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Volumes in High Dimensions

Effect of Shrinking

Consider A ⊂ Rd measurable, ε ∈ (0, 1), (1− ε)A := {(1− ε)x : x ∈ A}; let

vol(A) = vold (A) :=

∫
A

χA(x)dx (volume of A).

Then
vol
(
(1− ε)A

)
= (1− ε)d vol(A). (2.1)

Argument: this holds for any d-dimensional cube (induction on d); cover A by cubes of smaller
and smaller size; additivity of the volumes of the cubes + each cube shrinks by factor (1− ε)d ,
measurability of A (see Lecture II, page 6) (2.1).

Hence
vol
(
(1− ε)A

)
vol(A)

= (1− ε)d ≤ e−εd , (2.2)

i.e., such fractions decay exponentially when d increases.
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Volumes in High Dimensions

The Euclidean Ball/Sphere
Define

Bd := {x ∈ Rd : ‖x‖2 ≤ 1} Sd := {x ∈ Rd : ‖x‖2 = 1} = ∂Bd .

We are interested in the quantities

V (d) := vold (Bd ), A(d) := vold−1(Sd ).

Cartesian Coordinates:

V (d) =

x1=1∫
x1=−1

x2=
√

1−x2
1∫

x2=−
√

1−x2
1

· · ·

xd =
√

1−x2
1−···−x2

d−1∫
xd =−

√
1−x2

1−···−x2
d−1

dxd dxd−1 · · · dx2dx1,

or, in radial coordinates:

V (d) =

∫
Sd

1∫
r=0

rd−1drdA =

∫
Sd

dA

1∫
r=0

rd−1dr =
A(d)

d
.

How to compute A(d)?
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Volumes in High Dimensions

The Euclidean Ball/Sphere
Compute instead

G(d) :=

∫
Rd

e−‖x‖
2
2 dx =

d∏
j=1

∫
R

e−x2
j dxj = π

d
2 (since

∫
R

e−x2
dx =

√
π). (2.3)

Calculate G(d) using polar coordinates (e−‖x‖
2
2 = e−r3

for x in the sphere with radius r )

G(d) =

∫
Sd

dA

∞∫
0

e−r2
rd−1dr = A(d)

∞∫
0

e−r2
rd−1dr = A(d)

1
2

Γ
(d

2

)
. (2.4)

where Γ(x) :=
∞∫
0

e−zzx−1dx is the Gamma-function (generalizing the factorial Γ(n + 1) = n!).

(2.3), (2.4)⇒
A(d) = 2π

d
2 Γ
(d

2

)−1
 (2.5)

Remark 1

V (d) =
2
d
π

d
2 Γ
(d

2

)−1
, A(d) = 2π

d
2 Γ
(d

2

)−1
.

Compare with the volume 2d von the `d∞ ball [−1, 1]d ; what is the probabilityof uniform samples
over [−1, 1]d to land in Bd ?
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Concentration of Measure

Concentration of Measure
Most of the measure of Bd is concentrated for large d in a slab around an equator. W.l.o.g. let e1

be the north pole.

Theorem 2

Let c ≥ 1 and
Sl(c) = {x ∈ Bd : |x1| ≤ c/

√
d − 1}.

Then, for d ≥ 3
vol(Sl(c))

vol(Bd )
≥ 1−

2
c

e−c2/2. (3.1)
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Concentration of Measure

Proof of Theorem 2: Use notation in the above figure. By symmetry, it suffices to show that

vol(A)

vol(H)
≤

2
c

e−c2/2. (3.2)

Upper bound for vol(A): Consider a disk at height x1 ≥ 0 of (infinitesimally small) width δx1

whose top face is a (d − 1) dimensional ball of radius
√

1− x2
1 . Since the surface area is

V (d − 1)(1− x2
1 )

d−1
2 its volume is δx1V (d − 1)(1− x2

1 )
d−1

2 . The volume of A is obtained by
adding the volumes of these disks and letting δx1 → 0; 

vol(A) =

1∫
c√

d−1

V (d − 1)(1− x2
1 )

d−1
2 dx1

(1−x)≤e−x

≤
∞∫

c√
d−1

V (d − 1)e−x2
1

d−1
2 dx1

x1
√

d−1
c ≥1
≤ V (d − 1)

√
d − 1
c

∞∫
c√

d−1

x1e−x2
1

d−1
2 dx1.

Since
∞∫
c√

d−1

x1e−x2
1

d−1
2 dx1 = −(d − 1)−1e−x2

1
d−1

2

∣∣∣∞ c√
d−1

= (d − 1)−1e−c2/2  

vol(A) ≤
V (d − 1)

c
√

d − 1
e−c2/2. (3.3)
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Concentration of Measure

Proof of Theorem 2 continued: Lower bound for vol(H):

Consider the cylinder (x1 = (d − 1)−1/2)

C := (0, (d−1)−1/2)×(1−(d−1)−1)1/2V (d−1)  vol(C) =
(1− (d − 1)−1)

d−1
2

√
d − 1

V (d−1)

For a ≥ 1 one has (1− x)a ≥ 1− ax (note that for d ≥ 3 one has a := (d − 1)/2 ≥ 1) 

vol(H) ≥ vol(Sl(1)) ≥ vol(C) =
(1− (d − 1)−1)

d−1
2

√
d − 1

V (d − 1) ≥
1
2√

d − 1
V (d − 1).

