
Distributed Memory Programming With MPI

John Burkardt
Interdisciplinary Center for Applied Mathematics &

Information Technology Department
Virginia Tech

..........
Applied Computational Science II

Department of Scientific Computing
Florida State University

https://people.sc.fsu.edu/∼jburkardt/presentations/. . .
. . . mpi 2008 acs2.pdf

16 & 18 September 2008

1 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

2 / 1

Richardson’s Weather Computation for 1917

3 / 1

MPI: Why, Where, How?

In 1917, Richardson’s first efforts to compute a weather prediction were
simplistic and mysteriously inaccurate.

But he believed that with better algorithms and more data, it would be
possible to predict the weather reliably.

Over time, he was proved right, and the prediction of weather became
one of the classic computational problems.

Soon there was so much data that making a prediction 24 hours in
advance could take...24 hours of computer time.

Weather events like Hurricane Wilma in 2005 ($30 billion in damage)
meant accurate weather prediction was
worth paying for.

4 / 1

Predicting the Path of Hurricane Ike, 2008

5 / 1

MPI: Why, Where, How?

For many years, computer designers could keep up with the need for
faster machines by improving current methods - shrinking circuits and
making the electronic clock faster.

But in the 1990’s, the cost of designing and building supercomputers of
the traditional kind exploded.

A real upper bound on performance was coming into view.

It was not possible to make the clock much faster, or the circuits much
smaller.

6 / 1

MPI: Why, Where, How?

7 / 1

MPI: Why, Where, How?

Inter-computer communication had gotten faster and cheaper.

It seemed possible to imagine that an “orchestra” of low-cost machines
could work together and outperform supercomputers, in speed and cost.

If this was true, then the quest for speed would simply require connecting
more machines.

But where was the conductor?

8 / 1

Cheap, Ugly, Effective

9 / 1

MPI: Why, Where, How?

MPI (the Message Passing Interface) manages a parallel computation on
a distributed memory system.

MPI is told the number of computers available, and the program to be
run.

MPI then

distributes a copy of the program to each computer;

assigns each computer a process id;

synchronizes the start of the programs;

transfers messages between the processors;

manages an orderly shutdown of the programs at the end.

10 / 1

MPI: Why, Where, How?

Suppose a user has written a C program myprog.c that includes the
necessary MPI calls (we’ll worry about what those are later!)

The program must be compiled and loaded into an executable program.
This is usually done on a special compile node of the cluster, which is
available for just this kind of interactive use.

mpicc -o myprog myprog.c

A command like mpicc is a customized call to the compiler which adds
information about MPI include files and libraries.

11 / 1

MPI: Why, Where, How?

On some systems, the executable can be run interactively, with the
mpirun command. Here, we request that 4 processors be used in the
execution:

mpirun -np 4 myprog > output.txt

12 / 1

MPI: Why, Where, How?

Interactive execution may be ruled out if you want to run for a long time,
or with a lot of processors.

In that case, you write a job script that describes time limits, input files,
and the program to be run.

You submit the job to a batch system, perhaps like this:

msub myprog.sh

When your job is completed, two files are returned:

an output file, such as myprog.o6501

an error file, such as myprog.e6501

(It’s easy and simpler to have these two files merged.)

13 / 1

MPI: Why, Where, How?

Since your program ran on N computers, you might have some natural
concerns:

Q: Do I need to learn a new computer language?

A: No, Use C/C++/Fortran with an MPI library.

Q: Do I have to copy my program to many machines?

A: No, MPI makes copies and starts them together.

Q: How do we avoid doing the exact same thing N times?

A: MPI gives each computer a unique ID, and that’s enough.

Q: Do we end up with N separate output files?

A: No, MPI collects them all together for you.

14 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

15 / 1

Overview of an MPI Computation

How can parallel processing help you solve a problem?

Suppose that your problem can be replaced by N smaller problems, which
are not completely independent.

The computers can work simultaneously on the smaller problems, each of
which can be solved much faster than the full problem.

Because the small problems are “related” to each other, there will be
some communication during the computations.

But the key is that each computer thinks it’s just solving a regular
problem. We know how to make a computer do that.

The hard part is thinking about how to break down the big problem and
put the little solutions together.

16 / 1

Overview of an MPI Computation

We’ll begin with a discussion of MPI computation ”without MPI”.

That is, we’ll hold off on the details of the MPI language, but we will go
through the motions of re-implementing a sequential algorithm using the
capabilities of MPI.

The algorithm we have chosen is a simple example of domain
decomposition, the time dependent heat equation on a wire (a one
dimensional region).

17 / 1

Overview of an MPI Computation: Heat Equation

Determine the values of H(x , t) over a range t0 <= t <= t1 and space
x0 <= x <= x1, given an initial value H(x , t0), boundary conditions, a
heat source function f (x , t), and a partial differential equation

∂H

∂t
− k

∂2H

∂x2
= f (x , t)

18 / 1

Overview of an MPI Computation: Heat Equation

The discrete version of the differential equation is:

h(i , j + 1) − h(i , j)

dt
− k

h(i − 1, j) − 2h(i , j) + h(i + 1, j)

dx2
= f (i , j)

We have the values of h(i , j) for 0 <= i <= N and a particular “time” j .
We seek value of h at the “next time”, j + 1.

Boundary conditions give us h(0, j + 1) and h(N, j + 1), and we use the
discrete equation to get the values of h for the remaining spatial indices
0 < i < N.

19 / 1

Overview of an MPI Computation: Heat Equation

20 / 1

Overview of an MPI Computation: Heat Equation

At a high level of abstraction, it’s easy to see how this computation could
be done by three processors, which we can call red, green and blue, or
perhaps “0”, “1”, and “2”.

Each processor has a part of the h array.

The red processor, for instance, updates h(0) using boundary conditions,
and h(1) through h(6) using the differential equation.

Because red and green are neighbors, they will also need to exchange
messages containing the values of h(6) and h(7) at the nodes that are
touching.

21 / 1

Overview of an MPI Computation: Heat Equation

In more realistic examples, it’s actually difficult just to figure out what
parts of the problem are neighbors, and to figure out what data they
must share in order to do the computation.

In a finite element calculation, in general geometry, the boundaries
between the computational regions can be complicated.

But the same idea is true - we can break big problems into smaller ones if
we can handle the communication through the boundaries.

22 / 1

Overview of an MPI Computation: Heat Equation

A region of 6,770 elements, subdivided by PMETIS.

