6]. Moreover, fBm is not a martingale for H # %, and
since its variance Var(By (t)) = E [Bp(t)?] = t*# for t > 0, it is non-stationary.

In [15], it was shown that the power spectrum Sp,, (§) of fractional Brownian motion,
defined in terms of the Wigner-Ville spectrum, satisfies Sg,, (&) oc 1/62H+1 suggesting
that the Hurst parameter H can be related to the power o > 0 via @« = 2H + 1. A Hurst
parameter H € (0,1) thus gives rise to power-law noises with a € (1,3). Colored noise
with o € [0,1) can also be defined by making use of the increment process ABp(t,h),
also known as fractional Gaussian noise (fGn). In fact, it can be shown that the power
spectrum of the increment process satisfies Sapg,, () o 1/¢2771 independent of ¢, so that
fractional Gaussian noises are power-law noises with o € [0, 1). The fGn process, while still
correlated in general, is nevertheless stationary. Indeed, for ¢t,h > 0 and s =t +nh > 0 for
some n > 0, it can be shown that

Cov(ABg(t, h), ABy(s, h)) = E[ABy(t, h) ABg(s, h)]

1
2h2H[(n 1)2H (n 1)2H 2n2H]’
which is independent of s,t > 0.

The covariance function defined in (3.1) readily suggests an extension of fractional
Brownian motion over the index set R

Definition 3.3 (Fractional Brownian Surface). fractional Brownian surface {By(x)},cpa
with Hurst parameter H € (0,1) and centered at the origin is defined to be the continuous,



The fractional Brownian surface retains most of the attractive features of fractional
Brownian motion. It is self-similar in the sense that the field {Bp(cz)}, crae agrees with
{c" By (7)},ega in law, for any scaling factor ¢ > 0. Moreover, the covariance function
(3.2) determines a probability measure over the set of Hélder continuous functions of degree
H. The fBs defined above can readily be modified through translation to a fBs centered at
an arbitrary point zo € R% It can also be conditioned on available measured data if the
spatial domain contains points, or even whole regions, in which the field is known exactly
(see e.g. [11, 33]). In this case, the conditional covariance function no longer takes the form
(3.2), but the covariance matrix of the field at a finite number of points can be calculated
by means of Schur complements.

The fact that (3.2) is defined independently of the underlying index set, however, makes
this power-law noise model unsuitable for general regions. While the function given by (3.2)
could plausibly be employed to measure the covariance between points in R%, or even points
in a convex sub-domain, it cannot capture the covariance structure of fields defined over
general non-convex regions, such as the one depicted in Figure 3, where there is no longer
a direct correspondence between the length of the shortest path between two points and
their Kuclidean distance.

(a) Fractional Brownian Surface ) Riesz random field

Figure 3: The covariance of colored noise fields at a point (cross).

Physically accurate colored noise models over general regions should therefore somehow
incorporate the geometry of the underlying index set D. Similar issues arise in defining
fractional Brownian fields over manifolds. One approach [25] is to modify the covariance
function in (3.2) by replacing the Euclidean norm ||z — y|| with a geodesic distance d(x,y)
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for x,y € D. It then remains to show that the resulting covariance function is positive
definite, by proving for example that the metric d(z,y) is of negative type. Here we follow
another approach, based on the spectral characterization of fractional Brownian noise in
terms of the Laplace operator on D. We begin by discussing the generation of colored noise
through the fractional integration of white noise.

3.2. Hosking’s Fractional Difference Model.  In [24], the author introduces a discrete
version of power-law noise by analogy with the random walk approximation {B,}2°, of
Brownian motion {B(t)}+>0, given by the convolution sum

n
Bn=Y hiZpi,n=12,..,
=0

where Z; ~ N(0,1) are identically distributed (iid) standard normal random variables and
the discrete impulse response h; = 0 for ¢ = 0 and h; = 1 for ¢ = 1,2,....,n. If we let L
denote the lag operator, i.e. LB, = B,_1 for n = 1,2,... and LBy = By = 0, then the
first order difference satisfies (1 — L)B,, = B,, — B,—1 = Z, for n = 1,2,.... A power-
law noise signal {Bg 122, can now be defined as an ARFIMA (AutoRegressive Fractional
Moving Average) process by specifying that its S fractional order difference is a white
noise process, i.e.

(1-L)°Bf:=>" <£> (=L)*BS = Z,, forn=1,2,... .
k=0

The process BE itself can therefore be regarded as a type of fractional cumulative sum of the
white noise process Z,,. To obtain an explicit description of Bﬁ as a discrete convolution
with a white noise process, we note that the unilateral Z-transform H? of its impulse
response vector {hf};’io must be of the form HP(z) = m, with z > 1. In [29] (see
also [45]), the author arrives at the same transfer function H?, by ‘interpolating’ between
the transfer function of white noise (o = 0), given by H(z) = 1, and that of Brownian noise

(a = 2), given by H(z) = ——. The parameter f3 is thus related to a via 8 = a/2. The

1—2-1"
discrete impulse response function hg can be computed by means of a simple recurrence
relation and sample paths with the right power spectral decay can be generated efficiently
through the use of fast Fourier transform.

The value of a Hosking colored noise process at any point of time ¢ is thus determined
by a collection of noise sources spread out over the domain (see Figure 4), whose influence
decreases as their distance to t increases. Lower values of « imply steeper decline in their
influence (indicated by the gray curves in 4), indicating that the influence of the noise
terms are more local, while larger values of a allow the noise sources to have wider ranging
influence. In anticipation of simulations of spatially varying noise, Figure 4 b) shows a
modification of the Hosking process in which the noise sources are positioned on both sides
of the current time point.
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(a) Hosking Process (5 = 0.85). (b) Modified Hosking Process (5 = 0.85)

Figure 4: Schematic of the composition of a Hosking noise signal. The gray curves represent
the influence of each white noise source term over the interval. The black curve attributes
the contribution of the various noise sources to the signal’s value at t = 0.5.

