
Monte Carlo Method: Sampling

John Burkardt (ARC/ICAM)
Virginia Tech

..........
Math/CS 4414:

”The Monte Carlo Method: SAMPLING”
https://people.sc.fsu.edu/∼jburkardt/presentations/

monte carlo sampling.pdf
..........

ARC: Advanced Research Computing
ICAM: Interdisciplinary Center for Applied Mathematics

02-04-06 November 2009
1 / 101

Monte Carlo Method: Sampling

Overview

Can We Compute Randomness?

MATLAB’s RAND Generator

Geometric Sampling

Sequential Sampling

Sampling for Optimization

Sampling a Nonuniform Distribution

Estimating Integrals

2 / 101

Overview

This is the second set of talks on the Monte Carlo Method (MCM).

This talk considers the Monte Carlo Method (MCM) as a way of
sampling.

We are presumably trying to analyze a very large set X, but we
cannot do so in a simple closed form.

If the set of outcomes is discrete, then perhaps it is very large. If it
is continuous, perhaps we need to carry out an integration of a
function f(x) over X, but there is no closed form for the integral or
no closed form for the function or our integration region is an
unusual shape.

3 / 101

Overview

We might be trying to integrate over a strange domain, perhaps a
region bounded by a curve in the plane, or the surface of some
shape in 3D.

We might be looking at problems in which each x represents a
configuration of a physical system. The energy of the configuration
and the temperature of the system determine the probability of
that configuration.

4 / 101

Monte Carlo Method: Sampling

Overview

Can We Compute Randomness?

MATLAB’s RAND Generator

Geometric Sampling

Sequential Sampling

Sampling for Optimization

Sampling a Nonuniform Distribution

Estimating Integrals

5 / 101

Can We Compute Randomness? (Short Answer: No)

Before we go much further, we should ask how it’s possible for the
computer to create a string of random numbers.

Of course, it isn’t possible. The computer is carrying out some well
defined procedure, one that can be predicted or repeated. What
comes out of a computer program is called a stream of
pseudorandom numbers.

We don’t care about the philosophy behind this distinction, and
we’ll go back to calling them random numbers. But even so, it’s
interesting to ask how it’s possible to create a string of
pseudorandom numbers?

6 / 101

Can We Compute Randomness? - The LCG

Just like with cards, the basic idea is simply to shuffle the numbers
you have.

Let’s assume we’re interested in positive integers. The following
formula is known as a linear congruential generator or LCG.

xk+1 = (a ∗ xk + c) mod m

What’s happening is we’re drawing the line y = a * x + c
”forever”, but using the mod function (like wrap-around in a video
game) to bring the line back into the square [0,m] x [0,m]. By
doing so, we’ve induced a map on the integers 0 through m which,
if we’ve chosen a, c and m carefully, will do an almost perfect
shuffle.

7 / 101

Can We Compute Randomness? - LCG Mapping

Consider the simple map xk+1 = (13 ∗ xk + 0) mod 31

*13 mod 31

0 -> 0 -> 0

1 -> 13 -> 13

2 -> 26 -> 26

3 -> 39 -> 8

4 -> 52 -> 21

5 -> 65 -> 3

6 -> 78 -> 16

7 -> 91 -> 29

8 -> 104 -> 11

9 -> 117 -> 24

10 -> 130 -> 6

...

8 / 101

Can We Compute Randomness? - LCG Image

1->13->14->27->10->6->16->22->7->29->5->3->8->11->19->30

->18->17->4->21->25->15->9->24->2->26->28->23->20->12->1

9 / 101

Can We Compute Randomness? - PowerMod

You might think that in order to compute the 23rd number in the
sequence, you must start with the first one and transform it,
successively, 22 times.

Our formula becomes

x23 = mod(13 ∗mod(13 ∗ ...mod(13 ∗ x1), ..., 31), 31)

but this can be packed up into

x23 = mod(1322 ∗ x1, 31)

Now if we can compute mod(1322, 31) quickly, most of our work is
done. This can be done if you have a PowerMod() function (and
if the powers get big, there’s no other way!)

MATLAB doesn’t have one built in, but it’s not too hard to write.
This way, we discover that mod(1322, 31) = 9, so

x23 = mod(9 ∗ x1, 31) = 9.

10 / 101

Can We Compute Randomness? - Integers to Reals

Our LCG gives us a method of generating what looks like a
random sequence of integers between 1 and 30.

Can we get uniform random reals in the open interval (0,1)?

(Uniform random number generators traditionally do NOT return a
value of 0.0 or 1.0, but always something inbetween.)

We could compute the next element of our LCG sequence, and
divide it by 31. The user would see a real value that jumped
around in the right way. If the user wanted another value, we
would need to remember where we were in the LCG sequence.