23 / 1

Overview of an MPI Computation: Heat Equation

So why does domain decomposition work for us?

Domain decomposition is simply a way to break our big problem up into
smaller problems.

Each computer sees the small problem and can solve it quickly.

In order to relate the small problems to our big problem, we need to
make sure the interfaces between regions are correctly handled through
communication.

24 / 1

Overview of an MPI Computation: Heat Equation

Many problems are parallelizable, although the method of getting there
depends on what you are doing.

To sort a large array, you think of doing it in parallel by sorting smaller
arrays - and then exchanging some results.

To solve a linear system, you might break the matrix up into square
sub-blocks, or strips of rows, and think of the related linear problem.

To approximate an integral, divide the range and sum up the result at the
end.

To compare a protein to all the proteins in a database,
have each computer work with a portion of the database.

25 / 1

One Program Binds Them All

At the next level of abstraction, we have to address the issue of writing
one program that all the processors can carry out.

This is going to sound like a Twilight Zone episode.

You’ve just woken up, and been told to help on the HEAT problem.

You know there are P processors on the job.

You look in your wallet and realize your ID number is ID (ID numbers
run from 0 to P-1.

Who do you need to talk to? What do you do?

26 / 1

Overview of an MPI Computation: Heat Equation

Who do you need to talk to?

If your ID is 0, you will need to share some information with your right
handneighbor, processor 1.

If your ID is P-1, you’ll share information with your lefthand neighbor,
processor P-2.

Otherwise, talk to both ID-1 and ID+1.

In the communication, you “trade” information about the current value
of your solution that touches the border with your neighbor.

You need your neighbor’s border value in order to complete
the stencil that lets you compute the next set of data.

27 / 1

Overview of an MPI Computation: Heat Equation

What do you do?

We’ll redefine N to be the number of nodes in our own single program,
and store our data in entries H[1] through H[N].

Include two locations, H[0] and H[N+1], for values copied from
neighbors. These are sometimes called “ghost values”.

Our range of X values is [ID∗N
P∗N−1 ,

(ID+1)∗N−1
P∗N−1];

It’s easy to update H[2] through H[N-1].

To update H[1], we’ll need H[0], copied from our lefthand neighbor
(where this same number is stored as H[N]!).

To update H[N], we’ll need H[N+1] copied from
our righthand neighbor.

28 / 1

Overview of an MPI Computation: Heat Equation

This program would be considered a good use of MPI, since the problem
is easy to break up into cooperating programs.

The amount of communication between processors is small, and the
pattern of communication is very regular.

The data for this problem is truly distributed. No single processor has
access to the whole solution.

The individual program that runs on one computer looks a lot like the
sequential program that would solve the whole problem.

29 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

30 / 1

How to Say it in MPI: Initialize and Finalize

include <stdlib.h>

include <stdio.h>

include "mpi.h"

int main (int argc, char *argv[])

{

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &id);

MPI_Comm_size (MPI_COMM_WORLD, &p);

Here’s where the good stuff goes!

MPI_Finalize ();

return 0;

}

31 / 1

How to Say it in MPI: The “Good Stuff”

As we begin our calculation, processes 1 through P-1 must send what
they call h[1] “to the left”.

Processes 0 through P-2 must receive these values, storing them in the
ghost value slot h[n+1].

Similarly, h[n] gets tossed ”to the right” into the ghost slot h[0] of the
next higher processor.

Sending this data is done with matching calls to MPI Send and
MPI Recv. The details of the call are more complicated than I am
showing here!

32 / 1

How to Say it in MPI: The “Good Stuff”

if (0 < id)

MPI_Send (h[1] => id-1)

if (id < p-1)

MPI_Recv (h[n+1] <= id+1)

if (id < p-1)

MPI_Send (h[n] => id+1)

if (0 < id)

MPI_Recv (h[0] <= id-1)

33 / 1

How to Say it in MPI: The “Good Stuff”

Our communication scheme is defective however. It comes very close to
deadlock.

Remember deadlock? when a process waits for access to a device, or
data or a message that will never arrive.

The problem here is that by default, an MPI process that sends a
message won’t continue until that message has been received.

If you think about the implications, it’s almost surprising that the code I
have describe will work at all.

It will, but more slowly than it should!

Don’t worry about this right now, but realize that
with MPI you must also consider these communication issues.

34 / 1

How to Say it in MPI: The “Good Stuff”

All processes can use the four node stencil now to compute the updated
value of h.

Actually, hnew[1] in the first process, and hnew[n] in the last one, need
to be computed by boundary conditions.

But it’s easier to treat them all the same way, and then correct the two
special cases afterwards.

35 / 1

How to Say it in MPI: The “Good Stuff”

for (i = 1; i <= n; i++)

hnew[i] = h[i] + dt * (

+ k * (h[i-1] - 2 * h[i] + h[i+1]) /dx/dx

+ f (x[i], t));

* Process 0 sets left node by BC *\

* Process P-1 sets right node by BC *\

if (0 == id) hnew[1] = bc (x[1], t);

if (id == p-1) hnew[n] = bc (x[n], t);

* Replace old H by new. *\

for (i = 1; i <= n; i++) h[i] = hnew[i]

36 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

37 / 1

THE SOURCE CODE

Here is almost all the source code for a working version of the heat
equation solver.

I’ve chopped it up a bit and compressed it, but I wanted you to see how
things really look.

This example is also available in a FORTRAN77 version. We will be able
to send copies of these examples to an MPI machine for processing later.