3.3. Elliptic Gaussian Fields. The idea of forming colored noise as the fractional inte-
gral of white noise dates back to 1953, when Paul Lévy [34] (see also [3]) commented on a
stochastic process formed by the cumulative fractional Riemann-Liouville integral of white
noise,

X(t) = — ) |- 9n-tawes),

F(H+% 0

where H may be any positive number. The Riesz potential I, defined for any locally
integrable function f : R — R by

d—s
(3.3) Lifl(x) := CS/R W) dy, where ¢; = 1;(2

a [l =yl m

is the multi-dimensional generalization of the Riemann-Liouville integral. The Fourier
transform of the Riesz kernel, together with the convolution theorem reveal that F(I,f) (&) =
127&]| ~*F(f)(€) and hence I is a Fourier multiplier. In comparison, the Laplace operator
satisfies Ae?™%¢ = —472||£]|2e2™ ¢ so that F(Af)(E) = —4m2||€]|2F(f)(€). In a spectral
sense, the Riesz potential therefore represents the fractional inverse (—A)fg of the negative
Laplace operator over R?. It is this connection with the fractional Laplace operator that
allows for the development of models for power-law noise fields that preserve the essential
properties of Euclidean fractional Brownian fields, such as scale invariance and the station-
arity of its increments under translations and rotations, while also reflecting the underlying
geometry of the index set.

More generally, let A be a pseudo-differential operator defined on an appropriate Hilbert
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space H 4 of functions in terms of its Fourier transform, i.e.

1
(2m)?

(ANe) = — [ eale.3(1(©) ds.

with symmetric, positive symbol o : R? x R? — R. In [5], the authors define a family of
elliptic Gaussian fields X 4 over R? through the covariance function given by the integral
kernel of the inverse operator A~!, over the appropriate function space, when it exists. The
properties of the field X 4 are directly related to those of the pair (A, H ). In particular,
X 4 has stationary increments if and only if o does not depend on .

Since the set of self-similar Gaussian fields over R? with stationary increments is re-
stricted [13], the authors in [5] instead investigate a local form of self similarity. A random
field X is said to be locally asymptotically self-similar of order H € (0,1) at the point
zo € R? if the limit ,

’1)13(1) p*H(X(l‘o + px) — X(0))

is non-trivial in law. Evidently, this condition generalizes H-s.s. in Definition 3.1. More-
over, by essentially disregarding the low frequency range, it affords the modeler a greater
degree of flexibility in adapting the noise field to both the geometry of the underlying index
region D as well as enforcing other more explicit conditions, such as boundary conditions.
Standard Brownian motion and the Brownian bridge have the same local scaling proper-
ties, for example, although the bridge is not strictly self-similar in the sense of Definition
3.1.

The connection between elliptic Gaussian fields and fractional Brownian surfaces be-
comes evident when considering the pseudo-differential operator A with symbol o(z,§) =
1€)|9F2H | defined on Do(R?) := {f € D(RY) : f(0) = 0}. If we let Hy be the closure of
Do(R?) under the inner product (Af,g);2, then (according to Lemma 1.1., [5]) it forms
the reproducing kernel Hilbert space for the elliptic Gaussian field defined by

eix'f _ .
(3.4) Xa(z) = /R A 0

d
< lglzr

where W is a complex white noise measure. Apart from a scaling constant, this defini-
tion coincides precisely with the spectral characterization of fractional Brownian surfaces
[50]. Moreover, by invoking the spectral definition of the fractional Laplacian, we can in-
terpret the action of this integral operator on any function f in the dual Sobolev space
H_(%“‘%)(]Rd), as
e s 1 . —(24H) —(24
ﬁf@) d§ = (—A) a2 f(x) — (-A)
R [€]]2F

d

The addition of the term (—A)_(Z+%)f(0) ensures that the random field {X 4(x)},cpa
is well-defined. Sample paths of fBs can therefore be formed by solving the fractional
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Laplace equation with a white noise forcing term, ie. Xpg(z) = (—A)f(%+%)W(a§) —
(—A)_(%‘*‘%)W(O), where W (x) is a white noise field. The covariance of By is then given

by the integral
i(z—y)€§ _ oiz€ _ oiy€
e e e +1
Cxlo) = | : de.
R [13Eaadd

Apart from classical fractional Brownian surfaces, this framework can also be used to
define fields corresponding to values of H < 0, the case H = 0 coinciding with the well-
known pink noise. The resulting field’s sample paths are no longer continuous, but can
nevertheless be analyzed in the sense of distributions. Multi-fractional Brownian surfaces
represent another interesting class of elliptic fields, whose Hurst parameter is a spatially
varying function.

4. Riesz Fields over Bounded Regions. The spectral characterization of fractional
Brownian surfaces described above reveals how the fractional Laplace operator forms a
natural point of departure for defining power law noises over more general index sets. Not
only does the operator conform to the geometry of the underlying domain, but it also allows
for the imposition of boundary conditions. In [18], the author defines the so-called ‘Riesz
fields’ over Riemannian manifolds through the use of the Laplace-Beltrami operator. He
shows that Riesz fields are generalizations of fractional Brownian surfaces, that they are
Hoélder continuous with a Holder coefficient related to the field’s Hurst parameter, and that
these fields satisfy a form of self-similarity, after accounting for the effect of the Riemannian
metric.

