
Clustering Images

John Burkardt (ARC/ICAM)
Virginia Tech

..........
Math/CS 4414:

“Clustering Images”
http://people.sc.fsu.edu/∼jburkardt/presentations/

clustering images.pdf
..........

ARC: Advanced Research Computing
ICAM: Interdisciplinary Center for Applied Mathematics

23 September 2009

Burkardt Clustering Images

Clustering Images

Chain Letter Clustering Results

What’s in an Image File?

Working with an Image

Clustering Colors

Clustering Functions

Burkardt Clustering Images

Chain Letter Clustering Results

I collected the estimates for the distances between pairs of chain
letters into a single distance matrix. Some rows were estimated by
more than one person, and row A was very popular.

As I was entering the data, more was submitted, so I decided that I
needed to set this calculation up in a way that would be easy to
correct and modify...you guess it, more MATLAB!

I needed a dist matrix, and a count vector which would keep track
of how many people estimated the same row, so I could average.

I thought it would also be good to average the matrix and its
transpose, so that it was symmetric.

Burkardt Clustering Images

Chain Letter Clustering Results: Accumulating

a=1;b=2;c=3;d=4;e=5;f=6;g=7;h=8;i=9;j=10;k=11;

dist = zeros(11,11);

count = zeros(11,1);

count(g) = count(g) + 1;

dist(g,1:11) = dist(g,1:11) ...

+ [12, 18, 14, 12, 16, 11, 0, 16, 11, 9, 12];

count(a) = count(a) + 1;

dist(a,1:11) = dist(a,1:11) ...

+ [0, 9, 9, 10, 9, 7, 16, 9, 14, 13, 11];

count(c) = count(c) + 1;

dist(c,1:11) = dist(c,1:11) ...

+ [12, 9, 0, 11, 9, 7, 17, 11, 14, 15, 11];

(and so on)

Burkardt Clustering Images

Chain Letter Clustering Results: Cleaning up

% Average the rows

for row = a : k

if (0 < count(row))

dist(row,a:k) = dist(row,a:k) / count(row);

end

end

% Make the matrix symmetric

% (I could have done this with one command. What is it?)

for row = a : k

for col = a : row - 1

rc = dist(row,col);

cr = dist(col,row);

dist(row,col) = (rc + cr) / 2.0;

dist(col,row) = (rc + cr) / 2.0;

end

end Burkardt Clustering Images

Chain Letter Clustering Results: The Table

A B C D E F G H I J K

A 0 9 9 9 7 7 13 10 14 12 9

B 9 0 9 7 10 6 18 11 15 12 8

C 9 9 0 8 9 7 15 11 14 14 9

D 9 7 8 0 8 7 14 9 14 13 0

E 7 10 9 8 0 9 16 11 13 13 8

F 7 6 7 7 9 0 14 11 12 12 8

G 13 18 15 14 16 14 0 16 12 11 13

H 10 11 11 9 11 11 16 0 15 16 9

I 14 15 14 14 13 12 12 15 0 9 12

J 12 12 14 13 13 12 11 16 9 0 11

K 9 8 9 0 8 8 13 9 12 11 0

Burkardt Clustering Images

Chain Letter Clustering Results: Observations

By chance, the chain letters are grouped in such a way that the
distance matrix suggest that G, H, I and J are “far away” from the
rest of the letters.

If you are patient, you will also notice that D and K are apparently
0 units apart, and, correspondingly, their rows are almost identical.

But to get any more information, we need to use MATLAB:

dv = pdist (dist);

dl = linkage (dv, ’single’);

dendrogram (dl)

Burkardt Clustering Images

Chain Letter Clustering Results: Dendrogram

Burkardt Clustering Images

Clustering Images

Chain Letter Clustering Results

What’s in an Image File?

Working with an Image

Clustering Colors

Clustering Functions

Burkardt Clustering Images

What’s in an Image File?

It’s easy to look at a JPG file, but it’s hard to figure out exactly
what is going on and how the bits in the file turn into a picture.

A simple model of a digital image would assume that it mostly
contains information about the color of each pixel.

It must also contain the height and width of the image in pixels.