38 / 1

Heat Equation Source Code (Page 1)

i n c l u d e <s t d l i b . h>
i n c l u d e <s t d i o . h>
i n c l u d e <math . h>
i n c l u d e ”mpi . h”

i n t main (i n t argc , char *a rgv [])
{

i n t id , p ;
double wtime ;

MP I I n i t (&argc , &argv) ;
MPI Comm rank (MPI COMM WORLD, &i d) ;
MPI Comm size (MPI COMM WORLD, &p) ;

update (id , p) ;

MP I F i n a l i z e () ;

r e t u r n 0 ;
}

39 / 1

Heat Equation Source Code (Page 2)

double bounda r y c ond i t i o n (double x , double t ime)

/* BOUNDARY CONDITION r e t u r n s H(0 ,T) or H(1 ,T) , any t ime . */
{

i f (x < 0 .5)
{

r e t u r n (100 .0 + 10 .0 * s i n (t ime)) ;
}
e l s e
{

r e t u r n (75 .0) ;
}
}
double i n i t i a l c o n d i t i o n (double x , double t ime)

/* INITIAL CONDITION r e t u r n s H(X,T) f o r i n i t i a l t ime . */
{

r e t u r n 9 5 . 0 ;
}
double r h s (double x , double t ime)

/* RHS r e t u r n s r i g h t hand s i d e f u n c t i o n f (x , t) . */
{

r e t u r n 0 . 0 ;
}

40 / 1

Heat Equation Source Code (Page 3)

/* Set the X c o o r d i n a t e s o f the N nodes . */

x = (double *) ma l l o c ((n + 2) * s i z e o f (double)) ;

f o r (i = 0 ; i <= n + 1 ; i++)
{

x [i] = ((double) (i d * n + i − 1) * x max
+ (double) (p * n − i d * n − i) * x min)
/ (double) (p * n − 1) ;

}
/* Set the v a l u e s o f H at the i n i t i a l t ime . */

t ime = t ime min ;
h = (double *) ma l l o c ((n + 2) * s i z e o f (double)) ;
h new = (double *) ma l l o c ((n + 2) * s i z e o f (double)) ;
h [0] = 0 . 0 ;
f o r (i = 1 ; i <= n ; i++)
{

h [i] = i n i t i a l c o n d i t i o n (x [i] , t ime) ;
}
h [n+1] = 0 . 0 ;

t im e d e l t a = (time max − t ime min) / (double) (j max − j m i n) ;
x d e l t a = (x max − x min) / (double) (p * n − 1) ;

41 / 1

Heat Equation Source Code (Page 4)

f o r (j = 1 ; j <= j max ; j++) {
t ime new = j * t im e d e l t a ;

/* Send H[1] to ID−1. */

i f (0 < i d) {
tag = 1 ;
MPI Send (&h [1] , 1 , MPI DOUBLE , id−1, tag , MPI COMM WORLD) ;

}
/* Rece i v e H[N+1] from ID+1. */

i f (i d < p−1) {
tag = 1 ;
MPI Recv (&h [n+1] , 1 , MPI DOUBLE , i d +1, tag , MPI COMM WORLD, &s t a t u s) ;

}
/* Send H[N] to ID+1. */

i f (i d < p−1) {
tag = 2 ;
MPI Send (&h [n] , 1 , MPI DOUBLE , i d +1, tag , MPI COMM WORLD) ;

}
/* Rece i v e H[0] from ID−1. */

i f (0 < i d) {
tag = 2 ;
MPI Recv (&h [0] , 1 , MPI DOUBLE , id−1, tag , MPI COMM WORLD, &s t a t u s) ;

}

42 / 1

Heat Equation Source Code (Page 5)

/* Update the t empe ra tu r e based on the f o u r p o i n t s t e n c i l . */

f o r (i = 1 ; i <= n ; i++)
{

h new [i] = h [i]
+ (t im e d e l t a * k / x d e l t a / x d e l t a) * (h [i−1] − 2 .0 * h [i] + h [i +1])
+ t im e d e l t a * r h s (x [i] , t ime) ;
}

/* Co r r e c t s e t t i n g s o f f i r s t H i n f i r s t i n t e r v a l , l a s t H i n l a s t i n t e r v a l . */

i f (0 == i d) h new [1] = bounda r y c ond i t i o n (x [1] , t ime new) ;

i f (i d == p − 1) h new [n] = bounda r y c ond i t i o n (x [n] , t ime new) ;

/* Update t ime and tempe ra tu r e . */

t ime = time new ;

f o r (i = 1 ; i <= n ; i++) h [i] = h new [i] ;

/* End o f t ime loop . */
}

43 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

44 / 1

COMPILING, Linking, Running

The first step is to compile the program. An MPI program is written in
a standard language, so if you are just checking for errors, you can do
that on any machine - even your laptop.

gcc -c myprog.c

However:

Your compiler needs the appropriate INCLUDE file.

The resulting object code can’t be used on another machine

You can’t check for linking errors without the MPI library

Compiling on your laptop can be a great way to check for
syntax errors and quickly correct them. Sometimes editing
directly on the HPC machine can be an awkward experience.

45 / 1

COMPILING, Linking, Running

Because it’s so nice to do as much initial work on your local machine as
possible, there are MPI “stub” libraries available.

These libraries contain dummy routines with the names and arguments of
the real MPI library.

It’s simple, but enough to fool the loader, that is, the next step after
simple compilation. So with a stub library, you would be able to make
sure you were calling MPI routines in the right way, perhaps with a
command like this:

gcc myprog.c mpi_stubs.c

If your code can run properly when using only one machine, you may
even be able to run the code using the stub library.

We’ll see an example in the lab exercises.

46 / 1

COMPILING, Linking, Running

To compile on the HPC machine, transfer the file there using sftp, and
log in using ssh or some other terminal program.

On the HPC machine, there are several MPI environments. We’ll setup
the Gnu OpenMPI environment:

source /usr/local/profile.d/openmpi-gnu.sh

Now, to compile a program, we type:

mpicc -c myprog.c

mpic++ -c myprog.cpp

mpif77 -c myprog.f

mpif90 -c myprog.f90

47 / 1

Compiling, LINKING, Running

Linking combines your compiled code with the MPI libraries to make an
executable program.

To link a code you have already compiled:

mpicc myprog.o

To compile and link in one step:

mpicc myprog.c

Either command creates the executable a.out. You should rename the
executable to something meaningful:

mv a.out myprog

48 / 1

Compiling, Linking, RUNNING

Sometimes it is legal to run your program interactively on an MPI
machine, if your program is small in time and memory.

Assuming

our executable program is named myprog,

we are working in the directory containing that program,

we have set up OpenMPI,

then we can run the program interactively with (say) 4 processors using
the command:

mpirun -np 4 ./myprog

49 / 1

Compiling, Linking, RUNNING

Most jobs on an MPI system go through a batch system. That means
you copy a script file, change a few parameters including the name of the
program, and submit it.

Here is a script file for the FSU HPC system, called myprog.sh

50 / 1

Compiling, Linking, RUNNING

#!/bin/bash

#MOAB -N myprog <-- Name job "myprog"

#MOAB -q backfill <-- Run job in this queue

#MOAB -l nodes=4:ppn=1 <-- 4 nodes, 1 processor each

#MOAB -l walltime=00:00:30

#MOAB -j oe <-- join output and error

source /usr/local/profile.d/openmpi-gnu.sh

cd $PBS_O_WORKDIR <-- move to directory

mpirun -np 4 ./myprog <-- run with 4 processes

51 / 1

Compiling, Linking, RUNNING

The command -l nodes=4:ppn=1 says to use 4 nodes, and 1 processor
per node.