The fractional Laplace operator has been widely studied in fields such as physics, fi-
nance, and hydrology, where it is associated with models of anomalous diffusion. In this
paper, we consider homogeneous Dirichlet, Neumann or Robin boundary conditions and
treat fractional powers of the Laplace operator in terms of functional calculus related to
its spectral decomposition. Indeed, if D C R? is an open connected domain with piece-
wise smooth boundary 9D, then the Laplace operator —A, subject to the aforementioned
boundary conditions, has a discrete, non-negative spectrum with eigenvalues {\;}7°, sat-
isfying 0 < Ao < A1 < X2 < ... 1T oo and eigenfunctions {¢;}7°, that form a complete
basis in L?(D). The fractional power (—A)® of the Laplacian (—A), applied to a function
f € L*(D) can then be expressed as

oo
(A f(x) =D Np(fs a)vn(x)
To define Riesz fields over D in accordance with the spectral definition of fractional Brow-
d
nian surfaces over R? requires the fractional inverse (—A)~(z*#) For Dirichlet or Robin
boundary conditions, the first eigenvalue \g is strictly positive so that we can define the
action of this fractional inverse in terms of the series

(41) (-A)~+ ZA M peyn( / ZA G g (@) (v) (o) dy,
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where Fubini’s Theorem, together with the uniformly continuous convergence of the series,
allows for the interchange of integration and summation. Just as for elliptic Gaussian fields,
we now define the covariance function C'x,, : D x D — R of our Riesz field Xy over D as
the kernel in (4.1), i.e

(4.2) Cxy(z,y) =E[Xp(z Z Ap ()¢ (y)

Weyl’s law, prescribing the asymptotic growth rate of the eigenvalues {\;}7°, along the

order of O(k%), guarantees that this series converges for any H € (0,1) and hence Xy is
well-defined as a Gaussian field. The Riesz field X itself can then be written in the form

E
2)

(x)Z(w), where Z ~ N(0,1) i.id..

(4.3) =3 a0
k=0

For homogeneous Neumann boundary conditions, Ay = 0 and consequently the frac-
d, H
tional inverse (—A)_(Z+7) is not defined. Since the corresponding eigenfunction g is
constant, however, the field X can be nevertheless be constructed by letting

dy
1

(4.4) Xi(2) = 30 P () — vnlw0)) Zae

k=0

where x¢g € D is some point serving as the origin. The covariance function is defined
accordingly. This modification effectively eliminates the zeroth term in the series and
therewith the singularity and amounts to imposing Xp(zo) = 0. The same modification
appears in the spectral definition (3.4) of fractional Brownian surfaces. Another possibility
is to simply leave out the 0" mode, resulting in a field that differs from the one above by
an additive constant. In the special case when D = [0,1] C R and H = §, Definition (4.3)
amounts to the well-known Fourier expansion of Brownian motion, if Dirichlet boundary
conditions are imposed at ¢t = 0 and Neumann conditions at ¢ = 1, whereas letting Dirichlet
conditions hold at both endpoints represents the Fourier expansion of the Brownian bridge

(ct. [19]).

The Laplace operator’s eigenvalues and eigenfunctions depend on the geometry of the
region as well as on the imposed boundary conditions, but are invariant under rotations
and shifts [20]. Moreover, when the domain is scaled by a factor ¢ > 0 the eigenvalues
are rescaled by 1/c?, with associated eigenfunctions 1 (z/c) for € ¢D. In the case of
Dirichlet- or Robin boundary conditions, we can relate the covariance function C)I?H over

D, i.e. the unique integral kernel for (—A)_(%JFH ) over D, with the covariance Cfg{ over
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cD, by observing that for any f € L%(cD), and z,y € ¢D,

. o —(§+H)
o ) = [ ehensma=Y (%) T [ nblofe) dite/o

k=0

=2 [ @ fen)e g onla/e)
k=0 b

D

= [ SN E /i) di = [ FCR, @) ) di
k=0

where 7 = x/c and § = y/c. This implies Cx,, (cz,cy) = 2#Cx,, (z,y) and therefore that

the field X (cz) Loy m(x) for x € D. Similar scale invariance holds for Riesz fields with
Neumann conditions.

Figures 5 - 7 illustrate the effect of boundary conditions on realizations of the field,
its covariance function and its power spectral density. In each case, the leftmost figure
corresponds to homogeneous Neumann boundary conditions over the entire boundary, the
middle figure corresponds to Neumann conditions on the left and right and Dirichlet con-
ditions at the top and bottom, while the rightmost figure corresponds to homogeneous
Dirichlet conditions. Evidently, the field’s variance is considerably lower where Dirichlet
boundary conditions are enforced, which manifests in both its sample path and covariance
(see Figures 5 and 6).

1 1
4 1
o‘a. ] 0.8
0.6 " 0.6
-
0.4 0.4
e X ' »
0.2 0,2
0 . o )
0 0.2 0.4 05 08 1 0 0.2 0.4 05 08 1
w k4 k4

Figure 5: Realizations of the Riesz field X o5 over a square domain, using the same random
seed, but with different boundary conditions.

The sample paths, however, seem to have the same degree of ‘roughness’. This is
confirmed by log plots of the appropriate periodograms (see Figures 7 and 8), displaying
comparable power spectral decay rates in the high frequency regions.

5. Numerical Simulations of Riesz Fields. This section discusses three classes of meth-
ods for generating numerical simulations of power-law noises on non-standard grids over
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Figure 6: The covariance of the field X 25 at the point (0.1,0.9) with other points in the
domain, for different boundary conditions.
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Figure 7: Estimated log power spectral densities of the Riesz field X o5 for different bound-
ary conditions.

arbitrary spatial domains. Subsection 5.1 treats approximations of Riesz field sample paths
based on the series representations (4.3) and (4.4), which may require computing the full
eigen-decomposition of the discretized Laplace matrix. Subsection 5.2 constructs these
sample paths as the solution of a fractional-in-space diffusion equation with white noise
forcing term. The contour integral method [21] is a parallelizable algorithm that allows
accurate approximations of these solutions to be computed more cheaply than using the
eigen-decomposition of the discrete Laplacian. Finally, Subsection 5.3 treats the genera-
tion of sample paths as the integral of the Riesz potential with respect to the white noise
measure.

