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Volumes in High Dimensions

Effect of Shrinking

Consider A ¢ R? measurable, e € (0,1), (1 —€)A:= {(1 — e)x: x € A}; let

vol(A) = voly(A) = /XA(x)dx (volume of A).
A

Then
vol((1 = €)A) = (1 — €)%vol(A). 2.1)

Argument: this holds for any d-dimensional cube (induction on d); cover A by cubes of smaller
and smaller size; additivity of the volumes of the cubes + each cube shrinks by factor (1 — €),
measurability of A (see Lecture Il, page 6) ~ (2.1).

Hence
vol((1 — €)A)

_ _\d —ed
voI(A) =(1-¢%<e™ 9, (2.2)

i.e., such fractions decay exponentially when d increases.
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Volumes in High Dimensions

The Euclidean Ball/Sphere

Define

By:={xcR: x|l <1} Sy:={xeR:|x| =1} =8By.
We are interested in the quantities

V(d) = VOld(Bd), A(d) = vold_1(Sd).

Cartesian Coordinates:

Xo=1/1—x2 Xg=y 13— =x3_,
V(d) = / / s / ddeXd_1 s ngdX1,
x=—1 Xo=—1/1—x2 Xg=— 1—)(12—---—)(5_1

or, in radial coordinates:

// r?="drdA = /dA/ %.

Sy r=0

How to compute A(d)?
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Volumes in High Dimensions

The Euclidean Ball/Sphere

Compute instead

d
G(d) = /e*\|xllgdx - H/e—xfdx, =

(since [ e dx = V). (2.3)
Rd =R ®

Calculate G(d) using polar coordinates (e~ !X = e="* for x in the sphere with radius r)

G(d) = /dA]Oe*’zrd*‘dr — A(d) 76*’2#’*1 ar = A(d)lr<g>. (2.4)
0

2'\2
S, 0

where I'(x) := [ e~?z*~'dx is the Gamma-function (generalizing the factorial I'(n+ 1) = n!).
0

(2.3), (2.4) =

A(d) :2w%r(g)_1 ~s (2.5)

2 d_sdy\-1 d_rdy—1
V(d) = St F(E) . A(d) =2r? F(E) .
Compare with the volume 29 von the ¢9_ ball [—1,1]9; what is the probabilityof uniform samples
over [—1,1]9 to land in By ?
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Concentration of Measure

Concentration of Measure

Most of the measure of By is concentrated for large d in a slab around an equator. W.l.o.g. let e’
be the north pole.

Ry

Vid—1

L/

Letc > 1 and

Sl(c)={x€By:|x|<c/v/d—1}.
Then, ford > 3
vol(Sl(c)) 2 _2/

ol(By) 2 1-—e (3.1)
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Proof of Theorem 2: Use notation in the above figure. By symmetry, it suffices to show that

vol(A) _ 2 _c2/p
<= . 3.2
vol(H) — Ce (32)
Upper bound for vol(A): Consider a disk at height x; > 0 of (infinitesimally small) width §x;

whose top face is a (d — 1) dimensional ball of radius /1 — x12. Since the surface area is

a1 . a1
V(d—1)(1 —x2)"z its volume is 6x; V(d — 1)(1 — x2) 2

adding the volumes of these disks and letting §x; — 0; ~~

. The volume of A is obtained by

1 oo
_ (1—x)<e™* _
vol(A - Vd—1)(1 —x®) 7 dxy < V(d —1)e 22" dx,
1
_c C
a—1 a—1
Xq d—121 — e} 3
cg V(d-1) dc ! / Xq e—x12dT1dx1.
ce
. o0 2d—1 2d—1 |00 2
Since [ xje ™%z dx :7(d71)*‘e*X1T‘ . =(@-1)"lec/2
;71 Va—1

v Vd—1) 2,
ol(A) < T e (3.3)
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Concentration of Measure

Proof of Theorem 2 continued: Lower bound for vol(H)
Consider the cylinder (x; = (d — 1)~1/2)
d—1
—(d-1)""=
(1-@-DN% gy

~  vol(C) = ! NS

(0,(d=1)""2)x(1—(d—1)"")"/2V(d—1)

C:=
Fora> 1onehas (1 —x) > 1— ax (notethatford > 3onehasa:=(d—-1)/2> 1) ~
gy 4=t 1
(1-(d-1)""= 2
1(H) > vol(S/(1)) > vol(C) = V(d—-1)> —=——V(d-1).
vol(H) > vol(SI(1)) 2 vol(C) — (@=1)z Zsvd-1)
By (3.3)
V(d—1) o—c?/2
VOI(A) < c1d—1 :ge,(; /2
I(H) = 3
vol(H) (1271‘/(0,_1) c
O

IV - High-Dimensional Geometry and Some

W. Dahmen, J. Burkardt (DASIV)



Concentration of Measure

Near Orthogonality

Consequences:

Draw n points x', ..., X" at random (uniform distribution) from the unit ball B : then with
probability at least1 — 1/n, one has

Q X2 >1- 2" forallie {1,2,...,n} and
Q X x| < V2B foralli # j.