The product nodes * ppn is the number of processors we ask for.

Leave ppn at 1, and increase nodes to get more processors.

To increase ppn is to request that the system provide you with processors
that are guaranteed to be on the same node. That makes their
communication faster, but it’s harder for the system to come up with
available processors.

The maximum value of ppn at the FSU HPC site is 8.

52 / 1

Compiling, Linking, RUNNING

So to use the batch system, you first compile your program, then send
the job to be processed:

msub myprog.sh

The system will accept your job, and report to you a queueing number
that can be used to locate the job while it is waiting, and which will be
part of the name of the log files at the end.

53 / 1

Compiling, Linking, Running...and WAITING

The command showq lists all the jobs in the queue, with jobid, “owner”,
status, processors, time limit, and date of submission.

44006 tomek Idle 64 14:00:00:00 Mon Aug 25 12:11:12

64326 harianto Idle 16 99:23:59:59 Fri Aug 29 11:51:05

64871 bazavov Idle 1 99:23:59:59 Fri Aug 29 21:04:35

65059 ptaylor Idle 1 4:00:00:00 Sat Aug 30 15:11:11

65057 burkardt Idle 4 00:02:00 Sat Aug 30 14:41:39

To only show the lines of text with your name in it, type

showq | grep burkardt

...assuming your name is burkardt, of course!

54 / 1

Exercise

As a classroom exercise, we will try to put together a SIMPLE program
to do numerical quadrature. To keep it even simpler, we’ll do a Monte
Carlo estimation, so there’s little need to coordinate the efforts of
multiple processors.

Here’s the problem:

Estimate the integral of 3 ∗ x2 between 0 and 1.

Start by writing a sequential program, in which the computation is all in
a separate function.

55 / 1

Exercise

Choose a value for N

Pick a seed for random number generator.

Set Q to 0

Do N times:

Pick a random X in [0,1].

Q = Q + 3 X^2

end iteration

Estimate is Q / N

56 / 1

Exercise

Once the sequential program is written, running, and running correctly,
how much work do we need to do to turn it into a parallel program using
MPI?

If we use the master-worker model, the master can collect all the
estimates and average them for a final estimate. We can let the master
participate in the computation, as well.

In the main program, we isolate ALL the MPI work of initialization,
communication (send N, return partial estimate of Q) and wrapup.

We can think of an MPI program as a sequential program...
...that can communicate with other sequential programs.

57 / 1

Monte Carlo Integration (Page 1)

program main

i n c l u d e ’ mpi f . h ’

i n t e g e r dim num
parameter (dim num = 4)

double p r e c i s i o n f
i n t e g e r id , i e r r , master
parameter (master = 0)
i n t e g e r p
double p r e c i s i o n q , q e r r o r , q e x a c t
parameter (q e x a c t = 1 .0D+00)
double p r e c i s i o n q t o t a l
i n t e g e r sample , sample num
parameter (sample num = 1000)
i n t e g e r s amp l e t o t a l , s eed
double p r e c i s i o n wtime , wtime1 , wtime2 , x (dim num)

c a l l MPI I n i t (i e r r)
c a l l MPI Comm rank (MPI COMM WORLD, id , i e r r)
c a l l MPI Comm size (MPI COMM WORLD, p , i e r r)

i f (i d . eq . master) then
wtime1 = MPI Wtime ()

end i f

58 / 1

Monte Carlo Integration (Page 2)

c
c Each p r o c e s s must use a d i f f e r e n t seed .
c

seed = 123456789 + i d
q = 0 .0D+00
do sample = 1 , sample num

c a l l r 8 v e c un i f o rm 01 (dim num , seed , x)
q = q + f (dim num , x)

end do
q = q / d b l e (sample num)
q e r r o r = abs (q − q exa c t)

w r i t e (* , ’ (2 x , i8 , 2 x , i8 , 2 x , i8 , 2 x , f16 . 10 , 2 x , g16 . 6) ’)
& id , sample num , dim num , q , q e r r o r

c
c Have each p r o c e s s s en t r e s u l t s to p r o c e s s MASTER f o r r e d u c t i o n
c to f i n a l r e s u l t .
c

c a l l MPI Reduce (q , q t o t a l , 1 , MPI DOUBLE PRECISION , MPI SUM,
& master , MPI COMM WORLD, i e r r)

59 / 1

Monte Carlo Integration (Page 3)

c
c ”Clean up” the r e s u l t .
c

i f (i d . eq . 0) then
q t o t a l = q t o t a l / d b l e (p)
q e r r o r = abs (q t o t a l − q exa c t)
s amp l e t o t a l = p * sample num
w r i t e (* , ’ (2 x , a8 , 2 x , i8 , 2 x , i8 , 2 x , f16 . 10 , 2 x , g16 . 6) ’)

& ’ Tota l ’ , s amp l e t o t a l , dim num , q t o t a l , q e r r o r

wtime2 = MPI Wtime ()
wtime = wtime2 − wtime1
w r i t e (* , ’ (a , f14 . 6) ’) ’ E l apsed wa l l c l o c k seconds = ’ ,

& wtime

end i f

c a l l MPI F i n a l i z e (i e r r)

stop
end

60 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

61 / 1

Your First Six “Words” in MPI

You can write useful programs using the six fundamental routines:

MPI Init

MPI Finalize

MPI Comm Rank

MPI Comm Size

MPI Send

MPI Recv

62 / 1

MPI Language Lesson: MPI Init

MPI Init (&argc, &argv)

&argc, the address of the program argument counter;

&argv, the address of the program argument list

Must be the first MPI routine called.

63 / 1

MPI Language Lesson: MPI Finalize

MPI Finalize ()

Must be the last MPI routine called.

64 / 1

MPI Language Lesson: MPI Comm Rank

MPI Comm Rank (communicator, &id)

communicator, set this to MPI COMM WORLD;

&id, returns the MPI ID of this process.

This is how a processor figures out its ID.

65 / 1

MPI Language Lesson: MPI Comm Size

MPI Comm Size (communicator, &p)

communicator, set this to MPI COMM WORLD;

&p, returns the number of processors available.

This is how a processor finds out how many other processors there are.