5.1. Spectral Representation. Equations (4.3) and (4.4) express the sample paths of
Riesz fields over a bounded domain D C R? in terms of the eigenvalues and eigenfunctions of
the negative Laplacian. These are uniquely determined by the geometry of the underlying
domain, together with the imposed boundary conditions. Explicit formulae for them exist
over a variety of simple domains, including intervals, hyper-rectangles, parallelepipeds,
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107 Dirichlet Dirichlet

2 0 1 2

10 10 10 10

Figure 8: Log-log plot of the radial frequency against the azimuthal average of the log
power spectral density for different boundary conditions, for all observed frequencies (left)
and when frequencies lower than 5Hz are discarded (right).

disks, sectors, spheres and spherical shells, ellipses and elliptical annuli, as well as triangles
(see [20]). In these cases, approximate sample paths X can be generated at an arbitrary
set of points {z;}",, by truncating the sum in (4.3) or (4.4) up to the K*® term, yielding

X?{ng ;) Z)\ i3 Y (x) 2y, fori=1,2,.

This spectral approximation has the benefit of being applicable on an arbitrary set of
points, in contrast to simulations generated by the circulant embedding technique, where
points are required to form a uniformly spaced rectangular grid. Because the Laplacian
eigenfunctions are orthogonal in L?(D), Weyl’s law provides an asymptotic error estimate
for the spectral approximation of Cx, in terms of the sum of negative powers of the
neglected eigenvalues. Since eigenfunctions corresponding to high eigenvalues are often
highly oscillatory, however, the accuracy of this spectral approximation is conditional on
using meshes with a fine enough resolution, so as to avoid additional errors due to aliasing.

5.1.1. Finite Element Approximations of the Laplace Operator.  In general, the frac-
tional Laplacian must be approximated. This can be done by numerically solving the
eigenvalue problem for a matrix representation A of the Laplacian (—A), based on the
mesh induced by the nodes and on the given boundary conditions. Various methods are
available for discretizing the Laplace operator on a mesh, including finite differences or fi-
nite volumes, but we focus here on finite element approximations, since they are well-known
for their efficacy in the presence of complex geometries. Let {z;}} | be finite element nodes
associated with a regular triangulation 7, = {A;}"; of the domain D with maximum mesh
spacing parameter h, and let {¢;}?"_; be the corresponding piecewise polynomial basis func-
tions. The finite element Laplace matrix A can now be formed by letting A = M 'L, where
M is the mass matrix and L the stiffness matrix with appropriate boundary conditions,
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defined respectively by
M;; = / ¢i(x)pj(x) de and Ly :/ Voi(z) - Voj(x) dx, for i,j7=1,2,...n.
D D

The matrix M is strictly positive definite, while L may only be positive semi-definite if
pure Neumann boundary conditions are imposed. Both matrices are therefore unitarily
diagonalizable with a non-negative spectrum. A on the other hand, is not symmetric in
general. However, since A is similar to MY2AM /2 = M~Y/2LM /2, which is symmetric
semi-positive definite, it is diagonalizable with non-negative spectrum o(A). Therefore, let
A =VAV~! where A = diag()\?, ..., A" so that 0 < )\’f < /\g < ... < A" and the columns
of V' form the coefficients in the finite element approximation of the associated eigenfunc-
tions. If L is strictly positive definite then the sample path Xy can be approximated by
means of the spectral expansion

n

el _(d, H
X (@) =>_ (A Gt2)gi(a) 2,
k=1

where 1 (z) = Y1, Vikgi(z) and Z = [Z1, ..., Z,]T is a standard normal random vector in
R™. Since this method requires the full eigen-decomposition of A, the computational cost
involved can be considerable, scaling as O(n3). The spatial accuracy of )?E%h is determined
by the accuracy with which the discrete eigenvalues )\z and eigenfunctions w’,g(x) approxi-
mate the true spectrum. In [7] the finite element approximation of the Laplacian eigenvalue
problem is discussed at length. In particular, it is shown that for smooth eigenfunctions
(such as those arising when D is convex), A\ — X\; at the rate O(h?), while ! — 1 at
the rate O(h?) in the L?(D) norm and O(h) in the H'(D) norm. The corresponding rate
coefficients depend on the particular eigenspace being approximated and can be larger if
1. is close to singular.

5.2. Fractional Powers of the Discrete Laplacian. The discussion in Section 4 sug-
gests that in light of the finite element discretization A of the Laplacian, approximations
Xp, of Riesz sample paths can also be obtained by computing the finite element co-

efficient vector XH’h as the solution of the discretized fractional diffusion equation, i.e.

A%J“%XH’;L = Z, where Z = [Z1,...,Z,])7 is a standard normal vector and A-(G+3) =

VA~ -1, Indeed, the right hand side of the finite element discretization of the Pois-
son problem with white noise forcing term is given by MZ, since [ ¢; dW = W (¢;) for all
test functions {¢;}!" ;, while the stiffness matrix L remains unchanged. Since the solution
of the fractional diffusion equation can also readily be expressed in terms of the spectral
decomposition of A, the spatial accuracy of XH,h is determined by the accuracy of the
discretized spectrum, discussed in Section 5.1.1.