VeI

Comments:

@ (1) says that n randomly drawn points accumulate with the higher probability near the
boundary Sy of By the larger d.

@ (2) says that the inner product of any two of the n randomly drawn points is close to zero
with high probability when d gets large. In view of (1) this actually means that the larger d

“the more orthogonal” get pairs of randomly drawn points (recall: % = cos(4(x,Y)))
@ Theorem 3 quantifies the earlier observations derived from the Law of Large Numbers in
Lecture 1.

@ Estimating probabilities in conjunction with “for all” statements is usually done with the aid
of so called union bounds, see next page.
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Concentration of Measure

Union Bounds a frequent argument

The Union Bound is a frequently used “argument macro” which is a Boolean inequality and often
comes in the following form.

Remark 4

Let X; ~ (X, B, P) Jj € Z. Assume that for some A € B and each X; one knows that
Prob( ¢ A) j €. Then

Prob(VjeI:XjeA)21—Zéj. (3.4)
jeT
In detail:
Prob(¥j € T: X; € A) = 1 Prob(3jsuch that X; ¢ A). (3.5)

Defining the event A; = {w € Q : X; ¢ A},

Prob(3j € ZsuchthatX; ¢ A) = Prob(orez(X; ¢ A)) = P(JA) <D P(A)
JjET JjET
= D Prob(X;¢ A) <D 5 (3.6)
jeT jeT
(3.6) + (3.5) = (3.4). 0
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Concentration of Measure

Proof of Theorem 3: ad (1): Let X be uniformly distributed over By. By (2.2)

vol((1 —€)B
Pl‘Ob(“XHZ <1- 6) < W < e_ed.

Thus, for each fixed i € {1,...,n}

. 2logn — (2egn)q 1
i _ [
Prob (|12 < 1 : ) <o FF)I= pe
Hence
. ; 2logn
1 —
Prob(als.t. X2 <1 g )
2logn 2logn
' 1 o g n. n _ g
gP({x XMz < 1 ; }u u{x SIX72 < 1 d })
n_ 1 v 2logn 1
<H=. = Prob (Vi X > 1~ - )21—Ew(1)7

where we have used the union bound, see Remark 4 with A; < (||X/||2 >1-— %f”).
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Concentration of Measure

Proof of Theorem 3 continued: ad (2): For any fixed among the (;’) pairs (i, ) we let X = Xe'
have the direction of the north pole, i.e., ||X/||2 = |X]|. By Theorem 2,

i 1(By \ Sl 2

Prob(\Xﬂ . > _ vol(By \ SI(c)) < 22
Vd—1 vol(By) c

Therefore, taking ¢ = /6 log n, the probability that the projection of X/ to the north pole-direction

is more than /8167 can be bounded by (since 6log2 > 4)

d—1
i 6logn 2 _6logn
Prob( | X!| > e~ 2 <nd
(K1>G27) < Joer =

The same union bound (Remark 4) implies that the probability, that for some pair (i, j) one has
X' X/| > /&% is bounded by () - n~% < L. = (2) O
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Concentration of Measure

Uniform Random Sampling from the Sphere Sy

Let X; ~ N(0,1),j=1,...,d, independent standard Gaussians; ~- joint density

d 1 R 1 1
o) = N0l = [[N010.1) = Gogme™ 7 = e

Itis easy to sample according to N/(x;|0, 1) - why? ~- sample according to py ~~ X ~»
Y = X/IIX]I2

Note: components of Y are no longer independent!

Question: how to sample uniformly from B4?
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Concentration of Measure

Gaussian Annulus Theorem

The next theorem describes where the mass of a spherical Gaussian density in high dimensions
is concentrated.

Let N'(x]0,1) = Hf:1 N (xj|0, 1) be the d-dimensional standard spherical Gaussian density and
X ~ N(0,1). Then, forany g < Vd

Prob(vVd — < X2 < VA +8) = / N(x[0,)dx > 136", (3.7)
Vd—B<|X[2<Vd+B

where c is a fixed positive constant.