We don’t know the order of the data (left to right, probably, but is
it top to bottom or the other way?)

In the simplest case, color is assumed to be a triple (R,G,B), with
each value an unsigned integer between 0 and 255. (0,0,0) is
black, (255,255,255) is white.

This means that we have, theoretically 256x256x256 = 16 million
colors available.

Burkardt Clustering Images

What’s in an Image File? - Dealing With Color...or Not.

Color is a complicated subject for many reasons. We can make our
life simpler by skipping color for now.

Luckily, there are many “black and white” images available.
Actually, these are gray scale images. The color of each pixel can
be described by a single number, which again we can assume goes
from 0 to 255. Now we just have 256 colors to worry about, and
more importantly, they are linearly ordered, and easy to
understand!

A gray scale image can be stored as a color image. To be sure we
really just have one color value, we can look for graphics files in
the PGM format (“Portable Gray Map”).

PGM files come in two formats: binary and ASCII.

Burkardt Clustering Images

What’s in an Image File? - What’s in an ASCII PGM File?

An example we will work with is called gator.pgm. The image is
633 rows by 621 columns, a total of 393,093 pixels.

The ASCII version of this file takes 1,833,666 bytes. (Between 4
and 5 times the number of pixels. Can you explain why?)

We can print out the beginning of the file:

P2

gator.ascii.pgm created by PGMA_IO::PGMA_WRITE.

633 621

255

200 200 198 198 198 198 200 200 197 197 196 196

196 197 198 198 195 183 216 225 216 222 212 208

210 213 217 218 217 216 216 216 212 214 214 212

209 209 213 218 215 213 211 210 210 211 213 214

Burkardt Clustering Images

What’s in an Image File? - What’s in a Binary PGM File?

The binary version of the file, gator.pgm takes 393,131 bytes.

That’s almost exactly the number of pixels. Since it’s so close to
“perfection”, where did those extra 38 bytes come from?

You can peek into the beginning of binary file. It actually begins
with a very short bit of ASCII text. If we count these characters,
including carriage returns, we get:

3 "P5(cr)"

23 "#Created with The GIMP(cr)"

8 "633 621(cr)"

4 "255(cr)"

--

38 bytes

Burkardt Clustering Images

What’s in an Image File?: Junior the Alligator

Here is the black and white picture we will be looking at:

Burkardt Clustering Images

Clustering Images

Chain Letter Clustering Results

What’s in an Image File?

Working with an Image

Clustering Colors

Clustering Functions

Burkardt Clustering Images

Working with an Image - Cracking the Shell

I hope I have convinced you that an image file is, in some sense,
just a big “paint by numbers” table.

Now we’re going to use MATLAB to crack open the file and look
at the numbers.

MATLAB has a function called imread() which reads a graphics
file, interprets it based on its file extension, and, if it’s a PGM file,
returns a single matrix of the gray scale values, that is, numbers
between 0 and 255.

a = imread (’gator.pgm’);

Burkardt Clustering Images

Working with an Image - Cracking the Shell

Now a is just a MATLAB matrix. And one thing we can do with
a matrix is ask for its dimensions:

size (a)

ans =

621 633

So you see that MATLAB has reversed the storage (621 rows by
633 columns) that was used by the PGM file.

Burkardt Clustering Images

Working with an Image - Cracking the Shell

We should be able to have MATLAB display the image using the
image() command, but when we do so, something horrible
happens.

Burkardt Clustering Images

Working with an Image - Gray Colormap

The problem is that MATLAB has a default color map, which
doesn’t automatically change just because you read in a gray scale
image. Let’s notify MATLAB that for a while, we want to use
grays only:

colormap (’gray’)

image (a)

If you later want to do other plotting tasks, you might want to
undo this colormap by the command colormap (’default’).

Burkardt Clustering Images

Working with an Image - The Gray Scale is Too Bright

Well, who turned on the bright lights here?

Burkardt Clustering Images

Working with an Image - ”Turn Down” the Data

And now the problem is that MATLAB’s gray scale is too bright.
We can’t change MATLAB, so we have to change our data, by
darkening it.