The contour integral method presents a more efficient way of computing fractional
powers of A without resorting to its full eigen-decomposition.
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5.2.1. The Contour Integral Method. The contour integral method (CIM) is based on
the representation of matrices of the form f(A) as contour integrals around the spectrum
o(A) of A and allows for the computation of fractional powers of the discrete Laplace
operator A without first computing its entire spectrum. Specifically, let f be an analytic
function in a region containing o(A) and let I' be a contour lying within this region and
winding once around o(A) in a counter-clockwise direction. Then (see [22], Definition 1.11
and Theorem 1.12)

(5.1) £(A) = ;m/rf(z)(zl — AL

In practice, this matrix-valued integral must be approximated by numerical quadrature,
giving rise to the weighted sum

N
=Y wif (&) (&I — A"
=1

where w; and §; are a set of weights and nodes. In general, the evaluation of this sum
requires computing N resolvent matrices, although these computations can be done com-
pletely in parallel. For the purposes of simulating Riesz sample paths, we require only
matrix-vector products of the form A—<%+%>z, where Z is the standard normal vector,
provided A is non-singular. Since A = M 'L, the sum above takes the form

(441

N
Xgm = A~(5+3) Z SO e -0 Mz,
=1

requiring N system solves, so that neither A nor its inverse need be formed explicitly.
Moreover, these systems are sparse and can therefore be solved efficiently (both in terms
of storage and the number of floating point operations) through the use of sparse linear
solvers, whose computational cost typically scales as O(n) so that the total cost scales as
O(nN). To compute the associated covariance matrix, however, the full matrix inverse is
required. In the case of pure Neumann boundary conditions, it was shown (c.f. Theorem

_(d4H
4.1 [9]) that Ancd T2 = VoA~ G+ Vol where Apen = diag(ML, .., A?) and Vien, is
formed from all but the first columns of V', can be computed by the contour integral

AL 1-/ o
I
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»MQ..

) (2] — A)7! dz,
where I'y contains Ao, ..., Ay, but not Aj.

Unfortunately, the accuracy of conventional approaches, such as applying the trape-
zoidal rule to the circular contour enclosing o(A), deteriorates as the condition number
k(A) of A grows, with a convergence rate that depends linearly on k(A). For the fi-
nite element Laplacian, x(A) = AM!/A" in turn grows as the mesh is refined. In [21], the
authors develop a numerical quadrature scheme whose accuracy deteriorates only loga-
rithmically in terms of xk(A) for functions f that are analytic in the slit complex plane
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C\ (=00, 0], by first mapping the region C\((—o0,0] U c(A)) conformally onto an annulus
and applying the trapezoidal rule there. It can then be shown (see [21] Theorem 2.1)
that ||f(A) — fn(A)] = O(e=™ N/og(s(4)+3)) " This quadrature scheme was used in [9] to
compute the fractional FEM Laplace operator A in aid of approximating the solution of a
fractional-in-space reaction diffusion equation.

To investigate the accuracy and efficiency of the CIM method, we compute the finite
element coeflicients X‘};“,ll of a single sample path of the Riesz field satisfying homogeneous
Dirichlet conditions for different values of the Hurst parameter, different levels of mesh
refinement, and different numbers of quadrature nodes. The quadrature nodes and weights
were computed using Algorithm 1 in [9] (see also method1.m in [21]), based on Driscoll’s
Schwarz-Christoffel Toolbox [14]. For the first and second mesh refinement levels, the
reference path was computed using Matlab’s mpower command and the backslash operation
‘\’. For the finer meshes, we used the CIM method with 100 quadrature points. Figure
9 shows the convergence rate of the CIM method for different meshes. As expected, the
method converges exponentially, but the convergence rate deteriorates as the mesh becomes
finer, giving rise to a higher condition number. To assess the efficiency of the CIM, we

———H=0.10 ———H=0.10 ———H=0.10
—e—H=0.25 —e—H=0.25 —o—H=025
—2—H =0.30 " —a—H=0.30 s —£—H=0.30
5 H=050 510 —=—H=050
‘ s
5
=2 10710
N
107°
20 40 0 20 40 0 20 40
N N N

(a) 144 spatial nodes. (b) 529 spatial nodes. (c) 2025 spatial nodes. (d) 7921 spatial nodes.

Figure 9: The relative L°°-error of the CIM approximation of the sample path X =
d , H
A~(G+3)Z for successive refinements of the spatial mesh.

compare its CPU time, using N = 40 quadrature nodes, with that of forming the fractional
inverse of A by computing its full eigen-decomposition, using the eig function in Matlab.
We computed both the timings and relative errors in each case, averaged over different
values of H. We ran our computations on a Intel Core i5-2520M CPU @ 2.50GHz x 4,
running Matlab R2012 without parallelization. Table 1 clearly shows the advantage in
computational cost of the CIM over using the eigen-decomposition of A. For a comparable
(or even better) relative error, the CIM is an order of magnitude faster, especially for finer
meshes.

5.3. Discretization of the Riesz Kernel. In this section we propose a method for
simulating power law noises as convolutions of the Riesz potential (3.3) with white noise
fields, as an alternative to using the inverse fractional Laplace operator. This formulation
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Level || Nodes | k(A) | CIM time (sec) | eig time (sec) | CIM error | eig error
1 144 148 0.1056 0.0068 3.5431e-14 | 2.2629e-14
2 529 623 0.3449 0.2196 6.9600e-14 | 6.3948e-14
3 2025 2525 1.4320 11.5975 2.9589e-15 | 4.6633e-13
4 7921 | 10133 10.3513 645.7518 2.4304e-14 | 1.0503e-11

Table 1: Condition numbers of the discrete Laplacian as well as computational times and
relative errors for both the CIM (N = 40) and the eigenvalue method for different spatial
refinement levels.

does not allow for the explicit enforcement of boundary conditions, although it is simpler
to implement than previously discussed methods, since it does not require the inversion of
fractional Laplace operators. To prevent fields from exhibiting spurious correlations over
non-convex domains (see Figure 3), we replace the Euclidean distance appearing in the
Riesz kernel by the distance dp(x,y) of the shortest path in D between the points, i.e.