Intuition: X ~ A(x[0,1) ~ E[[[X|13] = =74 E[X?] = S, var[X]] = d. Thus the expected
distance of a point, drawn from A/(0, 1), from the origin (the mean) is v/d. Theorem 5 says that
randomly drawn points indeed concentrat tightly around the sphere of radius v/d.
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Concentration of Measure

Proof of Theorem 5: Note

Vd-B< X[l <Vd+8 & |IX|2—Vdl <8 (3.8)
~ suffices to prove that Prob(|||X||2 —Vd| > B) < 3e~°*. Multiplication by ||X||» + v/d ~

XI5 —dl > (IX[l2 + V)8 > pVd  ~

Prob (|[X]l2 — V]| > 8) < Prob(||X[} — o] > BVd).

Rewrite
d d d

X[ —d=3"XF—d=3"(XF-1)=>Y, ~ E[V]=EX]-1=valX]—1=0.
j=1 j=1 j=1

Goal: estimate

Prob(|||X||§ —d > 6\/8) = Prob(‘ i Y,-‘ > ﬁﬁ).
j=1

To apply Theorem 5 we need to bound the rth moments of Y;.
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Concentration of Measure

Proof of Theorem 5 continued: Bounding IE[YJ.’] (Y= Xj? — 1): to that end, note

1, for X <1,
" <
IXj2", for |Xj| >1.

[E[Y/1| = E[|Yj|"] < E[1 + X¥] =1+ E[X¥] =1+ \/3 /xz’e‘xz/zdx.
s
0

To estimate /2 [ x2’e~*/2dx usethat T(y)= [ x¥~'e ¥ax:
0 0

Change of variables z := x2/2 ~

oo oo
2 i 1
14+4/2 /x2’e*X2/2dx =1+ 1/7/2’zr*1/2e*zdz =14 4/—2T(r—1/2) < 2'r1.
™ ™ s
0 0

Recall: in Lecture 11, Theorem 6 we need the rth moment to be bounded by 2r!.

2122 52 2
E[Y]] = 0, — var[Yj] = E[Y?] < 22-2=8 =03,
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Concentration of Measure

Proof of Theorem 5 continued: So far we have |[E[Y/.’]| <2l but 27l £ 811
another change of variables: W, := Y;/2  (Lecture I, (8.6)) ~~

1 _
var[Wj] = var[Yj] <2 = oy, E[W/]=2""E[Y/] <1l
Since

d d
va
Prob([IX3 — d| > BvVd) = Prob() ; Y,-’ > pVd) = Prob(‘ ; W,—’ > %d)

Lecture I, Theorem 6 yields (a = BT\/E)!
2 82 82
Prob([IIXI[3 — d| > Bvd) < 3™ ¥ =3¢~ 125 =3¢~ 5.
~ C = 1/96. -
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Dimension Reduction

Motivation

@ One of the most frequent tasks involving high-dimensional data is
nearest-neighbor-search.

@ Scenario: given is a database of N points X = {x',...,xN} cR%,j=1,... N, N,d
large; X is efficiently stored.

@ Task: for any query point x € R? find the nearest (or approximately nearest) neighbor from
X.

@ Wishlist: the number of queries is typically large ~ the response time (returning the
neighbor) should be small; typically a moderately growing function of log N and log d.
Preprocessing time is allowed to be larger, e.g. polynomial in N and d.

@ An important preprocessing ingredient is dimension reduction, i.e., the projection of
X C R to R¥ with k < d, while approximately preserving mutual distances.

The next result shows how much the dimension can be reduced and how to find a good
projection. It is an application of Theorem 5.
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Dimension Reduction

The Johnson-Lindenstrauss-Lemma  Random Projections

For k < d consider the random matrix

A:(A,'J)f(jd1 e R¥*? where A;; ~N(0,1),i,j=1,...,k d, drawnindependently. (4.1)

Let us denote by A; = (&;,1,...,4a,,4), i = 1,..., k, the rows of A. Note: A; ~ N(0,1).

We will see: the mapping x € RY — Ax € R¥ is with high probability (regarding the choice of A)
near-distance preserving..

Theorem 6

Letx € R? be fixed and let the random matrix A be given by (4.1). Then
Prob(|[14x]l2 — VK[xllz| > evkIlxll2) <36~ %<, “2)

where c is the constant from Theorem 5 and the probability is taken with respect to N'(-|0, 1)X.