Here, I’m essentially using the trick that a number between 0 and
1 gets smaller when you square it, even smaller if you cube it.

b = double (a) / 255; <-- Make B between 0 and 1.

b = b^3; <-- The cubes are "darker".

c = uint8 (255 * b); <-- Put darker grays into "c".

image (c) <-- Any better?

We have just done some “image processing”!

Burkardt Clustering Images

Working with an Image - A Picture We Can Recognize

Burkardt Clustering Images

Working with an Image - Messing Up the Data

Now I’m confused that the PGM data was 633 by 621, but the
MATLAB array is 621 by 633. Does a column in MATLAB mean a
vertical or horizontal strip of the picture?

Let’s make a copy of c, change 6 “columns” to 0, and then display
the new image.

d = c;

d(1:621,300:305) = 0;

image (d)

Burkardt Clustering Images

Working with an Image - Messing up the Data

Now I have some confidence that array columns are picture
columns!

Burkardt Clustering Images

Working with an Image - Image Analysis

Now let’s consider whether this picture is suitable for clustering.

The first question we can ask is, how are the grays used in the
picture? The easiest way to answer that is to take all the pixels as
a single vector, and create a histogram.

We have to reshape() the c matrix into a vector to do this:

d = reshape (c, 621*633, 1); <-- D is a vector.

hist (d, 256); <-- Using 256 bins.

Burkardt Clustering Images

Clustering Images

Chain Letter Clustering Results

What’s in an Image File?

Working with an Image

Clustering Colors

Clustering Functions

Burkardt Clustering Images

Clustering Colors: Color Usage Histogram

Burkardt Clustering Images

Clustering Colors - Image Analysis

The histogram suggests, by its 3 big peaks, that there is a lot of
information in the picture that is associated with three colors.

It almost seems worth trying to use just 3 colors for the image.
This would be the next best thing to a true black and white image!

It’s easy to pick off 3 good colors from the histogram, but then we
have to somehow tell all the pixels which color they should change
to.

It’s very tempting to have the K-Means program do this for us!

Burkardt Clustering Images

Clustering Colors - Using K-Means

Suppose we asked K-Means to cluster the data into 3 groups.
We’ll need to use the vector d which contains the grays in one long
vector. Actually, we’ll also have to make a copy of d that is of type
double so we can do arithmetic on it!

dim = 1;

n = 621 * 633;

k = 3;

e = double (d);

[c, ptoc] = km (dim, n, e, k);

Burkardt Clustering Images

Clustering Colors - Using K-Means

Once we have the cluster information, we just want to replace
each pixel by the color of its cluster center. This is amazingly
simple:

f = c(ptoc);

f = uint8 (f);

f = reshape (f, 621, 633);

image (f);

Burkardt Clustering Images

Clustering Colors - KM is TOO SLOW

Unfortunately, when I tried this, my km.m code ran forever. It
works OK for small problems only. I did not optimize it. Luckily,
MATLAB includes a program called kmeans which does the job.
The usage is a little different:

k = 3;

e = double (d);

[ptoc, c] = kmeans (e, k);

Burkardt Clustering Images

Clustering Colors: Using Only 3 Grays

Burkardt Clustering Images

Clustering Colors - Using K-Means

Suppose we asked K-Means to cluster the data into 3 groups.
We’ll need to use the vector d which contains the grays in one long
vector. Actually, we’ll also have to make a copy of d that is of type
double so we can do arithmetic on it!

dim = 1;

n = 621 * 633;

k = 3;

e = double (d);

[c, ptoc] = km (dim, n, e, k);

Burkardt Clustering Images

Clustering Colors - Saving the Image

The MATLAB Image Processing Toolbox includes a function
imwrite(), which can take image data and save it to a file.

The file extension will tell MATLAB what kind of image file we
want to write, including bmp, jpg, pgm, png, tiff.

imwrite (e, ’gator_3grays.pgm’);

Burkardt Clustering Images

Clustering Colors - Looking Back

Today, we’ve gone through the steps necessary to work with an
image.

We worked with a gray-scale image, to try to avoid some of the
complications associated with color (so believe me, it could have
been worse!).

In our example, we were able to take a 256 “color” picture and,
using clustering, find 3 good colors (cluster centers) and a way to
replace each pixel color by one of the 3 colors (cluster assignment),
so that the processed image still was recognizable.