(5.2) dp(z,y) := min{length() : v is a path from z to y},

giving rise to the modified kernel kg (z,y) := dD(x,y)f(%JrH). At any point x € D, the
value of the random field X% (z) is then given by

XE(2) = ¢y, / k() AW (y),
2JD
where cj;, 4 is given in (3.3) and W is the white noise measure defined in Section 2.
2

As before, let 7, = {A;}", be a regular triangulation of the region D. For any z € D,
we approximate the integral kernel kg (x,-) by the piecewise constant function

m
ku(z,y) = Z ku(z,y;)1a,(y),

i=1
where 1 is the indicator function and y € A; is a representative point in the interior
of the i'" element A;. In our computations, we take y to be the centroid of the i‘"
element. Both the computational and storage cost of this method are dominated by the
computation and storage of the shortest distances between any two finite element nodes.
In our computations, we make use of Floyd’s algorithm [17] (see Figure 10), with a total
computational cost of O(n?®) and a storage cost of O(n?). However, for finite element
meshest which are sparse graphs, the Johnson algorithm [27] is more efficient, with a
storage cost of O(n) and a computational cost of O(n?log(n)).

Consequently, the random field X;}esz can be approximated by

m m

(5.3)  Xpa(x) =Y ku(z,y))W (L) = ku(z,yi)|AilZi, with Z; ~ N(0,1) iid..
=1 =1
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(a) Shortest paths from point (b) Distances from point marked
marked by x to 40 other random by x to all other points in the do-
points in the domain. main

Figure 10: Illustrations of the modified metric over the lake domain.

Like Hosking’s model, this formulation expresses the field at a given point z € D as a linear
combination of white noise sources located in each of the elements, so that both the size
of the element and the distance from x to the element’s centroid determine the strength
of the influence of the noise source. For points lying close together, the field is largely
determined by the same random disturbances leading to a higher level of correlation, the
strength of which depends on the decay rate of the kernel, i.e. on H. Figure 11c shows
the correlation of the field Aé%gsézh, whose sample path is depicted in Figure 11a, at a given
point. As expected, the correlation decreases as we move away from the point. Unlike
elliptic Gaussian fields with Neumann boundary conditions (see Figure 6), however, the
correlation is always positive. An unusual property of this field is that the correlation
of the point ‘x’ with points on the boundary is slightly higher than with points that are
closer but that lie in the interior. This is due to the fact that points on the boundary
are influenced by fewer noise sources than their interior neighbors, rendering them more
correlated. Figure 11b shows that both the distance of the noise source from a point x, as
well as the size of the element determine its contribution to the field’s variance at x.

riesz

Spatially Varying Hurst Parameters. Although X i1’ cannot be used when it is nec-
essary to enforce boundary conditions, the explicit appearance of the Hurst parameter in
Equation (5.3) allows us to model fields whose Hurst parameter H is spatially varying, by
letting

T S sy — (4 T
Xt () .= Y dp(a,yp)”GHIEW(A,).
=1

Figure 12b shows the sample path of a field X;}e,sf (z) with Hurst parameter that increases
along the x-direction from left to right.
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(a) Sample path of the power-law (b) Contribution of each noise (c) The correlation at the
noise Xg'55‘, over the lake region. term to the variance at the point marked by ‘x’.
point marked by ‘x’.

Figure 11: Sample paths and point-wise covariance structure of 6‘355Zh

(a) X}}“}‘l with homogeneous Dirichlet condi- (b) X}}e?f with Hurst parameter
tions on the red circles. H(z,y) = 0.540.5/7 xarctan(10* (x — 0.5)).

Figure 12: Sample paths of non-standard scale-invariant fields over a square domain.

6. Conclusion. Statistical self-similarity is fundamental property of random fields, ob-
servable under various guises in many physical-, biological-, and man-made systems. Due
to the multitude of ways in which self-similarity can be manifested, especially over general,
multi-dimensional index sets, statistical models of self-similar or power-law noises should
be sufficiently flexible to accommodate both constraints imposed by observations, and the
needs of the modeler. In this paper we showed that the elliptic Gaussian fields form a wide
class of locally self-similar random fields of known smoothness that can be generated over
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non-standard spatial domains and on arbitrary meshes. Defining the random field as the
solution of an SPDE has several advantages, such as the ability to seamlessly incorporate
observations though the imposition of interior Dirichlet conditions (see Figure 12a). We
proposed three algorithms for generating numerical simulations of power-law noise and
discussed and compared their properties, strengths and limitations.

The theory of Gaussian models for spatially varying power-law noises, also known as
elliptic Gaussian processes [5] [4], or Riesz fields [18, 19], is fairly recent and there is a need
for a more complete understanding of the nature of solutions of SDE’s and SPDE’s and
their approximations, when the underlying parameters that are spatially varying power-law
noises. This includes a convergence theory for approximations based on finite elements, or
finite differences. Another direction of future research involves the quantification of more
specific features of the field, such as the presence of a grain, as well as the incorporation
of these into the random field model.

There is also an interesting connection between Riesz fields and Matérn random fields, a
family of Gaussian random fields whose power spectral densities exhibit a power-law decay
in the intermediary frequency range. In particular, Matérn fields Y can be shown to satisfy
the equation (k2 — A)*/2Y (x) = W (x) over R%, where o > 0,k > 0 are parameters related
to the covariance function of Y. In [35], this relation was used to recursively construct
a Gaussian Markov Random field representation for Matérn random fields, when o € N.
This representation leads to considerably more efficient approximations than traditional
covariance factorization, due to the relative sparsity of the precision matrix. A possible
avenue for future research would be to investigate this relation for non-integer values of «
and to consider the limiting case as Kk — 0.
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Referee 1 (Remarks to the Author):

The manuscript presents models for power-law noises and also numerical methods for
simulating them on general domains and meshes. The authors draw the connection with
fractional Laplacians and thus introduce two simulation methods based on a discrete ap-
proximation of the Laplacian. Both methods can be summarized as computing the matrix-
vector product A * Z, where A is a fractional power of the Laplacian and Z is a random
vector drawn from the standard Gaussian. Yet a third method is to resort to a convolution
with the Riesz kernel. Hence, the simulation amounts to computing the convolution in a
discrete/approximate form. This method does not incorporate boundary conditions, but
it has an interesting extension for varying the Hurst parameter spatially. The paper is well
written and it merits publication in a UQ journal, wherein simulation of complex physical
and stochastic systems is a focused interest.