Remark: Since A is linear, for any fixed x,y € RY one has

'Ik R GRS D

X —yll2

with probability at least 1 — 3e—o<*
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Dimension Reduction

Proof of Theorem 6: Ax is the vector with components A; - x, i =1, ..., k. Dividing both sides in
Prob(|||AxH2 — \/FHxH2| > e\/RHng) by ||x||2, we can assume without loss of generality that

|Ix|]|2 = 1 (the statement is about relative accuracy). By Lecture Il, Corollary 18 and (10.9), the
sum of independent Gaussians is Gaussian whose variance is the sum of variances. ~~

d d
var[A; - x] = xPvar[4; )] = > " xF = |[x|5 = 1.
j=1 j=1

Hence Aq - X, ..., A, - X are independent Gaussian variables ~ A(0, 1). Hence Ax is a
k-dimensional spherical Gaussian random variable with unit variance in each coordinate.

Theorem 5 (with d replaced by k and using (3.8)) = Prob(’||Ax||2 — \/R’ > e\/R) < 3e—o< [
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Dimension Reduction

The Johnson-Lindenstrauss-Lemma

The JL-Lemma is based on the random projection (4.1): define

Given: anye € (0,1), Ne N; let k> 3'0"52’\’ , Wwhere c is the constant from Theorem 5.

Claim: for any set X = {x!,...,xN} c RY, the mapping F, defined by (4.3), satisfies for all pairs
(1= &lx = ¥[2 < [[F(x") = F(¥)[l2 < (1 + e)[Ix" — %] (4.4)

holds with probability at least 1 — 3.

Remarks:

@ The reduced dimension k does not depend on the ambient dimension d, but only on the
number N of projected points.

@ The dependence of k on N is only logarithmic.

@ There is a close connection between random projections and the Compressive Sensing
paradigm discussed later in the course (if time permits).
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Dimension Reduction

Proof of Theorem 7: Fix any pair x/, xf € X. By the Random Projection Theorem 6, the
probability of ||[F(x') — F(x/)||2 = ||F(x’ — x/)||2 being outside the interval

[(1 = e)lIx" — % |l2, (1 + €)||x" — ¥||2], is at most 3e—0ke®

For k > 2181V this probability is at most 3/N°. Since there are (}) < N2/2 such pairs, the
assertion follows from a union bound, see Remark 4. O
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First Applications to Simple Estimation Problems Separating Gaussians

Mixtures of Gaussians - An Example

Gaussian mixtures: are often used to model heterogeneous data coming from multiple sources

Example: The heights of individuals in a fixed age range in a city are being recorded. On average

men are taller than women ~» Model:
f-height: i+ X1, X; ~N(0,0%);

_ ~ p(X) = Wi N (X|p1,09) + WoN (x|, 05), (5.1)
m—helght Tope + Xg, X2 ~ N(O, 0'5)

where the mixture weights wq, w, represent the proportions of females, males in the city.

Problem: Given access to sample from the density p( ), i.e., heights of individuals without
knowing the gender, reconstruct the parameters p;, o%, i = 1,2 for the mixture model (5.8).

Notice: since there are shorter men than some women, given a height, it is not clear whether it
comes from a female or male.

One could ask analogous questions for more attributes Xj, ....Xy.

In this section: Separate two spherical Gaussians with unit-variance for large d but with
well-separated means; later: the case of nearby means.
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First Applications to Simple Estimation Problems Separating Gaussians

Separation of Gaussians

Model:  p(x) = wy N (X|p1,1) + Wo N (X|up, 1), X € R (d large), find pj, w;, i =1,2.
Observation 1: For two independent draws x, y from the same N/(0, 1), say, one has
lIx —yll2 = v2d = O(1). (5.2)

Argument: By Theorem 5, x, y are with high probability within an annulus of width O(1) around
the sphere with radius v/d. W.l.o.g. we can rotate the coordinate system to obtain

x = (v/d + O(1))e'. By Theorem 2, with high probability,

ly-e'| < Vd-O((d—1)""2) = 0(1),ie. [x-y| = O(Vd) ~

Ix = ylZ = (x—y)"(x—y) =X —2x-y + |yl =2d £ O(Vd) = (52).