By (3.3)

vol(A)

vol(H)
≤

V (d−1)

c
√

d−1
e−c2/2

1
2√

d−1
V (d − 1)

=
2
c

e−c2/2.

�
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Concentration of Measure

Near Orthogonality
Consequences:

Theorem 3

Draw n points x1, . . . , xn at random (uniform distribution) from the unit ball Bd : then with
probability at least 1− 1/n, one has

1 ‖xi‖2 ≥ 1− 2 log n
d for all i ∈ {1, 2, . . . , n} and

2 |xi · xj | ≤
√

6 log n√
d−1

for all i 6= j .

Comments:

(1) says that n randomly drawn points accumulate with the higher probability near the
boundary Sd of Bd the larger d .

(2) says that the inner product of any two of the n randomly drawn points is close to zero
with high probability when d gets large. In view of (1) this actually means that the larger d
“the more orthogonal” get pairs of randomly drawn points (recall: |x·y|

‖x‖2‖y‖2
= cos(∠(x, y)))

Theorem 3 quantifies the earlier observations derived from the Law of Large Numbers in
Lecture II.

Estimating probabilities in conjunction with “for all” statements is usually done with the aid
of so called union bounds, see next page.
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Concentration of Measure

Union Bounds a frequent argument

The Union Bound is a frequently used “argument macro” which is a Boolean inequality and often
comes in the following form.

Remark 4

Let Xj ∼ (X ,B,P), j ∈ I. Assume that for some A ∈ B and each Xj one knows that

Prob
(

Xj /∈ A
)
≤ δj , j ∈ I. Then

Prob
(
∀ j ∈ I : Xj ∈ A) ≥ 1−

∑
j∈I

δj . (3.4)

In detail:
Prob

(
∀ j ∈ I : Xj ∈ A

)
= 1− Prob

(
∃ j such that Xj /∈ A

)
. (3.5)

Defining the event Aj = {ω ∈ Ω : Xj /∈ A},

Prob
(
∃ j ∈ I such that Xj /∈ A

)
= Prob

(
orj∈I(Xj /∈ A)

)
= P

( ⋃
j∈I

Aj

)
≤
∑
j∈I

P
(
Aj
)

=
∑
j∈I

Prob
(
Xj /∈ A

)
≤
∑
j∈I

δj . (3.6)

(3.6) + (3.5)⇒ (3.4). �
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Concentration of Measure

Proof of Theorem 3: ad (1): Let X be uniformly distributed over Bd . By (2.2)

Prob
(
‖X‖2 < 1− ε

)
≤

vol((1− ε)Bd )

vol(Bd )
≤ e−εd .

Thus, for each fixed i ∈ {1, . . . , n}

Prob
(
‖Xi‖2 < 1−

2 log n
d

)
≤ e−

(
2 log n

d

)
d =

1
n2
.

Hence

Prob
(
∃ i s.t. ‖Xi‖2 < 1−

2 log n
d

)
≤ P

({
X1 : ‖X1‖2 < 1−

2 log n
d

}
∪ · · · ∪

{
Xn : ‖Xn‖2 < 1−

2 log n
d

})
≤

n
n2

=
1
n
⇒ Prob

(
∀ i ‖Xi‖2 ≥ 1−

2 log n
d

)
≥ 1−

1
n
 (1),

where we have used the union bound, see Remark 4 with Aj ↔
(
‖Xj‖2 ≥ 1− 2 log n

d

)
.
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Concentration of Measure

Proof of Theorem 3 continued: ad (2): For any fixed among the
(n

2

)
pairs (i, j) we let Xi = X1e1

have the direction of the north pole, i.e., ‖Xi‖2 = |X i
1|. By Theorem 2,

Prob
(
|X j

1| >
c

√
d − 1

)
=

vol(Bd \ Sl(c))

vol(Bd )
≤

2
c

e−c2/2.

Therefore, taking c =
√

6 log n, the probability that the projection of Xj to the north pole-direction

is more than
√

6 log n
d−1 can be bounded by (since 6 log 2 > 4)

Prob
(
|X j

1| >

√
6 log n
d − 1

)
≤

2√
6 log n

e−
6 log n

2 ≤ n−3.

The same union bound (Remark 4) implies that the probability, that for some pair (i, j) one has

|Xi · Xj | >
√

6 log n
d−1 , is bounded by

(n
2

)
· n−3 ≤ 1

2n . ⇒ (2) �
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Concentration of Measure

Uniform Random Sampling from the Sphere Sd

Let Xj ∼ N (0, 1), j = 1, . . . , d , independent standard Gaussians; joint density

pd (x) = N (x|0, I) =
d∏

j=1

N (xj |0, 1) =
1

(2π)d/2
e−

x2
1 +···+x2

d
2 =

1
(2π)d/2

e−
1
2 ‖x‖

2
2 .

It is easy to sample according to N (xj |0, 1) - why?  sample according to pd  X 
Y = X/‖X‖2

Note: components of Y are no longer independent!

Question: how to sample uniformly from Bd ?
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Concentration of Measure

Gaussian Annulus Theorem

The next theorem describes where the mass of a spherical Gaussian density in high dimensions
is concentrated.