I would like to comment on the computational costs of the three simulation methods.
The authors may consider arranging a discussion of them for enhancing the paper. The first
method (spectral representation) is to compute the spectral decomposition of the discrete
Laplacian and to raise a certain power on the eigenvalues. The spectral decomposition has
an O(n3) cost, where n is the number of nodes in the mesh. In physical simulations, such
an n may be very large, far larger than 7921 in the demonstrated examples. Even though
the Laplacian is ”sparse” (because both the mass and the stiff matrices are) and sparse
eigen-solvers may apply, they do not help too much when all eigenvalues and vectors are
needed.

Added the following to Section 5.1.1

Since this method requires the full eigen-decomposition of A, the computational cost in-
volved can be considerable, generally scaling at O(n3), although it may be partially mitigated
through the use of sparse eigen-solvers.

The second method (contour integral) appears to be the most efficient, both in memory
and storage. It requires solving a number of linear systems, but the systems are sparse
and thus sparse linear solvers can be of good help. When n is 7921, one can afford using
the Matlab backslash (which is a direct solver). But for larger n, one probably needs
to consider using an iterative solver. Generally, we consider that the cost of solving one
system is O(n), although the hidden prefactor can sometimes be large.

Added the following sentence to the middle of Section 5.2.1

Moreover, these systems are sparse and can therefore be solved efficiently (both in terms
of storage and the number of floating point operations) through the use of sparse linear
solvers, whose computational cost typically scales as O(n) so that the total cost scales as
O(nN).

The third method (Riesz kernel) is simpler to implement, but its cost is nontrivial.
The reason is that the method requires computing all-pairs shortest paths on a mesh. The
Floyd’s algorithm used in the paper requires storing the whole n % n distance matrix and
the algorithm takes 2 x n® operations. The Johnson’s algorithm, on the other hand, may
be more efficient, because the mesh is a sparse graph. It requires only O(n) storage for a
finite-element mesh, but still, the time cost is O(n? x log(n)).



Added the following sentences to the paragraph preceding equation 5.3

Both the computational- and storage cost of this method are dominated by the compu-
tation and storage of the shortest distances between any two finite element nodes. In our
computations, we make use of Floyd’s algorithm [17] (see Figure 10), with a total com-
putational cost of O(n3) and a storage cost of O(n?). It has since come to our attention
that for finite element meshes, which are sparse graphs, the Johnson algorithm [27] is more
efficient, with a storage cost of O(n) and a computational cost of O(n?log(n)).

A few typos:

1. Page 13, formula below (3.4). The integral should integrate over &, not x. 2.
Page 20, caption of Figure 10. The exponent of A should be —(d/4 + H/2), rather than
—d/4 4+ H/2. Such a missing of parentheses in the exponent also appears in the definition
of the modified kernel kg (z,y) below (5.2) and in the formula at the top of page 23.

Corrected typos.



Referee 2 (Remarks to the Author):

Referee Report for ” Power law noises over general spatial domains and on non-standard
meshes” by Hans-Werner van Wyk and Max Gunzburger

This paper reviews some theory for random field models, specifically models for which
the spectra can be described by a power law. The authors propose three methods for
drawing approximate simulations from power law models on non-Euclidean spaces, and
they make heavy use of triangularizations to aid in the approximations.

I believe that this paper can be useful to practitioners in many fields who desire com-
putationally efficient methods for simulating random fields. However, it would be helpful
to know some more details about the computations and the quality of the approximations.

Overlap, see corrections for reviewer 1.

I realize that the present paper is quite general, but it would also be helpful to have some
discussion of how the present paper fits into the well-developed area of Markov random
fields, where finite element methods are common, as well as some references to this work,
such as the book ”"Markov Random Fields, Theory and Applications” by Havard Rue
and Leonhard Held (2005), and the article ” An explicit link between Gaussian fields and
Gaussian Markov random fields: The SPDE approach” by Finn Lindgren, Havard Rue,
and Johann Lindstrom (2011, JRSS-B).

1. In light of the discussion of periodogram estimates of S at the top of page 3, it
seems worth mentioning that the Matern process has precisely the power spectrum that
you describe-flat in the low frequency range and a power law at high frequencies.

Added the following at the very end.

There is also an interesting connection between Riesz fields and Matérn random fields,
a family of Gaussian random fields whose power spectral densities exhibit a power-law
decay in the intermediary frequency range. In particular, Matérn fields Y can be shown to
satisfy the equation (k% — A)*/?Y (x) = W (x) over R, where a > 0,k > 0 are parameters
related to Y'’s covariance function. In [35], this relation was used to recursively construct
a Gaussian Markov Random field representation for Matérn random fields, when o € N.
This representation leads to considerably more efficient approximations than traditional
covariance factorization, due to the relative sparsity of the precision matriz. A possible
avenue for future research would be to investigate this relation for non-integer values of «
and to consider the limiting case as k — 0.

2. In the last paragraph on page 4, you mention that all algorithms extend to arbitrary
dimensions. This seems believable, but do you have a sense of how the quality of the
approximations behaves in higher dimensions? For example, it is well known that discrete
Fourier approximations to stationary random fields on regular lattices degrade in quality
as dimension increases, due to increased importance of edge effects.

Changed sentence to:

For the sake of visualization, all of our computational results are based on regions in
R2. The algorithms discussed, however, extend readily to three spatial dimensions.

3. On the bottom of page 4, you write ”Considering the vastness of this research field,
it is inevitable that this paper omits many important approaches, ...” While I sympathize
that it is difficult to be aware of all relevant research, especially in other disciplines, I find



this statement to be unsatisfying, especially when there are research fields, such as spatial
statistics, that are almost entirely devoted to the problem of studying and making use of
random field models.