11 / 101

Can We Compute Randomness? - The SEED

This procedure of generating a hidden sequence of integers, and
computing the uniform real values from these integers, is very old
and very common.

The current value of the integer in the LCG is called the random
number seed. If you know the current value of the seed, you can
determine all subsequent steps of the LCG, and all outputs of the
uniform random values.

Most random number generators let you find out the current value
of the seed. They also let you reset the seed to a particular value.
This allows you to repeat a random number sequence, or to
guaranteee that you’re starting a new one.

12 / 101

Can We Compute Randomness? - A better LCG

Of course a random number generator that shuffles only 30 values
won’t be of much use to us.

A more ambitious LCG has the form

SEED =(16807 ∗ SEED + 0) mod 2147483647

R =SEED/2147483647

This is the random number generator that was used in MATLAB
until version 5. It perfectly shuffles the integers from 1 to
2,147,483,646, and then repeats itself.

13 / 101

Can We Compute Randomness? - LCG is just a start

Modern random number generators have become more
sophisticated than the LCG approach.

They need to do this partly because 2 billion random numbers is
no longer enough for some of the Monte Carlo simulations that are
carried out!

These days, instead of a single integer seed, the random number
generator you use might instead have a complicated “state”
vector, containing 100 or so integers, which it uses to vastly
increase the amount of shuffling that goes on.

However, if you understand how the LCG works, you should be
able to understand the basic techniques involved in generating
what looks like randomness out of a simple formula!

14 / 101

Monte Carlo Method: Sampling

Overview

Can We Compute Randomness?

MATLAB’s RAND Generator

Geometric Sampling

Sequential Sampling

Sampling for Optimization

Sampling a Nonuniform Distribution

Estimating Integrals

15 / 101

MATLAB’s RAND Generator - Usage

MATLAB’s main random number generator is RAND():

a = rand () <-- a scalar value;

b = rand (5, 1) <-- a column vector;

c = rand (1, 5) <-- a row vector;

d = rand (3, 4) <-- a matrix;

e = rand (5) <-- a 5x5 matrix;

16 / 101

MATLAB’s RAND Generator - Internal State

The random number generator must have an internal seed or
state so that it can generate the next random value. When you
start up the MATLAB program, this internal state is always
initialized to the same value. So every time you start up MATLAB
and ask for 5 random numbers, this is what you will get:

>> r = rand(5,1)

r =

0.8147

0.9058

0.1270

0.9134

0.6324

>>

17 / 101

MATLAB’s RAND Generator - 3 Generators

Perhaps you want your program to use a different random
sequence each time; or perhaps you want to repeat the same
random sequence several times.

You can do this, because MATLAB allows you to get or set the
internal state.

This is when you find out MATLAB has three built in random
number generators, all hiding inside the rand() function:

the LCG generator, default for versions 1 to 4;

the Marsaglia generator, default for versions 5 to 7.3;

the Mersenne twister, the default since version 7.4.

18 / 101

MATLAB’s RAND Generator - Get the State

To get the current state of any of the three generators:

s = rand (’seed’), the LCG;

s = rand (’state’), the Marsaglia generator;

s = rand (’twister’), the Mersenne twister.

The value s that is returned is an integer that describes the current
internal state.

19 / 101

MATLAB’s RAND Generator - Set the State

To choose the random number generator, and set its state to a
saved value (or to an arbitrary integer value you choose):

rand (’seed’, s), the LCG;

rand (’state’, s), the Marsaglia generator;

rand (’twister’, s), the Mersenne twister.

Once you have chosen a generator and set the seed, you can start
calling rand again.

20 / 101

MATLAB’s RAND Generator - Example

In the following example, a = e and b = f.

rand (’seed’, 12345)

a = rand ()

b = rand ()

rand (’seed’, 54321)

c = rand ()

rand (’twister’, 12345)

d = rand ()

rand (’seed’, 12345)

e = rand ()

f = rand ()

rand (’state’, 12345)

g = rand ()

21 / 101

MATLAB’s RAND Generator - Other Functions

MATLAB includes other functions useful for Monte Carlo work:

randn() returns normally distributed random values;

randperm() returns a random permutation (card shuffling);

random(’name’, x, params) random values from 23 PDF’s;

pdf(’name’, x, params) evaluates the PDF;

cdf(’name’, x, params) evaluates the CDF;

icdf(’name’, x, params) evaluates the inverse CDF;

bar(x,y) makes bar graphs of data;

hist(x,bin num) makes a histogram of scattered data.

22 / 101

Monte Carlo Method: Sampling

Overview

Can We Compute Randomness?