Theorem 5

Let N (x|0, I) =
∏d

j=1N (xj |0, 1) be the d-dimensional standard spherical Gaussian density and
X ∼ N (0, I). Then, for any β ≤

√
d

Prob
(√

d − β ≤ ‖X‖2 ≤
√

d + β
)

=

∫
√

d−β≤‖X‖2≤
√

d+β

N (x|0, I)dx ≥ 1− 3e−cβ2
, (3.7)

where c is a fixed positive constant.

Intuition: X ∼ N (x|0, I) E[‖X‖2
2] =

∑d
j=1 E[X 2

j ] =
∑d

j=1 var[Xj ] = d . Thus the expected

distance of a point, drawn from N (0, I), from the origin (the mean) is
√

d . Theorem 5 says that
randomly drawn points indeed concentrat tightly around the sphere of radius

√
d .
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Concentration of Measure

Proof of Theorem 5: Note

√
d − β ≤ ‖X‖2 ≤

√
d + β ⇔ |‖X‖2 −

√
d | ≤ β (3.8)

 suffices to prove that Prob
(
|‖X‖2 −

√
d | ≥ β

)
≤ 3e−cβ2

. Multiplication by ‖X‖2 +
√

d  

|‖X‖2
2 − d | ≥ (‖X‖2 +

√
d)β ≥ β

√
d  

Prob
(
|‖X‖2 −

√
d | ≥ β

)
≤ Prob

(
|‖X‖2

2 − d | ≥ β
√

d
)
.

Rewrite

‖X‖2
2 − d =

d∑
j=1

X 2
j − d =

d∑
j=1

(X 2
j − 1) =:

d∑
j=1

Yj  E[Yj ] = E[X 2
j ]− 1 = var[Xj ]− 1 = 0.

Goal: estimate

Prob
(
|‖X‖2

2 − d | ≥ β
√

d
)

= Prob
(∣∣∣ d∑

j=1

Yj

∣∣∣ ≥ β√d
)
.

To apply Theorem 5 we need to bound the r th moments of Yj .
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Concentration of Measure

Proof of Theorem 5 continued: Bounding E[Y r
j ] (Yj = X 2

j − 1): to that end, note

|Yj |r ≤

 1, for |Xj | ≤ 1,

|Xj |2r , for |Xj | ≥ 1.
⇒

|E[Y r
j ]| = E[|Yj |r ] ≤ E[1 + X 2r

j ] = 1 + E[X 2r
j ] = 1 +

√
2
π

∞∫
0

x2r e−x2/2dx .

To estimate
√

2
π

∞∫
0

x2r e−x2/2dx use that Γ(y) =
∞∫
0

xy−1e−x dx :

Change of variables z := x2/2 

1 +

√
2
π

∞∫
0

x2r e−x2/2dx = 1 +

√
1
π

∞∫
0

2r zr−1/2e−zdz = 1 +

√
1
π

2r Γ(r − 1/2) ≤ 2r r !.

Recall: in Lecture III, Theorem 6 we need the r th moment to be bounded by σ2r !.

E[Yj ] = 0,  var[Yj ] = E[Y 2
j ]

r=2
≤ 22 · 2 = 8 = σ2

Y .
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Concentration of Measure

Proof of Theorem 5 continued: So far we have |E[Y r
j ]| ≤ 2r r ! but 2r r ! 6< 82r !  

another change of variables: Wj := Yj/2 (Lecture II, (8.6)) 

var[Wj ] =
1
4

var[Yj ] ≤ 2 = σ2
W , E[W r

j ] = 2−rE[Y r
j ] ≤ r !.

Since

Prob
(
|‖X‖2

2 − d | ≥ β
√

d
)

= Prob
(∣∣∣ d∑

j=1

Yj

∣∣∣ ≥ β√d
)

= Prob
(∣∣∣ d∑

j=1

Wj

∣∣∣ ≥ β
√

d
2

)
,

Lecture III, Theorem 6 yields (a = β
√

d
2 ),

Prob
(
|‖X‖2

2 − d | ≥ β
√

d
)
≤ 3e−

a2
12d2 = 3e−

β2
12·8 = 3e−

β2
96 .

 c = 1/96. �
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Dimension Reduction

Motivation

One of the most frequent tasks involving high-dimensional data is
nearest-neighbor-search.

Scenario: given is a database of N points X = {x1, . . . , xN} ⊂ Rd , j = 1, . . . ,N, N, d
large; X is efficiently stored.

Task: for any query point x ∈ Rd find the nearest (or approximately nearest) neighbor from
X .

Wishlist: the number of queries is typically large the response time (returning the
neighbor) should be small; typically a moderately growing function of log N and log d .
Preprocessing time is allowed to be larger, e.g. polynomial in N and d .

An important preprocessing ingredient is dimension reduction, i.e., the projection of
X ⊂ Rd to Rk with k � d , while approximately preserving mutual distances.

The next result shows how much the dimension can be reduced and how to find a good

projection. It is an application of Theorem 5.
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Dimension Reduction

The Johnson-Lindenstrauss-Lemma Random Projections

For k ≤ d consider the random matrix

A = (Ai,j )
k,d
i,j=1 ∈ Rk×d where Ai,j ∼ N (0, 1), i, j = 1, . . . , k , d , drawn independently. (4.1)

Let us denote by Ai = (ai,1, . . . , ai,d ), i = 1, . . . , k , the rows of A. Note: Ai ∼ N (0, I).

We will see: the mapping x ∈ Rd 7→ Ax ∈ Rk is with high probability (regarding the choice of A)

near-distance preserving..