Replaced this sentence with:

Since this paper focuses on the generation of sample paths over general regions, we
do not discuss here the construction and analysis of scale-invariant noises by means of
wavelets (see [49] and [16]).

4. In the middle of page 8 you write, ” Although fractional Brownian motion, unlike
standard Brownian motion, is neither mean square differentiable nor a martingale for H #
1/2,..” This sentence seems to imply that standard Brownian motion is mean square
differentiable, which I believe not to be true. Please correct this sentence if I am in fact
correct.

Changed sentence to:

Although fractional Brownian motion is not mean square differentiable, it does admit
a Hélder continuous modification [6]. Moreover, fBm is not a martingale for H # %, and
since its variance Var(Bg(t)) = E [Bp(t)?] = t*# for t > 0, it is also non-stationary.

5. If it is necessary to conserve space, Figure 3 could be omitted.

Omitted Figure 3

6. Definition 3.3 on page 9 implies that Var(Bg(0)) = 0, whereas the following para-
graph discusses an arbitrary point of origin zy. For consistency, I suggest either changing
Equation (3.2) to reflect arbitrary origin xo or explicity stating o = 0 in the following
paragraph.

7. On page 9, you state that the power law noise model may no longer be relevant
in the spatial domain due to the fact that, in many applications, the value of the process
may be known at several locations. I disagree with the premise that this case makes such
models irrelevant in the spatial domain. It is quite common to assume that the data arose
from a realization of a random field that happened to be observed at several locations. The
distribution of the process at locations where it was not observed is then quantified as the
conditional distribution of the process at the unobserved locations given the values at the
observed locations.

Kept Definition 3.3 intact and deleted the argument that fractional Brown-
ian surfaces are not relevant in the context of conditioning on data, but added
the following paragraph:

The fBs defined above can readily be modified through translation to a fBs centered at an
arbitrary point xo € R, It can also be conditioned on available measured data if the spatial
domain contains points, or even whole regions, in which the field is known exactly (see
e.g. [11, 33]). In this case, the conditional covariance function no longer takes the form
(3.2), but the covariance matriz of the field at a finite number of points can be calculated
by means of Schur complements.

8. Can you add axis labels in Figures 6, 7, and 87 I'm not sure I understand Figure 7.

Added axes and labels to Figures (now 5,6,7) and rewrote the caption for
figure 7 (now 6).

9. In Section 5.1.1, there appears to be a typo in the second displayed equation. Should



)\be/\Z?

Corrected

10. In Figure 10, can you add axis labels? It took me quite some time to decide that
I think the horizontal axis is N, but I'm still not sure. Do the four plots refer to the four
levels in Table 17

Added axis labels and captions (number of spatial nodes) for each subplot.
Added a column to Table 1, showing the relative error of the CIM with N = 40.
Elaborated on Table 1:

To assess the efficiency of the CIM, we compare its CPU time, using N = 40 quadra-
ture nodes, with that of forming the fractional inverse of A by computing its full eigen-
decomposition, using the etg function in Matlab. We computed both the timings and rel-
ative errors in each case, averaged over different values of H. We ran our computations
on a Intel Core 15-2520M CPU @ 2.50GHz x 4, running Matlab R2012 without paralleliza-
tion. Table 1 clearly shows the advantage in computational cost of the CIM over using the
eigen-decomposition of A. For a comparable (or even better) relative error, the CIM is an
order of magnitude faster, especially for finer meshes.

11. You write that the CIM method is compared to the sample path X = A~4/4+H/2
(should the exponent be —d/4 — H/27). Isn’t this itself a finite element approximation to
the true process? Do you have a sense of how well any of these methods approximate the
true process?

Corrected the exponent. Added the following paragraph, discussing the
spatial accuracy of the finite element approximation, at the end of Section
5.1.1:

The spatial accuracy of )A(;}igh 1s determined by the accuracy with which the discrete
eigenvalues )\Z and eigenfunctions wz(aj) approximate the true spectrum. In [7] the finite
element approximation of the Laplacian eigenvalue problem is discussed at length. In par-
ticular, it is shown that for smooth eigenfunctions (such as those arising when D is convez)
and for piecewise linear finite element approximations, /\Z — A at the rate O(h?), while
Yl — Wy at the rate O(h?) in the L?(D) norm and O(h) in the H'(D) norm. The corre-
sponding rate coefficients depend on the particular eigenspace being approrimated and can
be larger if 1y is close to singular.

Also added the following sentence to the first paragraph of Section 5.2:

Since the solution of the fractional diffusion equation can also readily be expressed in
terms of the spectral decomposition of A, the spatial accuracy of XH,h is determined by the
accuracy of the discretized spectrum, discussed in Section 5.1.1.

12. In Table 1, are the times in seconds? And what is meant by ”eig error”?

See corrections for comment 10.

13. Do you have a sense of how the computational effort, in both memory and floating
point operations, scales with the number of nodes? I suspect that you stopped at n = 7921
nodes due to an O(n?) memory requirement.

Overlap with comments of reviewer 1. Corrected

14. Can you elaborate on the simulation in Figure 13(a)? This is particularly interesting
because it suggests a way to perform conditional simulations of the process given that it



is known at several locations, which is a common application with spatial data.

Added the following sentence to the first paragraph of the conclusion:

Defining the random field as the solution of an SPDE has several advantages, such as
the ability to seamlessly incorporate observations though the imposition of interior Dirichlet
conditions (see Figure 12a).

15. The first sentence of the conclusion seems out of place. Its inclusion makes it seem
like you have just undergone a thorough evaluation of the hypothesis that self-similarity is
a natural and universal property.

Removed this sentence, replacing it with:

Statistical self-similarity is fundamental property of random fields, observable in various
guises in many physical- biological and man-made systems.