MATLAB’s RAND Generator

Geometric Sampling

Sequential Sampling

Sampling for Optimization

Sampling a Nonuniform Distribution

Estimating Integrals

23 / 101

Geometric Sampling - RAND samples [0,1]

We can think of the output of rand(), or any stream of uniform
random numbers, as a method of “sampling” the unit interval.

We would expect that if we plotted the points along a line, they
would be roughly evenly distributed, like a lot of paint drops
spattered from far away.

Random numbers are actually a very good way of exploring or
sampling many geometrical regions. Since we have a good source
of random numbers for the unit interval, it’s worth while to think
about how we could modify such numbers to sample these other
regions.

24 / 101

Geometric Sampling - Sampling [A,B]

As a very simple case, suppose we need uniform random numbers,
but we want them in the interval [A,B].

We can still use rand(), but now we have to shift and scale. The
numbers have to be shifted by A, and scaled by B-A:

R =rand();

S =A + (B − A) ∗ R;

or we can do this for hundreds of values at once:

R =rand(10000, 1);

S =A + (B − A) ∗ R;

25 / 101

Geometric Sampling - Sampling the Unit Square

We might need uniform random numbers in the unit square.

We could compute an x and y value separately for each point

x =rand();

y =rand();

or we can do this for hundreds of values at once:

xy =rand(2, 10000);

26 / 101

Geometric Sampling - Sampling the Unit Square

27 / 101

Geometric Sampling - The Unit Circle

Suppose we need to evenly sample points in the unit circle, center
0 and radius 1?

Without thinking very hard, we could try to choose a radius from 0
to 1, and then choose an angle between 0 and 2π using the
“stretching” method:

r =rand();

t =2 ∗ π ∗ rand();

but although this seems “random” it is not a uniform way to
sample the circle. More points in a circle have a big radius than a
small one, so choosing the radius uniformly actually is the wrong
thing to do!

28 / 101

Geometric Sampling - The Unit Circle

29 / 101

Geometric Sampling - The Unit Circle

Can we fix the problem? And can we understand why the fix
works?

The problem is that when we choose the radius to vary uniformly,
we’re saying there are the same number of points at every radius r.
But of course, there aren’t. If we double r, the area of the circle
increases by a factor of 4. So to measure area uniformly, we need
r2 to be uniformly random, in other words, we want to set r to the
square root of a uniform random number.

r =
√
rand();

t =2 ∗ π ∗ rand();

30 / 101

Geometric Sampling - The Unit Circle by Rejection

Here’s another idea that has a chance of working.

Suppose we sample the square that contains the circle, and then
only plot the points that are in the circle?

Now we’re sure to get uniformly distributed points (very good!)

We’ll also have to reject many points we compute (bad).

x = -1 + 2 * rand ();

y = -1 + 2 * rand ();

i = find (x.^2 + y.^2 < 1)

plot (x(i), y(i), ’b*’)

Notice that I was able to use 3110 points out of 4000 generated. Is
there any significance in this ratio?

31 / 101

Geometric Sampling - The Unit Circle by Rejection

32 / 101

Geometric Sampling - The Surface of the Unit Sphere

Another important shape to sample is the surface of the unit
sphere. We can do this, but we’ll have to cheat slightly and use
normal random numbers rather than uniform ones.

It turns out that if you want a point on the surface of the unit
sphere, you can just make a vector of 3 normal random numbers,
and scale by its length:

xyz = randn (3, 1000);

for j = 1 : 1000

xyz(:,j) = xyz(:,j) ./ norm (xyz(:,j));

end

scatter3 (xyz(1,:), xyz(2,:), xyz(3,:))

This will also work for higher dimensional spheres!

33 / 101

Geometric Sampling - The Surface of the Unit Sphere

34 / 101

Monte Carlo Method: Sampling

Overview

Can We Compute Randomness?

MATLAB’s RAND Generator

Geometric Sampling

Sequential Sampling

Sampling for Optimization

Sampling a Nonuniform Distribution

Estimating Integrals

35 / 101

Sequential Sampling - Repeating a Random Process

If a process that includes randomness can be repeated many times,
then we obtain a finite sequence of outcomes, r1, r2, r3, ..., rM .

To try to understand the PDF that generated these values, we can
use histograms, or compute statistical properties.

As the sequence size M increases, we naturally expect a more
accurate estimate. Can we say how fast the accuracy improves?

36 / 101

Sequential Sampling - Average and Variance

If a sequence R of random numbers is generated from a particular
PDF, then the average and variance of the sequence should
approximate the average and variance of the PDF.

The average and variance of the PDF are determined by weighted
summation (or integration in the continuous case).