Observation 2: Consider two independent draws x, y from N (uq, 1), N'(uz, 1), respectively, and
set A := ||u1 — pell2- Then, with high probability one has

lly — x|I3 = A2 + 2d £ O(Vd). (5.3)
Argument: Adding, subtracting u4, uo and expanding, yields
XI5 = lIx—p1l5+Iy—pall5+A%+2(X—p1) T (Y—p2)+2(X—p1) T (11 —p2)—2(Y—p2) " (11 —p2)-

By the above argument, the 4th summand is =O(+/d). Consider the slabs Sy, S, of width O(1)
around the centers 1, u2, which are perpendicular to p1 — po. As argued above, with high
probability x € Sy, y € S, so that 1 — pp has inner products with x — 1, y — po of at most the
order O(+/d) = (5.3).
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First Applications to Simple Estimation Problems Separating Gaussians

Outline of a Simple Separation Algorithm

Rationale: Distance Dy between two points from the same Gaussian should be smaller than the
distance D, bewteen two points from different Gaussians, i.e.,

Dy <v2d +0(1) < <VB?t2d —0(1) <Dy, & 2d+0(d)<2d+ A2
This holds when A > Cd'/4.

Algorithm:
@ Calculate all pairwise distances between the samples;

@ Identify the two clusters Cs, C; of small and large pairwise distances; pick a pair (xf1, x%2)
from Cs and fix x ; define Cs 1 as the set of all points x/ such that (x'1,x') € C; (long
distance); these points come from a single Gaussian with high probability;

@ the remaining points come from the other one.

One still needs to fit the clustered points to a Gaussian.
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First Applications to Simple Estimation Problems Fitting a Gaussian

Maximum Likelihood Estimator (MLE)

Suppose that x', ..., xN are i.i.d samples from X ~ N (, o21) (spherical Gaussian with center
n € RY)

Goal: estimate i and o2 from these points.

The joint density of the underlying random variables X/,j = 1,..., XV is the dN-dimensional
spherical Gaussian
POKT, XY = N X (), 0Pl = —— ez (XK B )
(271'02) 2

The Maximum Likelihood Estimator (MLE) determines estimates ., ‘7/2\/1L by maximizing this
joint density for the given data x',..., xN.

Proposition 8

MLE provides the sample mean

’
pmL = N(X1 +- 4 xN), (5.4)

as estimate for 1, and the discrete sample variance with respect to the sample mean

o = aN Z l1%; — penacll3 (5.5)

as an estimate for 2.
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First Applications to Simple Estimation Problems Fitting a Gaussian

Proof of Proposition 8: Maximizing p(x', ..., x") is most conveniently done by maximizing its
logarithm

N
logp(x',...,xV) = 7217 ; [1%; — |3 — % log(202) — % log(7) (log-likelihood function). (5.6)

Maximization over  is independent of o2. Taking E(u) := Z}L lIx; — |3, one has
VEW =20 — ) =0 & =

Take a := (202)~", it suffices to maximize over a. Differentiation with respect to a and setting the
derivative to zero, yields the unique solution ay by

N
dN 1 , 1 2 ,
Z lI%; — pnll3 + 2 an = 20y = an -~ dN 12:1: lI; — pnllz

which is (5.5) O

The estimates ., af/,L are independent of wether the data are sampled according to N (-|u1, o°1)
or wN (+|us, a1) where w > 0 is any “weight factor”. How to determine such a weight?
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First Applications to Simple Estimation Problems Fitting a Gaussian

Maximum Likelihood Estimator (MLE)

Remark 10

This can be generalized to non-spherical Gaussians X ~ N (u; A), i.e.,

: 1 1 T A—1
N(X|u, A) -:WQXP{—E(X_M) A (x—p).
One obtains py = 1N Zj"; x/ as before and

N
1 ) .
A= > (% — g ) — ) T
=

Hint: the joint density of X, ..., XN ~ A/(y; A) is (by independence)

1 3N ) AT ()

N
,D(X1 yeee 7XN) = HN(X”M, A) =

_ @ ~y
i (27)dN/2|det A|N/2
maximize over pand R = A~'
N
N N 1 : :
0= logp(x',...,.xN) = 7% log(2) — 7 log|det A| — > —p)AT (X - p).

=1
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First Applications to Simple Estimation Problems Fitting a Gaussian

Maximizing over p ~~

N N N
Dulogp(x',...,xM) 20~ 0= AN -p)=AT (D (W -p) & D ¥ =
= = =
Maximizing over R := A"
N
N d 1d i
LV 9 g detR - - — )R —
0=23r og|det R| — o 9R ]:1 pm )R — )
Notice: (chain rule)
d ada M . N )
log|detR| = R~ = A, ——=> (¥ — )R —p) => (¢ — paa )¢ — o) ™
dR dR -
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First Applications to Simple Estimation Problems Fitting a Gaussian

How good are these estimates?