66 / 1

MPI Language Lesson: MPI Send

MPI Send (data, count, type, to, tag, communicator)

data, the address of the data;

count, the number of data items;

type, the data type (MPI INT, MPI FLOAT...);

to, the processor ID to which data is sent;

tag, a message identifier (”0”, ”1”, ”1492” etc);

communicator, set this to MPI COMM WORLD;

67 / 1

MPI Language Lesson: MPI Recv

MPI Recv (data, count, type, from, tag, communicator, status)

data, the address of the data;

count, number of data items;

type, the data type (must match what is sent);

from, the processor ID from which data is received (must match the
sender, or if don’t care, MPI ANY SOURCE;

tag, the message identifier (must match what is sent, or, if don’t
care, MPI ANY TAG);

communicator, (must match what is sent);

status, (auxilliary diagnostic information).

68 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

69 / 1

How Messages Are Sent and Received

The main feature of MPI is the use of messages to send data between
processors.

There is a family of routines for sending messages, but the simplest is the
pair MPI Send and MPI Recv.

Two processors must be in a common ”communicator group” in order to
communicate. This is simply a way for the user to organize processors
into sub-groups. All processors can communicate in the shared group
known as MP COMM WORLD.

In order for data to be transferred by a message, there must be a sending
program that wants to send the data, and a receiving program that
expects to receive it.

70 / 1

How Messages Are Sent and Received

The sender calls MPI Send, specifying the data, an identifier for the
message, and the name of the communicator group.

On executing the call to MPI Send, the sending program pauses, the
message is transferred to a buffer on the receiving computer system and
the MPI system there prepares to deliver it to the receiving program.

The receiving program must be expecting to receive a message, that is, it
must execute a call to MPI Recv and be waiting for a response. The
message it receives must correspond in size, arithmetic precision, message
identifier, and communicator group.

Once the message is received, the receiving process proceeds.

The sending process gets a response that the message was received, and
it can proceed as well.

71 / 1

How Messages Are Sent and Received

If an error occurs during the message transfer, both the sender and
receiver return a nonzero flag value, either as the function value (in C
and C++) or in the final ierr argument in the FORTRAN version of the
MPI routines.

When the receiving program finishes the call to MPI Recv, the extra
parameter status includes information about the message transfer.

The status variable is not usually of interest with simple Send/Recv
pairs, but for other kinds of message transfers, it can contain important
information

72 / 1

How Messages Are Sent and Received

1 The sender program pauses at MPI SEND;

2 The message goes into a buffer on the receiver machine;

3 The receiver program does not receive the message until it reaches
the corresponding MPI RECV.

4 The receiver program pauses at MPI RECV until the message has
arrived.

5 Once the message has been received, the sender and receiver resume
execution

Excessive idle time, waiting to receive a message, or to get confirmation
that the message was received, can strongly
affect the performance of an MPI program.

73 / 1

How Messages Are Sent and Received

The simplest message transmissions involve a buffer, an area of memory
for storing messages that have not yet been accepted.

MPI is just another piece of software, written by human beings, and is
full of choices and compromises. One choice is the size of the buffer, and
what happens if it fills up.

NOTHING happens. That is, no more messages can be sent that require
the buffer. A program trying to MPI Send more data using the buffer
will pause - waiting for the buffer to empty.

The buffer has a fixed size. You can send a single message that is too
large to fit into the buffer. Your program will go into a coma!

Remedies: Send really big messages in chunks, or
use ”immediate” (unbuffered) sends and receives:
MPI ISend and MPI IRecv.

74 / 1

How Messages Are Sent and Received

MPI_Send (data, count, type, to, tag, comm)

| | | |

MPI_Recv (data, count, type, from, tag, comm, status)

The MPI SEND and MPI RECV must match:

1 count, the number of data items, must match;

2 type, the type of the data, must match;

3 from, must be the process id of the sender, or the receiver may
specify MPI ANY SOURCE.

4 tag, a user-chosen ID for the message, must match,
or the receiver may specify MPI ANY TAG.

5 comm, the name of the communicator, must match
(for us, always MPI COMM WORLD

75 / 1

How Messages Are Sent and Received

By the way, if the MPI RECV allows a “wildcard” source by specifying
MPI ANY SOURCE or a wildcard tab by specifying MPI ANY TAG,
then the actual value of the tag or source is included in the status
variable, and can be retrieved there.

source = status(MPI_SOURCE) FORTRAN

tag = status(MPI_TAG)

source = status.(MPI_SOURCE); C

tag = status.MPI_TAG);

source = status.Get_source (); C++

tag = status.Get_tag ();

76 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

77 / 1

The Prime Sum Example in MPI

Let’s do the PRIME SUM problem in MPI. Here we want to add up the
prime numbers from 2 to N.

Each of P processors will simply take about 1/P of the range of numbers
to check, and add up the primes it finds locally.

When it’s done, it will send the partial result to processor 0.

So processors 1 to P send a single message (simple) and processor 0 has
to expect any of P-1 messages total.

78 / 1

Prime Sum Example: Page 1

include <stdio.h>

include <stdlib.h>

include "mpi.h"

int main (int argc, char *argv[])

{

int i, id, j, master = 0, n = 1000, n_hi, n_lo;

int p, prime, total, total_local;

MPI_Status status;

double wtime;

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &p);

MPI_Comm_rank (MPI_COMM_WORLD, &id);

79 / 1

Prime Sum Example: Page 2

n_lo = ((p - id) * 1 + (id) * n) / p + 1;

n_hi = ((p - id - 1) * 1 + (id + 1) * n) / p;

wtime = MPI_Wtime ();

total_local = 0.0;

for (i = n_lo; i <= n_hi; i++) {

prime = 1;

for (j = 2; j < i; j++) {

if (i % j == 0) {

prime = 0;

break; } }

if (prime == 1)

total_local = total_local + i;

}

wtime = MPI_Wtime () - wtime;

80 / 1

Prime Sum Example Page 3

if (id != master) {

MPI_Send (&total_local, 1, MPI_INT, master, 1,

MPI_COMM_WORLD); }

else {

total = total_local;

for (i = 1; i < p; i++) {

MPI_Recv (&total_local, 1, MPI_INT, MPI_ANY_SOURCE,

1, MPI_COMM_WORLD, &status);

total = total + total_local; } }

if (id == master) printf (" Total is %d\n", total);

MPI_Finalize ();

return 0;

}

81 / 1

Prime Sum Example: Output

n825(0): PRIME_SUM - Master process:

n825(0): Add up the prime numbers from 2 to 1000.

n825(0): Compiled on Apr 21 2008 at 14:44:07.

n825(0):

n825(0): The number of processes available is 4.

n825(0):

n825(0): P0 [2, 250] Total = 5830 Time = 0.000137

n826(2): P2 [501, 750] Total = 23147 Time = 0.000507

n826(2): P3 [751, 1000] Total = 31444 Time = 0.000708

n825(0): P1 [251, 500] Total = 15706 Time = 0.000367

n825(0):

n825(0): The total sum is 76127

All nodes terminated successfully.