The average and variance of the sequence are determined by:

ave(R) =
1

M

M∑
j=1

rj

var(R) =
1

M

M∑
j=1

(rj − ave(R))2

37 / 101

Sequential Sampling - Average Formulas

Compare averages for sequence and PDF, discrete or continuous:

ave(Msequence) =
1

M

M∑
j=1

rj

ave(discrete pdf) =
N∑
i=1

p(ri)ri

ave(continuous pdf) =

∫ b

a
p(r)r dr

The expression 1
M in the sequence formula is similar to the

probability p(). If a value rj occurs K times in the sequence, we
could replace them by the expression K

M rj , which now looks like an
estimate for the probability (PDF) of that value!

38 / 101

Sequential Sampling - Estimating the PDF Average

So given a sequence that comes from some PDF, we can compute
its average and variance.

If we think of this as an effort to estimate the actual average and
variance of the underlying PDF, we have just started to use the
Monte Carlo method.

The idea is simple:

lim
M→∞

ave(Msequence) = ave(pdf)

lim
M→∞

var(Msequence) = var(pdf)

These statements are true (in a probabilistic sense) for
“reasonable” PDF’s.

39 / 101

Sequential Sampling - Convergence of Estimates

In particular, the Law of Large Numbers states that, as M →∞,
the average of samples from a PDF will converge to the average of
the PDF.

The Central Limit Theorem tells us that, as M →∞, the error
in the estimated average will tend to be O(σ2

√
M

), where σ is the

standard deviation and σ2 is the variance of the PDF.

This means that convergence is faster if the variance is small, and
convergence is pretty slow as M increases. Roughly speaking, to
make the error go down by a factor of 10, we have to use 100
times as many points!

40 / 101

Sequential Sampling - Example Program

Let’s generate sequences from a uniform random generator.

The exact PDF average is 1/2, the exact variance is 1/12.

m = 1;

for m_log = 0 : 7

r = rand (m, 1);

r_ave = sum (r) / m;

r_var = var (r);

fprintf (1, ’ %7d %f %f\n’, m, r_ave, r_var);

m = m * 10;

end

41 / 101

Sequential Sampling - Example Results

Here is are the results for MATLAB’s rand() function:

M Ave Ave-1/2 Var Var-1/12

1 0.492922 -7.08e-03 0.000000 -8.33e-02

10 0.460068 -3.99e-02 0.072765 -1.06e-02

100 0.515335 1.53e-02 0.081740 -1.59e-03

1000 0.497364 -2.64e-03 0.083231 -1.03e-04

10000 0.499876 -1.24e-04 0.084185 8.52e-04

100000 0.500352 3.52e-04 0.083267 -6.61e-05

1000000 0.500154 1.54e-04 0.083434 1.00e-04

10000000 0.499962 -3.77e-05 0.083304 -2.94e-05

42 / 101

Sequential Sampling - Example Plot

Here we plot the error in the estimated average.
The error (blue) decreases like the function 1/

√
M (black).

(The slope is the important thing in this picture)

43 / 101

Sequential Sampling - Averages Can Be Integrals

Our example, estimating the average of the uniform random PDF,
may seem like something very contrived and useless.

But actually, when we estimated the average of the uniform
distribution, we estimated the value of the integral of a function:∫ 1

0
p(x)x dx =

∫ 1

0
x dx ≈ 1

M

M∑
j=1

xi

and we have some idea of how the error behaves for this
approximation.

These ideas, along with our ability to sample various geometric
regions, will become very useful for dealing with integration of
difficult functions over unusual domains.

44 / 101

Monte Carlo Method: Sampling

Overview

Can We Compute Randomness?

MATLAB’s RAND Generator

Geometric Sampling

Sequential Sampling

Sampling for Optimization

Sampling a Nonuniform Distribution

Estimating Integrals

45 / 101

Optimization

The optimization problem is given a region R and a scalar-valued
function f (x), and is required to find a point x∗ at which f (x)
attains its global minimum.

Unless f (x) is a very simple function, it is liable to have many local
minima. Most minimization algorithms can be “trapped” by a
local minimum. In general, the only way to guarantee that you
have found the global minimum is to look everywhere!

Obviously, we can’t do that. But, unless f (x) is a really awful
function, each minimum, including the global one, will be
surrounded by a “basin of attraction”, that is, an area with the
property that if a minimization algorithm can get this close, it will
then roll right into that minimum. So we don’t really have to look
at every point in the space, just at a lot of different regions.

46 / 101

Optimization: A Nasty Function

f u n c t i o n f = myf (x)

%% MYF e v a l u a t e s a f u n c t i o n to be min imized ove r 0 <= x <= 7 .
%

f = cos (x) . . .
+ 5 * cos (1 . 6 * x) . . .
− 2 * cos (2 . 0 * x) . . .
+ 5 * cos (4 . 5 * x) . . .
+ 7 * cos (9 . 0 * x) ;

r e t u r n
end

47 / 101

Optimization: Image of the Nasty Function

48 / 101

Optimization: Strategy for the Nasty Function

So here’s our strategy to minimize the function.