Theorem 6

Let x ∈ Rd be fixed and let the random matrix A be given by (4.1). Then

Prob
(∣∣‖Ax‖2 −

√
k‖x‖2

∣∣ ≥ ε√k‖x‖2

)
≤ 3e−ckε2

, (4.2)

where c is the constant from Theorem 5 and the probability is taken with respect to N (·|0, I)k .

Remark: Since A is linear, for any fixed x, y ∈ Rd one has∣∣∣∣∣‖k−1/2A(x− y)‖2

‖x− y‖2
− 1

∣∣∣∣∣ ≤ ε
with probability at least 1− 3e−ckε2

.
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Dimension Reduction

Proof of Theorem 6: Ax is the vector with components Ai · x, i = 1, . . . , k . Dividing both sides in
Prob

(∣∣‖Ax‖2 −
√

k‖x‖2
∣∣ ≥ ε√k‖x‖2

)
by ‖x‖2, we can assume without loss of generality that

‖x‖2 = 1 (the statement is about relative accuracy). By Lecture II, Corollary 18 and (10.9), the
sum of independent Gaussians is Gaussian whose variance is the sum of variances.  

var[Ai · x] =
d∑

j=1

x2
j var[Ai,j ] =

d∑
j=1

x2
j = ‖x‖2

2 = 1.

Hence A1 · x, . . . ,Ak · x are independent Gaussian variables ∼ N (0, 1). Hence Ax is a
k -dimensional spherical Gaussian random variable with unit variance in each coordinate.

Theorem 5 (with d replaced by k and using (3.8))⇒ Prob
(∣∣∣‖Ax‖2 −

√
k
∣∣∣ ≥ ε√k

)
≤ 3e−ckε3

. �
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Dimension Reduction

The Johnson-Lindenstrauss-Lemma
The JL-Lemma is based on the random projection (4.1): define

F(x) :=
1
√

k
Ax. (4.3)

Theorem 7

Given: any ε ∈ (0, 1), N ∈ N; let k ≥ 3 log N
cε2 , where c is the constant from Theorem 5.

Claim: for any set X = {x1, . . . , xN} ⊂ Rd , the mapping F, defined by (4.3), satisfies for all pairs
xi , xj ∈ X

(1− ε)‖xi − xj‖2 ≤ ‖F(xi )− F(xj )‖2 ≤ (1 + ε)‖xi − xj‖2 (4.4)

holds with probability at least 1− 3
2N .

Remarks:

The reduced dimension k does not depend on the ambient dimension d , but only on the
number N of projected points.

The dependence of k on N is only logarithmic.

There is a close connection between random projections and the Compressive Sensing
paradigm discussed later in the course (if time permits).
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Dimension Reduction

Proof of Theorem 7: Fix any pair xi , xj ∈ X . By the Random Projection Theorem 6, the
probability of ‖F(xi )− F(xj )‖2 = ‖F(xi − xj )‖2 being outside the interval[
(1− ε)‖xi − xj‖2, (1 + ε)‖xi − xj‖2

]
, is at most 3e−ckε2

.

For k ≥ 3 log N
cε2 , this probability is at most 3/N3. Since there are

(N
2

)
< N2/2 such pairs, the

assertion follows from a union bound, see Remark 4. �
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First Applications to Simple Estimation Problems Separating Gaussians

Mixtures of Gaussians - An Example

Gaussian mixtures: are often used to model heterogeneous data coming from multiple sources

Example: The heights of individuals in a fixed age range in a city are being recorded. On average
men are taller than women Model:

f-height : µ1 + X1, X1 ∼ N (0, σ2
1);

m-height : µ2 + X2, X2 ∼ N (0, σ2
2).

 p(x) = w1N (x |µ1, σ
2
1) + w2N (x |µ2, σ

2
2), (5.1)

where the mixture weights w1,w2 represent the proportions of females, males in the city.

Problem: Given access to sample from the density p(x), i.e., heights of individuals without
knowing the gender, reconstruct the parameters µi , σ

2
i , i = 1, 2 for the mixture model (5.8).

Notice: since there are shorter men than some women, given a height, it is not clear whether it
comes from a female or male.

One could ask analogous questions for more attributes X1, ....Xd .

In this section: Separate two spherical Gaussians with unit-variance for large d but with
well-separated means; later: the case of nearby means.
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First Applications to Simple Estimation Problems Separating Gaussians

Separation of Gaussians
Model: p(x) = w1N (x|µ1, 1) + w2N (x|µ2, 1), x ∈ Rd (d large), find µi ,wi , i = 1, 2.

Observation 1: For two independent draws x, y from the same N (0, I), say, one has

‖x− y‖2 =
√

2d ± O(1). (5.2)

Argument: By Theorem 5, x, y are with high probability within an annulus of width O(1) around
the sphere with radius

√
d . W.l.o.g. we can rotate the coordinate system to obtain

x = (
√

d + O(1))e1. By Theorem 2, with high probability,
|y · e1| ≤

√
d · O((d − 1)−1/2) = O(1), i.e., |x · y| = O(

√
d) 

‖x− y‖2
2 = (x− y)>(x− y) = ‖x‖2

2 − 2x · y + ‖y‖2
2 = 2d ± O(

√
d) ⇒ (5.2).