82 / 1

The Prime Sum Example in MPI

Having all the processors compute partial results, which then have to be
collected together is another example of a reduction operation.

Just as with OpenMP, MPI recognizes this common operation, and has a
special function call which can replace all the sending and receiving code
we just saw.

83 / 1

Prime Sum Example Page 3 REVISED

MPI_Reduce (&total_local, &total, 1, MPI_INT, MPI_SUM,

master, MPI_COMM_WORLD);

if (id == master) printf (" Total is %d\n", total);

MPI_Finalize ();

return 0;

84 / 1

MPI Language Lesson: MPI REDUCE

MPI Reduce (local data, reduced value, count, type, operation, to,
communicator)

local data, the address of the local data;

reduced value, the address of the variable to hold the result;

count, number of data items;

type, the data type;

operation, the reduction operation MPI SUM, MPI PROD,
MPI MAX...;

to, the processor ID which collects the local data into the reduced
data;

communicator;

85 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

86 / 1

Communication Styles

We’ve seen two common styles of organizing an MPI program:

Master/Worker - process 0 is in charge

Helpful Master, also helps in work
Lazy Master, only gives order, collects results

Symmetric - no process is special (except, perhaps, for minor I/O
or data collection)

Embarrassingly Parallel, almost no communication
Coupled Parallel, the processes communicate during the
computation, not just at beginning and end

87 / 1

Communication Styles

The Master/Worker style of programming is a natural way to begin
writing parallel programs.

It can be helpful, as an organizational device, to think of one process as
being in charge.

Although the data is spread out over all the processes, the Master can
take care of collecting results and printing them, of talking to the user, of
controlling iterations and so on.

In the PRIME SUM program, we allowed process 0 to be in charge, and
it was a lazy master!

88 / 1

Communication Styles

Another advantage of the Master/Worker style of programming is that is
easier to think of data communication this way.

In the beginning, the master sends data to the workers. At the end, the
master collects data from the workers. So the MPI Send and
MPI Recv commands are very easy to comprehend.

This may not be the most efficient way to organize communication

all the processes have to wait for a turn to talk to the master

it’s easier for the master to collect data from the processes in order
of ID number, but they might be ready in any order.

89 / 1

Communication Styles

The Symmetric style of programming has a better chance of exploiting
the parallelism in a problem, once we are comfortable with the parallel
framework.

For instance, it is common to use a master/worker model to do
quadrature. It makes sense: the master is there, in part, to decide which
subinterval each worker should handle.

But each worker can figure out its subinterval without any help, just
based on its own ID.

In the heat equation, there was no special process. In fact, the solution
to the problem was never collected into one place;
it was always distributed among the processes.

90 / 1

Communication Styles

One reason that the symmetric style of programming takes some practice
is that symmetry has some strange effects.

In the symmetric style, as soon as you call MPI Send, to send some
data to another process, you are also essentially telling some other
process to send data to you!

Aside from being confusing, this sort of communication pattern can set
up the deadlock problem we saw in the heat equation.

One way to handle this is to let the odd processes send to the even ones,
and then vice versa. It is a simple way to guarantee that there is always
both a talker and a listener!

91 / 1

Communication Styles

Another feature that is common to master/worker programming is the
assignment of all the work at the beginning.

This means that there are two waves of communication, first the work
assignments, and then later, the results.

If the computation involves many tasks, and they vary in difficulty in an
irregular way, this method of task assignment might end up in a load
imbalance, with one processor getting all the hard work.

(This same issue can show up in OpenMP programs as well.)

92 / 1

Communication Styles

A dynamic scheduling scheme makes the master/worker communication
more flexible.

The master divides the computation into many tasks, but initially only
assigns part of the work, then enters a listening loop in which it waits for
a message from any worker.

The result from the worker is collected. If there is more work, the master
gives the worker the next task. Otherwise, the master tells the worker to
shut down.

When all the tasks have been completed, all the workers have been shut
down, and the master shuts down.

Our next example will include an example of
dynamic scheduling.

93 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

94 / 1

Matrix * Vector Example

We will now consider an example in which matrix multiplication is carried
out using MPI.

This is an artificial example, so don’t worry about why we’re going to
divide the task up. Concentrate on how we do it.

We are going to compute A ∗ x = b.

We start with the entire matrix A and vector X sitting on the “master
processor” (whichever processor has lucky number 0).

We need to send some of this data to other processors, they carry out
their part of the task, and processor 0 collects
the results back.

95 / 1

Matrix * Vector Example

Because one processor will be special, directing the work, this program
will be an example of the “master-workers” model.

Entry bi is the dot product of row i of the matrix with x :

bi =
N∑
j=1

Aijxj

If there were N workers, each could do one entry of b.

There are only P << N processors available, and only P-1 can be
workers, (our master is “lazy”) so we’ll do the job in batches.

96 / 1

Matrix * Vector Example

Give all the workers a copy of x .

Then send row i of A to processor i .

When processor i returns bi , send the next available row of A,

The way we are setting up this algorithm allows processors to finish their
work in any order. This approach is flexible.

In consequence, the master process doesn’t know which processor will be
sending a response. It has to keep careful track of what data comes in,
and when everything is done.

97 / 1

Matrix * Vector Example

In a master-worker model, you can really see how an MPI program, which
is supposed to be a single program running on all machines, can end up
looking more like two programs.

98 / 1

Matrix * Vector: Master Pseudocode

If I am the master:

SEND N to all workers.

SEND X to all workers.

SEND out first batch of rows.

While (any entries of B not returned)

RECEIVE message, entry ? of B, from processor ?.

If (any rows of A not sent)

SEND row ? of A to processor ?.

else

SEND "FINALIZE" message to processor ?.

end

end

FINALIZE

99 / 1

Matrix * Vector: Worker Pseudocode

else if I am a worker

RECEIVE N.