1 Initialize xbest = 0 and fbest = f (xbest);

2 We’ll hit a golf ball onto the green, (choose a random starting
point in [0,7]).

3 Let the ball roll into the cup (run a minimization algorithm,
which will find a local minimizer x∗.)

4 If the value of f (x∗) is lower than fbest, set xbest = x∗,
fbest = f (x∗).

5 If we’ve hit 500 balls, or if fbest hasn’t decreased in the last
20 tries, terminate.

49 / 101

Optimization: Why Monte Carlo?

It would be fair to ask why we bother randomizing this algorithm.
Why not just divide up the region into 500 equally spaced points;
then you will guarantee that you sample the space just as well
(even better, because you know there can’t be any large gaps).

There are other reasons for wanting to randomize the algorithm,
especially if we look at more complicated geometry or constraints,
but the point that is raised here is a fair one. However, notice that
the randomized algorithm can stop at any time; moreover, it can
continue as long as we want. There is no particular “scale” to the
randomized algorithm.

But for the evenly spaced grid, we must carry out all 500 steps in
order to complete the grid. If we want more accuracy, we have to
start all over again, and carefully choose a grid size that will avoid
repeating values we already investigated.

50 / 101

Optimization: Results for the Nasty Function

Here is the result of 50 random initial values.
Note that we actually find a local minimum at 7!

51 / 101

Optimization: Multiple Dimensions

Here is an optimization problem in 2D that shows how quickly
things get difficult. It’s called the ”Alpine Problem”, and we can
think of the Monte Carlo approach as dropping skiers off all over
these slopes. They all slide downhill and report their location.

52 / 101

Optimization: Multiple Dimensions

A protein starts as a linear string and folds into a shape with
minimal energy. The path to the minimal energy may be bumpy!
We can use the Monte Carlo approach to select many initial
foldings of the protein, some of which may then evolve into the
lowest energy state.

53 / 101

Monte Carlo Method: Sampling

Overview

Can We Compute Randomness?

MATLAB’s RAND Generator

Geometric Sampling

Sequential Sampling

Sampling for Optimization

Sampling a Nonuniform Distribution

Estimating Integrals

54 / 101

Nonuniform Distributions - Normal Distribution

MATLAB has a built in generator for normal random variables.
These values will have zero mean, and unit variance:

R = randn();

and, as with rand(), you can create row and column vectors and
arrays as well. Instead of a seed, randn() has a ”state”. If you
want to restart a sequence, you save the state and then reset it:

saved state =randn(‘state‘);

R1 =randn();

randn(‘state‘, saved state);

R2 =randn();

R1 and R2 will be the same.

55 / 101

Nonuniform Distributions - Normal Distribution

It is always useful to have alternate ways of doing something.
Recall that we said that the sum of uniform random variables tends
to behave like a normal random variable.

We don’t know how the normal values are computed, so maybe it
would be faster to compute 10 uniforms and add them instead.

This is a fine idea, and in fact there are programs that use this
approximation.

56 / 101

Nonuniform Distributions - Normal Distribution

However, it takes a little tuning to get this right. Let’s assume we
are going to use our trick to try to approximate a normal random
variable with mean 0 and variance 1.

Can you see why our scheme is not going to have the right mean?
Can you see how to fix it?

Our suggested approximation to a normal random number is now

S = sum(rand(10, 1))− 5;

We’ve gotten the mean right, but is the variance going to be OK?
(As it turns out, yes...)

Now compare the timings to compute 100,000 normal values using
randn() and using our approximation.

57 / 101

Nonuniform Distributions - Normal Distribution

n = 1;

for logn = 0 : 6

tic;

r1 = randn (n, 1);

t1 = toc;

tic;

r2 = sum (rand (n, 10), 2);

t2 = toc;

fprintf (1, ’ %10d %f %f\n’, n, t1, t2);

n = n * 10;

end

58 / 101

Nonuniform Distributions - Normal Distribution

The results suggest that RANDN() is VERY efficient!
If RANDN takes as much time as RAND, that would explain our
factor of 10.

N RANDN() Sum RAND

1 0.000043 0.000621

10 0.000037 0.000056

100 0.000070 0.000450

1000 0.000120 0.001624

10000 0.001108 0.017840

100000 0.011241 0.151950

1000000 0.068690 1.021350

59 / 101

Nonuniform Distributions - Normal Distribution

n = 1;

for logn = 0 : 6

r = zeros(n,1); <-- Set aside space in advance!

tic;

for i = 1 : n

r(i) = randn (1, 1);

end

t1 = toc;

tic

for i = 1 : n

r(i) = sum (rand (1, 10), 2);

end

t2 = toc;

fprintf (1, ’ %10d %f %f\n’, n, t1, t2);

n = n * 10;

end 60 / 101

Nonuniform Distributions - Normal Distribution

Here we can make 2 conclusions:
Avoid loops if you can do it all at once, and...
RANDN() is only about twice as efficient as our scheme now!