Observation 2: Consider two independent draws x, y from N (µ1, I),N (µ2, I), respectively, and
set ∆ := ‖µ1 − µ2‖2. Then, with high probability one has

‖y− x‖2
2 = ∆2 + 2d ± O(

√
d). (5.3)

Argument: Adding, subtracting µ1, µ2 and expanding, yields

‖x−y‖2
2 = ‖x−µ1‖2

2+‖y−µ2‖2
2+∆2+2(x−µ1)>(y−µ2)+2(x−µ1)>(µ1−µ2)−2(y−µ2)>(µ1−µ2).

By the above argument, the 4th summand is ±O(
√

d). Consider the slabs S1,S2 of width O(1)
around the centers µ1, µ2, which are perpendicular to µ1 − µ2. As argued above, with high
probability x ∈ S1, y ∈ S2 so that µ1 − µ2 has inner products with x− µ1, y− µ2 of at most the
order O(

√
d)⇒ (5.3).
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Outline of a Simple Separation Algorithm

Rationale: Distance D1 between two points from the same Gaussian should be smaller than the
distance D2 bewteen two points from different Gaussians, i.e.,

D1 ≤
√

2d + O(1)
!
≤
√

∆2 + 2d − O(1) ≤ D2 ⇔ 2d + O(
√

d) ≤ 2d + ∆2.

This holds when ∆ ≥ Cd1/4.

Algorithm:

Calculate all pairwise distances between the samples;

Identify the two clusters Cs, Cl of small and large pairwise distances; pick a pair (xi1 , xi2 )
from Cs and fix xi1 ; define Cs,1 as the set of all points xj such that (xi1 , xj ) ∈ Cl (long
distance); these points come from a single Gaussian with high probability;

the remaining points come from the other one.

One still needs to fit the clustered points to a Gaussian.
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Maximum Likelihood Estimator (MLE)
Suppose that x1, . . . , xN are i.i.d samples from X ∼ N (µ, σ2I) (spherical Gaussian with center
µ ∈ Rd )

Goal: estimate µ and σ2 from these points.

The joint density of the underlying random variables Xj , j = 1, . . . ,XN is the dN-dimensional
spherical Gaussian

p(x1, . . . , xN ) := N (x1, . . . , xN |(µ, . . . , µ), σ2IdN ) =
1

(2πσ2)
dN
2

e−
1

2σ2

(
‖x1−µ‖2

2+···+‖xN−µ‖2
2

)
.

The Maximum Likelihood Estimator (MLE) determines estimates µML, σ
2
ML by maximizing this

joint density for the given data x1, . . . , xN .

Proposition 8

MLE provides the sample mean

µML :=
1
N

(x1 + · · ·+ xN ), (5.4)

as estimate for µ and the discrete sample variance with respect to the sample mean

σ2
ML =

1
dN

N∑
j=1

‖xj − µML‖2
2 (5.5)

as an estimate for σ2.
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Proof of Proposition 8: Maximizing p(x1, . . . , xN ) is most conveniently done by maximizing its
logarithm

log p(x1, . . . , xN ) = −
1

2σ2

N∑
j=1

‖xj −µ‖2
2−

dN
2

log(2σ2)−
dN
2

log(π) (log-likelihood function). (5.6)

Maximization over µ is independent of σ2. Taking E(µ) :=
∑N

j=1 ‖xj − µ‖2
2, one has

∇E(µ) = 2
∑N

j=1(xj − µ) = 0 ⇔ µ = µML.

Take a := (2σ2)−1, it suffices to maximize over a. Differentiation with respect to a and setting the
derivative to zero, yields the unique solution aML by

0 = −
N∑

j=1

‖xj − µN‖2
2 +

dN
2

1
aML

⇒ 2σ2
ML =

1
aML

=
2

dN

N∑
j=1

‖xj − µN‖2
2

which is (5.5) �

Remark 9

The estimates µML, σ
2
ML are independent of wether the data are sampled according to N (·|µ, σ2I)

or wN (·|µ, σ2I) where w > 0 is any “weight factor”. How to determine such a weight?
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Maximum Likelihood Estimator (MLE)
Remark 10

This can be generalized to non-spherical Gaussians X ∼ N (µ; A), i.e.,

N (x|µ,A) :=
1

(2π)d/2|det A|1/2
exp

{
−

1
2

(x− µ)>A−1(x− µ).

One obtains µML = 1
N
∑N

j=1 xj as before and

AML =
1
N

N∑
j=1

(xj − µML)(xj − µML)>.

Hint: the joint density of X1, . . . ,XN ∼ N (µ; A) is (by independence)

p(x1, . . . , xN ) =
N∏

j=1

N (xj |µ,A) =
1

(2π)dN/2|det A|N/2
e−

1
2
∑N

j=1(xj−µ)A−1(xj−µ)  

maximize over µ and R = A−1

0 !
= log p(x1, . . . , xN ) = −

dN
2

log(2π)−
N
2

log |det A| −
1
2

N∑
j=1

(xj − µ)A−1(xj − µ).
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Maximizing over µ 

∂µ log p(x1, . . . , xN )
!

= 0  0 =
N∑

j=1

A−1(xj − µ) = A−1
( N∑

j=1

(xj − µ)
)
⇔

N∑
j=1

xj = Nµ.

Maximizing over R := A−1  

0 !
=

N
2

d
dR

log |det R| −
1
2

d
dR

N∑
j=1

(xj − µML)R(xj − µML)

Notice: (chain rule)

d
dR

log |detR| = R−1 = A,
d

dR

N∑
j=1

(xj − µ)R(xj − µ) =
N∑

j=1

(xj − µML)(xj − µML)>.