Note: for each draw x', ..., xV one obtains estimates pyy = up (X7, ... XN),

o = o (X1, X’V) which will vary over repeated draws and are therefore also random
variables.

wumL, omL are random variables distributed according to p(x', . .., xN). Hence we can compute
the expectation of these quantities: show that

IN —
Blum] =p,  Bloy] = (D)o (5.7)

Thus, the maximum likelihood estimate systematically underestimates the true variance by the
factor dN ! This results from computing O'ML based on the sample mean not the true mean.

(5.7) ~

aN
52 2 _ 2
G = dN— 1ML = gN 1 ;”Xj*#MLHz

is an unbiased estimator. These are special effects reflecting a more general feature of maximum
likelihood methods.
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First Applications to Simple Estimation Problems Gaussian Mixtures and Clustering

Gaussian Mixtures revisited

Mixture Models: form an important class of stochastic models. They have the form

k
p=wipi + WoPp + -+ Wkpk, W; >0, > w; =1, p; are known densities. (5.8)
j=1
The mixture weights w; quantify the proportion of the density p; in the whole stochastic process.
Clearly, p is again a probability density.

In this section we consider the case:  pj(x) = N (X|yj, o), pj, X € RY, under the assumptions:
e d large

o k«d

e o~1

Task: Given data X = {x',...,xN} C RY, estimate w;, uj,0,j=1,..., k.

Recall: before k = 2, ||y — pzll2 > Cd'/4; now k > 2 is permitted and centers are allowed to be
closer to each other.

Strategy:
(i) Cluster the set of samples into k clusters Cj, j = 1,.. ., k, where C; corresponds to the set
of samples generated according to p;; This is based on the discussion over the next slides
(i) determine p;, o2 for the Gaussian corresponding to the cluster Cij=1,...,k, as
described in the previous section;
(iii) determine the weights by a least squares method.
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(i) Is Based on: Invariance of Spherical Gaussians under Projection

LetU C RY be a k-dimensional subspace. Then a spherical Gaussian density N (x|, o2l)
restricted to U is (up to normalization) again a sperical Gaussian density with the same variance.

Proof: Let.{u1 R uk} C RY be an orthonormal basis for U. Complete the matrix U with
columns u, i = 1,..., k,to an orthonormal matrix U = (U, y_xU) for RY by adding columns
uktt . uN. Then, for x = Uz = U2’ + y_x U2, where 2/ = (z,...,2x), 2" := (Zks1,- - -, N),
1 — 57 IUE-UT )3 1 — 2z llz—uT ul}
NX|p,ol) = ————e 202 Y S y ) 2
( |,u e ) (0.22ﬂ.)d/2 (0'227r)d/2
where we have used that the Euclidean norm is invariant under orthogonal transformations.
Writing UT i = (4, 4”"), noting that the restriction of x to U is U2/, and that
lz=UTul3 =1z — w5 + 12 — |5 we get
T a3 1
d—k k
(022m) 2 (0227)2
as claimed. O
Remark 13

12— )2
N (U2 |1, 0%1) = e 22711 — on(z | o?1),

Whenp € U, ie., n=Ugy,y € R¥, one hasUT u = UT U,y =y, i.e., the projected Gaussian
has the same mean as the original one. Goal: find the subspace Uy spanned by the means of a
Gaussian mixture.
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Invariance of Spherical Gaussians under Projection

Remark: Perhaps a better way to understand a “projection” of a density to a subspace U is to see
how it acts on functions that do not depend on variables orthogonal to U. Specifically, for
U,U,, v—xU, 2, 2", u/u” as above, consider any g such that

9(x) = 9(Uz) = g(Uxz’ + n—,U2") = g(Ux2') =: 3(2')

[ gn i, o

RO

u
W/g Uz)e el Ll (since [detU] = 1)

T 2
- W/gz)e gz VeV TIE
T

UT
- W/gz)e Ll L P
T

_ 1 . e_ﬂllz —u Hgdzu /g(z Ye 262 Iz’ —n Hgd

a—k k
(0227) 2 pd—k (022m)2 ¢

=1

= ' [aae L P
(0227)2

Rk

S GG

Rk
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Best-Fit Subspace to a Spherical Gaussians

Let U c RY be a k-dimensional subspace. Therefore there exists an orthonormal basis
{u',...,u¥} c RY forming the matrix U,. By Lecture |, page 47, (5.26),

K
Pux = (x-u)uw = UU/ x (5.9)
j=1
is the orthogonal projection to U.