N RANDN() Sum RAND

1 0.000048 0.000025

10 0.000067 0.000085

100 0.000395 0.000676

1000 0.004002 0.006763

10000 0.038408 0.067445

100000 0.373558 0.672546

1000000 3.735183 6.716099

61 / 101

Nonuniform Distributions

Our approximate normal is not as efficient as RANDN; It also has
the flaw that it can never generate a value less than -10 or more
than +10, although the true normal distribution can generate any
finite value.

Let’s go ahead and compare the histogram of 100,000 values to
the true PDF:

62 / 101

Nonuniform Distributions

What do we do if we want to generate a sequence of samples from
some other probability density function?

Suppose we can compute (or estimate) the CDF; remember that
cdf(x) is the probability that a randomly chosen value is less than
or equal to x.

Now suppose that we can compute the inverse function of the
CDF, or ICDF. Given a probability p, then icdf(p) returns a value
x so that cdf(x) = p.

So the ICDF function is given a number between 0 and 1 (the
probability) and returns an element x of the set, and it does this
with the right probability density.

63 / 101

Nonuniform Distributions: Uniform ICDF

The uniform ICDF is simply x = icdf(p) = p;

64 / 101

Nonuniform Distributions: Normal ICDF

The normal ICDF is x = icdf(p) =
√

2 erf−1(2p − 1);

65 / 101

Nonuniform Distributions: Exponential ICDF

The exponential ICDF is x = icdf(p) = − log(1− p);
icdf(p)→∞ as p → 1.

66 / 101

Nonuniform Distributions: Generating a Sequence

If we have the ICDF, then we can easily generate a sequence of
sample values:

Here, we generate N sample values of the exponential PDF.

rand (’state’, 12345); <-- Set the seed;

u = rand (n, 1); <-- Column vector;

e = - log (1 - u); <-- Apply ICDF.

67 / 101

Nonuniform Distributions: Generating a Sequence

Compare the histogram of 100,000 values to the PDF:

68 / 101

Nonuniform Distributions: No ICDF?

Suppose we don’t have an inverse CDF, only have the CDF.

To generate a sequence, I pick a random number R and now I need
to know the value of X so that

cdf(X) = R.

If I had the ICDF, I could just write:

X = icdf(R)

Instead, I have to try to solve a nonlinear equation! I know that X
is in the interval [A,B], and CDF is monotone. So I can try to use
the bisection method to solve the equation

F (X) = cdf(X)− R = 0

This is painful, but it will work.
69 / 101

Nonuniform Distributions: Solve by Bisection

a = 0.0; fa = betacdf (a, 0.45, 0.5);

b = 1.0; fb = betacdf (b, 0.45, 0.5);

while (1)

c = 0.5 * (a + b);

fc = betacdf (c, 0.45, 0.5);

if (abs (fc - 0.7) < 0.00001)

break

elseif (fc - 0.7 < 0.0)

a = c;

else

b = c;

end

end

70 / 101

Nonuniform Distributions: Bisection Output

F(0.000000) = 0.000000
F(1.000000) = 1.000000
F(0.500000) = 0.530387
F(0.750000) = 0.688904
F(0.875000) = 0.785831
F(0.812500) = 0.734265
F(0.781250) = 0.711021
F(0.765625) = 0.699840
F(0.769531) = 0.702611
F(0.767578) = 0.701224
F(0.766602) = 0.700532
F(0.765869) = 0.700013
F(0.765747) = 0.699927
F(0.765808) = 0.699970
F(0.765839) = 0.699991

71 / 101

Nonuniform Distributions: Bisection Plot

Seek X so that BetaCDF(X,0.45,0.5) = 0.7

72 / 101

Monte Carlo Method: Sampling

Overview

Can We Compute Randomness?

MATLAB’s RAND Generator

Geometric Sampling

Sequential Sampling

Sampling for Optimization

Sampling a Nonuniform Distribution

Estimating Integrals

73 / 101

Integrals: The Riemann Sum

The very definition of the integral invokes a kind of sampling.

A Riemann sum divides the interval [a,b] into subintervals, and
approximates the integral by taking an arbitrary point from each
subinterval multiplying by the subinterval length, and summing:∫ b

a
f (x) dx ≈

N∑
i=1

f (xi) ∗ (bi − ai)

The Riemann integral is defined as the limit of all possible such
Riemann sums, as the subinterval width goes to zero.