RECEIVE X.

do

RECEIVE message.

if (message is "FINALIZE") then

FINALIZE

else

it’s a row of A, so compute dot product with X.

SEND result to master.

end

end

end

100 / 1

Matrix * Vector: Using BROADCAST

In some cases, the communication that is to be carried out doesn’t
involve a pair of processors talking to each other, but rather one
processor “announcing” some information to all the others.

This is often the case when the program is written using the
master/worker model, in which case one processor, (usually the one with
ID 0) is put in charge. It takes care of interacting with the user, doing
I/O, collecting results from the other processors, handling reduction
operations and so on.

There is a “broadcast” function in MPI that makes it easy for the master
process to send information to all other processors.

The single function does both sending and receiving!

101 / 1

MPI Language Lesson: MPI Bcast

MPI Bcast (data, count, type, from, communicator)

data, the address of the data;

count, number of data items;

type, the data type;

from, the processor ID which sends the data;

communicator;

102 / 1

Matrix * Vector: An example algorithm

Compute A ∗ x = b.

a ”task” is to multiply one row of A times x ;

we can assign one task to each processor. Whenever a processor is
done, give it another task.

each processor needs a copy of x at all times; for each task, it needs
a copy of the corresponding row of A.

processor 0 will do no tasks; instead, it will pass out tasks and
accept results.

103 / 1

Matrix * Vector in FORTRAN77 (Page 1)

i f (my id == master)

numsent = 0
c
c BROADCAST X to a l l the worke r s .
c

c a l l MPI BCAST (x , c o l s , MPI DOUBLE PRECISION , master ,
& MPI COMM WORLD, i e r r)

c
c SEND row I to worker p r o c e s s I ; tag the message wi th the row number .
c

do i = 1 , min (num procs−1, rows)

do j = 1 , c o l s
b u f f e r (j) = a (i , j)

end do

c a l l MPI SEND (bu f f e r , c o l s , MPI DOUBLE PRECISION , i ,
& i , MPI COMM WORLD, i e r r)

numsent = numsent + 1

end do

104 / 1

Matrix * Vector in FORTRAN77 (Page 2)

c
c Wait to r e c e i v e a r e s u l t back from any p r o c e s s o r ;
c I f more rows to do , send the next one back to t ha t p r o c e s s o r .
c

do i = 1 , rows

c a l l MPI RECV (ans , 1 , MPI DOUBLE PRECISION ,
& MPI ANY SOURCE , MPI ANY TAG ,
& MPI COMM WORLD, s t a t u s , i e r r)

s ende r = s t a t u s (MPI SOURCE)
ans t ype = s t a t u s (MPI TAG)
b (ans t ype) = ans

i f (numsent . l t . rows) then

numsent = numsent + 1

do j = 1 , c o l s
b u f f e r (j) = a (numsent , j)

end do

c a l l MPI SEND (bu f f e r , c o l s , MPI DOUBLE PRECISION ,
& sender , numsent , MPI COMM WORLD, i e r r)

e l s e

c a l l MPI SEND (MPI BOTTOM, 0 , MPI DOUBLE PRECISION ,
& sender , 0 , MPI COMM WORLD, i e r r)

end i f

end do

105 / 1

Matrix * Vector in FORTRAN77 (Page 3)

c
c Workers r e c e i v e X, then compute dot p roduc t s u n t i l
c done message r e c e i v e d
c

e l s e

c a l l MPI BCAST (x , c o l s , MPI DOUBLE PRECISION , master ,
& MPI COMM WORLD, i e r r)

90 c o n t i n u e

c a l l MPI RECV (bu f f e r , c o l s , MPI DOUBLE PRECISION , master ,
& MPI ANY TAG , MPI COMM WORLD, s t a t u s , i e r r)

i f (s t a t u s (MPI TAG) . eq . 0) then
go to 200

end i f

row = s t a t u s (MPI TAG)

ans = 0 .0
do i = 1 , c o l s

ans = ans + b u f f e r (i) * x (i)
end do

c a l l MPI SEND (ans , 1 , MPI DOUBLE PRECISION , master ,
& row , MPI COMM WORLD, i e r r)

go to 90

200 c o n t i n u e

end i f

106 / 1

Matrix * Vector: An example algorithm

Compute A ∗ x = b.

a ”task” is to multiply one row of A times x ;

we can assign one task to each processor. Whenever a processor is
done, give it another task.

each processor needs a copy of x at all times; for each task, it needs
a copy of the corresponding row of A.

processor 0 will do no tasks; instead, it will pass out tasks and
accept results.

107 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

108 / 1

Avoiding Simple Deadlock

In the heat equation example, pairs of processes exchange data.

For instance, process 6 wants to send its H[N] to process 7 (which will
store it locally as H[0]).

At the same time, process 7 wants to send its H[1] to process 6 (which
will store it locally as H[N+1]).

So processes 0 through P-2 send H[N] to their right, while processes 1
through P-2 receive H[0] from their left.

Processes 1 through P-2 send H[0] to their left, while processes 0
through P-2 receive H[N+1] from their right.

109 / 1

Avoiding Simple Deadlock

f o r (j = 1 ; j <= j max ; j++) {
t ime new = j * t im e d e l t a ;

/* Send H[1] to ID−1. */

i f (0 < i d) {
tag = 1 ;
MPI Send (&h [1] , 1 , MPI DOUBLE , id−1, tag , MPI COMM WORLD) ;

}
/* Rece i v e H[N+1] from ID+1. */

i f (i d < p−1) {
tag = 1 ;
MPI Recv (&h [n+1] , 1 , MPI DOUBLE , i d +1, tag , MPI COMM WORLD, &s t a t u s) ;

}
/* Send H[N] to ID+1. */

i f (i d < p−1) {
tag = 2 ;
MPI Send (&h [n] , 1 , MPI DOUBLE , i d +1, tag , MPI COMM WORLD) ;

}
/* Rece i v e H[0] from ID−1. */

i f (0 < i d) {
tag = 2 ;
MPI Recv (&h [0] , 1 , MPI DOUBLE , id−1, tag , MPI COMM WORLD, &s t a t u s) ;

}

110 / 1

Avoiding Simple Deadlock

Although this is a natural way to write this exchange, it comes very close
to causing deadlock, and is sure to cause delays.

And if you increase the number of processes, the delays will get worse!

The first MPI Send command puts processes 1 through P-1 in the
”send” state. They can’t do anything until their messages have been
received.