Definition 14

Given a probability density p on R9. Then the subspace

Uk :=  argmax E[HF’UXHS] (5.10)
UCRY,dim U=k

is called the best-fit k-dimensional subspace (w.r.t. p).

Remark 15

| A

Intuitively, Uy = Ux(p) is the subspace that “sees most” of the density p among all k-dimensional
subspaces. Compare this with Lecture I, Theorem 42, when the density p is replaced by a point
cloud forming the matrix A. This subspace will be seen to contain the means of the Gaussian
mixture.
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Best-Fit Subspace to a Spherical Gaussians

A first central step is to identify the best-fit subspace for a mixture of k spherical Gaussians.

Theorem 16

Let the density p on R? have the form (5.8) where p; = N (-|pj, ol), pj € R9, j=1,... k. Then
the best-fit k-dimensional subspace Uy for this mixture contains the centers y; € RY,
j=1,...,k. If the u; are linearly dependent, the uniquely define the subspace Uy.

The proof is based on several lemmas.
Lemma 17

Forp = N(-|p, a21), X ~ N(u; o21), u € R?, ||u||2 = 1, one has

E[(u"X)?] = o + (u' )2 (5.11)

§

Proof:
E[[| Py, X|[3]

Bfu- X2 = B[ (X~ ) +uT p)?]
= E[u"(X—p)?+2uTm)u’ (X—p)+ (u'p?]
= E[(u"(X-p)]+ 2(UTM)UT1E[X — ]+ (U p)?

= E[u'(X—pn)?+up?= ZUZE[(X )] =0 + (Ul p)?.
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Best-Fit Subspace to a Spherical Gaussians

Lemma 18

For p = N (-|u, o®1) a k-dimensional subspace is a best-fit subspace for p if and only if it
contains p.

Proof: For 1 = 0, by symmetry, every k-dimensional subspace is a best-fit subspace. Assume
now p # 0.

For k =1, U = span {u}, one has Pyx = (u-x)u and hence ||PyX||2 = (u-X)2. In view of (5.11),
E[||PyX||3] is maximized if and only if u is parallel to 4, i.e., [u- x| = ull2|lull2 = |ull2 ~ 1 € U.

For k > 1: suppose 1 ¢ U. Since the orthogonal complement p1 of 1 in R? has dimension
d — 1 and U has dimension k we must have dim (U N u+) = k — 1. Therefore, there exists an

orthonormal basis {u', ... ,uf=" uX} of U where
pwW=0, j=1,... k—1. (5.12)
As before, denoting by U, the matrices with columns u’, ..., u’, we recall from (5.9) that

Pyx = U U/ x and (since U, Uy = l,)

k
[Pux|3 = (Pux) T Pux = x"UkU UU x = xTU U x =D (xTW))?  ~ consider (5.13)
j=1

(5.11 (5.12)

E[l|PuX|3] = Z}; E[(XTu/)?] (k = 1)0? + (uk - )2 maximal iff uk = ap. O
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Best-Fit Subspace to a Spherical Gaussians

Proof of Theorem 16: Let p = wypy + - - - + wipx be the Gaussian mixture (i.e.,
pj(X) = N (X|), a21)) and let U be any subspace of RY of dimension k. It can be spanned by an
orthonormal basis {u’, ..., uf}.

Then, by (5.13) and linearity of E,

k
Ep[IPuXI3] = > wikp, [IPuX|3).
1=1

This sum is maximized if each summand is maximized. By Lemma 18, this is the case if and only
if U contains the means y;,j =1,..., k. ]
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Outline of a Separation Algorithm

o (Ideally) find the best-fit subspace Uy that contains the centers pj, j = 1,... k.

9 By Lemma 12, the projection of a spherical Gaussian to Uy is still (now a k-dimensional)
Gaussian with the same variance o2.

e Suppose ¥ = {x',...,xN} c R is the given set of samples from the mixture distribution.
Let xk = {xVK, .. xN k1| C Uy be the projected sample set, i.e., X'k = Py, x/,
j=1,...,k and denote by A;j == ||xK — x/K||5 the mutual distances in Uy.