74 / 101

Integrals: The Riemann Sum

75 / 101

Integrals: Monte Carlo Approximation

The Monte Carlo approach to this problem can be written as∫ b

a
f (x) dx ≈

N∑
i=1

f (xi)
b − a

N

where the xi ’s are chosen uniformly at random from [a,b].

This can be thought of as a “sloppy” Riemann sum
or as an attempt to invoke the mean value theorem for integrals:∫ b

a
f (x) dx = (b − a) ∗ f (x) ≈ (b − a) ∗ 1

N

N∑
i=1

f (xi)

Here, we regard the sum of values of f (x) as an estimate of f (x),
the mean value of f .

76 / 101

Integrals: An Integral over [0,1]

Here’s an example integrand for the unit interval:

f (x) =sech2(10.0 ∗ (x − 0.2))

+sech2(100.0 ∗ (x − 0.4))

+sech2(1000.0 ∗ (x − 0.6))

It’s hard to know from this formula what to expect!

77 / 101

Integrals: An Integral over [0,1]

From the plot, it should be clear that this is actually a difficult
function to integrate.

78 / 101

Integrals: An Integral over [0,1]

If we apply the Monte Carlo Method, we get “decent”
convergence:

1 0.096400 1.1e-01

10 0.179749 3.1e-02

100 0.278890 6.8e-02

1000 0.221436 1.0e-02

10000 0.210584 2.1e-04

100000 0.212075 1.2e-03

1000000 0.211172 3.6e-04

10000000 0.210721 8.1e-05

Exact 0.21080273631018169851...

79 / 101

Integrals: An Integral over [0,1]

Moreover, we see the same fairly regular decrease in error with the
increasing number of points, which should tend to a slope of −1

2
on a log-log plot.

80 / 101

Integrals: An Integral over [2,7]

Let’s take our optimization function and integrate it over [2,7].

f (x) = cos(x)

+5∗ cos(1.6 ∗ x)

−2∗ cos(2.0 ∗ x)

+5∗ cos(4.5 ∗ x)

+7∗ cos(9.0 ∗ x);

We know this is a wiggly function. We just want to practice
shifting the interval from [0,1] to [A,B].

X = 2.0 + (7.0 - 2.0) * rand (n, 1);

81 / 101

Integrals: An Integral over [2,7]

You should recognize this plot.

82 / 101

Integrals: An Integral over [2,7]

If we apply the Monte Carlo Method, we get “decent”
convergence:

1 21.486936 2.6e+01

10 -21.701206 1.7e+01

100 -2.472846 2.0e+00

1000 -4.911594 3.8e-01

10000 -4.253230 2.7e-01

100000 -4.424016 1.0e-01

1000000 -4.509781 1.7e-02

10000000 -4.529185 1.6e-03

Exact -4.527569...

83 / 101

Integrals: An Integral over [2,7]

Again, we see the approximation to a slope of −1
2 on a log-log plot.

84 / 101

Integrals: Convergence Depends on Variance

The two functions both seem “hard” to integrate, but for one, we
got an error 20 times smaller. Why?

The error depends in part on the variance of the function.

To get a feeling for the variance of these two functions, note:

*The first function has an integral of about 0.2 over the interval
[0,1], then its average value if 0.2. The function ranges between 0
and 1, so the pointwise variance is never more than 0.64.

*The second function has an integral of about -4.5 over an interval
of length 5, for an average value of about -1. Its values vary from
-14 to +16 or so, so the pointwise variance can be as much as 200.

85 / 101

Integrals: MATLAB commands for 2D

In order to define functions of two variables and plot them, it
will be useful to take advantage of some MATLAB commands:

[X,Y]=meshgrid(x,y) takes x and y vectors and makes a
table;

surf(X,Y,Z) makes a surface plot of Z(X,Y) (data must be
matrices);

i = find (condition): indices that satisfy a condition

logical expressions are numbers, equal to 0 (false) or true (1);
We can use them in arithmetic!

86 / 101

Integrals: An Integral over a Square

Since we know how to sample a square, let’s try to use the
Monte Carlo method to compute the integral of

f (x , y) = |x2 + y2 − 0.75|

over the square [-1,+1]x[-1,+1].
Because of the absolute value function, f(x) is not differentiable. It
would be tricky to try to work out the integral, even though this is
a pretty simple function.
Now we need to use pairs of random numbers to go from [0,1] to
[-1,+1]x[-1,+1]:

X = -1.0 + 2.0 * rand (n, 1);

Y = -1.0 + 2.0 * rand (n, 1);

87 / 101

Integrals: An Integral over a Square

How do we plot a function f(x,y)?

x = -1.0 : 0.01 : +1.0;

y = -1.0 : 0.01 : +1.0;

[X, Y] = meshgrid (x, y);

Z = abs (X .* X + Y .* Y - 0.75);

surf (X, Y, Z, ...