In particular, they can’t receive messages. Luckily, process 0 doesn’t have
a neighbor to the left, so didn’t send a message,
and so can receive one.

111 / 1

Avoiding Simple Deadlock

Hence, instead of all the messages being sent simultaneously, we have the
following sequential activity:

Process 0 acknowledges message from process 1,

THEN process 1 acknowledges message from process 2.

THEN ...

THEN process P-1 acknowledges message from process P.

Each acknowledgement must wait its turn, and as the number of
processes increases, the wait grows as well.

112 / 1

Avoiding Simple Deadlock

As a programmer, you already have the tools to fix this problem. Have
the even processes send to the odd processes, and then the other way
around.

However, MPI provides a way to carry out this common exchange
operation in a way that automatically avoids deadlock, using the
MPI Sendrecv function.

The function is useful in the general case when pairs of processes have
data to exchange.

113 / 1

Avoiding Simple Deadlock

/*
Proce s s ID sends H[N] to P roce s s ID+1 which s t o r e s i t as H [0] ;

*/
i f (i d < p − 1)
{

s end t ag = 1 ;
r e c v t a g = 1 ;

MPI Sendrecv (&h [n] , 1 , MPI DOUBLE , id , s end tag ,
&h [0] , 1 , MPI DOUBLE , i d +1, r e c v t ag ,
MPI COMM WORLD, s t a t u s) ;

/*
Proce s s ID+1 sends H[1] to p r o c e s s ID which s t o r e s i t as H[N+1] ;

*/
s end t ag = 2 ;
r e c v t a g = 2 ;

MPI Sendrecv (&h [n+1] , 1 , MPI DOUBLE , i d +1, send tag ,
&h [1] , 1 , MPI DOUBLE , id , r e c v t a g ,
MPI COMM WORLD, s t a t u s) ;

}

114 / 1

MPI Language Lesson: MPI Sendrecv

MPI Sendrecv (send data, send count, send type, send to, send tag,
recv data, recv count, recv type, recv from, recv tag, communicator,
status)

MPI Sendrecv exchanges data between pairs of processes.

send data, the data to send;

send count, the number of data items to send.

send type, the type of the data sent;

send to, the process to which the data is sent.

send tag, a tag for the sent data.

recv data, the data to receive;

recv count, the number of data items to receive.

recv type, the type of the data received;

recv to, the process from which the data is received.

recv tag, a tag for the received data.

communicator, the communicator;

status, the status of the transmission.
115 / 1

Non-Blocking Message Passing

Using MPI Send and MPI Recv forces the sender and receiver to pause
until the message has been sent and received.

In some cases, you may be able to improve efficiency by letting the
sender send the message and proceed immediately to more computations.

On the receiver side, you might also want to declare the receiver ready,
but then go immediately to computation while waiting to actually receive.

The non-blocking MPI Isend and MPI Irecv allow you to do this.
However, the sending routine must not change the data in the array
being sent until the data has actually been successfully transmitted. The
receiver cannot try to use the data until
it has been received.

This is done by calling MPI Test or MPI Wait.

116 / 1

Nonblocking Send/Receive Pseudocode

if I am the boss

{

Isend (X(1:100) to worker 1, req1)

Isend (X(101:200) to worker 2, req2)

Isend (X(201:300) to worker 3, req3)

Irecv (fx1 from worker1, req4)

Irecv (fx2 from worker2, req5)

Irecv (fx3 from worker3, req6)

while (1) {

if (Test (req1) && Test (req2) &&

Test (req3) && Test (req4) &&

Test (req5) && Test (req6))

break

}

}

117 / 1

Nonblocking Send/Receive Pseudocode

else if I am a worker

{

Irecv (X, from boss, req) <-- Ready to receive

set up tables <-- work while waiting

Wait (req) <-- pause til data here.

Compute fx = fun(X) <-- X here, go to it.

Isend (fx to boss, req)

}

118 / 1

MPI Language Lesson: MPI Irecv

MPI Irecv (data, count, type, from, tag, comm, req)

data, the address of the data;

count, number of data items;

type, the data type;

from, the processor ID from which data is received;

tag, the message identifier;

comm, the communicator;

req, the request array or structure.

119 / 1

MPI Language Lesson: MPI Test

MPI Test (req, flag, status)

MPI Test reports whether the message associated with req has been
sent and received.

req, the address of the data;

flag, is returned as TRUE if the sent message was received;

status, the status array or structure.

120 / 1

MPI Language Lesson: MPI Wait

MPI Wait (req, status)

MPI Wait waits until the message associated with req has been sent
and received.

req, the address of the data;

status, the status array or structure.

121 / 1

Distributed Memory Programming With MPI

MPI: Why, Where, How?

Overview of an MPI computation

Designing an MPI computation

The Source Code

Compiling, linking, running.

Your First Six Words in MPI

How Messages Are Sent and Received

Prime Sum in C+MPI

Communication Styles

Matrix*Vector in Fortran77+MPI

Message Passing Options

Conclusion

122 / 1

Conclusion

One of MPI’s strongest features is that it is well suited to modern
clusters of 100 or 1,000 processors.

In most cases, an MPI implementation of an algorithm is quite different
from the serial implementation.

In MPI, communication is explicit, and you have to take care of it. This
means you have more control; you also have new kinds of errors and
inefficiencies to watch out for.

MPI can be difficult to use when you want tasks of different kinds to be
going on.

MPI and OpenMP can be used together; for instance,
on a cluster of multicore servers.

123 / 1

References: Web

http://www-unix.mcs.anl.gov/mpi/, Argonne Labs;

http://www.mpi-forum.org, the MPI Forum

http://www.netlib.org/mpi/, reports, tests, software;

http://www.open-mpi.org , an open source version of MPI;

http://www.nersc.gov/nusers/help/tutorials/mpi/intro, a
tutorial

http://people.sc.fsu.edu/∼burkardt/pdf/mpi course.pdf, a
tutorial

124 / 1

References: Books

Gropp, Using MPI;

Mascani, Srinavasan, Algorithm 806: SPRNG: a scalable library for
pseudorandom number generation, ACM Transactions on
Mathematical Software

Openshaw, High Performance Computing;

Pacheco, Parallel Programming with MPI ;

Petersen, Introduction to Parallel Computing;

Quinn, Parallel Programming in C with MPI and OpenMP;

Snir, MPI: The Complete Reference;

125 / 1