 �
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How good are these estimates?

Note: for each draw x1, . . . , xN one obtains estimates µML = µML(X1, . . .XN ),
σML = σML(X1, . . .XN ) which will vary over repeated draws and are therefore also random
variables.

Exercise 11

µML, σML are random variables distributed according to p(x1, . . . , xN ). Hence we can compute
the expectation of these quantities: show that

E
[
µML

]
= µ, E

[
σ2

ML
]

=
(dN − 1

dN

)
σ2. (5.7)

Thus, the maximum likelihood estimate systematically underestimates the true variance by the
factor dN−1

dN . This results from computing σ2
ML based on the sample mean not the true mean.

(5.7) 

σ̃2
ML :=

dN
dN − 1

σ2
ML =

1
dN − 1

N∑
j=1

‖xj − µML‖2
2

is an unbiased estimator. These are special effects reflecting a more general feature of maximum

likelihood methods.
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Gaussian Mixtures revisited

Mixture Models: form an important class of stochastic models. They have the form

p = w1p1 + w2p2 + · · ·+ wk pk , wj ≥ 0,
k∑

j=1

wj = 1, pj are known densities. (5.8)

The mixture weights wi quantify the proportion of the density pj in the whole stochastic process.
Clearly, p is again a probability density.

In this section we consider the case: pj (x) = N (x|µj , σ
2), µj , x ∈ Rd , under the assumptions:

• d large
• k � d
• σ ∼ 1

Task: Given data X = {x1, . . . , xN} ⊂ Rd , estimate wi , µi , σ, j = 1, . . . , k .

Recall: before k = 2, ‖µ1 − µ2‖2 ≥ Cd1/4; now k > 2 is permitted and centers are allowed to be
closer to each other.

Strategy:
(i) Cluster the set of samples into k clusters Cj , j = 1, . . . , k , where Cj corresponds to the set

of samples generated according to pj ; This is based on the discussion over the next slides
(ii) determine µj , σ

2 for the Gaussian corresponding to the cluster Cj , j = 1, . . . , k , as
described in the previous section;

(iii) determine the weights by a least squares method.
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(i) Is Based on: Invariance of Spherical Gaussians under Projection

Lemma 12

Let U ⊂ Rd be a k-dimensional subspace. Then a spherical Gaussian density N (x|µ, σ2I)
restricted to U is (up to normalization) again a sperical Gaussian density with the same variance.

Proof: Let {u1, . . . ,uk} ⊂ Rd be an orthonormal basis for U. Complete the matrix Uk with
columns ui , i = 1, . . . , k ,to an orthonormal matrix U = (Uk , N−k U) for Rd by adding columns
uk+1, . . . ,uN . Then, for x = Uz = Uk z′+ N−k Uz′′, where z′ = (z1, . . . , zk ), z′′ := (zk+1, . . . ,N),

N (x|µ, σI) =
1

(σ22π)d/2
e−

1
2σ2 ‖U(z−U>µ)‖2

2 =
1

(σ22π)d/2
e−

1
2σ2 ‖z−U>µ‖2

2 ,

where we have used that the Euclidean norm is invariant under orthogonal transformations.
Writing U>µ = (µ′, µ′′), noting that the restriction of x to U is Uk z′, and that
‖z− U>µ‖2

2 = ‖z′ − µ′‖2
2 + ‖z′′ − µ′′‖2

2 we get

N (Uk z′|µ, σ2I) =
1

(σ22π)
d−k

2

e−
1

2σ2 ‖µ
′′‖2

2 1

(σ22π)
k
2

e−
1

2σ2 ‖z
′−µ′‖2

2 = CN (z′|µ′, σ2I),

as claimed. �

Remark 13

When µ ∈ U, i.e., µ = Uk y, y ∈ Rk , one has U>µ = U>Uk y = y, i.e., the projected Gaussian
has the same mean as the original one. Goal: find the subspace Uk spanned by the means of a
Gaussian mixture.
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Invariance of Spherical Gaussians under Projection
Remark: Perhaps a better way to understand a “projection” of a density to a subspace U is to see
how it acts on functions that do not depend on variables orthogonal to U. Specifically, for
U,Uk , N−k U, z′, z′′, µ′u′′ as above, consider any g such that
g(x) = g(Uz) = g(Uk z′ + N−k Uz′′) = g(Uk z′) =: g̃(z′)

∫
Rd

g(x)N (x|µ, σ2I)dx =
1

(σ22π)d/2

∫
Rd

g(Uz)e
− 1

2σ2 ‖Uz−µ‖2
2 dz (since |detU| = 1)

=
1

(σ22π)d/2

∫
Rd

g̃(z′)e
− 1

2σ2 ‖U(z−U>µ)‖2
2 dz

=
1

(σ22π)d/2

∫
Rd

g̃(z′)e
− 1

2σ2 ‖z−U>µ‖2
2 dz

=
1

(σ22π)
d−k

2

∫
Rd−k

e
− 1

2σ2 ‖z′′−µ′′‖2
2 dz′′

︸ ︷︷ ︸
=1

1

(σ22π)
k
2

∫
Rk

g̃(z′)e
− 1

2σ2 ‖z′−µ′‖2
2 dz′

=
1

(σ22π)
k
2

∫
Rk

g̃(z′)e
− 1

2σ2 ‖z′−µ′‖2
2 dz′

=

∫
Rk

g̃(z′)N (z′|µ′, σ2I)dz′.
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Best-Fit Subspace to a Spherical Gaussians
Let U ⊂ Rd be a k -dimensional subspace. Therefore there exists an orthonormal basis
{u1, . . . ,uk} ⊂ Rd forming the matrix Uk . By Lecture I, page 47, (5.26),

PUx =
k∑

j=1

(x · uj )uj = Uk U>k x (5.9)

is the orthogonal projection to U.