’FaceColor’, ’Interp’, ’EdgeColor’, ’Interp’)

xlabel (’X’);

ylabel (’Y’);

zlabel (’Z=F(X,Y)’)

title (’Z = | X^2 + Y^2 - 3/4|’)

88 / 101

Integrals: An Integral over a Square

89 / 101

Integrals: An Integral over a Square

How do we program the Monte Carlo Method for a square?

exact = 1.433812586520645;

area = 4.0;

n = 1;

for logn = 0 : 7

x = -1.0 + 2.0 * rand (n, 1);

y = -1.0 + 2.0 * rand (n, 1);

result = area * sum (abs (x.^2 + y.^2 - 0.75)) / n;

fprintf (1, ’ %8d %f %e\n’, ...

n, result, abs (result - exact));

n = n * 10;

end

90 / 101

Integrals: An Integral over a Square

Our convergence:

1 0.443790 9.900230e-01

10 1.547768 1.139549e-01

100 1.419920 1.389309e-02

1000 1.464754 3.094170e-02

10000 1.430735 3.077735e-03

100000 1.428808 5.004836e-03

1000000 1.432345 1.467762e-03

10000000 1.433867 5.394032e-05

Exact 1.433812586520645

91 / 101

Integrals: An Integral over a Circle

Let’s do an integral in the circle; instead of working with the
efficient method that uses all the random numbers, we’ll do the
rejection method, to show how that works.
Our integrand will be

f (x , y) = x2

and we will integrate over the circle of radius 3 centered at (0,0).

For this problem, the function is smooth, but the region is not a
rectangle. It’s not hard to work out the exact answer using polar
coordinates, because the circle is special. But the Monte Carlo
approach with rejection would handle an ellipse, or a region shaped
like Mickey Mouse, just as easily.

92 / 101

Integrals: An Integral over a Circle

Now we need to use pairs of random numbers to go from [0,1]
to [-3,+3]x[-3,+3] and then reject those that lie outside the circle.

X = -3.0 + 6.0 * rand (n, 1);

Y = -3.0 + 6.0 * rand (n, 1);

i = find (X .* X + Y .* Y <= 9);

93 / 101

Integrals: An Integral over a Square

How do we plot a function f(x,y) on a circle? SURF wants a
rectangle of data. We zero out the function outside the circle.

r = 3;

x = -r : 0.01 : +r;

y = -r : 0.01 : +r;

[X, Y] = meshgrid (x, y);

Z = (X .* X + Y .* Y <= r * r) .* (X .* X);

surf (X, Y, Z, ...

’FaceColor’, ’Interp’, ’EdgeColor’, ’Interp’)

xlabel (’X’);

ylabel (’Y’);

zlabel (’Z=F(X,Y)’)

title (’Z = X^2’)

94 / 101

Integrals: An Integral over a Circle

95 / 101

Integrals: An Integral over a Circle

exact = 63.617251235193313079;

area = pi * r * r;

n = 1;

for logn = 0 : 7

x = - r + 2 * r * rand (n, 1);

y = - r + 2 * r * rand (n, 1);

i = find (x .* x + y .* y <= r * r);

n2 = length (i);

result = area * sum (x(i) .* x(i)) / n2;

fprintf (1, ’ %8d %f %e\n’, ...

n2, result, abs (result - exact));

n = n * 10;

end

96 / 101

Integrals: An Integral over a Circle

If we apply the Monte Carlo Method, we get “decent”
convergence:

1 74.493641 1.087639e+01

9 52.240562 1.137669e+01

78 62.942561 6.746898e-01

784 61.244910 2.372341e+00

7816 62.653662 9.635895e-01

78714 63.405031 2.122204e-01

785403 63.669047 5.179565e-02

7853972 63.624209 6.958217e-03

Exact 63.617251235193313079

97 / 101

Conclusions

We’ve concentrated on the Monte Carlo method as a means of
sampling. This gave us an alternate means of solving integration
problems. Of course, there are already other methods for dealing
with integration problems.

We will next consider a Monte Carlo application in which no other
method is available, the field of simulation.

We will consider the common features of tossing a coin many
times, watching a drop of ink spread into water, and observing a
drunk stagger back and forth along Main Street!

Using ideas from the Monte Carlo method, we will be able to pose
and answer questions about these random processes.

98 / 101

Conclusions: Traffic Simulation

99 / 101

Conclusions: Random Walks

100 / 101

Integrals: Disease Spread

101 / 101