Note: since the centers ;; already belong to Uy their distances don’t change under
projection
llej — will2 = 1Py, (g — pi)ll2, i #J < k. (5.14)

o By the methods discussed in the preceding section, one can separate Gaussians in R¥
provided that their centers satisfy

i = willa > CK'/*, (5.15)
which is only a small threshold (independent of d) when k is bounded uniformly.
Q Exploit the latter fact to cluster X¥ into k clusters Cj,j=1,...,k, where now with high

probability the points in C; come from the Gaussian p; = N (-|u, a2l).

Q Compute for each C; estimates i ., aﬁML by means of the Maximum-Likelihood Estimator
(in R, see Remark 13) from the previous section, and set o? = £ Z}; aﬁML.

@ SetM:= (uy i, i) € RK y = 45N 0, oy R EplX] = S wipu,
~ Y R 25;1 Wi pmL; compute W = (wr, . . ., wi)T e RFbyw = argmin, ~.q [[Mv — y||§
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Outline of a Separation Algorithm

Items (1) and (5) in the above sketch require further comments:

ad (1): One cannot compute the exact best-fit subspace U, because one cannot carry out the
required maximization exactly.

Simple idea: maximize instead with respect to the empirical mean, i.e.,

N
1 .
argmax E| || PyX|3| < argmax < — E | Pux'||3 (5.16)
dim U=k [ 2] dimU:k{N P 2}

Consider first k = 1, U = span {u}, |julz =1, ~

N

1 )
u' = argmax — Z(x’ u)2, (5.17)
[lull2=1 i—

Let A denote the matrix whose rows are the x/, i.e., A € RN*d_ Then, (5.17) can be equivalently
restated as
u' = u'(%) = argmax ||AT u||3 = argmaxu’ AAT u. (5.18)
llull2=1 llullz=1
As shown in Lecture | (see e.g. the proof ofTheorem 39, or Lemma 43), u' is the first left singular

vector of the matrix Aand
2

xup? = X (wh is the largest singular value of A, 5.19
||u||21NZ( N (where o4 x is the largest singular value of A.) (5.19)
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Outline of a Separation Algorithm

Returning to (5.16), we take up on the PCA Greedy Construction of the SVD in Lecture I, page
75, (6.16) and successively maximize at the ith stage u™ AAT u over those unit vectors u,
|lujl2 = 1, which are orthogonal to the previously computed directions u', ..., u'=" for i < k.
Hence, forr < k

| N , N ,
N;(x’- u)? = g: (x'-u)2. (5.20)

lullo=1; uJ.uS s<r N

Let us again denote by Uy the matrix whose columns are these pairwise orthonormal vectors u'.
Thus Py, x = U,U/ x and

N Kk

N
> () TUUI X = %ZZ(u/ x)?
i

=1 j=1

1

Z(X ) TURUL U U X
i=1

k N

= Z{ D> (WX
= i

1 :
N 2 1Pu X3
i=1

2 \

x

z|=

i.e., in view of (5.20), each summand in the curly brackets is maximized by the greedy basis.
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Outline of a Separation Algorithm

Corollary 19

Step (1) in the algorithm can be realized approximately by computing the SVD of the point cloud
AT & X. The subspace generated by the first left singular vectorsu’, i =1,. ..k, is an
approximation to the exact best-fit subspace The larger the number N of samples x', the closer is
the empirical mean to the true expectation, i.e., the discrete maximization in (5.16) yields better
and better approximations to the exact best-fit subspace. The singuar values o2 5 are

J,
approximations of 2.

The accuracy of the SVD based subspace affects the accuracy of the estimation for the means
;,mL taking place in the approximate subspace.

ad (5):
@ Compute first all pairwise distances A; ; (in Ux) and order them by increasing size A, ;. ;
pick the smallest r = s such that A, ;; > v2d +a =: 6; find a, ¢ such that
A, js > V2d + ck'/* =: A holds for all s > r.

@ Put all pairs (i, ) into S, for which ||x/:K — x"K||; < 6, put all pairs with ||x/K — x'K||; > A
into L.
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Outline of a Separation Algorithm

@ Consider the triangular array

(1.2, (1,3, (1.4, ... (LN)
2,3), (24), ... (2N
T: . .
(N =1,N)

Let Ts be the sub-array for which all pairs belong to S. Two pairs are connected if the have
a common index. A subset of pairs is connected if any two of them can be connected by a

path of connected pairs. The “content” of a connected subset is the set of involved indices.
Each cluster C; corresponds to the content of a maximal connected set of pairs in Ts.

@ Exercise: Design an efficient way of finding these sets.
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