Definition 14

Given a probability density p on Rd . Then the subspace

Uk := argmax
U⊂Rd ,dim U=k

E
[
‖PUX‖2

2
]

(5.10)

is called the best-fit k -dimensional subspace (w.r.t. p).

Remark 15

Intuitively, Uk = Uk (p) is the subspace that “sees most” of the density p among all k-dimensional
subspaces. Compare this with Lecture I, Theorem 42, when the density p is replaced by a point
cloud forming the matrix A. This subspace will be seen to contain the means of the Gaussian
mixture.
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Best-Fit Subspace to a Spherical Gaussians
A first central step is to identify the best-fit subspace for a mixture of k spherical Gaussians.
Theorem 16

Let the density p on Rd have the form (5.8) where pj = N (·|µj , σ
2I), µj ∈ Rd , j = 1, . . . , k. Then

the best-fit k-dimensional subspace Uk for this mixture contains the centers µj ∈ Rd ,
j = 1, . . . , k. If the µj are linearly dependent, the uniquely define the subspace Uk .

The proof is based on several lemmas.
Lemma 17

For p = N (·|µ, σ2I), X ∼ N (µ;σ2I), u ∈ Rd , ‖u‖2 = 1, one has

E
[
(u>X)2] = σ2 + (u>µ)2. (5.11)

Proof:
E[‖PU1 X‖2

2] = E[|u · X|2] = E
[
(u>(X− µ) + u>µ)2]

= E
[
(u>(X− µ))2 + 2(u>µ)(u>(X− µ)) + (u>µ)2]

= E
[
(u>(X− µ))2]+ 2(u>µ)u>E

[
X− µ

]
+ (u>µ)2

= E
[
(u>(X− µ))2]+ (u>µ)2 =

d∑
j=1

u2
j E[(Xj − µj )

2] = σ2 + (u>µ)2.
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Best-Fit Subspace to a Spherical Gaussians

Lemma 18

For p = N (·|µ, σ2I) a k-dimensional subspace is a best-fit subspace for p if and only if it
contains µ.

Proof: For µ = 0, by symmetry, every k -dimensional subspace is a best-fit subspace. Assume
now µ 6= 0.

For k = 1, U = span {u}, one has PUx = (u · x)u and hence ‖PUX‖2
2 = (u ·X)2. In view of (5.11),

E
[
‖PUX‖2

2
]

is maximized if and only if u is parallel to µ, i.e., |u · µ| = ‖u‖2‖µ‖2 = ‖µ‖2  µ ∈ U.

For k > 1: suppose µ 6∈ U. Since the orthogonal complement µ⊥ of µ in Rd has dimension
d − 1 and U has dimension k we must have dim (U ∩ µ⊥) = k − 1. Therefore, there exists an
orthonormal basis {u1, . . . ,uk−1,uk} of U where

µ>uj = 0, j = 1, . . . , k − 1. (5.12)

As before, denoting by Ur the matrices with columns u1, . . . ,ur , we recall from (5.9) that
PUx = Uk U>k x and (since U>k Uk = Ik )

‖PUx‖2
2 = (PUx)>PUx = x>Uk U>k Uk U>k x = x>Uk U>k x =

k∑
j=1

(x>uj )2  consider (5.13)

E
[
‖PUX‖2

2
]

=
∑k

j=1 E
[
(X>uj )2] (5.11),(5.12)

= (k − 1)σ2 + (uk · µ)2 maximal iff uk = aµ. �
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Best-Fit Subspace to a Spherical Gaussians

Proof of Theorem 16: Let p = w1p1 + · · ·+ wk pk be the Gaussian mixture (i.e.,
pj (x) = N (x|µj , σ

2I)) and let U be any subspace of Rd of dimension k . It can be spanned by an
orthonormal basis {u1, . . . ,uk}.

Then, by (5.13) and linearity of E,

E∼p

[
‖PUX‖2

2

]
=

k∑
l=1

wlE∼pl

[
‖PUX‖2

2
]
.

This sum is maximized if each summand is maximized. By Lemma 18, this is the case if and only

if U contains the means µj , j = 1, . . . , k . �
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Outline of a Separation Algorithm
1 (Ideally) find the best-fit subspace Uk that contains the centers µj , j = 1, . . . , k .
2 By Lemma 12, the projection of a spherical Gaussian to Uk is still (now a k -dimensional)

Gaussian with the same variance σ2.
3 Suppose X = {x1, . . . , xN} ⊂ Rd is the given set of samples from the mixture distribution.