Along the way, I hope I showed you some of the surprises you can
run into, and ways of trying to deal with them.

Burkardt Clustering Images

Clustering Images

Chain Letter Clustering Results

What’s in an Image File?

Working with an Image

Clustering Colors

Clustering Functions

Burkardt Clustering Images

Clustering Functions

When we compare a random clustering to a clustering produced by
K-Means, we can tell that the second clustering is “better”. But a
computer program needs a numerical formula by which to
determine if one clustering is better. For K-Means clustering, this
numerical formula involves the cluster variance that we talked
about last time.

It’s possible to choose other formulas that evaluate a clustering. In
Chapter 11, two functions are suggested, called D and R. Let us
investigate the definitions and uses of these other functions.

Burkardt Clustering Images

Clustering Functions - Distance to the Nearest Center

Each point pi in a clustering wants to be as close as possible to the
center of some cluster. From pi’s point of view, we should try to
minimize the function di:

di = min
1<=j<=k

‖pi − cj‖

Of course, every point wants us to minimize its distance, so the
function we would end up trying to minimize would be

D1 =
n∑

i=1

di

or, perhaps

D2 =
n∑

i=1

di
2

Burkardt Clustering Images

Clustering Functions - Distance to the Furthest Point

If we look at clustering from the cluster center’s point of view, it
wants all of the points it contains to be close to it. One way to
measure that for a particular cluster cj is to compute the cluster
radius, that is, the distance to the furthest point in the cluster:

rj = max
p∈cj
‖pi − cj‖

Now every cluster center will want to minimize this quantity, so to
do a good job of clustering, we would try to minimize

R1 =
k∑

j=1

rj

or, perhaps

R2 =
k∑

j=1

rj
2

Burkardt Clustering Images

Clustering Functions - Distance to the Furthest Point

The variance and the functions D1, D2, R1, and R2 are all
reasonable functions to work with. In general, the optimal
clustering for each function will be different, and it is up to the
user to decide which function to use.

If the K-Means algorithm is used for clustering, then the variance
is automatically the function that is minimized.

If a different clustering function is used, then the user must work
with some kind of minimization program, such as MATLAB’s
fminunc(), to try to minimize the function, and thus produce a
clustering.

Burkardt Clustering Images

Clustering Functions - Using FMINUNC

MATLAB’s fminunc() can seek a number or vector x which
minimizes a function f(x).

The user supplies a starting estimate x0 and the name of an M-file
that evaluates the function to be minimized.

For the clustering problem, our input data will be the location of
the centers, which we might call c. So calling fminunc() looks
easy:

c0 = rand(dim,k); <-- K centers, DIM dimensional.

c = fminunc (@f, c0);

Burkardt Clustering Images

Clustering Functions - Using FMINUNC

The tricky part involves writing the function f.m. Somehow, f
needs to know the value of our data points p. Let’s assume we can
fix that somehow. Then f might look like this:

function d1 = f (c)

k = length (c);

[dim, n] = size (p);

ptoc = kmeans_update_clusters (dim, n, p, k, c);

d1 = 0.0;

for i = 1 : n

j = ptoc(i);

d1 = d1 + norm (p(1:dim,i) - c(1:dim,j));

end

return

end

Burkardt Clustering Images

Clustering Functions - Using FMINUNC

We said that f needs to know the value of our data points p. It
can’t read them from a file every time f is called (well it could, but
that would take forever). Instead, we can do some slightly
dangerous programming and use global variables. This allows two
MATLAB functions to share a variable without having to pass it
explicitly. So our main program might look like this:

global p

p = rand(3,100); <-- 100 points, 3 dimensional

c0 = rand(3,5); <-- K centers, 3 dimensional.

c = fminunc (@f, c0);

and f would be modified to:

function d1 = f (c)

global p

Burkardt Clustering Images

Clustering Functions - Using FMINUNC

On Friday we may return to these issues of using fminunc to do
our clustering by choosing a particular clustering function.

In particular, we can actually do a K-Means clustering by calling
fminunc, if we come up with the correct clustering function.

Burkardt Clustering Images