Let Xk = {x1,k , . . . , xN,k}| ⊂ Uk be the projected sample set, i.e., xj,k = PUk xj ,
j = 1, . . . , k , and denote by ∆i,j := ‖xj,k − xi,k‖2 the mutual distances in Uk .
Note: since the centers µj already belong to Uk their distances don’t change under
projection

‖µj − µi‖2 = ‖PUk (µj − µi )‖2, i 6= j ≤ k . (5.14)

4 By the methods discussed in the preceding section, one can separate Gaussians in Rk

provided that their centers satisfy
‖µi − µj‖2 ≥ Ck1/4, (5.15)

which is only a small threshold (independent of d) when k is bounded uniformly.
5 Exploit the latter fact to cluster Xk into k clusters Cj , j = 1, . . . , k , where now with high

probability the points in Cj come from the Gaussian pj = N (·|µj , σ
2I).

6 Compute for each Cj estimates µj,ML, σ
2
j,ML by means of the Maximum-Likelihood Estimator

(in Rk , see Remark 13) from the previous section, and set σ2 = 1
k
∑k

j=1 σ
2
j,ML.

7 Set M := (µ1,ML, . . . , µk,ML) ∈ Rd×k , y := 1
N
∑N

j=1 xj , y ≈ E∼p[X] =
∑k

l=1 wlµl ,

 y ≈
∑k

l=1 wlµl,ML; compute w = (w1, . . . ,wk )> ∈ Rk by w = argminv≥0 ‖Mv− y‖2
2.
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Outline of a Separation Algorithm
Items (1) and (5) in the above sketch require further comments:

ad (1): One cannot compute the exact best-fit subspace Uk because one cannot carry out the
required maximization exactly.

Simple idea: maximize instead with respect to the empirical mean, i.e.,

argmax
dim U=k

E
[
‖PUX‖2

2

]
↔ argmax

dim U=k

{ 1
N

N∑
i=1

‖PUxi‖2
2

}
(5.16)

Consider first k = 1, U = span {u}, ‖u‖2 = 1, 

u1 = argmax
‖u‖2=1

1
N

N∑
i=1

(xi · u)2. (5.17)

Let A denote the matrix whose rows are the xi , i.e., A ∈ RN×d . Then, (5.17) can be equivalently
restated as

u1 = u1(X) = argmax
‖u‖2=1

‖A>u‖2
2 = argmax

‖u‖2=1
u>AA>u. (5.18)

As shown in Lecture I (see e.g. the proof ofTheorem 39, or Lemma 43), u1 is the first left singular
vector of the matrix A and

max
‖u‖2=1

1
N

N∑
i=1

(xi · u)2 =
σ2

1,X

N
, (where σ1,X is the largest singular value of A.) (5.19)
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Outline of a Separation Algorithm

Returning to (5.16), we take up on the PCA Greedy Construction of the SVD in Lecture I, page
75, (6.16) and successively maximize at the i th stage u>AA>u over those unit vectors u,
‖u‖2 = 1, which are orthogonal to the previously computed directions u1, . . . ,ui−1 for i ≤ k .
Hence, for r ≤ k

1
N

N∑
i=1

(xi · ur )2 = max
‖u‖2=1;u⊥us,s<r

1
N

N∑
i=1

(xi · u)2. (5.20)

Let us again denote by Uk the matrix whose columns are these pairwise orthonormal vectors ui .
Thus PUk x = Uk U>k x and

1
N

N∑
i=1

‖PUk xi‖2
2 =

1
N

N∑
i=1

(xi )>Uk U>k Uk U>k xi =
1
N

N∑
i=1

(xi )>Uk U>k xi . =
1
N

N∑
i=1

k∑
j=1

(uj · xi )2

=
k∑

j=1

{ 1
N

N∑
i=1

(uj · xi )2
}

=
k∑

j=1

σ2
j,X

N
,

i.e., in view of (5.20), each summand in the curly brackets is maximized by the greedy basis.
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Outline of a Separation Algorithm

Corollary 19

Step (1) in the algorithm can be realized approximately by computing the SVD of the point cloud
A> ↔ X. The subspace generated by the first left singular vectors ui , i = 1, . . . , k, is an
approximation to the exact best-fit subspace The larger the number N of samples xi , the closer is
the empirical mean to the true expectation, i.e., the discrete maximization in (5.16) yields better
and better approximations to the exact best-fit subspace. The singuar values σ2

j,X are
approximations of σ2.

The accuracy of the SVD based subspace affects the accuracy of the estimation for the means
µj,ML taking place in the approximate subspace.

ad (5):

Compute first all pairwise distances ∆i,j (in Uk ) and order them by increasing size ∆ir ,jr ;
pick the smallest r = s such that ∆is,js ≥

√
2d + a =: δ; find a, c such that

∆is,js ≥
√

2d + ck1/4 =: ∆ holds for all s > r .

Put all pairs (i, j) into S, for which ‖xj,k − xi,k‖2 ≤ δ, put all pairs with ‖xj,k − xi,k‖2 ≥ ∆
into L.
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Outline of a Separation Algorithm

Consider the triangular array

T =


(1, 2), (1, 3), (1, 4), . . . , (1,N)

(2, 3), (2, 4), . . . , (2,N)

... . . . ,
...

, (N − 1,N)


Let TS be the sub-array for which all pairs belong to S. Two pairs are connected if the have
a common index. A subset of pairs is connected if any two of them can be connected by a
path of connected pairs. The “content” of a connected subset is the set of involved indices.
Each cluster Cj corresponds to the content of a maximal connected set of pairs in TS .

Exercise: Design an efficient way of finding these sets.
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